• 关于

    特性切换会出现哪些问题

    的搜索结果

问题

Vue面试题汇总【精品问答】

问问小秘 2020-05-25 18:02:28 11132 浏览量 回答数 2

问题

【精品问答】带你进入数据库领域

谙忆 2020-04-07 20:45:48 12 浏览量 回答数 1

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20200921)

亢海鹏 2020-05-29 15:10:00 19050 浏览量 回答数 5

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

UNIX/Linux系统取证之信息采集案例

opensiem 2019-12-01 21:46:20 2034 浏览量 回答数 1

问题

大数据时代——数据存储技术百问

yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

回答

OSC 第 128 期高手问答 -- Python3 开发实战 @壁_花 @idisikx @hell0cat @DarkAngel @北京老爷们儿      恭喜以上五位网友或获得《Python Web开发实战》图书一本  请私信 @博文视点   告知快递信息(格式:姓名+电话+地址+邮编号码)!  ######@dongwm :不知作者有没有涉及过大数据方向的?我看部分大数据相关的都要用到python这是为什么?Hadoop整个生态圈都是Java的,python的定位是什么?######@dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢?######@dongwm : 按照“没有银弹”一说,python应该也有自己的适用范围吧,是不是比较适用于机器学习,不适合于web开发呢?######Python被称为「胶水语言」,虽然没有「统治」哪个领域,但是基本上个个领域都把手伸了进去。 机器学习我不熟不敢妄谈是不是更合适。我只能说,Python很适合web开发######使用豆瓣很多年,很喜欢豆瓣的风格。之前一直是在网页端浏览,后来又到了手机app端。我总体感觉豆瓣的进步很快。我想问的问题是,python web一直作为豆瓣的开发首选,是因为什么?还有关于豆瓣的权限模块的设计时,python web发挥了什么优势。作为手机端app的开发,python web会起到什么作用吗?######回复 @机器猫123 : 会的。也许不会开源,但是酱厂里面确实有很多不错的实现######回复 @dongwm : 未来豆瓣会继续用python web衍生开发新的产品吗?######回复 @dongwm : 谢谢老师的回答。######豆瓣选择Python,其实是公司和语言的风格很相似的缘故吧。我们做事喜欢优雅,清晰,高效,这这好也是Python希望的。 豆瓣的基础设施基本都是使用Python完成,包含权限部分,但是Python web和权限模块设计感觉没啥直接的关系,就是抽出来的库和使用它的关系,我也没懂有什么优势或者劣势。 豆瓣app的API后端是使用PythonWeb完成的###### 引用来自“DarkAngel”的评论 @dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢? 引用来自“dongwm”的评论ROR我倒没有实际的用过,不敢妄言。Python最大的优势是他是一个「胶水」语言,在工作中的各个方向都能看到Python对应的库的身影,学会Python会让你的路比较宽,但是用ruby,可能在我印象里面就是Web开发比较有名。我现在还没有发现做Web开发有比Python效率高的方式。 其实很多人都担心Python的执行效率,然而其实绝大多数情况Python足够快,不快的话要先看看自己是不是用得不对或者不好。现在硬件资源很廉价,除非上升到BAT那种规模,否者基本还没有到达讨论语言瓶颈的问题。现在豆瓣绝大多数基础设施都是使用Python开发的。在Web开发中,我们很少通过写扩展的方式提高性能,其实编程语言一般都不是网站性能的瓶颈,还可以通过其他方式解决。 之前学ROR是因为老师要求用这个,我没有用Python进行Web开发的经验,稍微有一点了解的也只是Flask或者Falcon这种轻量级的,感觉能够快速开发小巧的应用,但是不知道有哪个特别出名的应用或者网站系统是由Python开发的(比如WordPress和Discuz用的PHP,Gitlab用的Ruby,OSC好像用的是Java吧)。Python确实是一种比较万能的语言,但有点万金油却不够专精的感觉。比如在科学计算方面很流行,但是论效率不如Julia,论支持库的丰富和使用广泛度不如Matlab(特别是学校里面,教授做研究或者教学一般都会用Matlab);在系统管理方面看,能用Python干的脚本化工作,用shell或者perl基本上都能干,而且需要写的代码行数说不定更少。如果说用Python进行Web开发效率高,是有特指某一个框架吗,还是泛指? 我在写程序时首先会想到用Python,是因为喜欢tial-and-error这种方式,能够在正式写代码前确认想法能不能实现,能够让我有兴趣和信心继续下去。但真要说起来,能够提供REPL特性的语言也不少。 Python的执行效率貌似永远是Python热门的讨论话题,比如GIL的存在必须要用特殊的方式来优化。像gevent和Tornado之类的存在也适用于高并发的网络连接(不过Python在这方面的性能不一定是最高的,没有看过相关的测试)。再说Python的实现,除了最出名的CPython和PyPy之外,甚至还有为嵌入式设备开发的MicroPython(这也在另一方面说明了Python的万能性)。Dropbox的技术栈中也使用了Python,并且有开发面向性能的Python实现pyston,此外还有Stackless Python(听名字感觉很厉害,虽然其实我并没有去了解这到底是什么),但它家也在用Golang和Rust开发高性能的东西。那么,豆瓣的基础设施实现中,用Python开发的应用效率如何?也有使用除了CPython之外的实现来进行优化吗?(我是不是扯得有点偏题了?) ######回复 @dongwm : 那么用Python来开发Web,是否属于那种会带来这种优势的选择呢?或者有没有哪家公司通过把技术栈切换到Python而带来了这种进步?######回复 @dongwm : 以现在的硬件发展水平,基本上任何数量级的访问都可以通过硬件的堆砌获得支持。不过经常会看到新闻,比如某某公司将它的某某技术构架从XX语言切换到了YY语言,然后获得了性能提升、提高了稳定性、减少了部署的服务器等优势,(我记忆中有看到Twitter的新闻,PHP 7的新闻,还有一些其他的)。######豆瓣每天服务着千万级别的用户(抱歉不能说具体数字)的请求,绝大多数应用和基础设施都是Python实现的。所以应用效率不用担心。虽然可以使用C/C++的扩展提高运行效率,但是我接触的场景里面很少。相当于写扩展的维护性和成本,大家更愿意从架构,算法等方面来解决。######嚯,你的问题好长。 进行Web开发效率高算是泛指,包含django和flask。效率高也体现在它们的第三方扩展和支持比较完善,基本能想到的都有对应的项目支持,这样少造了很多轮子。###### @dongwm :python的确很好,也很强大,我也一直在用,但我大都做的和web方面没有什么联系.而我对web方面挺感兴趣,但自学起来始终不得要领,进展有点慢,大神能否讲一讲web方面的学习经验,或者flask方面的心得.又或者推荐一些关于web好的学习资源.期待您的回答并致谢.###### @dongwm :了解Python基本知识,希望学习一门Python web框架学习后端开发。之前我对部分主流框架进行了一些了解:Django,Tornado,在知乎上有一个非常活跃的群体。在框架的选择问题上,只有最适合你自己、最适合你的团队的框架。编程语言选择也是一个道理,你的团队Python最熟就用Python好了,其实大部分人是没必要太关心框架的性能的,因为你开发的网站根本就是个小站,能上1万的IP的网站已经不多了,上10万的更是很少很少。在没有一定的访问量前谈性能其实是没有多大意义的,因为你的CPU和内存一直就闲着呢。而且语言和框架一般也不会是性能瓶颈,性能问题最常出现在数据库访问和文件读写上。 ######嗯 赞同你的观点。很多人在杞人忧天。先等活到有必要讨论语言的那一天,那时候早就有钱有人有时间,哪怕Python真的不满足,重构呗######@dongwm :Python确实越来越火了,知乎就是python做的,偶尔搞了一点,发现确实很高级,至少比java语言高级一些某些功能Java只需要写100行,而Python可能只要20行。做一些外维系统还是挺方便的,比如日志的提取等,之前学的是2.7版本,现在python3比之前的版本有哪些新特性呢? ######python 3是相当于站在Python2的肩膀上,摒弃了早年设计python 2的错误思想(所以有的地方向前不兼容),加了一些新的语法,比如asyncio,甚至type hint(我不喜欢)。 具体的内容可以看 https://docs.python.org/3/whatsnew/index.html。 总体上和Python 2区别不大。不用纠结Python 2/3###### @dongwm :初入门python,有c、java基础。再看《python基础教程(第二版)》。请问您有推荐的书籍吗?######我个人在知乎专栏写过一篇推荐书的文章 https://zhuanlan.zhihu.com/p/22198827。我建议有一些其他语言基础的同学好好地看看《Python学习手册》,如果你英语比较好,建议直接看原著。《Python基础教程》虽然是一个经典的入门教程,写作风格也相对轻松幽默,但是由于本书写作于2010年,书中有大量内容已经过时,所以不推荐! ========================== Python "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode ch:报错 {   "traceback": "  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/st2actions/container/base.py\", line 99, in _do_run\n    LOG.debug('Performing run for runner: %s' % (runner.runner_id), extra=extra)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 49, in wrapped_f\n    def wrapped_f(*args, **kw):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 206, in call\n    if not self.should_reject(attempt):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 247, in get\n    else:\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 200, in call\n    try:\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 219, in run\n    result = self.start(action_parameters=action_parameters)\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 256, in start\n    **options)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/v2/executions.py\", line 56, in create\n    return self._create('/executions', data)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 95, in _create\n    self._raise_api_exception(resp)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 143, in _raise_api_exception\n    error_message=error_data)\n",         "error": "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode character u'\\xae' in position 169: ordinal not in range(128)\n[u'Traceback (most recent call last):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/server.py\", line 155, in _process_incoming\\n    failure = None\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 222, in dispatch\\n    if hasattr(endpoint, method):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 192, in _do_dispatch\\n    new_args[argname] = self.serializer.deserialize_entity(ctxt, arg)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/engine/engine_server.py\", line 98, in start_workflow\\n    (rpc_ctx, workflow_identifier, utils.cut(workflow_input),\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 284, in cut\\n    return cut_dict(data, length=length)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 198, in cut_dict\\n    v = str(value)\\n', u\"UnicodeEncodeError: 'ascii' codec can't encode character u'\\\\xae' in position 169: ordinal not in range(128)\\n\"]." }

kun坤 2020-06-15 11:08:13 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站