• 关于

    需求描述语言错误如何解决

    的搜索结果

问题

提高软件测试效率方法探讨

技术小菜鸟 2019-12-01 21:17:12 3420 浏览量 回答数 1

问题

提高软件测试效率方法探讨

技术小菜鸟 2019-12-01 21:38:35 4319 浏览量 回答数 1

回答

成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能力,这些能力中的每一项掌握起来都需要足够的努力和经验。而要成为一名合格的机器学习算法工程师(以下简称算法工程师)更是难上加难,因为在掌握工程师的通用技能以外,还需要掌握一张不算小的机器学习算法知识网络。 下面我们就将成为一名合格的算法工程师所需的技能进行拆分,一起来看一下究竟需要掌握哪些技能才能算是一名合格的算法工程师。 1.基础开发能力 所谓算法工程师,首先需要是一名工程师,那么就要掌握所有开发工程师都需要掌握的一些能力。 有些同学对于这一点存在一些误解,认为所谓算法工程师就只需要思考和设计算法,不用在乎这些算法如何实现,而且会有人帮你来实现你想出来的算法方案。这种思想是错误的,在大多数企业的大多数职位中,算法工程师需要负责从算法设计到算法实现再到算法上线这一个全流程的工作。 笔者曾经见过一些企业实行过算法设计与算法实现相分离的组织架构,但是在这种架构下,说不清楚谁该为算法效果负责,算法设计者和算法开发者都有一肚子的苦水,具体原因不在本文的讨论范畴中,但希望大家记住的是,基础的开发技能是所有算法工程师都需要掌握的。 2.概率和统计基础 概率和统计可以说是机器学习领域的基石之一,从某个角度来看,机器学习可以看做是建立在概率思维之上的一种对不确定世界的系统性思考和认知方式。学会用概率的视角看待问题,用概率的语言描述问题,是深入理解和熟练运用机器学习技术的最重要基础之一。 概率论内容很多,但都是以具体的一个个分布为具体表现载体体现出来的,所以学好常用的概率分布及其各种性质对于学好概率非常重要。 对于离散数据,伯努利分布、二项分布、多项分布、Beta分布、狄里克莱分布以及泊松分布都是需要理解掌握的内容; 对于离线数据,高斯分布和指数分布族是比较重要的分布。这些分布贯穿着机器学习的各种模型之中,也存在于互联网和真实世界的各种数据之中,理解了数据的分布,才能知道该对它们做什么样的处理。 此外,假设检验的相关理论也需要掌握。在这个所谓的大数据时代,最能骗人的大概就是数据了,掌握了假设检验和置信区间等相关理论,才能具备分辨数据结论真伪的能力。例如两组数据是否真的存在差异,上线一个策略之后指标是否真的有提升等等。这种问题在实际工作中非常常见,不掌握相关能力的话相当于就是大数据时代的睁眼瞎。 在统计方面,一些常用的参数估计方法也需要掌握,典型的如最大似然估计、最大后验估计、EM算法等。这些理论和最优化理论一样,都是可以应用于所有模型的理论,是基础中的基础。 3.机器学习理论 虽然现在开箱即用的开源工具包越来越多,但并不意味着算法工程师就可以忽略机器学习基础理论的学习和掌握。这样做主要有两方面的意义: 掌握理论才能对各种工具、技巧灵活应用,而不是只会照搬套用。只有在这个基础上才能够真正具备搭建一套机器学习系统的能力,并对其进行持续优化。否则只能算是机器学习搬砖工人,算不得合格的工程师。出了问题也不会解决,更谈不上对系统做优化。 学习机器学习的基础理论的目的不仅仅是学会如何构建机器学习系统,更重要的是,这些基础理论里面体现的是一套思想和思维模式,其内涵包括概率性思维、矩阵化思维、最优化思维等多个子领域,这一套思维模式对于在当今这个大数据时代做数据的处理、分析和建模是非常有帮助的。如果你脑子里没有这套思维,面对大数据环境还在用老一套非概率的、标量式的思维去思考问题,那么思考的效率和深度都会非常受限。 机器学习的理论内涵和外延非常之广,绝非一篇文章可以穷尽,所以在这里我列举了一些比较核心,同时对于实际工作比较有帮助的内容进行介绍,大家可在掌握了这些基础内容之后,再不断探索学习。 4.开发语言和开发工具 掌握了足够的理论知识,还需要足够的工具来将这些理论落地,这部分我们介绍一些常用的语言和工具。 5.架构设计 最后我们花一些篇幅来谈一下机器学习系统的架构设计。 所谓机器学习系统的架构,指的是一套能够支持机器学习训练、预测、服务稳定高效运行的整体系统以及他们之间的关系。 在业务规模和复杂度发展到一定程度的时候,机器学习一定会走向系统化、平台化这个方向。这个时候就需要根据业务特点以及机器学习本身的特点来设计一套整体架构,这里面包括上游数据仓库和数据流的架构设计,以及模型训练的架构,还有线上服务的架构等等。这一套架构的学习就不像前面的内容那么简单了,没有太多现成教材可以学习,更多的是在大量实践的基础上进行抽象总结,对当前系统不断进行演化和改进。但这无疑是算法工程师职业道路上最值得为之奋斗的工作。在这里能给的建议就是多实践,多总结,多抽象,多迭代。 6.机器学习算法工程师领域现状 现在可以说是机器学习算法工程师最好的时代,各行各业对这类人才的需求都非常旺盛。典型的包括以下一些细分行业: 推荐系统。推荐系统解决的是海量数据场景下信息高效匹配分发的问题,在这个过程中,无论是候选集召回,还是结果排序,以及用户画像等等方面,机器学习都起着重要的作用。 广告系统。广告系统和推荐系统有很多类似的地方,但也有着很显著的差异,需要在考虑平台和用户之外同时考虑广告主的利益,两方变成了三方,使得一些问题变复杂了很多。它在对机器学习的利用方面也和推荐类似。 搜索系统。搜索系统的很多基础建设和上层排序方面都大量使用了机器学习技术,而且在很多网站和App中,搜索都是非常重要的流量入口,机器学习对搜索系统的优化会直接影响到整个网站的效率。 风控系统。风控,尤其是互联网金融风控是近年来兴起的机器学习的又一重要战场。不夸张地说,运用机器学习的能力可以很大程度上决定一家互联网金融企业的风控能力,而风控能力本身又是这些企业业务保障的核心竞争力,这其中的关系大家可以感受一下。 但是所谓“工资越高,责任越大”,企业对于算法工程师的要求也在逐渐提高。整体来说,一名高级别的算法工程师应该能够处理“数据获取数据分析模型训练调优模型上线”这一完整流程,并对流程中的各种环节做不断优化。一名工程师入门时可能会从上面流程中的某一个环节做起,不断扩大自己的能力范围。 除了上面列出的领域以外,还有很多传统行业也在不断挖掘机器学习解决传统问题的能力,行业的未来可谓潜力巨大。

寒凝雪 2019-12-02 01:21:12 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

1、 描述下应用架构的发展历程 目前,架构的发展历程是从单体架构、分布式架构、SOA架构,再到如今流行的微服务架构 2、单体架构的优点、缺点 优点: I 易于开发,开发人员可在短时间内开发完成单体应用 II 易于测试 III 易于部署 缺点: I 灵活程度不够,一旦修改,自上而下需要整体部署,才可以展现出效果,同时开发效率低,降低团队灵活性 II 降低系统的性能 III 系统启动、重启缓慢 IV 扩展性差 3、 什么是传统的分布式架构 简单来说,就是按照业务垂直切分,每个应用都是一个单体架构,通过API接口互相调用 好处是,依赖解耦,理解清晰,开发便捷速度,缺点是调用存在风险,技术复杂,可靠性降低 4、 SOA架构的优点、缺点 面向服务的SOA架构,根据不同的业务建立不同的服务,优点,模块拆分,开发聚合,降低了耦合度,增加功能,增加子项目即可,方便部署,灵活的分布式部署 缺点,调用、交互采用远程通信,接口开发增加工作量 5、 什么是微服务技术 微服务架构在某种程度上是SOA架构的发展。微服务是一种架构风格,对于一个大型的复杂的业务应用系统,业务功能可以拆分为多个独立的微服务,各个服务间是松耦合的,通过各种远程通信协议,实现交互,各个服务可以独立部署、扩容、升降级 6、 目前流行的微服务解决方案 目前最常见的,包括两种,一种基于SpringCloud中间件的微服务解决方案,选型比较中立,内部组件,可以自由更换搭配使用,大致上三种,服务发现,一种Eureka,一种Consul,一种etcd或者阿里nacos,共用组件,服务调用组件Feign。负载均衡ribbon,熔断器hystrix,网关,zuul,gateway,等,配置中心,携程阿波罗,nacos,Config;全链路监控,zipkin,pinpoint,skywalking,其他组件 另一种基于Dubbo实现微服务解决方案,可以Dubbo,nacos,其他 7、 什么是中间件 中间件,是在操作系统之上,应用软件之下的中间层软件。本质上归结为技术架构。常见的中间件,包括服务治理中间件、配置中心、链路监控、分布式事务、分布式定时任务、分布式缓存、消息中间件、API网关、数据库中间件等 8、 什么是Spring Cloud 也是一个中间件,由Spring官方开发维护,基于SpringBoot技术框架,提供了一整套的微服务解决方案。包括服务注册与发现、配置中心、全链路监控、API网关、熔断器等组件,可以随需扩展或替换使用 9、 SpringCloud项目模块 注册中心 Eureka 第一代网关 Zuul 多语言 Sidecar 负载均衡 Ribbon 熔断器 Hystrix 第二代网关 gateway 集群监控 Turbine 声明式HTTP客户端 Feign 注册中心 consul 链路追踪 sleuth 配置中心 config 服务总线 Bus 等 10、 SpringCloud与服务治理中间件 服务治理中间件包含服务注册与发现、服务路由、复杂均衡、自我保护、丰富的治理管理机制等功能。服务路由包含服务上下线、在线测试、就近选择、A/B测试、灰度发布等,负载均衡支持根据状态权重进行负载。自我保护,服务降级、优雅降级、流量控制,Spring Cloud中使用了相关 11、 Springcloud与配置中心中间件 单体应用中,属性配置和代码采用硬编码形式放在一起,简单方便,但是在分布式系统中,多个服务实例,需要分别管理每个服务下对应的配置项,往往配置项项目一致,内容存在偏差,则上线需要检查所有的配置项,如果修改配置项,就要重启等,开发管理相当麻烦,另外还会涉及安全性的问题,比如数据库密码等的存放。分布式系统中,需要我们统一管理,负责管理的中间件,就是配置中心。配置中心,应该具备的功能,分别是支持各种复杂的配置场景,与公司的运维体系和权限体系集成一体,各种配置兼容支持。 SpringCloud Config是配置中心中间件,将应用原本放在本地的配置,统一放置到中心服务器,拥有了更好地管理发布能力,基于应用、环境、版本三个维度管理,配置存储支持git等。无缝支持Spring技术的Environment和PropertySource接口 12、 Springcloud与网关中间件 API是在系统边界上,面向API的串行集中式强管控服务,至少具备如下功能 I 统一接入功能,提供一个高性能、高并发、高可靠的网关服务,也要支持负载均衡、异地多活、容灾切换 Ii 协议适配功能,因为网关是集中式强管控,必须要提供满足各个请求协议,能够协议适配 Iii 流量管控 Iv 安全防护、权限校验 SpringCloud第一代网关采用zuul,根据默认或者配置的路由规则,进行负载或者路由,只能支持基本功能,如果想要实现高度定制更多功能,就需要,进行开发filter过滤器 SpringCloud第二代网关采用Gateway,zuul采用每个请求分配一个线程的方式,不能支持高并发,gateway采用netty框架,具有强大的高并发处理能力,且实现了网管基本功能,例如安全,监控,限流等 13、 Springcloud与全链路监控中间件 分布式系统下,对于日志追踪等,有迫切的需求,需要一个可视化展示监控平台,进行汇集。全链路监控中间件基本功能如下,定位慢调用:各种web服务调用,慢sql执行,定位各种错误,定位各种异常,展现服务依赖,展现调用链路,应用告警SpringCloud采用sleuth 14、 Springcloud与分布式事务 微服务架构之后,困难,在于,1)系统拆分后,服务间调用通信、故障处理变得复杂2)微服务化后,服务调用的分布式事务问题突出3)数量众多,测试部署运维复杂,那么随着Docker容器技术、Devops技术的发展,各种PAAS平台工具的退出,变得愈加容易。分布式事务没有统一方案 15、 Springcloud与领域驱动 微服务作为一种架构风格,提供了快速开发微服务应用的能力,但是对于业务如何开发,业务架构如何治理,架构如何防腐,还需要方法论进行指导,领域驱动作为业务治理和架构防腐的方法论,结合起来,才能更好地提供企业使用 16、 SpringCloud与gRPC协议 通过SpringCloud进行搭建微服务应用,服务间得通信往往采用的是Feign中间件形式,实现简单快捷的调用,底层采用的http形式,相对于gRPC协议或者RPC协议的调用来说,性能相对低下,因此,可以切换开源技术框架gRPC实现 17、 SpringCloud与Dubbo生态融合 SpringCloud与Dubbo在本质上不在一个领域没有可比性。Dubbo是一个基于RPC协议的通信框架,而SpringCloud是实现微服务中间件,随着发展,两者生态也在不断融合,目前已经开源了Spring-cloud-dubbo的项目

huc_逆天 2020-02-25 11:08:12 0 浏览量 回答数 0

回答

1、 描述下应用架构的发展历程 目前,架构的发展历程是从单体架构、分布式架构、SOA架构,再到如今流行的微服务架构 2、单体架构的优点、缺点 优点: I 易于开发,开发人员可在短时间内开发完成单体应用 II 易于测试 III 易于部署 缺点: I 灵活程度不够,一旦修改,自上而下需要整体部署,才可以展现出效果,同时开发效率低,降低团队灵活性 II 降低系统的性能 III 系统启动、重启缓慢 IV 扩展性差 3、 什么是传统的分布式架构 简单来说,就是按照业务垂直切分,每个应用都是一个单体架构,通过API接口互相调用 好处是,依赖解耦,理解清晰,开发便捷速度,缺点是调用存在风险,技术复杂,可靠性降低 4、 SOA架构的优点、缺点 面向服务的SOA架构,根据不同的业务建立不同的服务,优点,模块拆分,开发聚合,降低了耦合度,增加功能,增加子项目即可,方便部署,灵活的分布式部署 缺点,调用、交互采用远程通信,接口开发增加工作量 5、 什么是微服务技术 微服务架构在某种程度上是SOA架构的发展。微服务是一种架构风格,对于一个大型的复杂的业务应用系统,业务功能可以拆分为多个独立的微服务,各个服务间是松耦合的,通过各种远程通信协议,实现交互,各个服务可以独立部署、扩容、升降级 6、 目前流行的微服务解决方案 目前最常见的,包括两种,一种基于SpringCloud中间件的微服务解决方案,选型比较中立,内部组件,可以自由更换搭配使用,大致上三种,服务发现,一种Eureka,一种Consul,一种etcd或者阿里nacos,共用组件,服务调用组件Feign。负载均衡ribbon,熔断器hystrix,网关,zuul,gateway,等,配置中心,携程阿波罗,nacos,Config;全链路监控,zipkin,pinpoint,skywalking,其他组件 另一种基于Dubbo实现微服务解决方案,可以Dubbo,nacos,其他 7、 什么是中间件 中间件,是在操作系统之上,应用软件之下的中间层软件。本质上归结为技术架构。常见的中间件,包括服务治理中间件、配置中心、链路监控、分布式事务、分布式定时任务、分布式缓存、消息中间件、API网关、数据库中间件等 8、 什么是Spring Cloud 也是一个中间件,由Spring官方开发维护,基于SpringBoot技术框架,提供了一整套的微服务解决方案。包括服务注册与发现、配置中心、全链路监控、API网关、熔断器等组件,可以随需扩展或替换使用 9、 SpringCloud项目模块 注册中心 Eureka 第一代网关 Zuul 多语言 Sidecar 负载均衡 Ribbon 熔断器 Hystrix 第二代网关 gateway 集群监控 Turbine 声明式HTTP客户端 Feign 注册中心 consul 链路追踪 sleuth 配置中心 config 服务总线 Bus 等 10、 SpringCloud与服务治理中间件 服务治理中间件包含服务注册与发现、服务路由、复杂均衡、自我保护、丰富的治理管理机制等功能。服务路由包含服务上下线、在线测试、就近选择、A/B测试、灰度发布等,负载均衡支持根据状态权重进行负载。自我保护,服务降级、优雅降级、流量控制,Spring Cloud中使用了相关 11、 Springcloud与配置中心中间件 单体应用中,属性配置和代码采用硬编码形式放在一起,简单方便,但是在分布式系统中,多个服务实例,需要分别管理每个服务下对应的配置项,往往配置项项目一致,内容存在偏差,则上线需要检查所有的配置项,如果修改配置项,就要重启等,开发管理相当麻烦,另外还会涉及安全性的问题,比如数据库密码等的存放。分布式系统中,需要我们统一管理,负责管理的中间件,就是配置中心。配置中心,应该具备的功能,分别是支持各种复杂的配置场景,与公司的运维体系和权限体系集成一体,各种配置兼容支持。 SpringCloud Config是配置中心中间件,将应用原本放在本地的配置,统一放置到中心服务器,拥有了更好地管理发布能力,基于应用、环境、版本三个维度管理,配置存储支持git等。无缝支持Spring技术的Environment和PropertySource接口 12、 Springcloud与网关中间件 API是在系统边界上,面向API的串行集中式强管控服务,至少具备如下功能 I 统一接入功能,提供一个高性能、高并发、高可靠的网关服务,也要支持负载均衡、异地多活、容灾切换 Ii 协议适配功能,因为网关是集中式强管控,必须要提供满足各个请求协议,能够协议适配 Iii 流量管控 Iv 安全防护、权限校验 SpringCloud第一代网关采用zuul,根据默认或者配置的路由规则,进行负载或者路由,只能支持基本功能,如果想要实现高度定制更多功能,就需要,进行开发filter过滤器 SpringCloud第二代网关采用Gateway,zuul采用每个请求分配一个线程的方式,不能支持高并发,gateway采用netty框架,具有强大的高并发处理能力,且实现了网管基本功能,例如安全,监控,限流等 13、 Springcloud与全链路监控中间件 分布式系统下,对于日志追踪等,有迫切的需求,需要一个可视化展示监控平台,进行汇集。全链路监控中间件基本功能如下,定位慢调用:各种web服务调用,慢sql执行,定位各种错误,定位各种异常,展现服务依赖,展现调用链路,应用告警SpringCloud采用sleuth 14、 Springcloud与分布式事务 微服务架构之后,困难,在于,1)系统拆分后,服务间调用通信、故障处理变得复杂2)微服务化后,服务调用的分布式事务问题突出3)数量众多,测试部署运维复杂,那么随着Docker容器技术、Devops技术的发展,各种PAAS平台工具的退出,变得愈加容易。分布式事务没有统一方案 15、 Springcloud与领域驱动 微服务作为一种架构风格,提供了快速开发微服务应用的能力,但是对于业务如何开发,业务架构如何治理,架构如何防腐,还需要方法论进行指导,领域驱动作为业务治理和架构防腐的方法论,结合起来,才能更好地提供企业使用 16、 SpringCloud与gRPC协议 通过SpringCloud进行搭建微服务应用,服务间得通信往往采用的是Feign中间件形式,实现简单快捷的调用,底层采用的http形式,相对于gRPC协议或者RPC协议的调用来说,性能相对低下,因此,可以切换开源技术框架gRPC实现 17、 SpringCloud与Dubbo生态融合 SpringCloud与Dubbo在本质上不在一个领域没有可比性。Dubbo是一个基于RPC协议的通信框架,而SpringCloud是实现微服务中间件,随着发展,两者生态也在不断融合,目前已经开源了Spring-cloud-dubbo的项目

huc_逆天 2020-02-24 21:01:42 0 浏览量 回答数 0

回答

最近,我问了我一个朋友他对"智能合约"的看法。他是一名开发者,我想他可能会有一些有趣的见解。令我惊讶的是,他并不知道智能合约是什么。我感到特别惊讶,因为我们讨论了一年多的加密货币、美国证券交易委员会(SEC)以及许多与区块链相关的其他事情。在计算机领域深耕的人怎么可能会不知道智能合约是什么? 事实上,相比区块链行业的其它概念,智能合约可能会更令加密货币爱好者们感到困惑。因此,要解释这个概念并不容易,尤其是向那些刚刚理解区块链是什么的人解释更不容易。因此,这一概念依旧十分神秘。希望这篇文章可以清楚地解释好这一概念。 什么是智能合约? 想象一下,如果你需要卖掉一栋房子,那么这将是一个复杂而艰巨的过程,不但需要处理大量的文书工作、与不同公司和人员进行沟通,而且还得冒着各类高风险。这就是为什么绝大多数房屋卖家决定寻找房地产经纪,来帮助处理所有文书工作、推销房产,并在协商开始时充当中介、监督交易直至交易结束。 此外,该经纪机构还提供委托付款服务,这在此类交易中尤其有用,因为此类交易所涉及的金额通常很大,你将无法完全信任将要与你进行交易的人。然而,在交易成功完成之后,卖方和买方的经纪机构将获得房产卖出价格的7%作为佣金。这对卖方来说是相当大的经济损失。 在这种情况下,智能合约就可以真正派上用场,可以有效地变革整个行业,同时也减少了所需流程。或许最重要的是,智能合约能解决信任问题。智能合约基于"If-Then"("如果-那么")原则,这意味着只有商定的金额被发送到系统时,房屋的所有权才会被转移给买方。 智能合约也可以作为委托付款服务,这意味着资金和所有权都将被存储在系统中,并在同一时间被分发给各参与方。此外,该交易被数百人见证和验证,因此保证了交付是无差错的。由于双方之间不再存在信任问题,因此也不再需要中介。所有房地产经纪能做的都可以预先编程为智能合约,这同时也为卖方和买方节省了大量资金。 这只是智能合约潜在用途的一个例子。智能合约能够帮助货币、财产和其他任何有价值的东西的交易,确保交易过程完全透明,其不但无需中介服务及其附带费用,还消除了双方之间的信任问题。特定智能合约的代码包括了各方商定的所有条款和条件,有关交易本身的信息则被记录在区块链中,即去中心化的分布式公共账本。 智能合约是如何运作的? 简而言之,智能合约很像自动售货机。你只需将所需数量的加密货币放入智能合约中,而你所交易的,房屋所有权等就会自动存入你的账户。所有的规则和处罚不仅在智能合约预先定义了,而且也由智能合约强制执行。 相互依存 智能合约可以独立运行,但也可以与任何其他智能合约一起运行。当它们彼此依赖时,它们可以以某种方式被设置。例如,成功完成一个特定的智能合约可以触发另一个智能合约的启动,依此类推。从理论上讲,整个系统和组织完全可以依靠智能合约运行。某种程度上,这已经在各种加密货币系统中实现了,在这些系统中,所有的规则都是预先定义好的,因此,网络本身可以独立自主地运行。 智能合约的对象 从本质上讲,每个智能合约都有三个不可或缺的部分(也称为对象)。第一个对象是签署方(两方或多方使用智能合约,同意或不同意使用数字签名的协议条款)。 第二个对象是合约的主题。它只能是智能合约环境中存在的对象。或者,智能合约必须可以不受阻碍地直接访问该对象。尽管智能合约早在1996年就被讨论过,但正是这一特定对象阻碍了智能合约的发展。这个问题直到2009年出现第一个加密货币后才得到部分解决。 最后,任何智能合约都必须包含特定条款。这些条款都需要使用数学方法及适用于特定智能合约环境的编程语言进行完整描述。这些条款包括了所有参与方的预期要求以及与所述条款相关的所有规则、奖励与惩罚。 环境 为了使智能合约能够正常运行,智能合约必须在特定的合适环境中运行。首先,智能合约环境需要支持公钥加密,这使得用户能够使用其独特的、专门生成的加密代码来签署交易。这正是绝大多数现有加密货币所用的系统。 其次,它们需要一个开源和去中心化的数据库,合同各方都可以彼此完全信任,并且履约流程完全自动化。此外,为了实现智能合约,整个环境必须自身是去中心化的。区块链,尤其是以太坊区块链,是运行智能合约的理想环境。 最后,智能合约所使用的数据,来源必须完全可靠。这就需要使用根SSL安全证书、HTTPS和其他已经广泛被使用并在大多数现代软件上自动实现的安全连接协议。 智能合约带来了什么? 自治 智能合约消除了对第三方中介的需求,基本上使你能够完全控制合约。 信任 任何人都无法窃取或弄丢你的文件,因为它们已被加密并安全地存储在一个安全的公开账本中。此外,你不必信任你正与之交易的人,也不必指望他们会信任你,因为公正的智能合约系统基本上解决了信任问题。 节约 由于使用了智能合约,你就不需要公证人、房地产经纪人、顾问及其他众多中介机构的援助。这样也就与他们的服务相关的高额费用无关了。 安全 如果智能合约正确执行,它将是极难破解的。此外,智能合约的完美环境受到复杂的加密保护,它可确保你文档的安全。 高效 通过使用智能合约,你将节省通常浪费在手动处理大量纸质文档并将其发送或运送到特定地点等的大量时间。 谁发明了智能合约?谁在使用智能合约? 1996年,计算机科学家和密码学家Nick Szabo首次提出了智能合约。几年后,Szabo重新定义了这一概念并发布了几篇相关文章,他阐述了通过在互联网上陌生人之间设计的电子商务协议来建立合同法相关商业实践的概念。 然而,智能合约的概念直到2009年才被实现,当时第一个加密货币比特币连同它的区块链一齐出现,后者则最终为智能合约提供了合适的环境。有趣的是,Nick Szabo在1998年设计了一种称为比特黄金(Bit Gold)的去中心化数字货币。虽然它没有被实现,但它已经具备了10年后比特币可吹嘘的许多功能。 如今,智能合约主要与加密货币有关。而且,可以公平地说,它们彼此互相依赖,因为去中心化的加密货币协议本质上是具有去中心化安全性的加密智能合约。智能合约现在被广泛应用于大多数加密货币网络中,并且其也是以太坊最杰出和最被大肆宣传的特点之一。 你知道什么是智能合约吗?币圈聚贤庄来跟你分析一下! 智能合约用例 虽然世界各国政府、金融监管机构和银行对加密货币的立场从极其谨慎变成谨慎接受,但加密货币背后的技术,区块链和智能合约,已被广泛认为是具有革命性的,并且正在各个层面实现这些技术。 例如,美国信托与清算公司(DTCC)和四大银行(美银美林、花旗、瑞士信贷和摩根大通)成功地使用Axoni开发的智能合约交易区块链信用违约掉期。智能合约使用了诸如个人交易详情及相应风险指标之类的信息,据一篇新闻稿称,这提高了合作伙伴和监管机构信息处理上的透明度。 类似的事情到处都在发生。由61家日本银行和韩国银行组成的财团一直在测试Ripple的区块链和智能合约,以实现两国之间的跨境资金转移。这一新系统将于今年推出。就连俄罗斯政府控制的俄罗斯联邦储蓄银行(Sberbank),都在俄罗斯这样一个众所周知的反加密货币国家测试以太坊区块链及其智能合约。 测试结果是俄罗斯联邦储蓄银行加入了以太坊企业联盟(EEA),这是一个由100多家企业组成的联盟,其中包括了思科、英国石油、荷兰国际集团(ING)、微软等顶级企业。该联盟旨在开发一种面向商业用途的区块链,用它可以开发和实现这些公司所需的智能合约。 由于智能合约是与加密货币相关联的,因此它们仍主要被应用到金融领域和银行业。尽管如此,世界各国政府都可以使用这项技术,使得投票系统更加便利而透明。供应链可以使用它来监控货物并自动执行所涉及的所有任务和支付。房地产、医疗保健、税收、保险及其他众多行业都可以受益于智能合约的使用。 智能合约的缺点 智能合约仍是一项未成熟的技术,仍然容易出现问题。例如,构成合约的代码必须是完美无漏洞的。它也会出现错误,有时候,这些错误会被欺诈者所利用。就像DAO被黑事件一样,把资金存放在代码有漏洞的智能合约中资金就可能被盗走。 此外,这项新奇的技术也带来了很多问题。政府将如何决定监管此类合约?他们将如何进行征税?如果合约无法访问其主题,或者发生了任何意外情况,将会是什么情况?这是在传统合约签订时可能发生的,传统合同可以在法庭上被撤销,但区块链要求智能合约无论如何都要按照"代码即法律"的规则去执行。 然而,大多数这些问题的存在纯粹是因为智能合约仍未是一项成熟的技术。但这项技术肯定会随着时间的推移而逐渐完善。毫无疑问,智能合约将会成为我们社会不可或缺的一部分。

问问小秘 2019-12-02 03:07:11 0 浏览量 回答数 0

问题

如何彻底消灭Bug?

问问小秘 2020-06-29 11:07:58 13 浏览量 回答数 2

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/

佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

问题

【阿里云产品公测】简单日志服务SLS使用评测含教程

mr_wid 2019-12-01 21:08:11 36639 浏览量 回答数 20
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站