• 关于

    段表地址故障原因

    的搜索结果

回答

下图显示了无法连接 ECS 实例的原因分类和出现概率。若无法连接实例,建议您根据如下原因进行排查。 首先尝试远程连接 无论何种原因导致无法远程连接实例,请先尝试用阿里云提供的远程连接功能进行连接,然后再按原因分类进行故障排查。 登录   云服务器管理控制台。 找到需要连接的实例,在找到需要连接的实例,在   操作  列,单击   远程连接。 连接   管理终端。首次连接,需要先复制密码。 输入密码后,连接实例 。 若忘记密码,单击若忘记密码,单击   修改管理终端的密码,设置新密码。I/O 优化的实例,修改密码后即时生效,无需重启。 无法连接ECS实例排查思路 请根据如下各原因序逐一排查: 客户端本地网络异常 [出现概率:3%] 重置实例密码,未重启 ECS 实例 [出现概率:7%] iptables 配置异常(Centos 6)[出现概率:10%] 安全组公网规则 [出现概率:8%] 远程访问端口配置异常 [出现概率:10%] CPU 负载过高 [出现概率:9%] 1. 客户端本地网络异常 [出现概率:3%] 故障现象:用户无法登录外网。 可能原因:网卡驱动未开启或网卡配置有问题。 解决方法:查找 /etc/hosts.deny 看是否有拦截IP;检查网卡驱动,重新安装。 2. 重置实例密码,未重启实例 [出现概率:7%] 故障现象:有实例密码修改记录,但无重启实例记录。 可能原因:您修改了实例密码,但是未重启 ECS 实例。 解决方法: 登录 云服务器管理控制台。 单击左侧导航栏中的   实例。 单击页面顶部的地域。 选择需要的实例。单击   重启。 在弹出的提示框中,选择   重启,单击   确定。 3. iptables 配置异常(Centos 6)[出现概率:10%] 前提条件:您只有在已授权可关闭 iptables 的情况下,才能做该项排查。 故障现象:SSH 无法连接,关闭 iptables 后连接恢复。 解决方法:调整 iptables 配置策略。 查看防火墙规则: iptables -nvL –line-number L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 修改规则。 若之前已设置过规则策略的,将原有的 iptables 文件保存一份,避免之前设置的策略丢失。 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 清空服务器上所有的规则。 iptables -F 设置 INPUT 方向所有的请求都拒绝。如果是线上业务请勿直接操作,会导致业务直接中断。 iptables -P INPUT DROP 设置 iptables 防火墙后需放行 22 号端口,否则会导致无法远程。 iptables -A INPUT -p tcp --dport 22 -j ACCEPT iptables -A OUTPUT -p tcp --sport 22 -j ACCEPT 指定 IP 访问22号端口。 iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 使用   iptables -L  查看一下添加的规则是否生效。 iptables -L 保存添加的规则。 iptables-save > /etc/sysconfig/iptables 设置后需要重启iptables。 service iptables restart 或 /etc/init.d/iptables restart 操作完成后,重启服务器进行配置验证。 systemctl reboot 完成操作后,请再进行 SSH 连接。 4. 安全组公网规则 [出现概率:8%] 故障现象:ECS 服务器无法ping通,排查iptables、网卡IP配置无误,回滚系统后仍然无法ping通。 可能原因:ECS 实例安全组默认的公网规则被删除。 解决方法:重新配置 ECS 实例的安全组公网规则,具体操作详见 ECS实例安全组默认的公网规则被删除导致无法ping通。 5. 远程访问端口配置异常 [出现概率:10%] 故障现象:SSH 远程无法连接,远程访问端口非默认端口。 可能原因:更改了远程访问端口配置,有可能防火墙未对自定义端口放开。 解决方法:客户端无法正常登录时,建议先使用不同的 SSH 客户端基于相同账户信息进行登录测试。如能正常登录,则判断是客户端配置问题,需对客户端配置做排查分析。 使用 telnet 测试现有监听端口连通性。使用 Linux 自带的 telnet 工具测试现有端口的连通性。telnet <host> <port> # host 是目标服务器 IP,port是待测试端口号 修改或查看Linux远程端口: vi /etc/ssh/sshd_config 找到 #port 22 这一行,默认端口为 22,可以把前面的#删除,把 22 改为其它的端口。 重启SSH服务: /etc/init.d/sshd restart 或 service sshd restart 创建新的监听端口测试。 可以使用 python 自带的 Web 服务器用于临时创建新的监听端口进行测试。python -m SimpleHTTPServer <所需端口号> 说明: 您可以通过自动测试默认端口来检测远程访问端口的问题。 服务监听能使用的端口范围为 0~65535,错误配置监听端口会导致远程桌面服务监听失败。 6. CPU 负载过高 [出现概率:9%] 故障现象:CPU 负载过高导致系统无法进行远程连接。 解决方法:您无法主动监控系统内部的程序运行状态,可以借助   云监控  >   主机监控  >   进程监控  来实现。 查看应用运行情况,排除 CPU 负载过高的原因。查看 CPU 负载问题详见 云服务器 ECS Linux 系统 CPU 占用率较高问题排查思路。 注意:在某个时间段 CPU 负载过高可能导致远程连接失败,建议您查询是否程序或者实例资源不满足现有要求。 最后尝试重启实例 若用阿里云提供的远程连接功能仍无法成功连接实例,请尝试重启实例。重启操作会使实例停止工作,从而中断业务,请谨慎执行。 注意:重启实例前,需对实例创建快照,用于数据备份或者制作镜像。创建快照的方法详见:创建快照。 在控制台重启实例。重启实例后,请再次尝试实例连接。 通过上述排查后,若 ECS 实例仍不能连接,请您记录前述各步骤的排查结果、相关日志信息或截图,然后联系售后技术支持。 望采纳,谢谢🙏

元芳啊 2019-12-02 00:12:57 0 浏览量 回答数 0

问题

利用SLB实现VPN下的NAT

aoboseo 2019-12-01 21:36:30 12155 浏览量 回答数 0

问题

为什么你的云厂商可能会换IP,开发者如何避免被影响?

趁我还年轻 2019-12-01 21:13:24 3658 浏览量 回答数 2

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

回 楼主(qilu) 的帖子 问题:用户反馈linux下服务器站点打不开,控制台重启服务器后也无法打开。 解决:检查服务器是正常的,80端口测试是可以通的,进入后检查确认nginx进程正常,打开网站显示502 Bad Gateway错误,之后检查发现php进程丢失,找到php目录php/sbin/php-fpm start 启动php进程后网站恢复正常。 ------------------------- 问题:用户反馈debian机器无法远程,通过ECS管理链接终端进入看到如下界面 /etc/ssh/sshd_config: bad configuration option 解决:修改ssh配置文件导致,最直接有效方法是重装安装sshapt-get remove --purge openssh-serverapt-get installl  openssh-server/etc/init.d/ssh restart重装后正常远程 ------------------------- 问题:window2003服务器用户反馈可以远程,但是ip地址ping不通 ip地址ping不通只有可能是主机内部防火墙或者组策略限制。查看主机防火墙开启,但没有设置ICMP包回显。控制面板-防火墙-高级-ICMP设置。 ------------------------- 问题:用户反馈两台ECS Linux云服务器内网ip有丢包,提示ping: sendmsg: Operation not permittedping: sendmsg: Operation not permittedping: sendmsg: Operation not permitted使用同时dmesg发现很多nf_conntrack: table full, dropping packet. 解决:IP_conntrack表示连接跟踪数据库(conntrack database),代表NAT机器跟踪连接的数目,连接跟踪表能容纳多少记录是被一个变量控制的,它可由内核中的ip- sysctl函数设置,建议用户修改增大/etc/sysctl.conf中加net.ipv4.ip_conntract_max的值后解决,相关优化可以参考网上文章。 ------------------------- 问题:用户反馈修改php.ini配置文件不生效nginx+php环境下,需要重启php服务,php.Ini配置文件才会生效 ------------------------- 问题:用户使用自己的脚本安装了vpn,使用vpn账号,密码可以登陆但是无法上网。解决方法:开启linux转发功能命令:   #sed -i 's/net.ipv4.ip_forward = 0/net.ipv4.ip_forward = 1/' /etc/sysctl.conf#/sbin/sysctl -p ------------------------- 问题:突然发现访问网站很慢,服务器的cpu、内存和磁盘使用率都正常解决:该问题的主要解决方法参考:http://help.aliyun.com/manual?helpId=1724,但是根据该方法部分系统会报error: "net.ipv4.ip_conntrack_max" is an unknown key ,因此可尝试将方案中的语句修改成:net.ipv4.nf_conntrack_max = 1048576主要部分系统是nf_conntrack 而不是 ip_conntrack 模块。具体可以使用命令确认具体使用了什么模块:modprobe -l|grep conntrack ------------------------- 问题:用户反馈无法远程访问,无法ssh解决:1.ping云服务器ip地址可以ping通 2.使用ECS连接管理终端查看sshd服务是否正常运行,重启sshd服务提示有错误,并且在/var/empty/sshd 目录权限有错误,导致sshd服务无法正常运行 3. 使用命令chown –R root:root /var/empty/sshd 和chmod 744 /var/empty/sshd即可,测试恢复正常可以远程。 ------------------------- 问题:用户反馈客户反馈安装桌面环境失败,执行yum groupinstall "GNOME Desktop Environment"报如下错误:Warning: Group GNOME Desktop Environment does not exist. No packages in any requested group available to install or update。解决:从错误提示中可以看出,不存在GNOME Desktop Environment执行yum grouplist查询发现 GNOME Desktop Environment 已经是 Desktop整理了以下安装步骤:          1、yum groupinstall "X Window System"          2、yum groupinstall "Desktop"          3、安装VNC SERVER yum install tigervnc-server          4、修改配置文件 vi /etc/sysconfig/vncservers添加如下内容:          VNCSERVERS="1:root"             VNCSERVERARGS[1]="-geometry 1024x768"           5、给vnc加密  vncpasswd 输入两次密码           6、重新启动服务 service vpnserver restart完成以上步骤,我们就可以使用VNC客户端连接了 ------------------------- 问题:用户反馈ECS云服务器做域控制器,其他外部服务器无法加入该域中,反之可以解决:将客户ECS服务器开启RemoteRegistry服务,安装域控制器使用外部云服务器加入域中,发现能够解析成功,且能够弹出用户名密码授权界面,但是确定后报网络错误,经过多次尝试,发现最终问题在DNS上,由于ECS服务器有2块网卡公网和内网,因此安装后会有2条A记录分别指向公网和内网所以测试PING域名会解析到公网上,产生了DNS缓存因此很难看到内网地址出现,但是加入域请求时用解析到的是公网地址,验证身份时很可能请求到的就是内网地址,因此造成网络不通从而无法验证。将客户端HOSTS绑定域名到公网地址问题解决。 ------------------------- 问题:用户反馈windows server 2008无法远程,主机内部通信正常解决过程:1、  检查内部是否能够远程,发现服务器内部网络正常,远程localhost也正常2、  检查防火墙配置,发现防火墙无法打开3、  启动防火墙服务器,报错4、  检查防火墙注册表信息,发现丢失,将相同系统的注册表键值导入5、  再次启动防火墙,报错没有权限,错误代码70246、  选择注册表HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess将其权限修改添加NT SERVICE\mpssvc并赋予完全控制权限7、启动防火墙服务,远程恢复正常 ------------------------- 问题:用户反馈微软雅黑, sans-serif]服务器网络不通,无法远程,报错情况见下图。网上搜索方法无外乎都是安装glibc.i686,原因一般是64位系统下安装了32位程序,但是没有对应的版本的glibc库导致 这种情况下下虽然service无法启动网卡,但是ifup是可以激活网卡的处理方法如下:sed -i '/exclude/ s/^/#/g' /etc/yum.conf&&ifup eth1&&yum install glibc.i686 -y#修改 /etc/yum.conf 找到包含exclude的行在行首插入#注释(我们64位镜像默认排除了*i?86的包,所以这里要修改一下)#启动eth1网卡,安装32位glibc库,执行后一般即可搞定 ------------------------- 问题:服务器上的Cisco VPN客户端拨入远端VPN服务器网络无法通信,其他外地客户端拨入远端VPN服务器均正常解决:1)查看客户VPN连接成功,但是无数据通信,PING包无法到达远端内网地址2)检查VPN客户端拨号日志,发现添加远端路由失败3)关闭服务器安全狗,重新连接VPN依旧失败。4)检查系统路由表,发现客户VPN段内网地址与VM内网地址段冲突,造成路由表添加失败;询问客户无使用我方SLB\RDS等内网产品后将内网网卡禁用,重新拨号连接,依旧发现路由表添加失败。5)手动添加路由后,VPN网络正常 ------------------------- 问题:服务器上的Cisco VPN客户端拨入远端VPN服务器网络无法通信,其他外地客户端拨入远端VPN服务器均正常解决:1)查看客户VPN连接成功,但是无数据通信,PING包无法到达远端内网地址2)检查VPN客户端拨号日志,发现添加远端路由失败 3)关闭服务器安全狗,重新连接VPN依旧失败。4)检查系统路由表,发现客户VPN段内网地址与VM内网地址段冲突,造成路由表添加失败;询问客户无使用我方SLB\RDS等内网产品后将内网网卡禁用,重新拨号连接,依旧发现路由表添加失败。5)手动添加路由后,VPN网络正常 ------------------------- 问题:使用一件安装包安装环境php报错 php virtual memory exhausted: Cannot allocate memory解决:该问题一般出现在512M内存的系统上,内存不足导致,可以让用户升级内存,升级内存后解决。 ------------------------- 问题:用户反馈Windows服务器无法远程,连接的时候提示协议错误。解决:用户反馈远程连接端口是3188,注册表中查询远程连接端口确实被改成了3188,但是在主机上远程连接也提示协议错误,使用netstat -nao 分析发现 3188对应的进程pid为4,对应经查system,找测试测试机对比,发现远程连接端口对应进程是svchost,修改注册表远程连接端口为3389后,测试恢复正常。] ------------------------- 问题:用date命令修改Linux系统的时间为什么无效解决:需要手动修改一下系统的时区才能显示正确的时间,这里以上海时区为例1. 找到相应的时区文件 /usr/share/zoneinfo/Asia/Shanghai用这个文件替换当前的文件/etc/localtime#cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime2. 修改/etc/sysconfig/clock文件,修改为: ZONE="Asia/Shanghai" UTC=true ARC=false 3. 一般只需要这两步就可以了,或者再执行下句命令校正一下时间/usr/sbin/ntpdate –u 0.asia.pool.ntp.org4. 如果没有安装ntp程序包则先执行下面这条语句yum install -y ntp* ------------------------- 问题:linux服务器x64位安装32位软件包(如libstc++.i386等)安装不上的解决方法解决方法:如果有用户反馈在linux服务器x64位安装32位软件包(如libstc++.i386等)不安装不上,可以尝试让用户在/etc/yum.conf 文件中将exclude=*.i386 kernel kernel-xen kernel-debug 注释掉,在进行安装尝试,参考http://blog.csdn.net/lixiucheng005/article/details/8787856 ------------------------- 问题:云服务器的物理机宕机怎么办?云服务器是部署在物理机上的,底层物理机性能出现异常或者其他原因都会导致物理机宕机,当检测到云服务器所在的物理机机发生故障,系统会启动保护性迁移,将您的服务器迁移到性能正常的宿主机上 ,一旦发生宕机迁移,您的服务器就会被重启,如果您希望您的服务器重启以后应用服务器自动恢复,需要您把应用程序设置成开机自动启动,如果应用服务连接的数据库,需要在程序中设置成自动重连机制。 ------------------------- 问题:Linux 服务起出现500 OOPS: vsftpd: cannot locate user specified in 'ftp_username':ftp错误? vsftp无法使用,尝试查看/etc/passwd下的目录发现用户使用的账号没有问题,但是尝试telnet 127.0.0.1 21 的时候主机报错500 OOPS: vsftpd: cannot locate user specified in 'ftp_username':ftp 处理办法在/etc/vsftpd.conf 文件内加入ftp_username=nobody 保存,该问题即可解决 ------------------------- 问题:物理机宕机迁移怎么办?云服务器是部署在物理机上的,底层物理机性能出现异常或者其他原因都会导致物理机宕机,当检测到云服务器所在的物理机机发生故障,系统会启动保护性迁移,将您的服务器迁移到性能正常的宿主机上 ,一旦发生宕机迁移,您的服务器就会被重启,如果您希望您的服务器重启以后应用服务器自动恢复,需要您把应用程序设置成开机自动启动,如果应用服务连接的数据库,需要在程序中设置成自动重连机制。 ------------------------- 问题:FTP上传经常中断怎么办?在使用FTP软件进行数据传输时有时会出现断开连接的情况,这和网络环境、硬件环境和软件环境都可能有关系。如果您在FTP管理里出现经常中断的情况,您可以将您要上传的网站程序文件压缩成一个压缩文件,使用FLASHFXP等FTP软件进行断点续传,压缩文件上传之后再在服务器中进行解压缩操作即可。(也有小概率可能受到网络原因传输过程中压缩包损坏,需要再次上传,所以巨大文件建议分割压缩) ------------------------- 问题:无法ping通服务器地址怎么办?通过站长工具—超级ping来分析一下是否是全国范围内都无法ping通云服务器。超级ping地址:http://ping.chinaz.com/如果是全国范围内都突然无法ping通云服务器地址,但是服务器是在正常运行的则可以到www.aliyun.com上提交工单;如果只是本地无法ping通云服务器则在本地使用traceroute或者tracert命令来获取本地到云服务器的路由信息再到www.aliyun.com上提交工单,寻求aliyun的技术支持

qilu 2019-12-02 03:09:51 0 浏览量 回答数 0

回答

以前上网很快,最近1周网速突然很慢,我是3个人共用一个路由器的,以前3个人用时也是很快。现在是我看视频很卡,用了优化大师优化,c盘文件及桌面文件都清理了,用360也清理了垃圾文件,用小红伞杀毒也没杀出病毒,就是老样子。现在两个人用一个,也是很慢,到半夜了在搜狐视频或是酷六什么那看电影,只剩我一个人在用,还是卡。 请问高手能帮我诊断下怎么回事,或是怎么设置下改变下状况。另一个人也是发现网速慢了,我们都是一个样子,可能是被盗了吗? 我用360查看网络连接,system id process 的连接很多,显示是没有连接上,状态是等待,都是端口80,目标归属地什么北京联通,大连联通,深圳联通的,有7个左右,我qq也没开啊,想结束也结束不了,只是在迅雷看看里看电影,没有装他的插件。把它关了还是有。向高手请教?插件只有搜狗输入法,迅雷,360,迅雷看看没有其他的 " 网速变慢的原因有很多可能,比如网络本身的问题、网卡硬件问题,有或者是系统问题等等。可以通过其他联网设备确认下是否有网速变慢的情况;如果网络本身没有问题(其他设备可以正常连接),问题就出现电脑本身: 1,、疑难解答 可以先试试更新网卡驱动,若无效,我们可以利用系统自身提供的【疑难解答】功能来寻求解决。直接搜索进入【疑难解答】然后点击右侧的对应项目,选择【运行疑难解答】,按照向导提示进行操作即可,看是否能够解决网络连接问题。 <img src=""https://gss0.baidu.com/-fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f415cd6cda3f8794d3aa4028e22b22cc/a6efce1b9d16fdfac901e83aba8f8c5495ee7bf0.jpg""> <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=1695c9ff00f41bd5da06e0f261eaadf3/f2deb48f8c5494ee9b9421cd23f5e0fe98257eab.jpg""> 2、网络重置 上述均不能解决的话,最后可通过进行网络重置来彻底解决。路径:【开始】—【设置】—【网络和Internet】—【状态】,在右侧列表中找到【网络重置】并点击,按提示完成操作即可。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=e6034daa9c58d109c4b6a1b4e168e087/11385343fbf2b211a844ab9ac48065380dd78eff.jpg""> 另外,在有限的硬件条件下,想让现有的网速能够快一些,具体可以参考以下步骤: 步骤1. Win+R组合键后输入gpedit.msc进入组策略编辑器,依次进入“计算机配置-Windows设置”后,再右侧找到“基于策略的Qos”的这个选项。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=c08ee009a564034f0f98ca009ff35509/a71ea8d3fd1f41341c7f2baa2b1f95cad0c85e9d.jpg""> 步骤2. 在“基于策略的Qos”上点击鼠标右键,选择“高级QoS设置”,在入站TCP流量选项卡中,勾选”制定入站TCP吞吐量级别“,选择最后那个”级别3“。 <img src=""https://gss0.baidu.com/9fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f340223fb8fd5266a77e34129b28bb13/e1fe9925bc315c604623453b83b1cb13485477ab.jpg""> 注意的:如果在更改完设置后发现上网时系统出现假死、卡顿等问题,可以把上面的“制定入站TCP吞吐量级别“设置调整到“级别2”,减少数据处理对系统硬件的压力(内存小于4GB,则建议使用默认最小吞吐量)。 “高级QoS设置“是什么呢? 通过高级服务质量 (QoS) 设置,您可以管理带宽使用以及计算机处理应用程序和服务设置的 DSCP 标记(而不是组策略设置的标记)的方式。高级 QoS 设置仅可在计算机级别应用,而 QoS 策略在计算机级别和用户级别均可应用。 若要更改吞吐量级别,选中“指定入站 TCP 吞吐量级别”复选框,然后根据下表选择吞吐量级别。吞吐量级别可以等于或小于最大值,具体取决于网络条件。 <img src=""https://gss0.baidu.com/9vo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=eea0cfe33bfae6cd0ce1a3673f83231c/ca1349540923dd542fc589bcdf09b3de9d8248ab.jpg"">" 一、网络自身问题 您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。 二、网线问题导致网速变慢 我们知道,双绞线是由四对线按严格的规定紧密地绞和在一起的,用来减少串扰和背景噪音的影响。同时,在T568A标准和T568B标准中仅使用了双绞线的 1、2和3、6四条线,其中,1、2用于发送,3、6用于接收,而且1、2必须来自一个绕对,3、6必须来自一个绕对。只有这样,才能最大限度地避免串扰,保证数据传输。本人在实践中发现不按正确标准(T586A、T586B)制作的网线,存在很大的隐患。表现为:一种情况是刚开始使用时网速就很慢;另一种情况则是开始网速正常,但过了一段时间后,网速变慢。后一种情况在台式电脑上表现非常明显,但用笔记本电脑检查时网速却表现为正常。对于这一问题本人经多年实践发现,因不按正确标准制作的网线引起的网速变慢还同时与网卡的质量有关。一般台式计算机的网卡的性能不如笔记本电脑的,因此,在用交换法排除故障时,使用笔记本电脑检测网速正常并不能排除网线不按标准制作这一问题的存在。我们现在要求一律按T586A、T586B标准来压制网线,在检测故障时不能一律用笔记本电脑来代替台式电脑。 三、网络中存在回路导致网速变慢 当网络涉及的节点数不是很多、结构不是很复杂时,这种现象一般很少发生。但在一些比较复杂的网络中,经常有多余的备用线路,如无意间连上时会构成回路。比如网线从网络中心接到计算机一室,再从计算机一室接到计算机二室。同时从网络中心又有一条备用线路直接连到计算机二室,若这几条线同时接通,则构成回路,数据包会不断发送和校验数据,从而影响整体网速。这种情况查找比较困难。为避免这种情况发生,要求我们在铺设网线时一定养成良好的习惯:网线打上明显的标签,有备用线路的地方要做好记载。当怀疑有此类故障发生时,一般采用分区分段逐步排除的方法。 四、网络设备硬件故障引起的广播风暴而导致网速变慢 作为发现未知设备的主要手段,广播在网络中起着非常重要的作用。然而,随着网络中计算机数量的增多,广播包的数量会急剧增加。当广播包的数量达到30%时,网络的传输效率将会明显下降。当网卡或网络设备损坏后,会不停地发送广播包,从而导致广播风暴,使网络通信陷于瘫痪。因此,当网络设备硬件有故障时也会引起网速变慢。当怀疑有此类故障时,首先可采用置换法替换集线器或交换机来排除集线设备故障。如果这些设备没有故障,关掉集线器或交换机的电源后,DOS下用 “Ping”命令对所涉及计算机逐一测试,找到有故障网卡的计算机,更换新的网卡即可恢复网速正常。网卡、集线器以及交换机是最容易出现故障引起网速变慢的设备。 五、网络中某个端口形成了瓶颈导致网速变慢 实际上,路由器广域网端口和局域网端口、交换机端口、集线器端口和服务器网卡等都可能成为网络瓶颈。当网速变慢时,我们可在网络使用高峰时段,利用网管软件查看路由器、交换机、服务器端口的数据流量;也可用 Netstat命令统计各个端口的数据流量。据此确认网络数据流通瓶颈的位置,设法增加其带宽。具体方法很多,如更换服务器网卡为100M或1000M、安装多个网卡、划分多个VLAN、改变路由器配置来增加带宽等,都可以有效地缓解网络瓶颈,可以最大限度地提高数据传输速度。 六、蠕虫病毒的影响导致网速变慢 通过E-mail散发的蠕虫病毒对网络速度的影响越来越严重,危害性极大。这种病毒导致被感染的用户只要一上网就不停地往外发邮件,病毒选择用户个人电脑中的随机文档附加在用户机子的通讯簿的随机地址上进行邮件发送。成百上千的这种垃圾邮件有的排着队往外发送,有的又成批成批地被退回来堆在服务器上。造成个别骨干互联网出现明显拥塞,网速明显变慢,使局域网近于瘫痪。因此,我们必须及时升级所用杀毒软件;计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。 七、防火墙的过多使用 防火墙的过多使用也可导致网速变慢,处理办法不必多说,卸载下不必要的防火墙只保留一个功能强大的足以。 八、系统资源不足 您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的。 您好,如您的宽带出现故障,可关注“中国联通”微信公众号,点击“客户服务>宽带报障>常见故障指引”,查看对应故障的处理方式。 如仍无法解决,可通过以下方式自助报障: 【方式一】关注“中国联通”微信公众号,点击“客户服务>宽带报障>在线报障”; 【方式二】登录中国联通手机营业厅APP,点击“服务>宽带>宽带办理服务>宽带报障”。 1...用360安全卫士查一下启动项,可能是垃圾插件太多了。现在P2P插件很吸血的。优化一下。 2...把3台电脑恢复系统,还有问题就是线路的问题了。 你把路由器 关掉重启 或者 重装 网卡驱动 试试吧。 最好还是重装。 重装还不好使 就是 宽带问题。

保持可爱mmm 2019-12-02 02:14:41 0 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理

1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

回答

进程是操作系统中最基本、重要的概念,是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。狭义上讲,进程是正在运行的程序的实例;广义上讲,进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统进行资源分配和调度、动态执行的基本单元,是操作系统结构的基础,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。其概念主要有两点:(1)进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域、数据区域和堆栈。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。(2)进程是一个“执行中的程序”。只有在操作系统、处理器执行程序时,它才能成为一个活动的实体,我们称其为进程。从理论角度看,进程是对正在运行的程序过程的抽象;从实现角度看,它是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。 一、进程具有以下特点: (1)动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生、动态消亡的。 (2)并发性:任何进程都可以与其他进程一起并发执行。 (3)独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位。 (4)异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进。 (5)结构特征:进程由程序、数据和进程控制块三部分组成。 二、进程、线程和程序的联系: 通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位,由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度。此外多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。同一程序同时运行于若干个数据集合上,它将属于若干个不同的进程,也就是说同一程序可以对应多个进程。 三、进程和程序的区别: (1)程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念,而进程是程序在处理机上的一次执行过程,它是一个动态的概念。 (2)程序可以作为一种软件资料长期存在,而进程是有一定生命期的。 (3)程序是永久的,进程是暂时的。 (4)进程更能真实地描述并发,而程序不能。 (5)进程是由进程控制块、程序段、数据段三部分组成。 (6)进程具有创建其他进程的功能而程序没有。 (7)在传统的操作系统中,程序并不能独立运行,作为资源分配和独立运行的基本单元都是进程。 四、进程具有的三种基本状态 由于进程在执行过程中具有动态性和异步性,因此也就决定了进程可能具有多种状态。 (1)就绪状态(Ready):进程已获得除处理器外的所需资源,等待分配处理器资源;只要分配了处理器进程就可执行。就绪进程可以按多个优先级来划分队列。例如,当一个进程由于时间片用完而进入就绪状态时,排入低优先级队列;当进程由I/O操作完成而进入就绪状态时,排入高优先级队列。 (2)运行状态(Running):进程占用处理器资源;处于此状态的进程的数目小于等于处理器的数目。在没有其他进程可以执行时(如所有进程都在阻塞状态),通常会自动执行系统的空闲进程。 (3)阻塞状态(Blocked):由于进程等待某种条件(如I/O操作或进程同步),在条件满足之前无法继续执行。该事件发生前即使把处理器资源分配给该进程,也无法运行。 五、创建进程的事件 在多道程序环境中,只有作为进程时才能在系统中运行。因此,为了让程序能运行,就必须为它创建进程。一个进程去创建另一个进程的典型事件,可以有以下四类: (1) 用户登录:在分时系统中,用户在终端键入登录命令后,如果是合法用户,系统将为该终端建立一个进程,并把它插入到就绪队列中。 (2)作业调度:在批处理系统中,当作业调度程序按照一定的算法调度到某作业时,便将该作业装入到内存,为它分配必要的资源,并立即为它创建进程,再插入到就绪队列中。 (3) 提供服务:当运行中的用户程序提出某种请求后,系统将专门创建一个进程来提供用户所需要的服务,例如,用户程序要求进行文件打印,操作系统将为它创建一个打印进程,这样,不仅可以使打印进程与该用户进程并发执行,而且还便于计算出为完成打印任务所花费的时间。 (4) 应用请求:在上述三种情况中,都是由系统内核为它创建一个新进程,而这一类事件则是基于应用进程的需求,由它创建一个新的进程,以便使新进程以并发的运行方式完成特定任务。 六、进程的创建过程 一旦操作系统发现了要求创建新进程的事件后,便调用进程创建原语create()按下述步骤创建一个新进程。 (1) 申请空白PCB。为新进程申请获得唯一的数字标识符,并从PCB集合中索取一个空白PCB。 (2) 为新进程分配资源。为新进程的程序和数据以及用户栈分配必要的内存空间。显然,此时操作系统必须知道新进程所需要的内存大小。 (3) 初始化进程控制块。PCB的初始化主要包括:初始化标识信息,将系统分配的标识符和父进程标识符,填入新的PCB中;初始化处理机状态信息,使程序计数器指向程序的入口地址,使栈指针指向栈顶;初始化处理机控制信息,将进程的状态设置为就绪状态或静止就绪状态,对于优先级,通常是将它设置为最低优先级,除非用户以显式的方式提出高优先级要求。 (4) 将新进程插入就绪队列,如果进程就绪队列能够接纳新进程,便将新进程插入到就绪队列中。 七、引起进程终止的事件 (1)正常结束:在任何计算机系统中,都应该有一个表示进程已经运行完成的指示。例如,在批处理系统中,通常在程序的最后安排一条Hold指令或终止的系统调用。当程序运行到Hold指令时,将产生一个中断,去通知OS本进程已经完成。 (2)异常结束:在进程运行期间,由于出现某些错误和故障而迫使进程终止。这类异常事件很多,常见的有:越界错误,保护错,非法指令,特权指令错,运行超时,等待超时,算术运算错,I/O故障。 (3)外界干预:外界干预并非指在本进程运行中出现了异常事件,而是指进程应外界的请求而终止运行。这些干预有:操作员或操作系统干预、父进程请求、父进程终止。 八、进程的终止过程 如果系统发生了上述要求终止进程的某事件后,OS便调用进程终止原语,按如下过程去终止指定的进程。 (1)根据被终止进程的标识符,从PCB集合中检索出该进程的PCB,从中读出该进程状态。 (2)若被终止进程正处于执行状态,应立即终止该进程的执行,并置调度标志为真。用于指示该进程被终止后应重新进行调度。 (3)若该进程还有子孙进程,还应将其所有子孙进程予以终止,以防他们成为不可控的进程。 (4)将被终止的进程所拥有的全部资源,或者归还给其父进程,或者归还给系统。 (5)将被终止进程(它的PCB)从所在队列(或链表)中移出,等待其它程序来搜集信息。 九、阻塞唤醒 1、引起进程阻塞和唤醒的事件 (1)请求系统服务:当正在执行的进程请求操作系统提供服务时,由于某种原因,操作系统并不立即满足该进程的要求时,该进程只能转变为阻塞状态来等待,一旦要求得到满足后,进程被唤醒。 (2)启动某种操作:当进程启动某种操作后,如果该进程必须在该操作完成之后才能继续执行,则必须先使该进程阻塞,以等待该操作完成,该操作完成后,将该进程唤醒。 (3)新数据尚未到达:对于相互合作的进程,如果其中一个进程需要先获得另一(合作)进程提供的数据才能运行以对数据进行处理,则是要其所需数据尚未到达,该进程只有(等待)阻塞,等到数据到达后,该进程被唤醒。 (4)无新工作可做:系统往往设置一些具有某特定功能的系统进程,每当这种进程完成任务后,便把自己阻塞起来以等待新任务到来,新任务到达后,该进程被唤醒。 2.进程阻塞过程 正在执行的进程,当发现上述某事件后,由于无法继续执行,于是进程便通过调用阻塞原语block()把自己阻塞。可见,进程的阻塞是进程自身的一种主动行为。进入block过程后,由于此时该进程还处于执行状态,所以应先立即停止执行,把进程控制块中的现行状态由执行改为阻塞,并将PCB插入阻塞队列。如果系统中设置了因不同事件而阻塞的多个阻塞队列,则应将本进程插入到具有相同事件的阻塞(等待)队列。最后,转调度程序进行重新调度,将处理机分配给另一就绪进程,并进行切换,亦即,保留被阻塞进程的处理机状态(在PCB中),再按新进程的PCB中的处理机状态设置CPU环境。 3. 进程唤醒过程 当被阻塞的进程所期待的事件出现时,如I/O完成或者其所期待的数据已经到达,则由有关进程(比如,用完并释放了该I/O设备的进程)调用唤醒原语wakeup(),将等待该事件的进程唤醒。唤醒原语执行的过程是:首先把被阻塞的进程从等待该事件的阻塞队列中移出,将其PCB中的现行状态由阻塞改为就绪,然后再将该PCB插入到就绪队列中。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:05:02 0 浏览量 回答数 0

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

回答

iperf,具体要纤细直接去看文档, 简单给你列条测试:(TCP和UDP知只是两种传输数据的协议) 1)TCP测试    服务器执行:./iperf -s -i 1 -w 1M '这裏是指定windows如果是 iperf -s则windwos默认大小为8kbyte/s    客户端执行:./iperf -c host -i 1 -w 1M   其中-w表示TCP window size,host需替换成服务器地址。    2)UDP测试    服务器执行:./iperf -u -s    客户端执行:./iperf -u -c 10.255.255.251 -b 900M -i 1 -w 1M -t 60   其中-b表示使用多少带宽,1G的线路你可以使用900M进行测试。 不给分不给力 连接速度是个很怪的概念。我们通常用连接带宽和网络延迟来表达网络连接的状态。 带宽可以用一端建立FTP服务器,另一端下载来测试。网络延时可以用PING命令来测试。 希望能帮到你。 行的。 家庭或小型办公室,如果有两台或更多的计算机,很自然地希望将他们组成一个网络。为方便叙述,以下约定将其称为局域网。在家庭环境下,可用这个网络来共享资源、玩那些需要多人参与的游戏、共用一个调制解调器享用Internet连接等等。办公室中,利用这样的网络,主要解决共享外设如打印机等,此外,办公室局域网也是多人协作工作的基础设施。 别看这样小的网络工程,在过去也是需要专业人员来进行组网配置的。那时,大部分操作的都是手工的,一般的用户都不具备相应的知识和经验。正好属于"高不成低不就"的情况,自然限制了它的发展。Windows XP的出现,打破了这种局面,这依赖它内建有强大的网络支持功能和方便的向导。用户完成物理连接后,运行连接向导,可以自己探测出网络硬件、安装相应的驱动程序或协议,并指导用户,完成所有的配置步骤。 本文介绍两种在Windows XP操作系统下的组网方案,并介绍Windows XP用于局域网中的各种很有特色的功能。 一. 目标: 组成家庭局域网:对外,可以连接Internet,允许局域网内的各个计算机共享连接。对内,可以共享网络资源和设备。 二. 采用什么网络形式? 家庭网中的计算机可能有桌面机或便携机,例如掌上电脑或笔记本机等,也可能出现各种传输介质的接口,所以网络形式上,不宜都采用有线网络,无线接口是必须考虑的。但如果可以明确定位在纯粹的有线网上,也可不设无线接口。所以,这里提供两种方案: 1. 有线与无线混合。 2. 有线。 三. 网络硬件选择 网络适配器(网卡)可采用PCI、PC或PCMCIA接口的卡(后两者多用在便携式机或笔记本机上),Windows XP也支持用USB接口的网络适配器。究竟采用那种适配器,取决于接入网络中的计算机。无论那种适配器,都需要注意与现有计算机的接口以及HUB的协调一致,USB接口的适配器可能适应性更强一些,但对于较旧的计算机,又需要注意它是否支持USB接口。 网络连接线,常用的有同轴电缆和双绞线,这都是大家熟悉的东西,不多解释。究竟采用哪一种,就看你怎么想了。 四. 可采用的网络结构和介质 以太结构:这种结构在办公室或商业用户中最为流行,熟悉的人也很多,技术资料和维护人员也容易找到,所以不多赘述。 电话线连接:这种形式主要的特色是成本很低,物理连接也很简单,适用于大部分的家庭用户。 无线电波:利用电磁波信号来传输信号,可以不用任何连线来进行通讯,并可以在移动中使用。但需要在每台计算机上加装无线适配器,成本高是肯定了。在我国,无线形式用在计算机网络通讯的还较少。在美国,用于无线网络的是一个称为IEEE 802.11b的标准协议,用于计算机近距离网络通讯。在该协议支持下,可达到的网速是11 Mbps。 五. 方案之一 这是一个有线、无线混合方案,具体结构可以参看图1。这个例子中,用4台计算机组成了一个混合网络,PC1是主机,它与外部连接有3个通路: 1. 与Internet接连的调制解调器:用于整个网络的各个计算机共享上网之用。 2. 无线适配器:用于和本网络内的无线设备之间的通讯。 3. HUB:用于"带动"本网络内的下游计算机。 该方案中的PC1、PC2机,必须用Windows XP操作系统,有线部分采用的是以太网结构连接。图中的HPNA是home phoneline network adaptor的缩写,表示家庭电话线网络适配器。图中的PC3和移动计算机,并不要求非使用Windows XP操作系统不可,别的windows版本也行。移动计算机和主机之间的网络连接利用的是无线形式。 如果希望建立混合网络,这种方案已经具备典型的功能,并且不需要花费很大就可以扩充网络规模。 关于连通操作: 图1显示的结构只能表示物理连接关系,物理连接完成后,还需要进行连通操作,网络才可真正投入使用。连通操作包括局域网内部各个计算机之间的连通,和局域网与Internet之间的连通。前者连通建立的步骤如下: 1. 鼠标点击 开始,进入控制面板,点击"Network and Internet Connections网络和Internet连接",选择网络连接( Network Connections),进行下一步。 2. 选择进行"两个或多个LAN的连接" 3. 右键点击一个连接. 4. 确定完成连接任务. 局域网之内的连通操作就完成了。 再说局域网与Internet之间的连通,这种情况主要考虑速度与成本两方面的兼顾。多机上网,最省事的办法是每个机器占据一条独立的电话线,但这不是一般用户能承受起的,资源的浪费也太大。另一个办法,可以使用住宅网关,但这样成本需要增加,不是最佳途径。比较好的方法是使用一个计算机作为主机服务器。这不仅技术上可行,还有很多别的优点,如: ①:由于Windows XP有内建的防火墙,主机介于Internet和终端机之间,可以利用主机的防火墙保护局域网中的分机免受来自Internet的攻击。 ②:主机是"隐匿在" Internet和局域网之间的,充当了网关的脚色,在分机上,用户感觉好像自己是直接连在Interne上一样,察觉不到中间还有主机存在。特别是可以使局域网中的每台计算机同时上网。大大减少了设备投资。 ③:除主机必须使用Windows XP操作系统之外,局域网内的计算机可使用早期的windows版本。 ④:如果局域网中需要使用不同的媒体(例如有线和无线混合),可以利用Windows XP作为过渡的网桥。 ⑤:虽然有网络资源和设备的共享功能,但也可以限制别人对私有文件和数据的访问,特别是将文件存放在主机上的时候,更具有这种优势可用。 ⑥:利用"万能即插即用"功能,可以随时扩充局域网的规模。 六. 方案之二 下面是这种方案的结构示意图。该方案适用于小型办公室。与上一个方案比较,主要是去掉了无线部分,主机与分机之间不采用电话线连接,而是采用了电缆或双绞线连接。所有分机都通过一个HUB与主机连接到Internet上,并可以支持打印机共享。这其实就是最常见的那种局域网的结构。 该方案完成物理连接之后,还需要进行下列操作: 1. 打开网络连接文件夹或找到网络连接的图标. 2. 右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3. 选择"Advanced(高级)"任务条。 4. 选择"Allow other networkusers to connect through this computer′s Internet connection(允许另外用户通过这个计算机连接到Internet)"检查框,并选定。 5. 点击 OK.结束操作。 启用Windows XP的防火墙,必须进行设置,不设置是不起作用的。设置过程: 1.打开网络连接文件夹或找到网络连接的图标. 2.右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3.选择"Advanced(高级)"任务条。 4. 选择"Protect my computer and network by limitingor preventing access to this computer from the Internet(利用这个计算机限制从Internet进入的访问并保护我的计算机和网络" ,在其下面有一个Internet连接防火墙的检查框,鼠标点击选定。 5. 点击 OK.结束操作。 七. 几点说明 A.主机必须采用Windows XP操作系统,局域网内的计算机可以使用早一些的windows版本,如:windows98、windows ME、windows2000等等。 B.这里提供的是典型的情况,想扩充网络规模基本上可以照此叠加。 C.本文是依据英文测试版本进行的试验,不能保证将来的正式版本。特别是中文正式版本的性能与此完全一致。 参考资料: 创建局域网及配置管理 一.概念: (一).局域网的概念: 局域网做为网络的组成部分,发挥了不可忽视的作用。我们可以用Windows 9X把众多的计算机联系在一起,组成一个局域网,在这个局域网中,我们可以在它们之间共享程序、文档等各种资源,而不必再来回传递软盘;还可以通过网络使多台计算机共享同一硬件,如打印机、调制解调器等;同时我们也可以通过网络使用计算机发送和接收传真,方便快捷而且经济。 局域网是一个范围可大可小、简单的只有2台运行着Windows95的计算机连网(以工作组方式工作),也可以是幅员辽阔的高速ATM网和以太网混合使用、运行多种平台的大型企业。 (二).网络的类型: 1、按网络的地理位置分类 a.局域网(LAN):一般限定在较小的区域内,小于10km的范围,通常采用有线的方式连接起来 b.城域网(MAN):规模局限在一座城市的范围内,10~100km的区域。 c.广域网(WAN):网络跨越国界、洲界,甚至全球范围。 目前局域网和广域网是网络的热点。局域网是组成其他两种类型网络的基础,城域网一般都加入了广域网。广域网的典型代表是Internet网。 (二).硬件指南:网络硬件设备 组成小型局域网的主要硬件设备有网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等网络互连设备。以下主要介绍网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等局域网互连设备。 1.网卡 网卡(Network Interface Card,NIC)也叫网络适配器,是连接计算机与网络的硬件设备。网卡插在计算机或服务器扩展槽中,通过网络线(如双绞线、同轴电缆或光纤)与网络交换数据、共享资源。 Realtek 10/100M,这是我们实例中所使用的网卡 二.组网: 返回顶部 (一).硬件配置:服务器:普通PC机,主板:intel 815,硬盘:迈拓40G,CPU:PIII933,内存:512M ,显示器:ACER。 其他:双绞线一箱(300m),16口HUB一个,RJ45头32个,网卡:Realtek 10/100M 16块。。 由于服务器需要安装两块网卡来用SyGate维护管理,两个网卡的设置请参阅如下的动画。 三.网络维护: 返回顶部 SyGate 4.0是一种支持多用户访问因特网的软件,并且是只通过一台计算机,共享因特网帐号,达到上网的目的。使用SyGate 4.0,若干个用户能同时通过一个小型网络(包括您的笔记本电脑),迅速、快捷、经济地访问因特网。SyGate 4.0能在目前诸多流行的操作系统上运行,譬如:Windows95、Windows98、Windows NT, Windows2000等操作系统;同时,SyGate 4.0还支持多数的因特网连接方式,这包括:调制解调器(模拟线路)拨入、ISDN(综合业务数字网)、线缆调制解调器(Cable Modem)、ADSL以及DirectPC等方式。 SyGate 4.0具有以下优势: 易于安装 SyGate在数分钟之内便可以安装完成,并且通常不需要其他外加的设置。和其他代理服务器软件(proxy server)不同的是,SyGate仅安装Server便可以了。 易于使用 SyGate拥有直观的图形化界面,懂得操作Windows的人员均会操作。SyGate启动后便在后台运行,不需要人工的干预。当SyGate检测到局域网内有上网 要求时,它能自动地连接到因特网上,免去了每次需要手工拨号的烦恼。用户可以不间断地、透明地浏览因特网、收发电子邮件、聊天、使用FTP以及操作其他的小程序等等。局域网内非Windows用户,如Macintosh、Solaris和Linux,均能通过TCP/IP协议上网。 四.Windows 对等网创建与维护 返回顶部 (一).建网软件要求 在一个局域网中,Windows 95、98、NT和2000等操作系统可以并存。当然,即使你的电脑是在DOS下面跑的,也可以实现联网。由于Windows操作系统才是广泛应用的系统,本文不准备讨论DOS联网。 建网硬件要求 要组建电脑网络,无疑需要能将电脑连在一起的硬件设备。最简单的办法是,使用特制的电缆,将两台电脑的并口或者串口联接起来,通过Windows的“直接电缆连接”实现联网。这种联接电缆可以自制,也可以到电脑城购买。其缺点是,只能联接两台电脑,联网距离较短、方式古板,实际应用很不方便,通常要求将一台电脑用作服务器,另外一台用作客户端来实现联网。 但更为普遍采用的是网卡加网线的联网方式。从插槽上分,网卡有ISA和PCI两种;从速度上分,网卡又有10MB和100MB甚至传输速度更高的网卡。要求不高的话,一块PCI 10MB网卡就够用了。 五.疑难解答 返回顶部 (一).网卡安装故障检查方法 如果无法安装网卡驱动程序或安装网卡后无法登录网络,请按下述步骤检查处理: 1.选择“控制面板”/“系统”图标,打开“系统属性”窗口; 2.在“系统属性”窗口的“设备管理”标签的“按类型查看设备列表”中,双击“网络适配器”条目前的“ ”号将其展开,其下应当列出当前网卡; 3.如果“设备管理”标签中没有“网络适配器”条目或当前网卡前有一“X”号,说明系统没能识别网卡,可能产生的原因有网卡驱动程序安装不当、网卡硬件安装不当、网卡硬件故障等等; 参考 LAN(局域网)一词指位于同一区域甚至同一建筑物内的中小型计算机网络,字典上的解释是:将计算机和字处理机等电子办公设备连接在一起构成的办公室或建筑物内的网络系统。相信大多数人都在学校里、当地图书馆或朋友家里。接触过局域网。 随着宽带互联网日益流行,许多人家里都有几台计算机,家庭局域网正在形成规范。通过局域网共享宽带互联网访问可降低成本,不需要每台计算机都连接调制解调器和单独的IP地址。但如何构建一个家庭局域网共享宽带互联网访问呢? 网络带宽表示 网络带宽以兆位秒Mbps测量,通常不用兆字节秒MBps表示。一个字节有八个二进制位组成,多数人都熟悉MBps。当前局域网多为10base-T(10Mbps或1.25MBps)和100base-TX(100Mbps或12.5MBps)的以太网,使用类似标准电话线的RJ-45接口,通过网络电缆把集线器(或路由器、交换器)和计算机连接起来就构成了以太网。 网络布线 开始组建家庭局域网之前,应多少了解一些可用网络电缆的区别。这取决你家中PC机需要安排的位置,因为可能需要在墙上打眼,以穿过五类网络电缆。对家里地方不宽敞的人,这可能是令人畏缩的任务,甚至不太可能。如果你想避免穿墙打眼的麻烦,无线局域网也很方便,但应注意,无线局域网通常速度不够快,花费也高的多。另一种选择可考虑10Mbps电话线套件,利用你现成的电话线在计算机之间传送数据,可购买D-Link,Linksys,3Com和Netgear等公司的产品。不想采用无线局域网的人,可选择五类双绞线网络电缆。如果对电缆不熟悉,下面列出了电子工业协会EIA关于电缆分类的解释。根据电缆的速度和质量,可将电缆分为六类: 一、二类电缆:数据传输速度低于10Mbps(普通电话线) 三类电缆:数据传输速度达16 Mbps 四类电缆:数据传输速度达20 Mbps 五类电缆:数据传输速度达100 Mbps 五类电缆增强:数据传输速度达200 Mbps 六类电缆:数据传输速度达600 Mbps 五类电缆十分普通,连接以太网费用也较低。如果你计划穿墙打眼或使用超过50英尺五类电缆,应购买细电缆,自己动手将RJ-45插头接在电缆两端。注意,别忘了电缆穿过墙之后再接RI-45插头。 连接RJ-45插头 五类电缆连接RJ-45插头并不困难,但需要专用连接工具,可从当地五金商店买一把或从朋友处借用。操作时小心剪掉约1/4英寸电缆外塑料皮,露出电缆里面8根彩色线,注意放入RJ-45连接器里面电缆线的次序: 1、白绿 2、绿 3、白橙 4、兰 5、白兰 6、橙 7、白橙 8、棕 应仔细展开8条彩色编码线,放入RJ-45插孔中,用专用工具压紧。有条件时可用RJ-45测试器验证一下是否连接可靠,以免将来麻烦。 需要的硬件 首先确保每台计算机里都安装了网卡,100base-TX或10base-T网卡,型号、尺寸任意。注意,一般选PCI网卡,各网卡速率应一致。100base-TX网卡数据传输率较高,适合于大量数据传输,如数字电影或其它大的多媒体文件。 组建局域网需要使用集线器,交换器或内置集线器的路由器,集线器只不过用于将你所有的计算机连到局域网上。如果你只有2台计算机并且不打算增加数量,可以用一段电缆直接将2台计算机连起来,缺点是你试图共享宽带互联网访问仍然有麻烦。如果你想多台计算机访问宽带互联网,使用路由器是个好主意,可以选购Netgaer,D-Link和Linksys等著名网络公司的产品。 典型的以太网使用集线器或交换器,两种设备都有单独的连接器,用于将每台计算机连接到局域网上。集线器与交换器的主要差别在于吞吐量,集线器在所有在用的端口间分配吞吐量,因此4端口100base-TX集线器每个在用的端口只有25Mbps吞吐量。交换器更贵些,但允许每个端口全速运行。 假如你准备设置一个只有单个宽带互联网连接的局域网,应确保你的DSL或有线电缆供应商给你提供的是外置调制解调器。多数外置调制解调器通过网卡连接到你的计算机,你可把具有调制解调器的那台计算机设置为路由器,虽然这并不推荐。作为一个例子,你将电话插头接入宽带调制解调器,然后经RJ-45(双绞线)电缆连至集线器/交换器/路由器,从此,你的任一台计算机都可连接到互联网上。 设置Windows网络 确保你准备在局域网上使用的每台计算机,都有足够的五类电缆已连到了集线器或路由器。现在你可能已安装了适当的网卡以及相应的驱动程序,右击“网络邻居”,选择“属性”,可以看到当前已经安装的协议和网卡。要设置网络,应确保所用的网卡已安装了TCP/IP协议。如果你使用的微软操作系统是Windows98或更高版本,网络设置相当简单,Windows网络作为操作系统的基本选项之一应该已经安装了。如果你至少在一台计算机上使用的是Windows Me,你可运行家庭网络向导,将一步步引导你完成设置。记住,你需要使用相同的组名设置你网络中的每台计算机。在Windows95/98中,需要进入网络属性,并确保所有设置为缺省。你的互联网服务供应商ISP可能已经告诉你,如何设置TCP/IP,怎样连接到互联网。你可能是静态IP地址,或是动态IP地址,取决于你的ISP。静态IP地址设置需要的时间稍长一点,如果你想给互联网用户提供服务,如FTP,Web服务器或任何其它服务,静态IP地址是不错的。如果你分配的是IP地址,你的TCP/IP协议属性获得的应是自动选择的IP地址。要检查你的计算机是否已被集线器/路由器分配了一个IP地址,可使用Windows TP配置(进入开始 传输大点的东西,用iostat 1 查看io 来源于网络,供您参考

保持可爱mmm 2019-12-02 02:20:25 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站