• 关于 查询路由可以做什么 的搜索结果

回答

首先是 DNS 查询,如果这一步做了智能 DNS 解析的话,会提供访问速度最快的 IP 地址回来。 DNS DNS 的作用就是通过域名查询到具体的 IP。 因为 IP 存在数字和英文的组合(IPv6),很不利于人类记忆,所以就出现了域名。你可以把域名看成是某个 IP 的别名,DNS 就是去查询这个别名的真正名称是什么。 在 TCP 握手之前就已经进行了 DNS 查询,这个查询是操作系统自己做的。当你在浏览器中想访问 www.google.com 时,会进行一下操作: 操作系统会首先在本地缓存中查询 IP没有的话会去系统配置的 DNS 服务器中查询如果这时候还没得话,会直接去 DNS 根服务器查询,这一步查询会找出负责 com 这个一级域名的服务器然后去该服务器查询 google 这个二级域名接下来三级域名的查询其实是我们配置的,你可以给 www 这个域名配置一个 IP,然后还可以给别的三级域名配置一个 IP 以上介绍的是 DNS 迭代查询,还有种是递归查询,区别就是前者是由客户端去做请求,后者是由系统配置的 DNS 服务器做请求,得到结果后将数据返回给客户端。 PS:DNS 是基于 UDP 做的查询,大家也可以考虑下为什么之前不考虑使用 TCP 去实现。 接下来是 TCP 握手,应用层会下发数据给传输层,这里 TCP 协议会指明两端的端口号,然后下发给网络层。网络层中的 IP 协议会确定 IP 地址,并且指示了数据传输中如何跳转路由器。然后包会再被封装到数据链路层的数据帧结构中,最后就是物理层面的传输了。 在这一部分中,可以详细说下 TCP 的握手情况以及 TCP 的一些特性。 当 TCP 握手结束后就会进行 TLS 握手,然后就开始正式的传输数据。 在这一部分中,可以详细说下 TLS 的握手情况以及两种加密方式的内容。 数据在进入服务端之前,可能还会先经过负责负载均衡的服务器,它的作用就是将请求合理的分发到多台服务器上,这时假设服务端会响应一个 HTML 文件。 首先浏览器会判断状态码是什么,如果是 200 那就继续解析,如果 400 或 500 的话就会报错,如果 300 的话会进行重定向,这里会有个重定向计数器,避免过多次的重定向,超过次数也会报错。 浏览器开始解析文件,如果是 gzip 格式的话会先解压一下,然后通过文件的编码格式知道该如何去解码文件。 文件解码成功后会正式开始渲染流程,先会根据 HTML 构建 DOM 树,有 CSS 的话会去构建 CSSOM 树。如果遇到 script 标签的话,会判断是否存在 async 或者 defer ,前者会并行进行下载并执行 JS,后者会先下载文件,然后等待 HTML 解析完成后顺序执行。 如果以上都没有,就会阻塞住渲染流程直到 JS 执行完毕。遇到文件下载的会去下载文件,这里如果使用 HTTP/2 协议的话会极大的提高多图的下载效率。 CSSOM 树和 DOM 树构建完成后会开始生成 Render 树,这一步就是确定页面元素的布局、样式等等诸多方面的东西 在生成 Render 树的过程中,浏览器就开始调用 GPU 绘制,合成图层,将内容显示在屏幕上了。

前端问答 2019-12-30 12:35:50 0 浏览量 回答数 0

回答

为什么只能发信不能收信? 原因分析: 可以发送邮件,说明邮件服务器运行正常。不能收信,原因可能是没有做 mx解析或 mx解析有误,mx解析是邮件路由交换记录,如果是万网注册的域名,同时使用万网域名解析服务器(DNS),可以在域名管理中可以查询到邮局的 mx记录。如果不是万网注册的域名,或者使用的不是万网域名解析服务(DNS),您需要联系域名DNS服务商正确添加 mx记录后即可。 企业邮箱-企业邮箱域名解析

微wx笑 2019-12-01 23:47:18 0 浏览量 回答数 0

回答

"主题前提 多语言站点包含三个不同方面: 界面翻译 内容 网址路由 尽管它们都以不同的方式互连,但是从CMS的角度来看,它们是使用不同的UI元素进行管理的,并且存储方式也不同。您似乎对自己的实现和对前两个的理解充满信心。问题是关于后一个方面的问题:“ URL转换?我们应该这样做吗?应该以什么方式进行?” URL可以由什么组成? 一个非常重要的事情是,不要对IDN感兴趣。取而代之的是支持音译(也:转录和罗马化)。乍一看,IDN似乎是国际URL的可行选择,但实际上,它不能按广告宣传工作,原因有两个: 某些浏览器会将非ASCII字符(例如'ч'或)'ž'转换为'%D1%87'和'%C5%BE' 如果用户具有自定义主题,则主题的字体很可能没有这些字母的符号 实际上,几年前,我在一个基于Yii的项目(可怕的框架,恕我直言)中尝试了IDN方法。在抓取该解决方案之前,我遇到了上述两个问题。另外,我怀疑这可能是攻击媒介。 可用选项...如我所见。 基本上,您有两个选择,可以抽象为: http://site.tld/[:query]:[:query]决定语言和内容选择的地方 http://site.tld/[:language]/[:query]:[:language]URL的一部分定义语言的选择,[:query]仅用于标识内容 查询是Α和Ω.. 假设您选择http://site.tld/[:query]。 在这种情况下,您有一种主要的语言来源:[:query]段的内容;以及另外两个来源: $_COOKIE['lang']该特定浏览器的价值 HTTP Accept-Language (1),(2)标头中的语言列表 首先,您需要将查询与定义的路由模式之一进行匹配(如果您选择的是Laravel,请在此处阅读)。成功匹配模式后,您需要查找语言。 您将必须遍历模式的所有部分。找到所有这些片段的潜在翻译,并确定使用哪种语言。当(不是“如果”)发生冲突时,将使用两个其他来源(cookie和标头)来解决路由冲突。 例如:http://site.tld/blog/novinka。 那是音译""блог, новинка"",在英语中大约是""blog"", ""latest""。 您已经注意到,俄语中的“блог”将译为“博客”。这意味着对于您的第一部分[:query](在最佳情况下),最终会['en', 'ru']列出可能的语言。然后您进入下一个片段-“ novinka”。可能的列表中可能只有一种语言:['ru']。 当列表中有一项时,您已经成功找到该语言。 但是,如果最终得到2种(例如:俄语和乌克兰语)或更多种可能性..或0种可能性(视情况而定)。您将必须使用Cookie和/或标题才能找到正确的选项。 如果其他所有方法均失败,则选择站点的默认语言。 语言作为参数 替代方法是使用URL,可以将其定义为http://site.tld/[:language]/[:query]。在这种情况下,翻译查询时,您无需猜测语言,因为此时您已经知道要使用哪种语言。 还有另一种语言来源:cookie值。但是,这里没有必要弄乱Accept-Language标头,因为在“冷启动”的情况下(当用户第一次使用自定义查询打开网站时),您不会处理未知数量的可能的语言。 相反,您有3个简单的优先选项: 如果[:language]设置了细分,请使用它 如果$_COOKIE['lang']设置,使用它 使用默认语言 使用该语言时,您只需尝试翻译查询,如果翻译失败,请对该特定段使用“默认值”(基于路由结果)。 这不是第三种选择吗? 是的,从技术上讲,您可以将两种方法结合使用,但这会使过程复杂化,并且只适合那些想要手动更改URL http://site.tld/en/news到http://site.tld/de/news并希望新闻页面更改为德语的人员。 但是即使是这种情况,也可以使用cookie值(其中包含有关先前选择语言的信息)缓解,以减少魔术和希望。 使用哪种方法? 您可能已经猜到了,我建议您将其http://site.tld/[:language]/[:query]作为更明智的选择。 同样在真实的单词情况下,URL中将包含第三大部分:“标题”。如在线商店中的产品名称或新闻站点中的文章标题。 例: http://site.tld/en/news/article/121415/EU-as-global-reserve-currency 在这种情况下'/news/article/121415'将是查询,而'EU-as-global-reserve-currency'标题是。纯粹用于SEO。 可以在Laravel中完成吗? Kinda,但默认情况下不是。 我不太熟悉它,但是据我所知,Laravel使用简单的基于模式的路由机制。要实现多语言URL,您可能必须扩展核心类,因为多语言路由需要访问不同形式的存储(数据库,缓存和/或配置文件)。 已路由。现在怎么办? 结果,您最终将获得两条有价值的信息:当前语言和查询的翻译段。然后,这些值可用于调度将产生结果的类。 基本上,以下网址:(http://site.tld/ru/blog/novinka或不含的版本'/ru')变成了类似 $parameters = [ 'language' => 'ru', 'classname' => 'blog', 'method' => 'latest', ]; 您仅用于调度的对象: $instance = new {$parameter['classname']}; $instance->{'get'.$parameters['method']}( $parameters ); ..或它的某些变体,具体取决于特定的实现。"来源:stack overflow

保持可爱mmm 2020-05-18 10:09:50 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

问题

深入理解Magento - 第二章 - Magento请求分发与控制器 400 请求报错 

kun坤 2020-05-28 16:31:47 5 浏览量 回答数 1

回答

收不到外部邮件原因如下,希望能帮到您 1.检查域名有没有做MX记录,命令查询方式为:nslookup -qt=mx abc.com (abc.com是你的域名) 查询出来的信息应该是: Server: ns.szptt.net.cn Address: 202.96.134.133 Non-authoritative answer: abc.com MX preference = 10, mail exchanger = mail.abc.com(花生壳解析的域名) mail.abc.com internet address = 192.168.1.1(是你的公网IP,也就是你用花生壳解析出来的当前IP) 如何做MX记录:登录你的域名管理中心,找到MYDNS解析,参考: http://www.info-speed.com/help/showfaqs.asp?newsid=81 参考这个网址的 “第二个说明”,记住:做MX记录,第一空一定要为空。。 如果还是不懂,再发贴把你的图贴出来,再帮你分析! 2.检查你的路由器有没有将 25及110端口影射到邮件服务器这台电脑。。。 3.检查有没有防火墙,如果有防火墙,请确认开发了25及110端口。。 4.检查装的什么杀毒软件,请将杀毒软件的 “邮件扫描”之类功能禁用。。 5.检查你的邮件服务器软件 SMTP及POP3是否启用状态。。 以上几个问题如果确认,基本上可以解决问题。。请仔细一点点查找。。。希望能帮到您!!! “答案来源于网络,供您参考”

牧明 2019-12-02 02:15:19 0 浏览量 回答数 0

问题

如何保证缓存与数据库的双写一致性?【Java问答】38期

剑曼红尘 2020-06-16 12:58:57 36 浏览量 回答数 1

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

回答

如果小项目,业务逻辑和查询不是很复杂的话,直接上Spring data JPA吧,基本CRUD都提供了,稍微复杂的可以自己写JPQL。如果数据量比较大,查询逻辑也很复杂,用JdbcTemplate,方便后期维护。MyBatis还是不要用了,那玩意很烦,不如直接用JdbcTemplate。JFinal我没用过,不发表意见。######回复 @一书生 : 没有没有缺点的银弹。绝大多数OLTP系统,JPA都是合格的。如果写不好,绝大多数都是开发人员设计水平和编码水平的问题,这种情况下,换了纯JDBC有时候更糟。######回复 @魔力猫 : 其实我的意思是JPA有一定的局限性,比如我之前碰到一个问题:就是使用UNION关键字将两个结果集组装到一起的时候,Hibernate提供的JPA实现就不行了,EclipseLink的JPA实现却是可以。所以它有好的一方面就是省事,但也有一定的局限性。######OLTP查询如果非常复杂,那么表设计BUG是肯定的。######用 jdbctemplate 挺好的,就是java没有heredoc 写大段sql不方便 如果模板有一种支持动态参数的语法,其实用模板来处理sql最方便 ######@yak 可没你赚的多呀,哈哈哈######回复 @xfblue : 虚幻中的高层光明人士,请问你的脑容量多大?,这么光明的高层人士,还花工夫专门跟小杂毛较劲,你的时薪一小时多少钱?######@yak 现实中的底层阴暗人士,请问你的心理阴影多大面积的?哈哈哈,还拿分享代码跟我说事,小杂毛一枚,哈哈哈######回复 @xfblue : 心理光明的大杂种,你看,这我也会哦,没有任何技术含量,说不上谁比谁强,只能说明你逻辑比较差,这不是你个杂种的错,是根本不开逻辑课的原因,但是写代码没有逻辑就说不过去,怪不得你分享的代码为0######@yak 比你强,心理阴暗的小杂种######我自己写了个jdbctemplate拼接sql###### 引用来自“Eric_林”的评论mybatis 轻量 强烈不建议 mybatis,非常非常繁琐######回复 @繁华似水 : 正是有了属于Google的名号,各种G粉蜂拥而至.######回复 @eechen : mybatis 到真不是google的开头的,开始是ibatis,后来被谷歌收购了还是怎么得,变成google团队了。这个锅不能乱扣。######回复 @首席撸出血 : sborm,minidao 这些都是典型的基于jdbcTemplate的薄封装######给个git地址,我去学习一下,一直想用JdbcTemplate做ORM######回复 @luokery : 基于jdbcTemplate 做一个简单ORM######mybaties ######要看你系统是什么样的。建议无特别需求,OLTP系统还是用官方的标准,JPA。 ######mybatis不错######mybatis 轻量###### 引用来自“魔力猫”的评论要看你系统是什么样的。建议无特别需求,OLTP系统还是用官方的标准,JPA。 JPA+1###### 现在ORM 用的是 JPA 标准API 底层实现你可以配置任意实现JPA 标准API的框架如 Hibernate,eclipse-link,open-jpa http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html 整合他们肯定是spring-data-jpa 最方便 你只需要写接口 传@query 即可 大部分CRUD 方法他基本接口CrudRepository都自带了 spring-data-jpa 提供若干基本接口 你可以按需继承即可 http://projects.spring.io/spring-data-jpa/ 就跟当初hibernate 指定DB 方言一样 你使用JPA 标准api开发 后台orm实现配置你需要用的orm实现即可 比如这就是指定JPA 实现用的是eclipselink  <bean id="jpaDialect" class="org.springframework.orm.jpa.vendor.EclipseLinkJpaDialect" />  从java7 开始 orm mq cache 等框架领域陆续JAVA 都在推出一系列标准API 来统一各个框架层 ###### @抢小孩糖吃 你用spring 的话可以看看 AbstractRoutingDataSource 这是SPRING 提供的路由数据源 你只需要实现具体切换数据源 设置数据源 代码即可 特别简单好用,还可以结合AOP使用######以key做搜索数据源注册名称、以value做数据源对象存放。定期扫描是否有新数据源需要注册,jdbctemplate可以直接set,拿来使用。主要我需求不同库的相同名称表是不一样的数据结构######回复 @抢小孩糖吃 : 不知道你是怎么个跨库法。######非常感谢,回去研究下。我自己写了个多数据源动态扫描,加上jdbctemplate,还是蛮好用的。当然JPA作为标准,还是需要实践的######回复 @抢小孩糖吃 : 你指的跨库是一个SQL 语句的跨库 还是若干个SQL 语句的跨库?一个SQL 语句跨库 用比如ORACLE DBLINK table@DBID 那就只能写原生SQL 语句了 JPA 支持原生SQL . 多个SQL 语句对应不同的库 用SPRING AbstractRoutingDataSource 路由 一句代码 setDbSource(dbid)即可实现DB 切换

kun坤 2020-06-15 11:08:21 0 浏览量 回答数 0

回答

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。;读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读;缓存: 使用MySQL的缓存,另外对重量级、更新少的数据可以考虑使用应用级别的缓存; 还有就是通过分库分表的方式进行优化,主要有垂直分表和水平分表 垂直分区: 根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。 简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。 垂直拆分的优点: 可以使得行数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂; 垂直分表 把主键和一些列放在一个表,然后把主键和另外的列放在另一个表中 适用场景 1、如果一个表中某些列常用,另外一些列不常用 2、可以使数据行变小,一个数据页能存储更多数据,查询时减少I/O次数 缺点 有些分表的策略基于应用层的逻辑算法,一旦逻辑算法改变,整个分表逻辑都会改变,扩展性较差 对于应用层来说,逻辑算法增加开发成本 管理冗余列,查询所有数据需要join操作 水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。 水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。 水品拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。 水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。 《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。 水平分表: 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询次数 适用场景 1、表中的数据本身就有独立性,例如表中分表记录各个地区的数据或者不同时期的数据,特别是有些数据常用,有些不常用。 2、需要把数据存放在多个介质上。 水平切分的缺点 1、给应用增加复杂度,通常查询时需要多个表名,查询所有数据都需UNION操作 2、在许多数据库应用中,这种复杂度会超过它带来的优点,查询时会增加读一个索引层的磁盘次数 下面补充一下数据库分片的两种常见方案: 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。 分库分表后面临的问题 事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。 跨库join 只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品 跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。 数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。 ID问题 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略

剑曼红尘 2020-03-31 11:34:39 0 浏览量 回答数 0

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现

剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

问题

Node.js表达并承诺不做我期望的事情?mysql

保持可爱mmm 2020-05-17 14:32:56 0 浏览量 回答数 1

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?

剑曼红尘 2020-04-27 14:35:38 0 浏览量 回答数 1

回答

在HBase中,大部分的操作都是在RegionServer完成的,Client端想要插入,删除,查询数据都需要先找到相应的RegionServer。什么叫相应的RegionServer?就是管理你要操作的那个Region的RegionServer。Client本身并不知道哪个RegionServer管理哪个Region,那么它是如何找到相应的RegionServer的?本文就是在研究源码的基础上揭秘这个过程。 在前面的文章“HBase存储架构”中我们已经讨论了HBase基本的存储架构。在此基础上我们引入两个特殊的概念:-ROOT-和.META.。这是什么?它们是HBase的两张内置表,从存储结构和操作方法的角度来说,它们和其他HBase的表没有任何区别,你可以认为这就是两张普通的表,对于普通表的操作对它们都适用。它们与众不同的地方是HBase用它们来存贮一个重要的系统信息——Region的分布情况以及每个Region的详细信息。 好了,既然我们前面说到-ROOT-和.META.可以被看作是两张普通的表,那么它们和其他表一样就应该有自己的表结构。没错,它们有自己的表结构,并且这两张表的表结构是相同的,在分析源码之后我将这个表结构大致的画了出来: -ROOT-和.META.表结构 我们来仔细分析一下这个结构,每条Row记录了一个Region的信息。 首先是RowKey,RowKey由三部分组成:TableName, StartKey 和 TimeStamp。RowKey存储的内容我们又称之为Region的Name。哦,还记得吗?我们在前面的文章中提到的,用来存放Region的文件夹的名字是RegionName的Hash值,因为RegionName可能包含某些非法字符。现在你应该知道为什么RegionName会包含非法字符了吧,因为StartKey是被允许包含任何值的。将组成RowKey的三个部分用逗号连接就构成了整个RowKey,这里TimeStamp使用十进制的数字字符串来表示的。这里有一个RowKey的例子: Java代码 Table1,RK10000,12345678 然后是表中最主要的Family:info,info里面包含三个Column:regioninfo, server, serverstartcode。其中regioninfo就是Region的详细信息,包括StartKey, EndKey 以及每个Family的信息等等。server存储的就是管理这个Region的RegionServer的地址。 所以当Region被拆分、合并或者重新分配的时候,都需要来修改这张表的内容。 到目前为止我们已经学习了必须的背景知识,下面我们要正式开始介绍Client端寻找RegionServer的整个过程。我打算用一个假想的例子来学习这个过程,因此我先构建了假想的-ROOT-表和.META.表。 我们先来看.META.表,假设HBase中只有两张用户表:Table1和Table2,Table1非常大,被划分成了很多Region,因此在.META.表中有很多条Row用来记录这些Region。而Table2很小,只是被划分成了两个Region,因此在.META.中只有两条Row用来记录。这个表的内容看上去是这个样子的: .META.行记录结构 现在假设我们要从Table2里面插寻一条RowKey是RK10000的数据。那么我们应该遵循以下步骤: 1. 从.META.表里面查询哪个Region包含这条数据。 2. 获取管理这个Region的RegionServer地址。 3. 连接这个RegionServer, 查到这条数据。 好,我们先来第一步。问题是.META.也是一张普通的表,我们需要先知道哪个RegionServer管理了.META.表,怎么办?有一个方法,我们把管理.META.表的RegionServer的地址放到ZooKeeper上面不久行了,这样大家都知道了谁在管理.META.。 貌似问题解决了,但对于这个例子我们遇到了一个新问题。因为Table1实在太大了,它的Region实在太多了,.META.为了存储这些Region信息,花费了大量的空间,自己也需要划分成多个Region。这就意味着可能有多个RegionServer在管理.META.。怎么办?在ZooKeeper里面存储所有管理.META.的RegionServer地址让Client自己去遍历?HBase并不是这么做的。 HBase的做法是用另外一个表来记录.META.的Region信息,就和.META.记录用户表的Region信息一模一样。这个表就是-ROOT-表。这也解释了为什么-ROOT-和.META.拥有相同的表结构,因为他们的原理是一模一样的。 假设.META.表被分成了两个Region,那么-ROOT-的内容看上去大概是这个样子的: -ROOT-行记录结构 这么一来Client端就需要先去访问-ROOT-表。所以需要知道管理-ROOT-表的RegionServer的地址。这个地址被存在ZooKeeper中。默认的路径是: Java代码 /hbase/root-region-server 等等,如果-ROOT-表太大了,要被分成多个Region怎么办?嘿嘿,HBase认为-ROOT-表不会大到那个程度,因此-ROOT-只会有一个Region,这个Region的信息也是被存在HBase内部的。 现在让我们从头来过,我们要查询Table2中RowKey是RK10000的数据。整个路由过程的主要代码在org.apache.Hadoop.hbase.client.HConnectionManager.TableServers中: Java代码 private HRegionLocation locateRegion(final byte[] tableName, final byte[] row, boolean useCache) throws IOException { if (tableName == null || tableName.length == 0) { throw new IllegalArgumentException("table name cannot be null or zero length"); } if (Bytes.equals(tableName, ROOT_TABLE_NAME)) { synchronized (rootRegionLock) { // This block guards against two threads trying to find the root // region at the same time. One will go do the find while the // second waits. The second thread will not do find. if (!useCache || rootRegionLocation == null) { this.rootRegionLocation = locateRootRegion(); } return this.rootRegionLocation; } } else if (Bytes.equals(tableName, META_TABLE_NAME)) { return locateRegionInMeta(ROOT_TABLE_NAME, tableName, row, useCache, metaRegionLock); } else { // Region not in the cache – have to go to the meta RS return locateRegionInMeta(META_TABLE_NAME, tableName, row, useCache, userRegionLock); } } 这是一个递归调用的过程: Java代码 获取Table2,RowKey为RK10000的RegionServer => 获取.META.,RowKey为Table2,RK10000, 99999999999999的RegionServer => 获取-ROOT-,RowKey为.META.,Table2,RK10000,99999999999999,99999999999999的RegionServer => 获取-ROOT-的RegionServer => 从ZooKeeper得到-ROOT-的RegionServer => 从-ROOT-表中查到RowKey最接近(小于) .META.,Table2,RK10000,99999999999999,99999999999999的一条Row,并得到.META.的RegionServer => 从.META.表中查到RowKey最接近(小于)Table2,RK10000, 99999999999999的一条Row,并得到Table2的RegionServer => 从Table2中查到RK10000的Row 到此为止Client完成了路由RegionServer的整个过程,在整个过程中使用了添加“99999999999999”后缀并查找最接近(小于)RowKey的方法。对于这个方法大家可以仔细揣摩一下,并不是很难理解。 最后要提醒大家注意两件事情: 1. 在整个路由过程中并没有涉及到MasterServer,也就是说HBase日常的数据操作并不需要MasterServer,不会造成MasterServer的负担。 2. Client端并不会每次数据操作都做这整个路由过程,很多数据都会被Cache起来。至于如何Cache,则不在本文的讨论范围之内。 “答案来源于网络,供您参考”

牧明 2019-12-02 02:15:36 0 浏览量 回答数 0

回答

Beego https://beego.me/ Beego 框架提供了很多标准附加功能,例如全功能路由器和可用于执行 CRUD 操作的对象到数据库映射工具。Bee 是 Beego 爱好者的最爱,它是一个快速而强大的命令行工具,用于构建、更新、打包和部署应用程序。Bee 可以从模板生成源代码,并保持数据库的最新状态。 Buffalo https://gobuffalo.io/en Buffalo 团队需要能够将 Web 应用程序的所有部分组装在一起的东西,包括应用程序本身的一些设计。他们把能够安装在一起的很多部件叫作“生态系统”。如果你想要路由——很少有人不需要——Buffalo 就包含了 Gorilla/Mux。如果你需要模板,Buffalo 倾向于使用 Plush,而不是使用内置的 Go 语言模板机制。数据库连接模块集合 Pop 可以帮你将数据库信息转换为 Go 对象。你还可以找到连接数据库、处理 cookie 以及完成其他任务的标准方法。 Cobra https://github.com/spf13/cobra 有时候,你只需要一个命令行界面。Cobra 提供了 CLI 的所有标准功能,因此你不必浪费时间实现代码来查找 -h 或 -help 标志。如果你的微服务需要对具有大量标志和其他功能的命令行调用做出响应,那么可以考虑集成 Cobra。 Docker 你当然可以在办公室服务器小黑屋里的裸机上运行微服务,但越来越多的人将他们的代码捆绑在 Docker 容器中,并将容器发到云端。小型的包更容易处理大量不同的代码块,当你对微服务架构的愿景要求你创建很多小的独立代码块时,这将是一项有价值的服务。 值得一提的是,Docker 是用 Go 语言开发的,尽管在部署 Docker 容器时你可能永远不会想到这一点。Docker 社区版是开源的,所以如果有必要,你可以参与其中,但很可能你只是将 Docker 作为部署微服务的工具。Go 语言爱好者之所以想要记住 Docker 是用 Go 语言开发的这一事实,是因为无处不在的 Docker 有力地证明了他们对这门语言的支持。 Echo https://echo.labstack.com/ Echo 是一个极简框架,但它提供了很多最重要的组件。路由器可以将 URL 拆解,然后将拆解的各个部份转换为参数,因此你无需自行解析它们。然后,你可以混合使用身份验证、表单解析、压缩和合理性限制。你可以专注于从函数中返回正确的信息。 Errors https://github.com/juju/errors 有时候,API 的用户会传递错误的参数。你可以自己处理这些参数,也可以把它们创给 Errors,这是一个可以自动执行大部分跟踪的库,方便进行调试。当发生错误时,Errors 会使用注释来详细说明出错的地方和位置。 Gin https://github.com/gin-gonic/gin Gin 是 Martini( https://github.com/go-martini/martini )的下一代框架。可以说,Gin 抛弃了那些额外的东西,专注于提供最有用的部分。花费大量时间构建 Node.js 微服务的开发人员会感到宾至如归。你可以实例化一个对象,然后附加函数来处理特定的调用,这样就可以创建一个微服务。Gin 负责处理路由,而你的函数处理业务逻辑。如果不去考虑标点符号,它的代码甚至看起来有点像 Node.js 代码。 Ginkgo https://onsi.github.io/ginkgo/ 测试可能是微服务开发当中最具挑战性的事情。Ginkgo 通过行为驱动测试扩展了标准 Go 发行版的内置测试机制。Ginkgo 提供了一种高级机制,用于指定函数或服务应该产生哪些结果。结果通常使用 Ginkgo 提供的 Gomega 匹配器( http://onsi.github.io/gomega/ )进行评估,但如果你愿意,也可以使用不同的匹配器库。 Ginkgo 是一个全面的框架,提供了各种选项,用于设置测试数据、运行测试以及在事后释放测试数据。你只需要描述结果,然后让 Ginkgo 处理其他的事情。 Goa https://github.com/goadesign/goa 如果你是一个曾经使用 Ruby 和 Praxis 框架的开发人员,或者是一个欣赏设计语言的强大力量人,那么你会在 Goa 中找到很多你喜欢的东西。你本身不需要编写 Go 代码。你使用 Goa DSL 为 API 编写设计规范,然后 Goa 将其转换为可执行的 Go 代码。DSL 针对微服务 API 进行了优化,并强制你的设计遵循标准的架构。 Gorilla http://www.gorillatoolkit.org/ Gorilla 项目提供了一系列你需要的模块。Gorilla 的 Mux( http://www.gorillatoolkit.org/pkg/mux )路由器被很多其他框架使用,因为它太好用了。很多用户之所以使用 Gorilla,是因为 websocket( http://www.gorillatoolkit.org/pkg/websocket )。 Gotify https://github.com/gotify/server 同步一组微服务所面临的一个挑战是建立有效的消息传递节点。Gotify 是一个简单的服务器,用于发送和接收消息,将你的微服务集合与持续存储的消息组合在一起。最有用的部分可能是它的 Web 接口,可帮助开发者应对最令人头疼的调试问题。 Hugo https://github.com/gohugoio/hugo Hugo 是一种静态站点生成器,可以用这个框架构建的微服务并不多,但如果网站只有有限的重复查询答案时,这是一个值得考虑的选项。Hugo 一次生成答案,然后可以重复使用。如果你已经已 HTML 格式提供答案,那么 Hugo 会非常有用。 Kite https://github.com/koding/kite 如果你希望建立一个更加可控的服务群体,而不是通常的服务之间的互动,那么可以考虑一下 Kite。Kite 的目标是让微服务之间的通信协调变得更简单一些。来自 Kite 以外的 API 调用通过 websocket 进入,然后 Kite 使用更快、更低级别的套接字连接(基于 dnode)传递新消息。中间有一个叫作 Kontrol 的服务注册表和身份验证服务。如果你需要经常交换消息和协调很多的操作,那么在不同服务器之间添加这一层会让一切变得更快。 Logrus https://github.com/sirupsen/logrus 要跟踪 API 的流入和流出数据和可能产生的错误,通常需要将日志写入文件中。这个过程可以很简单,比如在一个打开的文件中写入一行行的数据,但通常使用完整的日志框架会更好。Logrus 提供了格式化程序来标准化你的日志输出,并让后续的自动化日志文件分析变得更容易。不要尝试自己开发日志代码,使用像 Logrus 这样的库会事半功倍。 Nano https://github.com/pasztorpisti/nano 构建一个微服务并不需要太多东西,Nano 就是一个极简主义的例子。它的实际代码不会超过 200 行,如果算上注释也只有 400 多行。你只需要几行代码就可以构建一个微服务——只包含处理请求所需的业务逻辑。这个框架还有一些其他不错的特性,例如与语言无关的 API 结构,这样你的 Go 代码就可以与使用其他语言开发的服务发生交互。它还提供了一个测试过程来,可以嵌入你的本地测试例程。简简单单,但却恰到好处。 Negroni https://github.com/urfave/negroni 有些人看完 Martini 后,决定走一条更简单的道路。他们剥离了路由器和其他一些东西,创建了 Negroni,这是一个非常小型的工具,除了处理标准文件、自定义请求、从基本错误中恢复以及保留日志之外,它不会做更多的工作。如果你想要额外的东西,可以自己加入。Negroni 团队也提供了一系列与可以与 Negroni 一起使用的小型项目。 Renderer https://github.com/thedevsaddam/renderer 在准备输出响应时,你需要获取数据并将其插入到模板中。Renderer 提供了各种输出格式(JSON、JSONP、XML、YAML、HTML、文件)和一个漂亮、快速和标准的模板引擎。 Revel https://revel.github.io/ Revel 借鉴了 Webpack 的一个简洁的特性,这让 Revel 看起来就像一个 IDE 一样,或者至少是 IDE 的一部分,每当你对代码做出更改,它会持续地重新构建你的项目。当你保存修改后,Revel 会检测到更改,然后就编译代码,如果没有编译错误,就启动应用程序。因此,Revel 服务器会自动部署修改的码——在桌面上进行开发时这项功能非常好用,或许对于生产环境代码部署来说也是有点诱人的。 这个框架本身功能齐全,它提供了模板、缓存、验证和过滤器。如果你正在构建很多微服务,它还提供了一个模块系统,让你可以在项目之间共享一些 MVC 组件。 Testify https://github.com/stretchr/testify 使用断言的最简单方法之一是使用 Testify,它是一个 Go 语言项目,还提供了模拟工具,用于快速测试大型微服务的各个部分。只需要几行代码就编写一些基本测试用例。 Tollbooth https://github.com/didip/tollbooth 在你发布 API 之后,当然希望来自世界各个角落的人都可以调用它。但当你的服务器发生熔断,或者你看一看为了获得弹性而为云托管账户支付的费用时,你可能会改变主意。Tollbooth 是一个用于限制传入请求的轻量级系统。限制前门的流量就等于减少了对管道中微服务或数据库的需求,让一切保持运行顺畅。 不使用框架 你只需从头开始编写 Go 代码,不需要导入任何依赖项或者实例化任何控制对象。使用 Go 语言创建微服务其实很容易,因为它已经内置了很多基本代码。这就是为什么只用几百行代码就可以构建出像 Nano 这样的框架。 监听套接字、解压缩 HTTP 请求等工作都是通过标准库完成的。虽然框架提供了一些额外的功能,但很多时候如果你需要一个非常基本的微服务,就不需要用到框架。太多的“附加功能”可能反而会妨碍你,而且 Go 开发人员可能会说,太多的依赖反而让 Go 语言变得更复杂。

有只黑白猫 2020-01-08 11:53:57 0 浏览量 回答数 0

问题

dubbo 的工作原理?注册中心挂了的问题?说说一次 rpc 请求的流程?【Java问答】47期

剑曼红尘 2020-06-30 09:02:47 8 浏览量 回答数 1

问题

ES 写入数据的工作原理是什么啊?ES 查询数据的工作原理是什么啊?【Java问答学堂】27期

剑曼红尘 2020-05-27 20:28:45 22 浏览量 回答数 1

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20200724)

亢海鹏 2020-05-29 15:10:00 9080 浏览量 回答数 2

回答

本文介绍如何基于 Spring Cloud Gateway 和 Spring Cloud Netflix Zuul 使用 Nacos 搭建应用的服务网关。 为什么使用 SAE 服务注册中心 SAE 服务注册中心提供了开源 Nacos Server 的商用版本,使用开源版本 Spring Cloud Alibaba Nacos Discovery 开发的应用可以直接使用 SAE 提供的商业版服务注册中心。 SAE 服务注册中心与 Nacos、Eureka 和 Consul 相比,具有以下优势: 共享组件,节省了部署、运维 Nacos、Eureka 或 Consul 的成本。 在服务注册和发现的调用中都进行了链路加密,保护您的服务,无需再担心服务被未授权的应用发现。 SAE服务注册中心与 AE其他组件紧密结合,为您提供一整套的微服务解决方案,包括环境隔离、灰度发布等。 您在 SAE 部署应用时,SAE服务注册中心以高优先级自动设置Nacos Server服务端地址和服务端口,以及 namespace、access-key、secret-key、context-path 等信息,无需进行任何额外的配置。 基于 Spring Cloud Gateway 搭建服务网关 介绍如何使用 Nacos 基于 Spring Cloud Gateway 从零搭建应用的服务网关。 创建服务网关。 创建命名为spring-cloud-gateway-nacos 的Maven 工程。 在pom.xml文件中添加 Spring Boot 和 Spring Cloud 的依赖。 以 Spring Boot 2.1.4.RELEASE 和 Spring Cloud Greenwich.SR1 版本为例。 org.springframework.boot spring-boot-starter-parent 2.1.4.RELEASE org.springframework.cloud spring-cloud-starter-gateway com.alibaba.cloud spring-cloud-starter-alibaba-nacos-discovery 2.1.1.RELEASE org.springframework.cloud spring-cloud-dependencies Greenwich.SR1 pom import org.springframework.boot spring-boot-maven-plugin 开发服务网关启动类GatewayApplication。 @SpringBootApplication @EnableDiscoveryClient public class GatewayApplication { public static void main(String[] args) { SpringApplication.run(GatewayApplication.class, args); } } 在application.yaml中添加如下配置,将注册中心指定为 Nacos Server 的地址。 其中127.0.0.1:8848为 Nacos Server 的地址。如果您的 Nacos Server 部署在另外一台机器,则需要修改成对应的地址。 其中 routes 配置了 Gateway 的路由转发策略,这里我们配置将所有前缀为/provider1/的请求都路由到服务名为service-provider的后端服务中。 server: port: 15012 spring: application: name: spring-cloud-gateway-nacos cloud: gateway: # config the routes for gateway routes: - id: service-provider # 将 /provider1/ 开头的请求转发到 provider1 uri: lb://service-provider predicates: - Path=/provider1/** filters: - StripPrefix=1 # 表明前缀 /provider1 需要截取掉 nacos: discovery: server-addr: 127.0.0.1:8848 执行启动类GatewayApplication中的 main 函数,启动 Gateway。 登录本地启动的 Nacos Server 控制台 http://127.0.0.1:8848/nacos (本地 Nacos 控制台的默认用户名和密码同为 nacos),在左侧导航栏中选择服务管理 > 服务列表,可以看到服务列表中已经包含了 spring-cloud-gateway-nacos,且在详情中可以查询该服务的详情。表明网关已经启动并注册成功,接下来我们将通过创建一个下游服务来验证网关的请求转发功能。 创建服务提供者。 创建一个服务提供者的应用,详情请参见将Spring Cloud应用托管到SAE。 服务提供者示例: @SpringBootApplication @EnableDiscoveryClient public class ProviderApplication { public static void main(String[] args) { SpringApplication.run(ProviderApplication, args); } @RestController public class EchoController { @RequestMapping(value = "/echo/{string}", method = RequestMethod.GET) public String echo(@PathVariable String string) { return string; } } } 结果验证。 本地验证。 本地启动开发好的服务网关和服务提供者,通过访问 Spring Cloud Gateway 将请求转发给后端服务,可以看到调用成功的结果。 EDAS SpringCloud应用开发之搭建服务网管 在 SAE 中验证。 SAE 服务注册中心提供了正式商用版本 Nacos Server。当您将应用部署到 SAE 的时候,SAE 会通过优先级更高的方式去设置 Nacos Server 服务端地址和服务端口,以及 namespace、access-key、secret-key、context-path 信息。您无需进行任何额外的配置,原有的配置内容可以选择保留或删除。 基于 Zuul 搭建服务网关 介绍如何基于 Zuul 使用 Nacos 作为服务注册中心从零搭建应用的服务网关。 创建服务网关。 创建命名为spring-cloud-zuul-nacos的 Maven 工程。 在pom.xml文件中添加 Spring Boot、Spring Cloud 和 Spring Cloud Alibaba 的依赖。 请添加 Spring Boot 2.1.4.RELEASE、Spring Cloud Greenwich.SR1 和 Spring Cloud Alibaba 0.9.0 版本依赖。 org.springframework.boot spring-boot-starter-parent 2.1.4.RELEASE org.springframework.boot spring-boot-starter-webflux <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-netflix-zuul</artifactId> </dependency> <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId> <version>2.1.1.RELEASE</version> </dependency> org.springframework.cloud spring-cloud-dependencies Greenwich.SR1 pom import org.springframework.boot spring-boot-maven-plugin 开发服务网关启动类ZuulApplication。 @SpringBootApplication @EnableZuulProxy @EnableDiscoveryClient public class ZuulApplication { public static void main(String[] args) { SpringApplication.run(ZuulApplication.class, args); } } 在application.properties中添加如下配置,将注册中心指定为 Nacos Server 的地址。 其中127.0.0.1:8848为 Nacos Server 的地址。如果您的 Nacos Server 部署在另外一台机器,则需要修改成对应的地址。 其中 routes 配置了 Zuul 的路由转发策略,这里我们配置将所有前缀为/provider1/的请求都路由到服务名为service-provider的后端服务中。 spring.application.name=spring-cloud-zuul-nacos server.port=18022 spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848 zuul.routes.opensource-provider1.path=/provider1/** zuul.routes.opensource-provider1.serviceId=service-provider 执行 spring-cloud-zuul-nacos 中的 main 函数ZuulApplication,启动服务。 登录本地启动的 Nacos Server 控制台 http://127.0.0.1:8848/nacos (本地 Nacos 控制台的默认用户名和密码同为 nacos),在左侧导航栏中选择服务管理 > 服务列表,可以看到服务列表中已经包含了 spring-cloud-zuul-nacos,且在详情中可以查询该服务的详情。表明网关已经启动并注册成功,接下来我们将通过创建一个下游服务来验证网关的请求转发功能。 创建服务提供者 如何快速创建一个服务提供者请参见将Spring Cloud应用托管到SAE。 服务提供者启动类示例: @SpringBootApplication @EnableDiscoveryClient public class ProviderApplication { public static void main(String[] args) { SpringApplication.run(ProviderApplication, args); } @RestController public class EchoController { @RequestMapping(value = "/echo/{string}", method = RequestMethod.GET) public String echo(@PathVariable String string) { return string; } } } 结果验证。 本地验证。 本地启动开发好的服务网关 Zuul 和服务提供者,通过访问 Spring Cloud Netflix Zuul 将请求转发给后端服务,可以看到调用成功的结果。 EDAS SpringCloud应用开发之搭建Zuul网管 在 SAE 中验证。 您可以参考将Spring Cloud应用托管到SAE,将您的应用部署到 EDAS,并验证。 SAE 服务注册中心提供了正式商用版本 Nacos Server。当您将应用部署到 SAE 的时候,SAE 会通过优先级更高的方式去设置 Nacos Server 服务端地址和服务端口,以及 namespace、access-key、secret-key、context-path 信息。您无需进行任何额外的配置,原有的配置内容可以选择保留或删除。 FAQ 使用其他版本 示例中使用的 Spring Cloud 版本为 Greenwich,对应的 Spring Cloud Alibaba 版本为 2.1.1.RELEASE。Spring Cloud Finchley 对应的 Spring Cloud Alibaba 版本为 2.0.1.RELEASE,Spring Cloud Edgware 对应的 Spring Cloud Alibaba 版本为 1.5.1.RELEASE。 说明 Spring Cloud Edgware 版本的生命周期已结束,不推荐使用这个版本开发应用。 从 ANS 迁移 SAE 注册中心在服务端对 ANS 和 Nacos 的数据结构做了兼容,在同一个命名空间下,且 Nacos 未设置 group 时,Nacos 和 ANS 客户端可以互相发现对方注册的服务。

1934890530796658 2020-03-27 11:57:49 0 浏览量 回答数 0

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

【阿里云产品公测】用SLS SDK搭建中转服务记录应用日志

橘子 2019-12-01 21:13:54 12175 浏览量 回答数 1

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集

问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

问题

达达O2O后台架构演进实践:从0到4000高并发请求背后的努力:报错

kun坤 2020-06-09 15:20:48 4 浏览量 回答数 1

问题

SSH 无法远程登录问题的处理思路是什么

boxti 2019-12-01 22:00:30 1833 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

回 楼主(qilu) 的帖子 问题:用户反馈linux下服务器站点打不开,控制台重启服务器后也无法打开。 解决:检查服务器是正常的,80端口测试是可以通的,进入后检查确认nginx进程正常,打开网站显示502 Bad Gateway错误,之后检查发现php进程丢失,找到php目录php/sbin/php-fpm start 启动php进程后网站恢复正常。 ------------------------- 问题:用户反馈debian机器无法远程,通过ECS管理链接终端进入看到如下界面 /etc/ssh/sshd_config: bad configuration option 解决:修改ssh配置文件导致,最直接有效方法是重装安装sshapt-get remove --purge openssh-serverapt-get installl  openssh-server/etc/init.d/ssh restart重装后正常远程 ------------------------- 问题:window2003服务器用户反馈可以远程,但是ip地址ping不通 ip地址ping不通只有可能是主机内部防火墙或者组策略限制。查看主机防火墙开启,但没有设置ICMP包回显。控制面板-防火墙-高级-ICMP设置。 ------------------------- 问题:用户反馈两台ECS Linux云服务器内网ip有丢包,提示ping: sendmsg: Operation not permittedping: sendmsg: Operation not permittedping: sendmsg: Operation not permitted使用同时dmesg发现很多nf_conntrack: table full, dropping packet. 解决:IP_conntrack表示连接跟踪数据库(conntrack database),代表NAT机器跟踪连接的数目,连接跟踪表能容纳多少记录是被一个变量控制的,它可由内核中的ip- sysctl函数设置,建议用户修改增大/etc/sysctl.conf中加net.ipv4.ip_conntract_max的值后解决,相关优化可以参考网上文章。 ------------------------- 问题:用户反馈修改php.ini配置文件不生效nginx+php环境下,需要重启php服务,php.Ini配置文件才会生效 ------------------------- 问题:用户使用自己的脚本安装了vpn,使用vpn账号,密码可以登陆但是无法上网。解决方法:开启linux转发功能命令:   #sed -i 's/net.ipv4.ip_forward = 0/net.ipv4.ip_forward = 1/' /etc/sysctl.conf#/sbin/sysctl -p ------------------------- 问题:突然发现访问网站很慢,服务器的cpu、内存和磁盘使用率都正常解决:该问题的主要解决方法参考:http://help.aliyun.com/manual?helpId=1724,但是根据该方法部分系统会报error: "net.ipv4.ip_conntrack_max" is an unknown key ,因此可尝试将方案中的语句修改成:net.ipv4.nf_conntrack_max = 1048576主要部分系统是nf_conntrack 而不是 ip_conntrack 模块。具体可以使用命令确认具体使用了什么模块:modprobe -l|grep conntrack ------------------------- 问题:用户反馈无法远程访问,无法ssh解决:1.ping云服务器ip地址可以ping通 2.使用ECS连接管理终端查看sshd服务是否正常运行,重启sshd服务提示有错误,并且在/var/empty/sshd 目录权限有错误,导致sshd服务无法正常运行 3. 使用命令chown –R root:root /var/empty/sshd 和chmod 744 /var/empty/sshd即可,测试恢复正常可以远程。 ------------------------- 问题:用户反馈客户反馈安装桌面环境失败,执行yum groupinstall "GNOME Desktop Environment"报如下错误:Warning: Group GNOME Desktop Environment does not exist. No packages in any requested group available to install or update。解决:从错误提示中可以看出,不存在GNOME Desktop Environment执行yum grouplist查询发现 GNOME Desktop Environment 已经是 Desktop整理了以下安装步骤:          1、yum groupinstall "X Window System"          2、yum groupinstall "Desktop"          3、安装VNC SERVER yum install tigervnc-server          4、修改配置文件 vi /etc/sysconfig/vncservers添加如下内容:          VNCSERVERS="1:root"             VNCSERVERARGS[1]="-geometry 1024x768"           5、给vnc加密  vncpasswd 输入两次密码           6、重新启动服务 service vpnserver restart完成以上步骤,我们就可以使用VNC客户端连接了 ------------------------- 问题:用户反馈ECS云服务器做域控制器,其他外部服务器无法加入该域中,反之可以解决:将客户ECS服务器开启RemoteRegistry服务,安装域控制器使用外部云服务器加入域中,发现能够解析成功,且能够弹出用户名密码授权界面,但是确定后报网络错误,经过多次尝试,发现最终问题在DNS上,由于ECS服务器有2块网卡公网和内网,因此安装后会有2条A记录分别指向公网和内网所以测试PING域名会解析到公网上,产生了DNS缓存因此很难看到内网地址出现,但是加入域请求时用解析到的是公网地址,验证身份时很可能请求到的就是内网地址,因此造成网络不通从而无法验证。将客户端HOSTS绑定域名到公网地址问题解决。 ------------------------- 问题:用户反馈windows server 2008无法远程,主机内部通信正常解决过程:1、  检查内部是否能够远程,发现服务器内部网络正常,远程localhost也正常2、  检查防火墙配置,发现防火墙无法打开3、  启动防火墙服务器,报错4、  检查防火墙注册表信息,发现丢失,将相同系统的注册表键值导入5、  再次启动防火墙,报错没有权限,错误代码70246、  选择注册表HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess将其权限修改添加NT SERVICE\mpssvc并赋予完全控制权限7、启动防火墙服务,远程恢复正常 ------------------------- 问题:用户反馈微软雅黑, sans-serif]服务器网络不通,无法远程,报错情况见下图。网上搜索方法无外乎都是安装glibc.i686,原因一般是64位系统下安装了32位程序,但是没有对应的版本的glibc库导致 这种情况下下虽然service无法启动网卡,但是ifup是可以激活网卡的处理方法如下:sed -i '/exclude/ s/^/#/g' /etc/yum.conf&&ifup eth1&&yum install glibc.i686 -y#修改 /etc/yum.conf 找到包含exclude的行在行首插入#注释(我们64位镜像默认排除了*i?86的包,所以这里要修改一下)#启动eth1网卡,安装32位glibc库,执行后一般即可搞定 ------------------------- 问题:服务器上的Cisco VPN客户端拨入远端VPN服务器网络无法通信,其他外地客户端拨入远端VPN服务器均正常解决:1)查看客户VPN连接成功,但是无数据通信,PING包无法到达远端内网地址2)检查VPN客户端拨号日志,发现添加远端路由失败3)关闭服务器安全狗,重新连接VPN依旧失败。4)检查系统路由表,发现客户VPN段内网地址与VM内网地址段冲突,造成路由表添加失败;询问客户无使用我方SLB\RDS等内网产品后将内网网卡禁用,重新拨号连接,依旧发现路由表添加失败。5)手动添加路由后,VPN网络正常 ------------------------- 问题:服务器上的Cisco VPN客户端拨入远端VPN服务器网络无法通信,其他外地客户端拨入远端VPN服务器均正常解决:1)查看客户VPN连接成功,但是无数据通信,PING包无法到达远端内网地址2)检查VPN客户端拨号日志,发现添加远端路由失败 3)关闭服务器安全狗,重新连接VPN依旧失败。4)检查系统路由表,发现客户VPN段内网地址与VM内网地址段冲突,造成路由表添加失败;询问客户无使用我方SLB\RDS等内网产品后将内网网卡禁用,重新拨号连接,依旧发现路由表添加失败。5)手动添加路由后,VPN网络正常 ------------------------- 问题:使用一件安装包安装环境php报错 php virtual memory exhausted: Cannot allocate memory解决:该问题一般出现在512M内存的系统上,内存不足导致,可以让用户升级内存,升级内存后解决。 ------------------------- 问题:用户反馈Windows服务器无法远程,连接的时候提示协议错误。解决:用户反馈远程连接端口是3188,注册表中查询远程连接端口确实被改成了3188,但是在主机上远程连接也提示协议错误,使用netstat -nao 分析发现 3188对应的进程pid为4,对应经查system,找测试测试机对比,发现远程连接端口对应进程是svchost,修改注册表远程连接端口为3389后,测试恢复正常。] ------------------------- 问题:用date命令修改Linux系统的时间为什么无效解决:需要手动修改一下系统的时区才能显示正确的时间,这里以上海时区为例1. 找到相应的时区文件 /usr/share/zoneinfo/Asia/Shanghai用这个文件替换当前的文件/etc/localtime#cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime2. 修改/etc/sysconfig/clock文件,修改为: ZONE="Asia/Shanghai" UTC=true ARC=false 3. 一般只需要这两步就可以了,或者再执行下句命令校正一下时间/usr/sbin/ntpdate –u 0.asia.pool.ntp.org4. 如果没有安装ntp程序包则先执行下面这条语句yum install -y ntp* ------------------------- 问题:linux服务器x64位安装32位软件包(如libstc++.i386等)安装不上的解决方法解决方法:如果有用户反馈在linux服务器x64位安装32位软件包(如libstc++.i386等)不安装不上,可以尝试让用户在/etc/yum.conf 文件中将exclude=*.i386 kernel kernel-xen kernel-debug 注释掉,在进行安装尝试,参考http://blog.csdn.net/lixiucheng005/article/details/8787856 ------------------------- 问题:云服务器的物理机宕机怎么办?云服务器是部署在物理机上的,底层物理机性能出现异常或者其他原因都会导致物理机宕机,当检测到云服务器所在的物理机机发生故障,系统会启动保护性迁移,将您的服务器迁移到性能正常的宿主机上 ,一旦发生宕机迁移,您的服务器就会被重启,如果您希望您的服务器重启以后应用服务器自动恢复,需要您把应用程序设置成开机自动启动,如果应用服务连接的数据库,需要在程序中设置成自动重连机制。 ------------------------- 问题:Linux 服务起出现500 OOPS: vsftpd: cannot locate user specified in 'ftp_username':ftp错误? vsftp无法使用,尝试查看/etc/passwd下的目录发现用户使用的账号没有问题,但是尝试telnet 127.0.0.1 21 的时候主机报错500 OOPS: vsftpd: cannot locate user specified in 'ftp_username':ftp 处理办法在/etc/vsftpd.conf 文件内加入ftp_username=nobody 保存,该问题即可解决 ------------------------- 问题:物理机宕机迁移怎么办?云服务器是部署在物理机上的,底层物理机性能出现异常或者其他原因都会导致物理机宕机,当检测到云服务器所在的物理机机发生故障,系统会启动保护性迁移,将您的服务器迁移到性能正常的宿主机上 ,一旦发生宕机迁移,您的服务器就会被重启,如果您希望您的服务器重启以后应用服务器自动恢复,需要您把应用程序设置成开机自动启动,如果应用服务连接的数据库,需要在程序中设置成自动重连机制。 ------------------------- 问题:FTP上传经常中断怎么办?在使用FTP软件进行数据传输时有时会出现断开连接的情况,这和网络环境、硬件环境和软件环境都可能有关系。如果您在FTP管理里出现经常中断的情况,您可以将您要上传的网站程序文件压缩成一个压缩文件,使用FLASHFXP等FTP软件进行断点续传,压缩文件上传之后再在服务器中进行解压缩操作即可。(也有小概率可能受到网络原因传输过程中压缩包损坏,需要再次上传,所以巨大文件建议分割压缩) ------------------------- 问题:无法ping通服务器地址怎么办?通过站长工具—超级ping来分析一下是否是全国范围内都无法ping通云服务器。超级ping地址:http://ping.chinaz.com/如果是全国范围内都突然无法ping通云服务器地址,但是服务器是在正常运行的则可以到www.aliyun.com上提交工单;如果只是本地无法ping通云服务器则在本地使用traceroute或者tracert命令来获取本地到云服务器的路由信息再到www.aliyun.com上提交工单,寻求aliyun的技术支持

qilu 2019-12-02 03:09:51 0 浏览量 回答数 0

回答

一 容器 在学习k8s前,首先要了解和学习容器概念和工作原理。 什么是容器? 容器是一种轻量级、可移植、自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行。开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机、物理服务器或公有云主机上运行。 容器的优势 容器使软件具备了超强的可移植能力。 对于开发人员 – Build Once, Run Anywhere 容器意味着环境隔离和可重复性。开发人员只需为应用创建一次运行环境,然后打包成容器便可在其他机器上运行。另外,容器环境与所在的 Host 环境是隔离的,就像虚拟机一样,但更快更简单。 对于运维人员 – Configure Once, Run Anything 只需要配置好标准的 runtime 环境,服务器就可以运行任何容器。这使得运维人员的工作变得更高效,一致和可重复。容器消除了开发、测试、生产环境的不一致性。 Docker概念 “Docker” 一词指代了多个概念,包括开源社区项目、开源项目使用的工具、主导支持此类项目的公司 Docker Inc. 以及该公司官方支持的工具。技术产品和公司使用同一名称,的确让人有点困惑。 我们来简单说明一下: IT 软件中所说的 “Docker” ,是指容器化技术,用于支持创建和使用容器。 开源 Docker 社区致力于改进这类技术,并免费提供给所有用户,使之获益。 Docker Inc. 公司凭借 Docker 社区产品起家,它主要负责提升社区版本的安全性,并将技术进步与广大技术社区分享。此外,它还专门对这些技术产品进行完善和安全固化,以服务于企业客户。 借助 Docker,您可将容器当做轻巧、模块化的虚拟机使用。同时,您还将获得高度的灵活性,从而实现对容器的高效创建、部署及复制,并能将其从一个环境顺利迁移至另一个环境,从而有助于您针对云来优化您的应用。 Docker有三大核心概念: 镜像(Image)是一个特殊的文件系统,提供容器运行时所需的程序、库、配置等,构建后不会改变 容器(Container)实质是进程,拥有自己独立的命名空间。 仓库(Repository)一个仓库可以包含多个标签(Tag),每个标签对应一个镜像 容器工作原理 Docker 技术使用 Linux 内核和内核功能(例如 Cgroups 和 namespaces)来分隔进程,以便各进程相互独立运行。这种独立性正是采用容器的目的所在;它可以独立运行多种进程、多个应用,更加充分地发挥基础设施的作用,同时保持各个独立系统的安全性。 二 Kubernetes入门知识指南 Kubernets的知识都可以在官方文档查询,网址如下: https://kubernetes.io/zh/docs/home/ Kubernetes基础知识 Kubernetes是什么? Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。 为什么需要 Kubernetes 容器是打包和运行应用程序的好方式。在生产环境中,您需要管理运行应用程序的容器,并确保不会停机。例如,如果一个容器发生故障,则需要启动另一个容器。如果由操作系统处理此行为,会不会更容易? Kubernetes 为您提供: 服务发现和负载均衡 Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。 存储编排 Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。 自动部署和回滚 您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。 自动二进制打包 Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。 自我修复 Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。 密钥与配置管理 Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。 Kubernetes 组件 初学者首先要了解Kubernetes的基本概念,包括master、node、pod等。 Master Master是Kubernetes集群的大脑,运行着的守护进程服务包括kube-apiserver、kube-scheduler、kube-controller-manager、etcd和Pod网络等。 kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷 Node 节点组件在每个节点上运行,维护运行 Pod 并提供 Kubernetes 运行环境。 kubelet 一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。 kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。 kube-proxy kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。 kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。 如果有 kube-proxy 可用,它将使用操作系统数据包过滤层。否则,kube-proxy 会转发流量本身。 容器运行环境(Container Runtime) 容器运行环境是负责运行容器的软件。 Kubernetes 支持多个容器运行环境: Docker、 containerd、cri-o、 rktlet 以及任何实现 Kubernetes CRI (容器运行环境接口)。 Pod 在Kubernetes中,最小的管理元素不是一个个独立的容器,而是Pod。Pod是管理,创建,计划的最小单元. 一个Pod相当于一个共享context的配置组,在同一个context下,应用可能还会有独立的cgroup隔离机制,一个Pod是一个容器环境下的“逻辑主机”,它可能包含一个或者多个紧密相连的应用,这些应用可能是在同一个物理主机或虚拟机上。 Pod 的context可以理解成多个linux命名空间的联合 PID 命名空间(同一个Pod中应用可以看到其它进程) 网络 命名空间(同一个Pod的中的应用对相同的IP地址和端口有权限) IPC 命名空间(同一个Pod中的应用可以通过VPC或者POSIX进行通信) UTS 命名空间(同一个Pod中的应用共享一个主机名称) 同一个Pod中的应用可以共享磁盘,磁盘是Pod级的,应用可以通过文件系统调用。 由于docker的架构,一个Pod是由多个相关的并且共享磁盘的容器组成,Pid的命名空间共享还没有应用到Docker中 和相互独立的容器一样,Pod是一种相对短暂的存在,而不是持久存在的,正如我们在Pod的生命周期中提到的,Pod被安排到结点上,并且保持在这个节点上直到被终止(根据重启的设定)或者被删除,当一个节点死掉之后,上面的所有Pod均会被删除。特殊的Pod永远不会被转移到的其他的节点,作为替代,他们必须被replace. 三 通过kubeadm方式创建一个kubernetes 对kubernetes的概念和组件有所了解以后,就可以通过kubeadm的方式创建一个kubernetes集群。 安装前准备工作 创建虚拟机 创建至少2台虚拟机,可以在本地或者公有云。 下载部署软件 需要下载的软件包括calico、demo-images、docker-ce、kube、kube-images、kubectl、metrics-server 安装部署 具体安装过程参考官网文档: https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/kubeadm/ 四 安装后的练习 安装后详读官方文档,做下面这些组件的练习操作,要达到非常熟练的程度。 Node Namespace Pod Deployment DaemonSet Service Job Static Pod ConfigMap Secrets Volume Init-containers Affinity and Anti-Affinity Monitor and logs Taints and Tolerations Cordon and Drain Backing up etcd 这些内容都非常熟练以后,基本就达到了入门的水平。

红亮 2020-03-02 11:09:17 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播