• 关于

    随机系统控制出问题什么情况

    的搜索结果

回答

一、软件篇 1、设定虚拟内存 硬盘中有一个很宠大的数据交换文件,它是系统预留给虚拟内存作暂存的地方,很多应用程序都经常会使用到,所以系统需要经常对主存储器作大量的数据存取,因此存取这个档案的速度便构成影响计算机快慢的非常重要因素!一般Windows预设的是由系统自行管理虚拟内存,它会因应不同程序所需而自动调校交换档的大小,但这样的变大缩小会给系统带来额外的负担,令系统运作变慢!有见及此,用户最好自定虚拟内存的最小值和最大值,避免经常变换大小。要设定虚拟内存,在“我的电脑”上按右键选择“属性”,在“高级”选项里的“效能”的对话框中,对“虚拟内存”进行设置。 3、检查应用软件或者驱动程序 有些程序在电脑系统启动会时使系统变慢。如果要是否是这方面的原因,我们可以从“安全模式”启动。因为这是原始启动,“安全模式”运行的要比正常运行时要慢。但是,如果你用“安全模式”启动发现电脑启动速度比正常启动时速度要快,那可能某个程序是导致系统启动速度变慢的原因。 4、桌面图标太多会惹祸 桌面上有太多图标也会降低系统启动速度。Windows每次启动并显示桌面时,都需要逐个查找桌面快捷方式的图标并加载它们,图标越多,所花费的时间当然就越多。同时有些杀毒软件提供了系统启动扫描功能,这将会耗费非常多的时间,其实如果你已经打开了杀毒软件的实时监视功能,那么启动时扫描系统就显得有些多余,还是将这项功能禁止吧! 建议大家将不常用的桌面图标放到一个专门的文件夹中或者干脆删除! 5、ADSL导致的系统启动变慢 默认情况下Windows XP在启动时会对网卡等网络设备进行自检,如果发现网卡的IP地址等未配置好就会对其进行设置,这可能是导致系统启动变慢的真正原因。这时我们可以打开“本地连接”属性菜单,双击“常规”项中的“Internet协议”打开“TCP/IP属性”菜单。将网卡的IP地址配置为一个在公网(默认的网关是192.168.1.1)中尚未使用的数值如192.168.1.X,X取介于2~255之间的值,子网掩码设置为255.255.255.0,默认网关和DNS可取默认设置。 6、字体对速度的影响 虽然 微软 声称Windows操作系统可以安装1000~1500种字体,但实际上当你安装的字体超过500 种时,就会出现问题,比如:字体从应用程序的字体列表中消失以及Windows的启动速度大幅下降。在此建议最好将用不到或者不常用的字体删除,为避免删除后发生意外,可先进行必要的备份。 7、删除随机启动程序 何谓随机启动程序呢?随机启动程序就是在开机时加载的程序。随机启动程序不但拖慢开机时的速度,而且更快地消耗计算机资源以及内存,一般来说,如果想删除随机启动程序,可去“启动”清单中删除,但如果想详细些,例如是QQ、popkiller 之类的软件,是不能在“启动”清单中删除的,要去“附属应用程序”,然后去“系统工具”,再去“系统信息”,进去后,按上方工具列的“工具”,再按“系统组态编辑程序”,进去后,在“启动”的对话框中,就会详细列出在启动电脑时加载的随机启动程序了!XP系统你也可以在“运行”是输入Msconfig调用“系统配置实用程序”才终止系统随机启动程序,2000系统需要从XP中复制msconfig程序。 8、取消背景和关闭activedesktop 不知大家有否留意到,我们平时一直摆放在桌面上漂亮的背景,其实是很浪费计算机资源的!不但如此,而且还拖慢计算机在执行应用程序时的速度!本想美化桌面,但又拖慢计算机的速度,这样我们就需要不在使用背景了,方法是:在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,选“无”,在“外观”的对话框中,在桌面预设的青绿色,改为黑色......至于关闭activedesktop,即是叫你关闭从桌面上的web画面,例如在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,有一幅背景,名为Windows XX,那副就是web画面了!所以如何系统配置不高就不要开启。 10、把Windows变得更苗条 与DOS系统相比,Windows过于庞大,而且随着你每天的操作,安装新软件、加载运行库、添加新游戏等等使得它变得更加庞大,而更为重要的是变大的不仅仅是它的目录,还有它的 注册表 和运行库。因为即使删除了某个程序,可是它使用的DLL文件仍然会存在,因而随着使用日久,Windows的启动和退出时需要加载的DLL动态链接库文件越来越大,自然系统运行速度也就越来越慢了。这时我们就需要使用一些彻底删除DLL的程序,它们可以使Windows恢复苗条的身材。建议极品玩家们最好每隔两个月就重新安装一遍Windows,这很有效。 11、更改系统开机时间 虽然你已知道了如何新增和删除一些随机启动程序,但你又知不知道,在开机至到进入Windows的那段时间,计算机在做着什么呢?又或者是,执行着什么程序呢?那些程序,必定要全部载完才开始进入Windows,你有否想过,如果可删除一些不必要的开机时的程序,开机时的速度会否加快呢?答案是会的!想要修改,可按"开始",选"执行",然后键入win.ini,开启后,可以把以下各段落的内容删除,是删内容,千万不要连标题也删除!它们包括:[compatibility]、[compatibility32]、[imecompatibility]、[compatibility95]、[modulecompatibility]和[embedding]。 二、硬件篇 1、Windows系统自行关闭硬盘DMA模式 硬盘的DMA模式大家应该都知道吧,硬盘的PATA模式有DMA33、DMA66、DMA100和DMA133,最新的SATA-150都出来了!一般来说现在大多数人用的还是PATA模式的硬盘,硬盘使用DMA模式相比以前的PIO模式传输的速度要快2~8倍。DMA模式的起用对系统的性能起到了实质的作用。但是你知道吗?Windows 2000、XP、2003系统有时会自行关闭硬盘的DMA模式,自动改用PIO模式运行!这就造成在使用以上系统中硬盘性能突然下降,其中最明显的现象有:系统起动速度明显变慢,一般来说正常Windows XP系统启动时那个由左向右运动的滑条最多走2~4次系统就能启动,但这一问题发生时可能会走5~8次或更多!而且在运行系统时进行硬盘操作时明显感觉变慢,在运行一些大的软件时CPU占用率时常达到100%而产生停顿,玩一些大型3D游戏时画面时有明显停顿,出现以上问题时大家最好看看自己硬盘的DMA模式是不是被Windows 系统自行关闭了。查看自己的系统是否打开DMA模式: a. 双击“管理工具”,然后双击“计算机管理”; b. 单击“系统工具”,然后单击“设备管理器”; c. 展开“IDE ATA/ATAPI 控制器”节点; d. 双击您的“主要IDE控制器”; 2、CPU 和风扇是否正常运转并足够制冷 当CPU风扇转速变慢时,CPU本身的温度就会升高,为了保护CPU的安全,CPU就会自动降低运行频率,从而导致计算机运行速度变慢。有两个方法检测CPU的温度。你可以用“手指测法”用手指试一下处理器的温度是否烫手,但是要注意的是采用这种方法必须先拔掉电源插头,然后接一根接地线来防止身上带的静电击穿CPU以至损坏。另一个比较科学的方法是用带感温器的万用表来检测处理器的温度。 因为处理器的种类和型号不同,合理温度也各不相同。但是总的来说,温度应该低于 110 度。如果你发现处理器的测试高于这处温度,检查一下机箱内的风扇是否正常运转。 3、USB和扫描仪造成的影响 由于Windows 启动时会对各个驱动器(包括光驱)进行检测,因此如果光驱中放置了光盘,也会延长电脑的启动时间。所以如果电脑安装了扫描仪等设备,或在启动时已经连接了USB硬盘,那么不妨试试先将它们断开,看看启动速度是不是有变化。一般来说,由于USB接口速度较慢,因此相应设备会对电脑启动速度有较明显的影响,应该尽量在启动后再连接USB设备。如果没有USB设备,那么建议直接在BIOS设置中将USB功能关闭。 4、是否使用了磁盘压缩 因为“磁盘压缩”可能会使电脑性能急剧下降,造成系统速度的变慢。所以这时你应该检测一下是否使用了“磁盘压缩”,具体操作是在“我的电脑”上点击鼠标右键,从弹出的菜单选择“属性”选项,来检查驱动器的属性。 5、网卡造成的影响 只要设置不当,网卡也会明显影响系统启动速度,你的电脑如果连接在局域网内,安装好网卡驱动程序后,默认情况下系统会自动通过DHCP来获得IP地址,但大多数公司的局域网并没有DHCP服务器,因此如果用户设置成“自动获得IP地址”,系统在启动时就会不断在网络中搜索DHCP 服务器,直到获得IP 地址或超时,自然就影响了启动时间,因此局域网用户最好为自己的电脑指定固定IP地址。 6、文件夹和打印机共享 安装了Windows XP专业版的电脑也会出现启动非常慢的时候,有些时候系统似乎给人死机的感觉,登录系统后,桌面也不出现,电脑就像停止反应,1分钟后才能正常使用。这是由于使用了Bootvis.exe 程序后,其中的Mrxsmb.dll文件为电脑启动添加了67秒的时间! 要解决这个问题,只要停止共享文件夹和打印机即可:选择“开始→设置→网络和拨号连接”,右击“本地连接”,选择“属性”,在打开的窗口中取消“此连接使用下列选定的组件”下的“ Microsoft 网络的文件和打印机共享”前的复选框,重启电脑即可。 7、系统配件配置不当 一些用户在组装机器时往往忽略一些小东西,从而造成计算机整体配件搭配不当,存在着速度上的瓶颈。比如有些朋友选的CPU档次很高,可声卡等却买了普通的便宜货,其实这样做往往是得不偿失。因为这样一来计算机在运行游戏、播放影碟时由于声卡占用CPU资源较高且其数据传输速度较慢,或者其根本无硬件解码而需要采用软件解码方式,常常会引起声音的停顿,甚至导致程序的运行断断续续。又如有些朋友的机器是升了级的,过去老机器上的一些部件如内存条舍不得抛弃,装在新机器上照用,可是由于老内存的速度限制,往往使新机器必须降低速度来迁就它,从而降低了整机的性能,极大地影响了整体的运行速度。 9、断开不用的网络驱动器 为了消除或减少 Windows 必须重新建立的网络连接数目,建议将一些不需要使用的网络驱动器断开,也就是进入“我的电脑”,右击已经建立映射的网络驱动器,选择“断开”即可。 10、缺少足够的内存 Windows操作系统所带来的优点之一就是多线性、多任务,系统可以利用CPU来进行分时操作,以便你同时做许多事情。但事情有利自然有弊,多任务操作也会对你的机器提出更高的要求。朋友们都知道即使是一个最常用的WORD软件也要求最好有16MB左右的内存,而运行如3D MAX等大型软件时,64MB的内存也不够用。所以此时系统就会自动采用硬盘空间来虚拟主内存,用于运行程序和储存交换文件以及各种临时文件。由于硬盘是机械结构,而内存是电子结构,它们两者之间的速度相差好几个数量级,因而使用硬盘来虚拟主内存将导致程序运行的速度大幅度降低。 11、硬盘空间不足 使用Windows系统平台的缺点之一就是对文件的管理不清楚,你有时根本就不知道这个文件对系统是否有用,因而Windows目录下的文件数目越来越多,容量也越来越庞大,加之现在的软件都喜欢越做越大,再加上一些系统产生的临时文件、交换文件,所有这些都会使得硬盘可用空间变小。当硬盘的可用空间小到一定程度时,就会造成系统的交换文件、临时文件缺乏可用空间,降低了系统的运行效率。更为重要的是由于我们平时频繁在硬盘上储存、删除各种软件,使得硬盘的可用空间变得支离破碎,因此系统在存储文件时常常没有按连续的顺序存放,这将导致系统存储和读取文件时频繁移动磁头,极大地降低了系统的运行速度。 12、硬盘分区太多也有错 如果你的Windows 2000没有升级到SP3或SP4,并且定义了太多的分区,那么也会使启动变得很漫长,甚至挂起。所以建议升级最新的SP4,同时最好不要为硬盘分太多的区。因为Windows 在启动时必须装载每个分区,随着分区数量的增多,完成此操作的时间总量也会不断增长。 三、病毒篇 如果你的计算机感染了病毒,那么系统的运行速度会大幅度变慢。病毒入侵后,首先占领内存这个据点,然后便以此为根据地在内存中开始漫无休止地复制自己,随着它越来越庞大,很快就占用了系统大量的内存,导致正常程序运行时因缺少主内存而变慢,甚至不能启动;同时病毒程序会迫使CPU转而执行无用的垃圾程序,使得系统始终处于忙碌状态,从而影响了正常程序的运行,导致计算机速度变慢。下面我们就介绍几种能使系统变慢的病毒。 1、使系统变慢的bride病毒 病毒类型:黑客程序 发作时间:随机 传播方式:网络 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 2000、Windows XP等操作系统环境下正常运行。运行时会自动连接 www.hotmail.com网站,如果无法连接到此网站,则病毒会休眠几分钟,然后修改注册表将自己加入注册表自启动项,病毒会释放出四个病毒体和一个有漏洞的病毒邮件并通过邮件系统向外乱发邮件,病毒还会释放出FUNLOVE病毒感染局域网计算机,最后病毒还会杀掉已知的几十家反病毒软件,使这些反病毒软件失效。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒。 ·病毒运行后会自动连接 www.hotmail.com网站。 ·病毒会释放出Bride.exe,Msconfig.exe,Regedit.exe三个文件到系统目录;释放出:Help.eml, Explorer.exe文件到桌面。 ·病毒会在注册表的HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRun项中加入病毒Regedit.exe的路径。 ·病毒运行时会释放出一个FUNLOVE病毒并将之执行,而FUNLOVE病毒会在计算机中大量繁殖,造成系统变慢,网络阻塞。 ·病毒会寻找计算机中的邮件地址,然后按照地址向外大量发送标题为:<被感染的计算机机名>(例:如果用户的计算机名为:张冬, 则病毒邮件的标题为:张冬)的病毒邮件。 ·病毒还会杀掉几十家国外著名的反病毒软件。 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了Bride(Worm.bride)病毒,请用户立刻用手中的杀毒软件进行清除。 2、使系统变慢的阿芙伦病毒 病毒类型:蠕虫病毒 发作时间:随机 传播方式:网络/文件 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 9X、Windows NT、Windows 2000、Windows XP等操作系统环境下正常运行。病毒运行时将自己复到到TEMP、SYSTEM、RECYCLED目录下,并随机生成文件名。该病毒运行后,会使消耗大量的系统资源,使系统明显变慢,并且杀掉一些正在运行的反病毒软件,建立四个线程在局域网中疯狂传播。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒: ·病毒运行时会将自己复到到TEMP、SYSTEM、RECYCLED目录下,文件名随机 ·病毒运行时会使系统明显变慢 ·病毒会杀掉一些正在运行的反病毒软件 ·病毒会修改注册表的自启动项进行自启动 ·病毒会建立四个线程在局域网中传播 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了“阿芙伦(Worm.Avron)”病毒,由于此病毒没有固定的病毒文件名,所以,最好还是选用杀毒软件进行清除。 3、恶性蠕虫 震荡波 病毒名称: Worm.Sasser 中文名称: 震荡波 病毒别名: W32/Sasser.worm [Mcafee] 病毒类型: 蠕虫 受影响系统:WinNT/Win2000/WinXP/Win2003 病毒感染症状: ·莫名其妙地死机或重新启动计算机; ·系统速度极慢,cpu占用100%; ·网络变慢; ·最重要的是,任务管理器里有一个叫"avserve.exe"的进程在运行! 破坏方式: ·利用WINDOWS平台的 Lsass 漏洞进行广泛传播,开启上百个线程不停攻击其它网上其它系统,堵塞网络。病毒的攻击行为可让系统不停的倒计时重启。 ·和最近出现的大部分蠕虫病毒不同,该病毒并不通过邮件传播,而是通过命令易受感染的机器 下载特定文件并运行,来达到感染的目的。 ·文件名为:avserve.exe 解决方案: ·请升级您的操作系统,免受攻击 ·请打开个人防火墙屏蔽端口:445、5554和9996,防止名为avserve.exe的程序访问网络 ·手工解决方案: 首先,若系统为WinMe/WinXP,则请先关闭系统还原功能; 步骤一,使用进程程序管理器结束病毒进程 右键单击任务栏,弹出菜单,选择“任务管理器”,调出“Windows任务管理器”窗口。在任务管理器中,单击“进程”标签,在例表栏内找到病毒进程“avserve.exe”,单击“结束进程按钮”,点击“是”,结束病毒进程,然后关闭“Windows任务管理器”; 步骤二,查找并删除病毒程序 通过“我的电脑”或“资源管理器”进入 系统安装目录(Winnt或windows),找到文件“avser ve.exe”,将它删除;然后进入系统目录(Winntsystem32或windowssystem32),找 到文件"*_up.exe", 将它们删除; 步骤三,清除病毒在注册表里添加的项 打开注册表编辑器: 点击开始——>运行, 输入REGEDIT, 按Enter; 在左边的面板中, 双击(按箭头顺序查找,找到后双击): HKEY_CURRENT_USERSOFTWAREMicrosoftWindowsCurrentVersionRun 在右边的面板中, 找到并删除如下项目:"avserve.exe" = %SystemRoot%avserve.exe 关闭注册表编辑器。 第二部份 系统加速 一、Windows 98 1、不要加载太多随机启动程序 不要在开机时载入太多不必要的随机启动程序。选择“开始→程序→附件→系统工具→系统信息→系统信息对话框”,然后,选择“工具→系统配置实用程序→启动”,只需要internat.exe前打上钩,其他项都可以不需要,选中后确定重起即可。 2、转换系统文件格式 将硬盘由FAT16转为FAT32。 3、不要轻易使用背景 不要使用ActiveDesktop,否则系统运行速度会因此减慢(右击屏幕→寻显示器属性→Web标签→将其中关于“活动桌面”和“频道”的选项全部取消)。 4、设置虚拟内存 自己设定虚拟内存为机器内存的3倍,例如:有32M的内存就设虚拟内存为96M,且最大值和最小值都一样(此设定可通过“控制面板→系统→性能→虚拟内存”来设置)。 5、一些优化设置 a、到控制面板中,选择“系统→性能→ 文件系统”。将硬盘标签的“计算机主要用途”改为网络服务器,“预读式优化"调到全速。 b、将“软盘”标签中“每次启动就搜寻新的软驱”取消。 c、CD-ROM中的“追加高速缓存”调至最大,访问方式选四倍速或更快的CD-ROM。 6、定期对系统进行整理 定期使用下列工具:磁盘扫描、磁盘清理、碎片整理、系统文件检查器(ASD)、Dr?Watson等。 二、Windows 2000 1、升级文件系统 a、如果你所用的操作系统是win 9x与win 2000双重启动的话,建议文件系统格式都用FAT32格式,这样一来可以节省硬盘空间,二来也可以9x与2000之间能实行资源共享。 提醒:要实现这样的双重启动,最好是先在纯DOS环境下安装完9x在C区,再在9x中或者用win 2000启动盘启动在DOS环境下安装2000在另一个区内,并且此区起码要有800M的空间以上 b、如果阁下只使用win 2000的话,建议将文件系统格式转化为NTFS格式,这样一来可节省硬盘空间,二来稳定性和运转速度更高,并且此文件系统格式有很好的纠错性;但这样一来,DOS和win 9x系统就不能在这文件系统格式中运行,这也是上面所说做双启动最好要用FAT32格式才能保证资源共享的原因。而且,某些应用程序也不能在此文件系统格式中运行,大多是DOS下的游戏类。 提醒:在win 2000下将文件系统升级为NTFS格式的方法是,点击“开始-程序-附件”选中“命令提示符”,然后在打开的提示符窗口输入"convert drive_letter:/fs:ntfs",其中的"drive"是你所要升级的硬盘分区符号,如C区;还需要说明的是,升级文件系统,不会破坏所升级硬盘分区里的文件,无需要备份。 · 再运行“添加-删除程序”,就会看见多出了个“添加/删除 Windows 组件”的选项; b、打开“文件夹选项”,在“查看”标签里选中“显示所有文件和文件夹”,此时在你安装win 2000下的区盘根目录下会出现Autoexec.bat和Config.sys两个文件,事实上这两个文件里面根本没有任何内容,可以将它们安全删除。 c、右击“我的电脑”,选中“管理”,在点“服务和应用程序”下的“服务”选项,会看见win 2000上加载的各个程序组见,其中有许多是关于局域网设置或其它一些功能的,你完全可以将你不使用的程序禁用; 如:Alertr,如果你不是处于局域网中,完全可以它设置为禁用;还有Fax Service,不发传真的设置成禁用;Print Spooler,没有打印机的设置成制用;Uninterruptible power Supply,没有UPS的也设置成禁用,这些加载程序你自己可以根据自己实际情况进行设置。 各个加载程序后面都有说明,以及运行状态;选中了要禁用的程序,右击它,选“属性”,然后单击停止,并将“启动类型”设置为“手动”或者“已禁用”就行了 d、关掉调试器Dr. Watson; 运行drwtsn32,把除了“转储全部线程上下文”之外的全都去掉。否则一旦有程序出错,硬盘会响很久,而且会占用很多空间。如果你以前遇到过这种情况,请查找user.dmp文件并删掉,可能会省掉几十兆的空间。这是出错程序的现场,对我们没用。另外蓝屏时出现的memory.dmp也可删掉。可在我的电脑/属性中关掉 “答案来源于网络,供您参考” 希望以上信息可以帮到您!
牧明 2019-12-02 02:15:52 0 浏览量 回答数 0

问题

游戏适应玩家就足够?

转载 游戏葡萄 Flappy Bird 的走红,让游戏行业发出了不同的声音,有人羡慕惊叹,有人批评驳斥,也有人不以为然。或许它的成功确实是一个偶然性的奇迹,但放在整个游...
小猪猪 2019-12-01 21:40:51 8332 浏览量 回答数 0

问题

MongoDB与内存 先讲讲Linux是如何管理内存的 再说说MongoDB是如何使用内存的:报错

但凡初次接触MongoDB的人,无不惊讶于它对内存的贪得无厌,至于个中缘由,我先讲讲Linux是如何管理内存的,再说说MongoDB是如何使用内存的,答案自然就清楚了。 ...
kun坤 2020-06-14 08:19:04 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

100+款试用云产品,最长免费试用12个月!拨打95187-1,咨询专业上云建议!

回答

数据库课程设计 “数据库课程设计”是数据库系统及应用课程的后续实验课,是进一步巩固学生的数据库知识,加强学生的实际动手能力和提高学生综合素质。 一、 课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。课程设计的目的: 1. 加深对数据库原理、程序设计语言的理论知识的理解和应用水平; 2. 在理论和实验教学基础上进一步巩固已学基本理论及应用知识并加以综合提高; 3. 学会将知识应用于实际的方法,提高分析和解决问题的能力,增强动手能力; 4. 为毕业设计和以后工作打下必要基础。 二、课程设计要求 运用数据库原理的基本理论与应用知识,在微机RDBMS(SQL Server)的环境上建立一个数据库应用系统。要求把现实世界的事物及事物之间的复杂关系抽象为信息世界的实体及实体之间联系的信息模型,再转换为机器世界的数据模型和数据文件,并对数据文件实施检索、更新和控制等操作。 1. 用E-R图设计选定题目的信息模型; 2. 设计相应的关系模型,确定数据库结构; 3. 分析关系模式各属于第几范式,阐明理由; 4. 设计应用系统的系统结构图,确定系统功能; 5. 通过设计关系的主码约束、外码约束和使用CHECK实现完整性控制; 6. 为参照关系设计插入、删除、修改触发器; 7. 实现应用程序设计、编程、优化功能; 8. 对系统的各个应用程序进行集成和调试,进一步优化系统功能、改善系统用户界面完成实验内容所指定的各项要求; 9. 分析遇到的问题,总结并写出课程设计报告; 10. 自我评价 三、实验环境 开发环境VC++、C#、ASP或JAVA;ODBC/JDBC;数据库SQL Server 四、上机实现内容 1. 创建数据库的结构 2. 创建各基本表的结构 3. 编制系统各功能模块,完成数据的管理(增、删、改)及统计查询。对于程序运行界面不做考核的重点。 五、课程设计考核 1.对学生到实验室的情况进行不定时统计; 2.出勤率+课程设计报告+课程设计所开发的应用系统+其他(上机抽查和提问)=综合评定成绩。 3.课程设计结束时请将下列资料上交: (1) 课程设计报告; (2) 所开发的应用系统的源程序、安装和使用说明; (3) 将(1)(2)中的资料压缩成一个压缩包,压缩包文件的命名规则:班级+学号(末2位)+姓名(例如:计科090101王鹏晓); (4) 班长将本班每人的(3)中的压缩包刻录成光盘连同打印的课程设计报告收齐,交给任课教师。 附录﹑课程设计题目 题目1:课程设计选题管理系统(1,24) 包括三大模块:  课程设计题目维护与查询:题目的添加、修改和删除;按题目类型、名称和关键字查询以及已选与未选题目的查询;  学生信息维护与查询;  学生选题维护与管理:学生选题及查询; 具体功能细化:  前台学生选题:学生上网登录系统进行选题;  前台教师出题:  教师添加、修改和删除题目;  教师确认学生的选题;  后台管理出题和选题  添加用户及权限 题目2:书店管理系统(23) 包括四大模块:  售书(图书销售管理及销售统计,查询)  进书(通过书目,向发行商下定单订购图书)  库存(图书库存,统计)  相关查询 题目3:图书馆管理系统(11) 包括四大模块:  图书的查询  借书  还书  图书的预约 题目4:库存管理系统(8) 包括四大模块:  商品目录建立  商品入库管理  商品出库管理  商品库存查询 题目5:工资管理系统(1 人)41 包括四大模块:  系统数据初始化  员工基本信息数据的输入、修改、删除;  员工个人信息及工资表的查询;  员工工资的计算; 参考数据如下:  员工基本状况:包括员工号、员工姓名、性别、所在部门、工资级别、工资等级等。  工资级别和工资金额:包括工资等级、工资额。  企业部门及工作岗位信息:包括部门名称、工作岗位名称、工作岗位工资等。  工龄和工资金额:包括工龄及对应工资额。  公司福利表:包括福利名称、福利值。  工资信息:包括员工号、员工姓名、员工基础工资、员工岗位工资、员工工龄工资、公司福利、员工实得工资。 题目6:酒店客房管理系统 (1 人)14,26 包括四大模块:  前台操作:包括开房登记、退房结账和房状态查看  预订管理:包括预订房间、预订入住和解除预订  信息查询:包括在住客人列表、预订客人列表和历史客人列表  报表统计:包括开房记录统计、退房结账和预订房间统计  员工基本信息数据的输入、修改、删除; 参考数据如下:  住店管理:客人姓名、证件号码、房号、入住时期、预计离开日期、结账离开日期、应付金额  客人信息:姓名、性别、证件类型、证件号码、联系电话  房间信息:房号、房类型、价格、押金、房状态 预订房间  客人姓名、性别、房类型、房号、价格、证件类型、证件号码、联系电话、入住日期、预计离开日期、历史信息 题目7:旅行社管理信息系统(1 人)3 包括如下模块:  旅游团队、团队团员及旅游路线相关信息的输入  旅游团队、团队团员及旅游路线相关信息的维护(修改、浏览、删除和撤销)  旅游团队管理信息的查询(如按团队编号)  团队团员基本情况的查询(可选多种方式)  旅游路线相关信息的查询(如按线路编号)  旅游路线排行榜发布。  数据备份,更改密码。 参考数据如下:  团员信息表(路线编号,团队编号,团员编号,姓名,性别,电话,通信地址,身份证号码, 团费交否,备注)  线路信息表(路线名称,团费,简介,图形,路线编号)  团队信息表(团队编号,路线编号,团员人数,出发日期,返程日期)  旅游团队信息表(团队编号,团队负责人,团员人数,建团时间,是否出发,团费,盈亏) 密码信息(操作员,密码) 题目8:报刊订阅管理系统 (1 人)25,35 包括如下模块:  登录功能:登录统为身份验证登录。分为管理员登录和一般用户登录。分别通过不 同的用户名和密码进入报刊订阅管理界面,新的用户需要注册。  录入新信息功能:对于管理员,包括新用户信息和新报刊信息的录入功能,信息一旦 提交就存入到后台数据库中;普通用户自行注册进行可以修改个人信息。  订阅功能:用户可以订阅报刊,系统自动计算所需金额,并显示在界面上;管理员不 可订阅报刊,必须以用户身份订阅报刊。  查询功能:用户可以查询并显示自己所订阅的信息;管理员可以按人员、报刊、部门 分类查询。查询出的信息显示在界面上,并且可以预览和打印出结果。  统计功能:管理员可以按用户、部门、报刊统计报刊的销售情况,并对一些重要的订 阅信息进行统计;普通用户可以统计出自己的订阅情况,并且可以预览和打印出结果。  系统维护功能:数据的安全管理,主要是依靠管理员对数据库里的信息进行备份和恢 复,数据库备份后,如果出了什么意外可以恢复数据库到当时备份的状态,这提高了系统和 数据的安全性,有利于系统的维护 参考数据如下:  管理员表(Adminuser) :管理员名、密码。  部门表(Department) :部门号,部门名。  用户表(Users) :用户账号、密码、真实姓名、身 份证号、联系电话,联系地址,部门号(和部门表有关)等。  报刊类别表(NewspaperClass) :分类编号、 分类名称。  报刊信息表(Newspaper) :报刊代号、报刊名称、出版 报社、出版周期、季度报价、内容介绍、分类编号(和报刊类别表有关)等。  订单表(Order) :订单编号、用户编号、报刊代号、订阅份数、订阅月数等。 题目9:计算机等级考试教务管理系统(2 人)32 包括四大模块:  用户设置:对考点代码,考点名称进行设置,设置用户与密码;系统复位:即清除上一次考试数据(在之前存入历史)  报名管理: 报各库录入(姓名不能不空,之间不能有空格) 增加、删除、修改、浏览  准考证管理:准考证生成规则:xxx+yy+zz+kk,其中 XXX 为考点代码;YY 为语言代码,XX 为考场号,KK 为座位号 同一级别、语言应根据报名初始库信息按随机数生成准考证,同一考点最多可有 99*30=2970 名考生;如已生成准考证号,再重新生成准考证号,应该给予提示。 准考证打印  考务管理:考生信息查询、浏览、打印  成绩管理:成绩数据录入、接收 成绩合成(总成绩=笔试成绩*0.6+上机成绩*0.4),按大于或等于 60 合格 参考数据如下:  初始报名表(准考证号(为空) ,报名号(主键) ,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  含准考证号的报名表(准考证号(为主键) ,报名号,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  成绩表(准考证号,笔试成绩,上机成绩,总成绩) 级别语言代码表(级别语言代码,级别+语言)  用户信息表(考点代码,考点名称,用户名,密码) 题目10:人事管理系统(1 人)21 包括四大模块:  登录管理:包括操作员管理,口令设置,权限管理  人员管理:包括人事数据维护、人事信息查询和人事信息统计  工资管理  部门管理:包括部门表,职称表和年份表  查询及报表打印 参考数据如下:  人事表(编号,姓名,性别,出生日期,工作日期,部门代码,职称,婚否,简历,相片)  工资表(基本工资,岗位津贴,奖励,应发工资,水电,保险,实发工资)  部门表(代码,部门名称)  职称表(职称代码,职称名称)  年份表(年份代码,年份名称)  操作员表(操作员代码,操作员姓名,口令,部门,电话) 系统日志表(操作员代号,操作员姓名,登录时间,离开时间) 题目11:商品销售管理系统(1 人)19 包括四大模块:  用户登录  基本信息管理:包括销售情况、商品信息、库存表、员工表等信息的录入、浏览、修改、撤销、删除和查询等  商品销售管理:包括商品售出、退回和入库  盘点:包括库存盘点、当日销售盘点 参考数据如下:  商品信息表(商品编号,商品名称,品牌,型号,销售单价) 商品编号=类别代码(1 位)+品名代码(1 位)+品牌代码(2 位)+型号代码(2 位)  销售情况表(成交编号,商品编号,销售数量,总金额,销售日期,员工编号)  库存表(商品编号,供货商编号,进货日期,进货价,库存数量)  员工表(员工编号,员工姓名,性别,基本工资,职务,密码)  供货商表(供货商编号,供货商名称,所在地,联系电话)  员工资料表(员工编号,员工姓名,是否党员,简历,照片) 题目12:学生成绩管理系统(1 人)29 包括四大模块:  基本数据管理:包括院系管理,专业管理(设置院系下面的专业),班级管理(设置专业下面的班级),课程管理(设置相应专业下面的课程)  学生信息管理:包括基本信息录入、基本信息修改  学生成绩管理:包括学生成绩录入、学生成绩修改  信息查询:包括基本信息查询、成绩信息查询、学校人数统计  系统管理:用户管理、数据备份和系统帮助 参考数据如下:  院系信息(院系代码,院系名称)  院系专业信息(班级、院系代码,专业)  学生基本信息(班号,学号,姓名,性别,出生年月,籍贯,政治面貌,身份证号,入学年月,家庭地址,邮政编码,图片信息,备注)  学生成绩表(学号,课号,成绩,备注)  课程表(课号,课程名称,学期,备注)  班表(班号,班级名称)  用户信息表(用户名,密码,用户标识) 题目13:火车售票管理系统(4 人)36 包括四大模块:  售票管理  订票管理  信息查询  系统维护 参考数据如下:  车次信息表(车次,始发站,终点站,发车时间,到达时间)  订票信息表(车次,座位号,发车时期,发车时间,座位等级,票价)  车次座位等级分配及座位占用表(车次,座位号,座位等级,票价,占用标志)  用户信息表(用户名,密码,用户标识) 题目14:小型物业管理系统(1 人) 包括四大模块:  房源管理:对原始资料的录入、修改、查询和刷新。一般用户可以查询与房间有关 的统计资料;物业主管可其进行增、删、改、插等操作  租房管理:对房产出租,退租以及租房面积调整。其中物业主管可对其进行房租金 额计算和收款操作,一般用户对其查询  水电处理:根据租房资料,结合当月水、电量进行分摊,完成应收水电费。其中物 业主管对其进行计算,其他查询  交款处理:提供收款和发票打印以及交款数据查询  查询处理:对租房资料、交款资料,发票资料进行查询 参考数据如下:  房源资料(名称,面积,月租,物业,仓库)  租房资料(名称,面积,单位,月租,物业,押金,仓库)  水电资料(单位,电量,水量,电费,水费)  交费资料(收费项目,应收日期,应收金额,已收金额,未收金额,本次收款)  发票资料(单位,房租,电费,水费,物业)  权限资料(用户,密码,房源管理,租房管理,水电管理,交费管理,发票管理,系统维护) 其中系统管理员,有权进行系统维护;单位内部物业主管,有权进行物业资源调配、单元出 租,退租和收款开票操作;物业管理员,有权进行水电处理和收款处理等操行;租户代表, 有权进行种类费的查询操作 题目15:机房收费管理系统(1 人)7,34 包括四大模块:  登录模块  上机管理模块 说明:上机登记时,余额不足 3 元或卡处于挂失状态,则拒绝登记 每位同学的一次上机形成一条记录,每 36S 遍历一次上机记录表,对表中所有正上机字段为 TRUE 的记录的上机用时增加 36S,同时从上机卡表的余额减少  上机卡管理模块  充值挂失模块  查找统计模块:统计某天上机的总时数、每次上机的平均时数和机房的收入;某学 生上机的次数、上机总时数、每次上机平均时间;挂失和查询余 参考数据如下:  上机卡(卡号,姓名,专业班级,余额,状态) 状态的取值有:正常(能自费上机)  挂失上机记录(卡号,上机日期,开始时间,上机用时,正上机,管理号代码),上机用时记录学生上机时间(S);正上机是一个布尔型,为 True 表示正上机,每 36 秒刷新 其上机用时并扣除上机费用,为 False 表示上机结束。上机记录表永久保存,用于事后查询 和统计 管理员(代码,姓名,口令)  题目16:高校药房管理(1 人)31 包括四大模块:  基础数据处理:包括医生和药剂师名单的录入,修改,删除及查询  营业数据处理:包括药品进货上柜,处理划价,配药,柜存药品查询,处方综合查 询,交接班结转清。 参考数据如下:  药品信息表(货号,货名,计量单位,进货数量,进货单价,出售单价,进货日期,收货人 和供应商)  处方信息(编号,患者姓名,医生姓名,药剂师姓名,处方日期,配药日期) 处方药品信息(处方编号,药品货号,计量单位,配药数量,销售单价,已配药否)  医生名单和药剂师名单表(姓名)  题目17:考勤管理系统(2 人)40 包括四大模块:  记录每个员工每天所有进入公司的时刻和离开公司的时刻。  每天结束时自动统计当天的工作时间  每天结束时自动统计当天迟到或早退的次数。  对于弹性工作制,每天结束时自动统计当月的工时,并自动算出当月欠缺或富余的 时间  每个月末统计该月的工作时间判断是束足够  每个月末统计该月的工作天数并判断是否足够  管理人员查询并修改工作时间(特殊情况下修改)  管理人员账户管理(如设置密码等)  管理人员设定早退及迟到的条件,每个月的工作时间  管理人员设定每个月的工作日期及放假日期 参考数据如下:  员工信息(工号,姓名,年龄,入职时间,职位,性别,密码)  配置信息(上班时间小时,上班时间分钟,下班时间小时,下班时间分钟,每天工作时间)  每月统计数据表(工号,姓名,剩余的时间,迟到的次数,早退的次数,工作天数)  每天统计信息表(工号,姓名,小时,分钟,动作,时间) 其中动作指的时入或离开公司  题目18:单位房产管理系统(2 人)33,10 包括四大模块:  系统模块:完成数据库维护、系统关闭功能  物业费用模块:完成本月物业的计费、历史资料查询和财务部门接口传送数据、物 业相关费用单价设置  房屋资源模块:对房屋资源进行添加、列表显示、查询  职工信息模块:对职工进行添加、列表显示、查询以及相应部门、职务进行维护  帮助模块:对用户使用本系统提供在线帮助 参考数据如下:  职工(编号,姓名,性别,参加工作时间,行政职务,专业技术职务,评上最高行政职务时 间,评上最高专业技术职务时间,双职工姓名,现居住房号,档案号,房产证号,所在部门 编号,是否为户主)  部门(编号,部门名称) 住房级别表(编号,级别,住房标准,控制标准,级别分类)  房产情况(编号,房号,使用面积,现居住人 id,上一个居住人 id,最早居住人 ID,阳台面积)  物业费用(编号,房号,水基数,水现在值,电基数,电现在值,燃气基数,燃气现在值, 当前年份,当前月份)  价格标准(编号,水单价,电单价,燃气单价) 题目19:标准化考试系统 (2 人)15,39 功能要求: 设计一个简单的标准化考试系统,仅有单项选择题、多项选择题和判断题功能即可。 包括四大模块:  题库管理:实现试题的录入、修改、删除功能;  考试子系统:能够实现考生做题、结果自动存入到数据库中,有时间提示;  选择身份(登录)功能:系统能够记录考生输入的登录信息及交卷信息;  自动评分功能:考生交卷后能自动评分;  查看成绩功能:能够查询考生相关信息(包含成绩等)。 参考数据如下: 其它可供选择的题目: 网上教务评教系统130,127,133 16 学生日常行为评分管理系统232,110,230 网上鲜花店 38 基于BS结构的工艺品销售系统12 基于BS结构的校园二手物品交易网站 37 大学生就业管理系统201,208,234 题库及试卷管理系统 数据库原理及应用 课程设计报告 题目: 课程设计选题管理系统 所在学院: 班 级: 学 号: 姓 名: 李四 指导教师: 2011年12月 日 目录 一、 概述 二、需求分析 三、概念设计 四、逻辑设计 五、系统实现 六、小结 一、概述
玄学酱 2019-12-02 01:22:25 0 浏览量 回答数 0

问题

荆门开诊断证明-scc

(微)电〗【186-6605-3854〗号【精品问答】Java技术1000问(1) 问问小秘 2019-11-15 11:24:15 9099 为了方便Java开发者快速找到相关技术问题和答案,开发...
游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 46087 浏览量 回答数 16

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

如何保证消息队列的高可用?【Java问答学堂】20期

面试官心理分析 如果有人问到你 MQ 的知识,高可用是必问的。上一讲提到,MQ 会导致系统可用性降低。所以只要你用了 MQ,接下来问的一些要点肯定就是围绕着 MQ 的那些缺点怎么来解决了。 要是...
剑曼红尘 2020-05-18 11:21:10 2 浏览量 回答数 1

回答

一、建表高级属性 下面几个 shell 命令在 hbase 操作中可以起到很到的作用,且主要体现在建表的过程中,看 下面几个 create 属性 1、bloomfilter 布隆过滤器 默认是 NONE 是否使用布隆过虑及使用何种方式, 布隆过滤可以每列族单独启用 使用 HColumnDescriptor.setBloomFilterType(NONE | ROW | ROWCOL) 对列族单独启用布隆 Default = ROW 对行进行布隆过滤(默认是ROW过滤) 对 ROW,行键的哈希在每次插入行时将被添加到布隆 对 ROWCOL,行键 + 列族 + 列族修饰的哈希将在每次插入行时添加到布隆 使用方法: create 'table',{BLOOMFILTER =>'ROW'} 作用: 用布隆过滤可以节省读磁盘过程,可以有助于降低读取延迟 2、versions 默认是 1 这个参数的意思是数据保留 1 个 版本,如果我们认为我们的数据没有这么大 的必要保留这么多,随时都在更新,而老版本的数据对我们毫无价值,那将此参数设为 1 能 节约 2/3 的空间 使用方法: create 'table',{VERSIONS=>'2'} 附: MIN_VERSIONS => '0'是说在 compact 操作执行之后,至少要保留的版本 3、compression 默认值是 NONE 即不使用压缩, 这个参数意思是该列族是否采用压缩,采用什么压缩算 法, 方法: create 'table',{NAME=>'info',COMPRESSION=>'SNAPPY'} , 建议采用 SNAPPY 压缩算法 , HBase 中,在 Snappy 发布之前( Google 2011 年对外发布 Snappy),采用的 LZO 算法, 目标是达到尽可能快的压缩和解压速度,同时减少对 CPU 的消耗; 在 Snappy 发布之后,建议采用 Snappy 算法(参考《 HBase: The Definitive Guide》),具体 可以根据实际情况对 LZO 和 Snappy 做过更详细的对比测试后再做选择。 4、TTL 默认是 2147483647 即:Integer.MAX_VALUE 值大概是 68 年 , 这个参数是说明该列族数据的存活时间,单位是 毫秒 这个参数可以根据具体的需求对数据设定存活时间,超过存过时间的数据将在表中不在 显示,待下次 major compact 的时候再彻底删除数据 注意的是 TTL 设定之后 MIN_VERSIONS=>'0' 这样设置之后, TTL 时间戳过期后,将全部 彻底删除该 family 下所有的数据,如果 MIN_VERSIONS 不等于 0 那将保留最新的 MIN_VERSIONS 个版本的数据,其它的全部删除,比如 MIN_VERSIONS=>'1' 届时将保留一个 最新版本的数据,其它版本的数据将不再保存。 5、alter 使用方法: 如 修改压缩算法 disable 'table' alter 'table',{NAME=>'info',COMPRESSION=>'snappy'} enable 'table' 但是需要执行 major_compact 'table' 命令之后 才会做实际的操作。 6、describe/desc 这个命令查看了 create table 的各项参数或者是默认值。 使用方式: describe 'user_info' 7、disable_all/enable_all disable_all 'toplist.*' disable_all 支持正则表达式,并列出当前匹配的表的如下: toplist_a_total_1001 toplist_a_total_1002 toplist_a_total_1008 toplist_a_total_1009 toplist_a_total_1019 toplist_a_total_1035 ... Disable the above 25 tables (y/n)? 并给出确认提示 8、 drop_all 这个命令和 disable_all 的使用方式是一样的 9、 hbase 预分区 默认情况下,在创建 HBase 表的时候会自动创建一个 region 分区,当导入数据的时候, 所有的 HBase 客户端都向这一个 region 写数据,直到这个 region 足够大了才进行切分。一 种可以加快批量写入速度的方法是通过预先创建一些空的 regions,这样当数据写入 HBase 时,会按照 region 分区情况,在集群内做数据的负载均衡。 命令方式: create table with specific split points hbase>create 'table1','f1',SPLITS => ['\x10\x00', '\x20\x00', '\x30\x00', '\x40\x00'] create table with four regions based on random bytes keys hbase>create 'table2','f1', { NUMREGIONS => 8 , SPLITALGO => 'UniformSplit' } create table with five regions based on hex keys create 'table3','f1', { NUMREGIONS => 10, SPLITALGO => 'HexStringSplit' } 也可以使用 api 的方式: bin/hbase org.apache.hadoop.hbase.util.RegionSplitter test_table HexStringSplit -c 10 -f info 参数: test_table 是表名 HexStringSplit 是 split 方式 -c 是分 10 个 region -f 是 family 这样就可以将表预先分为 15 个区,减少数据达到 storefile 大小的时候自动分区的时间 消耗,并且还有以一个优势,就是合理设计 rowkey 能让各个 region 的并发请求平均分配(趋 于均匀) 使 IO 效率达到最高,但是预分区需要将 filesize 设置一个较大的值,设置哪个参数 呢 hbase.hregion.max.filesize 这个值默认是 10G 也就是说单个 region 默认大小是 10G 这个参数的默认值在 0.90 到 0.92 到 0.94.3 各版本的变化: 256M--1G--10G 但是如果 MapReduce Input 类型为 TableInputFormat 使用 hbase 作为输入的时候,就要注意 了,每个 region 一个 map,如果数据小于 10G 那只会启用一个 map 造成很大的资源浪费, 这时候可以考虑适当调小该参数的值,或者采用预分配 region 的方式,并将检测如果达到 这个值,再手动分配 region。 二、表的设计 1、列簇设计 追求的原则是:在合理范围内能尽量少的减少列簇就尽量减少列簇。 最优设计是: 将所有相关性很强的 key-value 都放在同一个列簇下,这样既能做到查询效率 最高,也能保持尽可能少的访问不同的磁盘文件 以用户信息为例,可以将必须的基本信息存放在一个列族,而一些附加的额外信息可以放在 另一列族 2、rowkey设计 (100字节以内,合理的取8的倍数,一般是8或者16) HBase 中,表会被划分为 1...n 个 Region,被托管在 RegionServer 中。 Region 二个重要的 属性: StartKey 与 EndKey 表示这个 Region 维护的 rowKey 范围,当我们要读/写数据时,如果 rowKey 落在某个 start-end key 范围内,那么就会定位到目标 region 并且读/写到相关的数 据 那怎么快速精准的定位到我们想要操作的数据,就在于我们的 rowkey 的设计了 rowkey设计 三原则: (1)rowkey长度原则 Rowkey 是一个二进制码流, Rowkey 的长度被很多开发者建议说设计在 10~100 个字节,不 过建议是越短越好,不要超过 16 个字节。 原因如下: 1、 数据的持久化文件 HFile 中是按照 KeyValue 存储的,如果 Rowkey 过长比如 100 个字 节, 1000 万列数据光 Rowkey 就要占用 100*1000 万=10 亿个字节,将近 1G 数据,这会极大 影响 HFile 的存储效率; 2、 MemStore 将缓存部分数据到内存,如果 Rowkey 字段过长内存的有效利用率会降低, 系统将无法缓存更多的数据,这会降低检索效率。因此 Rowkey 的字节长度越短越好。 3、 目前操作系统是都是 64 位系统,内存 8 字节对齐。控制在 16 个字节, 8 字节的整数 倍利用操作系统的最佳特性。 (2)rowkey散列原则 如果 Rowkey 是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将 Rowkey 的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个 Regionserver 实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有 新数据都在一个 RegionServer 上堆积的热点现象,这样在做数据检索的时候负载将会集中 在个别 RegionServer,降低查询效率。 (3)rowkey唯一原则 必须在设计上保证其唯一性。 rowkey 是按照字典顺序排序存储的,因此,设计 rowkey 的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问 的数据放到一块。 三、数据热点 1、数据热点 HBase 中的行是按照 rowkey 的字典顺序排序的,这种设计优化了 scan 操作,可以将相 关的行以及会被一起读取的行存取在临近位置,便于 scan。然而糟糕的 rowkey 设计是热点 的源头。 热点发生在大量的 client 直接访问集群的一个或极少数个节点(访问可能是读, 写或者其他操作)。大量访问会使热点 region 所在的单个机器超出自身承受能力,引起性能 下降甚至 region 不可用,这也会影响同一个 RegionServer 上的其他 region,由于主机无法服 务其他 region 的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。 为了避免写热点,设计 rowkey 使得不同行在同一个 region,但是在更多数据情况下,数据 应该被写入集群的多个 region,而不是一个。 2、防止数据热点的措施 (1)加盐 这里所说的加盐不是密码学中的加盐,而是在 rowkey 的前面增加随机数,具体就是给 rowkey 分配一个随机前缀以使得它和之前的 rowkey 的开头不同。分配的前缀种类数量应该 和你想使用数据分散到不同的 region 的数量一致。加盐之后的 rowkey 就会根据随机生成的 前缀分散到各个 region 上,以避免热点。 (2)哈希 哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是 可以预测的。使用确定的哈希可以让客户端重构完整的 rowkey,可以使用 get 操作准确获取 某一个行数据 (3)反转 第三种防止热点的方法时反转固定长度或者数字格式的 rowkey。这样可以使得 rowkey 中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机 rowkey,但是牺 牲了 rowkey 的有序性。 反转 rowkey 的例子以手机号为 rowkey,可以将手机号反转后的字符串作为 rowkey,这 样的就避免了以手机号那样比较固定开头导致热点问题 (4)时间戳反转 一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为 rowkey 的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到 key 的末尾,例 如 [key][reverse_timestamp] , [key] 的最新值可以通过 scan [key]获得[key]的第一条记录,因 为 HBase 中 rowkey 是有序的,第一条记录是最后录入的数据。比如需要保存一个用户的操 作记录,按照操作时间倒序排序,在设计 rowkey 的时候,可以这样设计 [userId 反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指 定 反 转 后 的 userId , startRow 是 [userId 反 转 ][000000000000],stopRow 是 [userId 反 转][Long.Max_Value - timestamp] 如果需要查询某段时间的操作记录, startRow 是[user 反转][Long.Max_Value - 起始时间], stopRow 是[userId 反转][Long.Max_Value - 结束时间
游客2q7uranxketok 2021-02-22 13:25:43 0 浏览量 回答数 0

问题

【精品问答】Python二级考试题库

1.关于数据的存储结构,以下选项描述正确的是( D ) A: 数据所占的存储空间量 B: 存储在外存中的数据 C: 数据在计算机中的顺序存储方式 D: 数据的逻辑结构在计算机中的表示 2.关于线性...
珍宝珠 2019-12-01 22:03:38 7177 浏览量 回答数 3

问题

HBase查询优化

转载自:http://www.hbase.group/article/38 1.概述 HBase是一个实时的非关系型数据库,用来存储海量数据。但是,在实际使用场景中,在使用HBas...
pandacats 2019-12-20 21:09:28 0 浏览量 回答数 0

问题

Nginx性能为什么如此吊

Nginx性能为什么如此吊,Nginx性能为什么如此吊,Nginx性能为什么如此吊 (重要的事情说三遍)的性能为什么如此吊!!!         最近几年,web架构拥抱解耦的...
小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

请参考个人博客:https://blog.csdn.net/u010870518/article/details/79450295 在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树! 学过数据结构的一般对最基础的树都有所认识,因此我们就从与我们主题更为相近的二叉查找树开始。 一、二叉查找树 (1)二叉树简介: 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1、任意节点左子树不为空,则左子树的值均小于根节点的值; 2、任意节点右子树不为空,则右子树的值均大于于根节点的值; 3、任意节点的左右子树也分别是二叉查找树; 4、没有键值相等的节点; 上图为一个普通的二叉查找树,按照中序遍历的方式可以从小到大的顺序排序输出:2、3、5、6、7、8。 对上述二叉树进行查找,如查键值为5的记录,先找到根,其键值是6,6大于5,因此查找6的左子树,找到3;而5大于3,再找其右子树;一共找了3次。如果按2、3、5、6、7、8的顺序来找同样需求3次。用同样的方法在查找键值为8的这个记录,这次用了3次查找,而顺序查找需要6次。计算平均查找次数得:顺序查找的平均查找次数为(1+2+3+4+5+6)/ 6 = 3.3次,二叉查找树的平均查找次数为(3+3+3+2+2+1)/6=2.3次。二叉查找树的平均查找速度比顺序查找来得更快。 (2)局限性及应用 一个二叉查找树是由n个节点随机构成,所以,对于某些情况,二叉查找树会退化成一个有n个节点的线性链。如下图: 大家看上图,如果我们的根节点选择是最小或者最大的数,那么二叉查找树就完全退化成了线性结构。上图中的平均查找次数为(1+2+3+4+5+5)/6=3.16次,和顺序查找差不多。显然这个二叉树的查询效率就很低,因此若想最大性能的构造一个二叉查找树,需要这个二叉树是平衡的(这里的平衡从一个显著的特点可以看出这一棵树的高度比上一个输的高度要大,在相同节点的情况下也就是不平衡),从而引出了一个新的定义-平衡二叉树AVL。 二、AVL树 (1)简介 AVL树是带有平衡条件的二叉查找树,一般是用平衡因子差值判断是否平衡并通过旋转来实现平衡,左右子树树高不超过1,和红黑树相比,它是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入删除次数比较少,但查找多的情况。 从上面是一个普通的平衡二叉树,这张图我们可以看出,任意节点的左右子树的平衡因子差值都不会大于1。 (2)局限性 由于维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果应用场景中对插入删除不频繁,只是对查找要求较高,那么AVL还是较优于红黑树。 (3)应用 1、Windows NT内核中广泛存在; 三、红黑树 (1)简介 一种二叉查找树,但在每个节点增加一个存储位表示节点的颜色,可以是red或black。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍。它是一种弱平衡二叉树(由于是若平衡,可以推出,相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数变少,所以对于搜索、插入、删除操作多的情况下,我们就用红黑树。 (2)性质 1、每个节点非红即黑; 2、根节点是黑的; 3、每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4、如果一个节点是红的,那么它的两儿子都是黑的; 5、对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点; 6、每条路径都包含相同的黑节点; (3)应用 1、广泛用于C++的STL中,Map和Set都是用红黑树实现的; 2、著名的Linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间; 3、IO多路复用epoll的实现采用红黑树组织管理sockfd,以支持快速的增删改查; 4、Nginx中用红黑树管理timer,因为红黑树是有序的,可以很快的得到距离当前最小的定时器; 5、Java中TreeMap的实现; 四、B/B+树 说了上述的三种树:二叉查找树、AVL和红黑树,似乎我们还没有摸到MySQL为什么要使用B+树作为索引的实现,不要急,接下来我们就先探讨一下什么是B树。 (1)简介 我们在MySQL中的数据一般是放在磁盘中的,读取数据的时候肯定会有访问磁盘的操作,磁盘中有两个机械运动的部分,分别是盘片旋转和磁臂移动。盘片旋转就是我们市面上所提到的多少转每分钟,而磁盘移动则是在盘片旋转到指定位置以后,移动磁臂后开始进行数据的读写。那么这就存在一个定位到磁盘中的块的过程,而定位是磁盘的存取中花费时间比较大的一块,毕竟机械运动花费的时候要远远大于电子运动的时间。当大规模数据存储到磁盘中的时候,显然定位是一个非常花费时间的过程,但是我们可以通过B树进行优化,提高磁盘读取时定位的效率。 为什么B类树可以进行优化呢?我们可以根据B类树的特点,构造一个多阶的B类树,然后在尽量多的在结点上存储相关的信息,保证层数尽量的少,以便后面我们可以更快的找到信息,磁盘的I/O操作也少一些,而且B类树是平衡树,每个结点到叶子结点的高度都是相同,这也保证了每个查询是稳定的。 总的来说,B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树(相对于二叉,B树每个内节点有多个分支),与红黑树相比,在相同的的节点的情况下,一颗B/B+树的高度远远小于红黑树的高度(在下面B/B+树的性能分析中会提到)。B/B+树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成,而CPU的速度非常快,所以B树的操作效率取决于访问磁盘的次数,关键字总数相同的情况下B树的高度越小,磁盘I/O所花的时间越少。 注意B-树就是B树,-只是一个符号。 (2)B树的性质 1、定义任意非叶子结点最多只有M个儿子,且M>2; 2、根结点的儿子数为[2, M]; 3、除根结点以外的非叶子结点的儿子数为[M/2, M]; 4、每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字) 5、非叶子结点的关键字个数=指向儿子的指针个数-1; 6、非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]; 7、非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树; 8、所有叶子结点位于同一层; 这里只是一个简单的B树,在实际中B树节点中关键字很多的,上面的图中比如35节点,35代表一个key(索引),而小黑块代表的是这个key所指向的内容在内存中实际的存储位置,是一个指针。 五、B+树 (1)简介 B+树是应文件系统所需而产生的一种B树的变形树(文件的目录一级一级索引,只有最底层的叶子节点(文件)保存数据)非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中,这不就是文件系统文件的查找吗? 我们就举个文件查找的例子:有3个文件夹a、b、c, a包含b,b包含c,一个文件yang.c,a、b、c就是索引(存储在非叶子节点), a、b、c只是要找到的yang.c的key,而实际的数据yang.c存储在叶子节点上。 所有的非叶子节点都可以看成索引部分! (2)B+树的性质(下面提到的都是和B树不相同的性质) 1、非叶子节点的子树指针与关键字个数相同; 2、非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复); 3、为所有叶子节点增加一个链指针; 4、所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的); 5、非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层; 6、更适合于文件系统; 非叶子节点(比如5,28,65)只是一个key(索引),实际的数据存在叶子节点上(5,8,9)才是真正的数据或指向真实数据的指针。 (3)应用 1、B和B+树主要用在文件系统以及数据库做索引,比如MySQL; 六、B/B+树性能分析 n个节点的平衡二叉树的高度为H(即logn),而n个节点的B/B+树的高度为logt((n+1)/2)+1;   若要作为内存中的查找表,B树却不一定比平衡二叉树好,尤其当m较大时更是如此。因为查找操作CPU的时间在B-树上是O(mlogtn)=O(lgn(m/lgt)),而m/lgt>1;所以m较大时O(mlogtn)比平衡二叉树的操作时间大得多。因此在内存中使用B树必须取较小的m。(通常取最小值m=3,此时B-树中每个内部结点可以有2或3个孩子,这种3阶的B-树称为2-3树)。 七、为什么说B+树比B树更适合数据库索引? 1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。 2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。 3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 PS:我在知乎上看到有人是这样说的,我感觉说的也挺有道理的: 他们认为数据库索引采用B+树的主要原因是:B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低。 ———————————————— 版权声明:本文为CSDN博主「徐刘根」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/u010870518/java/article/details/79450295
AA大大官 2020-03-31 14:54:01 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    
石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

问题

【阿里云产品公测】简单日志服务SLS使用评测含教程

评测介绍 被测产品: 简单日志服务SLS评测环境: 阿里云基础ECS x2(1核, 512M, 1M)操作系统: CentOS 6.5 x64日志环境: Nginx(v1.6.2) HTTP服务器访问日志评测人: mr_wid评测时间...
mr_wid 2019-12-01 21:08:11 36639 浏览量 回答数 20

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

Nginx是一个轻量级的,高性能的Web服务器以及反向代理和邮箱 (IMAP/POP3)代理服务器。它运行在UNIX,GNU /linux,BSD 各种版本,Mac OS X,Solaris和Windows。根据调查统计,6%的网站使用Nginx Web服务器。Nginx是少数能处理C10K问题的服务器之一。跟传统的服务器不同,Nginx不依赖线程来处理请求。相反,它使用了更多的可扩展的事 件驱动(异步)架构。Nginx为一些高流量的网站提供动力,比如WordPress,人人网,腾讯,网易等。这篇文章主要是介绍如何提高运行在 Linux或UNIX系统的Nginx Web服务器的安全性。 默认配置文件和Nginx端口 /usr/local/nginx/conf/ – Nginx配置文件目录,/usr/local/nginx/conf/nginx.conf是主配置文件 /usr/local/nginx/html/ – 默认网站文件位置 /usr/local/nginx/logs/ – 默认日志文件位置 Nginx HTTP默认端口 : TCP 80 Nginx HTTPS默认端口: TCP 443 你可以使用以下命令来测试Nginx配置文件准确性。 /usr/local/nginx/sbin/nginx -t 将会输出: the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok configuration file /usr/local/nginx/conf/nginx.conf test is successful 执行以下命令来重新加载配置文件。 /usr/local/nginx/sbin/nginx -s reload 执行以下命令来停止服务器。 /usr/local/nginx/sbin/nginx -s stop 一、配置SELinux 注意:对于云服务器 ECS,参阅 ECS 使用须知 ,基于兼容性、稳定性考虑,请勿开启 SELinux。 安全增强型 Linux(SELinux)是一个Linux内核的功能,它提供支持访问控制的安全政策保护机制。它可以防御大部分攻击。下面我们来看如何启动基于centos/RHEL系统的SELinux。 安装SELinux rpm -qa | grep selinux libselinux-1.23.10-2 selinux-policy-targeted-1.23.16-6 如果没有返回任何结果,代表没有安装 SELinux,如果返回了类似上面的结果,则说明系统安装了 SELinux。 布什值锁定 运行命令getsebool -a来锁定系统。 getsebool -a | less getsebool -a | grep off getsebool -a | grep o 二、通过分区挂载允许最少特权 服务器上的网页/html/php文件单独分区。例如,新建一个分区/dev/sda5(第一逻辑分区),并且挂载在/nginx。确保 /nginx是以noexec, nodev and nosetuid的权限挂载。以下是我的/etc/fstab的挂载/nginx的信息: LABEL=/nginx /nginx ext3 defaults,nosuid,noexec,nodev 1 2 注意:你需要使用fdisk和mkfs.ext3命令创建一个新分区。 三、配置/etc/sysctl.conf强化Linux安全 你可以通过编辑/etc/sysctl.conf来控制和配置Linux内核、网络设置。 Avoid a smurf attack net.ipv4.icmp_echo_ignore_broadcasts = 1 Turn on protection for bad icmp error messages net.ipv4.icmp_ignore_bogus_error_responses = 1 Turn on syncookies for SYN flood attack protection net.ipv4.tcp_syncookies = 1 Turn on and log spoofed, source routed, and redirect packets net.ipv4.conf.all.log_martians = 1 net.ipv4.conf.default.log_martians = 1 No source routed packets here net.ipv4.conf.all.accept_source_route = 0 net.ipv4.conf.default.accept_source_route = 0 Turn on reverse path filtering net.ipv4.conf.all.rp_filter = 1 net.ipv4.conf.default.rp_filter = 1 Make sure no one can alter the routing tables net.ipv4.conf.all.accept_redirects = 0 net.ipv4.conf.default.accept_redirects = 0 net.ipv4.conf.all.secure_redirects = 0 net.ipv4.conf.default.secure_redirects = 0 Don’t act as a router net.ipv4.ip_forward = 0 net.ipv4.conf.all.send_redirects = 0 net.ipv4.conf.default.send_redirects = 0 Turn on execshild kernel.exec-shield = 1 kernel.randomize_va_space = 1 Tuen IPv6 net.ipv6.conf.default.router_solicitations = 0 net.ipv6.conf.default.accept_ra_rtr_pref = 0 net.ipv6.conf.default.accept_ra_pinfo = 0 net.ipv6.conf.default.accept_ra_defrtr = 0 net.ipv6.conf.default.autoconf = 0 net.ipv6.conf.default.dad_transmits = 0 net.ipv6.conf.default.max_addresses = 1 Optimization for port usefor LBs Increase system file descriptor limit fs.file-max = 65535 Allow for more PIDs (to reduce rollover problems); may break some programs 32768 kernel.pid_max = 65536 Increase system IP port limits net.ipv4.ip_local_port_range = 2000 65000 Increase TCP max buffer size setable using setsockopt() net.ipv4.tcp_rmem = 4096 87380 8388608 net.ipv4.tcp_wmem = 4096 87380 8388608 Increase Linux auto tuning TCP buffer limits min, default, and max number of bytes to use set max to at least 4MB, or higher if you use very high BDP paths Tcp Windows etc net.core.rmem_max = 8388608 net.core.wmem_max = 8388608 net.core.netdev_max_backlog = 5000 net.ipv4.tcp_window_scaling = 1 四、删除所有不需要的Nginx模块 你需要直接通过编译Nginx源代码使模块数量最少化。通过限制只允许web服务器访问模块把风险降到最低。你可以只配置安装nginx你所需要的模块。例如,禁用SSL和autoindex模块你可以执行以下命令: ./configure –without-http_autoindex_module –without-http_ssi_module make make install 通过以下命令来查看当编译nginx服务器时哪个模块能开户或关闭: ./configure –help | less 禁用你用不到的nginx模块。 (可选项)更改nginx版本名称。 编辑文件/http/ngx_http_header_filter_module.c: vi +48 src/http/ngx_http_header_filter_module.c 找到行: static char ngx_http_server_string[] = “Server: nginx” CRLF; static char ngx_http_server_full_string[] = “Server: ” NGINX_VER CRLF; 按照以下行修改: static char ngx_http_server_string[] = “Server: Ninja Web Server” CRLF; static char ngx_http_server_full_string[] = “Server: Ninja Web Server” CRLF; 保存并关闭文件。现在你可以编辑服务器了。增加以下代码到nginx.conf文件来关闭nginx版本号的显示。 server_tokens off 五、使用mod_security(只适合后端Apache服务器) mod_security为Apache提供一个应用程序级的防火墙。为后端Apache Web服务器安装mod_security,这会阻止很多注入式攻击。 六、安装SELinux策略以强化Nginx Web服务器 默认的SELinux不会保护Nginx Web服务器,但是你可以安装和编译保护软件。 1、安装编译SELinux所需环境支持 yum -y install selinux-policy-targeted selinux-policy-devel 2、下载SELinux策略以强化Nginx Web服务器。 cd /opt wget ‘http://downloads.sourceforge.net/project/selinuxnginx/se-ngix_1_0_10.tar.gz?use_mirror=nchc’ 3、解压文件 tar -zxvf se-ngix_1_0_10.tar.gz 4、编译文件 cd se-ngix_1_0_10/nginx make 将会输出如下: Compiling targeted nginx module /usr/bin/checkmodule: loading policy configuration from tmp/nginx.tmp /usr/bin/checkmodule: policy configuration loaded /usr/bin/checkmodule: writing binary representation (version 6) to tmp/nginx.mod Creating targeted nginx.pp policy package rm tmp/nginx.mod.fc tmp/nginx.mod 5、安装生成的nginx.pp SELinux模块: /usr/sbin/semodule -i nginx.pp 七、基于Iptables防火墙的限制 下面的防火墙脚本阻止任何除了允许: 来自HTTP(TCP端口80)的请求 来自ICMP ping的请求 ntp(端口123)的请求输出 smtp(TCP端口25)的请求输出 #!/bin/bash IPT=”/sbin/iptables” IPS Get server public ip SERVER_IP=$(ifconfig eth0 | grep ‘inet addr:’ | awk -F’inet addr:’ ‘{ print $2}’ | awk ‘{ print $1}’) LB1_IP=”204.54.1.1″ LB2_IP=”204.54.1.2″ Do some smart logic so that we can use damm script on LB2 too OTHER_LB=”" SERVER_IP=”" [[ "$SERVER_IP" == "$LB1_IP" ]] && OTHER_LB=”$LB2_IP” || OTHER_LB=”$LB1_IP” [[ "$OTHER_LB" == "$LB2_IP" ]] && OPP_LB=”$LB1_IP” || OPP_LB=”$LB2_IP” IPs PUB_SSH_ONLY=”122.xx.yy.zz/29″ FILES BLOCKED_IP_TDB=/root/.fw/blocked.ip.txt SPOOFIP=”127.0.0.0/8 192.168.0.0/16 172.16.0.0/12 10.0.0.0/8 169.254.0.0/16 0.0.0.0/8 240.0.0.0/4 255.255.255.255/32 168.254.0.0/16 224.0.0.0/4 240.0.0.0/5 248.0.0.0/5 192.0.2.0/24″ BADIPS=$( [[ -f ${BLOCKED_IP_TDB} ]] && egrep -v “^#|^$” ${BLOCKED_IP_TDB}) Interfaces PUB_IF=”eth0″ # public interface LO_IF=”lo” # loopback VPN_IF=”eth1″ # vpn / private net start firewall echo “Setting LB1 $(hostname) Firewall…” DROP and close everything $IPT -P INPUT DROP $IPT -P OUTPUT DROP $IPT -P FORWARD DROP Unlimited lo access $IPT -A INPUT -i ${LO_IF} -j ACCEPT $IPT -A OUTPUT -o ${LO_IF} -j ACCEPT Unlimited vpn / pnet access $IPT -A INPUT -i ${VPN_IF} -j ACCEPT $IPT -A OUTPUT -o ${VPN_IF} -j ACCEPT Drop sync $IPT -A INPUT -i ${PUB_IF} -p tcp ! –syn -m state –state NEW -j DROP Drop Fragments $IPT -A INPUT -i ${PUB_IF} -f -j DROP $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags ALL FIN,URG,PSH -j DROP $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags ALL ALL -j DROP Drop NULL packets $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags ALL NONE -m limit –limit 5/m –limit-burst 7 -j LOG –log-prefix ” NULL Packets “ $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags ALL NONE -j DROP $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags SYN,RST SYN,RST -j DROP Drop XMAS $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags SYN,FIN SYN,FIN -m limit –limit 5/m –limit-burst 7 -j LOG –log-prefix ” XMAS Packets “ $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags SYN,FIN SYN,FIN -j DROP Drop FIN packet scans $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags FIN,ACK FIN -m limit –limit 5/m –limit-burst 7 -j LOG –log-prefix ” Fin Packets Scan “ $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags FIN,ACK FIN -j DROP $IPT -A INPUT -i ${PUB_IF} -p tcp –tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP Log and get rid of broadcast / multicast and invalid $IPT -A INPUT -i ${PUB_IF} -m pkttype –pkt-type broadcast -j LOG –log-prefix ” Broadcast “ $IPT -A INPUT -i ${PUB_IF} -m pkttype –pkt-type broadcast -j DROP $IPT -A INPUT -i ${PUB_IF} -m pkttype –pkt-type multicast -j LOG –log-prefix ” Multicast “ $IPT -A INPUT -i ${PUB_IF} -m pkttype –pkt-type multicast -j DROP $IPT -A INPUT -i ${PUB_IF} -m state –state INVALID -j LOG –log-prefix ” Invalid “ $IPT -A INPUT -i ${PUB_IF} -m state –state INVALID -j DROP Log and block spoofed ips $IPT -N spooflist for ipblock in $SPOOFIP do $IPT -A spooflist -i ${PUB_IF} -s $ipblock -j LOG –log-prefix ” SPOOF List Block “ $IPT -A spooflist -i ${PUB_IF} -s $ipblock -j DROP done $IPT -I INPUT -j spooflist $IPT -I OUTPUT -j spooflist $IPT -I FORWARD -j spooflist Allow ssh only from selected public ips for ip in ${PUB_SSH_ONLY} do $IPT -A INPUT -i ${PUB_IF} -s ${ip} -p tcp -d ${SERVER_IP} –destination-port 22 -j ACCEPT $IPT -A OUTPUT -o ${PUB_IF} -d ${ip} -p tcp -s ${SERVER_IP} –sport 22 -j ACCEPT done allow incoming ICMP ping pong stuff $IPT -A INPUT -i ${PUB_IF} -p icmp –icmp-type 8 -s 0/0 -m state –state NEW,ESTABLISHED,RELATED -m limit –limit 30/sec -j ACCEPT $IPT -A OUTPUT -o ${PUB_IF} -p icmp –icmp-type 0 -d 0/0 -m state –state ESTABLISHED,RELATED -j ACCEPT allow incoming HTTP port 80 $IPT -A INPUT -i ${PUB_IF} -p tcp -s 0/0 –sport 1024:65535 –dport 80 -m state –state NEW,ESTABLISHED -j ACCEPT $IPT -A OUTPUT -o ${PUB_IF} -p tcp –sport 80 -d 0/0 –dport 1024:65535 -m state –state ESTABLISHED -j ACCEPT allow outgoing ntp $IPT -A OUTPUT -o ${PUB_IF} -p udp –dport 123 -m state –state NEW,ESTABLISHED -j ACCEPT $IPT -A INPUT -i ${PUB_IF} -p udp –sport 123 -m state –state ESTABLISHED -j ACCEPT allow outgoing smtp $IPT -A OUTPUT -o ${PUB_IF} -p tcp –dport 25 -m state –state NEW,ESTABLISHED -j ACCEPT $IPT -A INPUT -i ${PUB_IF} -p tcp –sport 25 -m state –state ESTABLISHED -j ACCEPT add your other rules here ####################### drop and log everything else $IPT -A INPUT -m limit –limit 5/m –limit-burst 7 -j LOG –log-prefix ” DEFAULT DROP “ $IPT -A INPUT -j DROP exit 0 八、控制缓冲区溢出攻击 编辑nginx.conf,为所有客户端设置缓冲区的大小限制。 vi /usr/local/nginx/conf/nginx.conf 编辑和设置所有客户端缓冲区的大小限制如下: Start: Size Limits & Buffer Overflows client_body_buffer_size 1K; client_header_buffer_size 1k; client_max_body_size 1k; large_client_header_buffers 2 1k; END: Size Limits & Buffer Overflows 解释: 1、client_body_buffer_size 1k-(默认8k或16k)这个指令可以指定连接请求实体的缓冲区大小。如果连接请求超过缓存区指定的值,那么这些请求实体的整体或部分将尝试写入一个临时文件。 2、client_header_buffer_size 1k-指令指定客户端请求头部的缓冲区大小。绝大多数情况下一个请求头不会大于1k,不过如果有来自于wap客户端的较大的cookie它可能会大于 1k,Nginx将分配给它一个更大的缓冲区,这个值可以在large_client_header_buffers里面设置。 3、client_max_body_size 1k-指令指定允许客户端连接的最大请求实体大小,它出现在请求头部的Content-Length字段。 如果请求大于指定的值,客户端将收到一个”Request Entity Too Large” (413)错误。记住,浏览器并不知道怎样显示这个错误。 4、large_client_header_buffers-指定客户端一些比较大的请求头使用的缓冲区数量和大小。请求字段不能大于一个缓冲区大小,如果客户端发送一个比较大的头,nginx将返回”Request URI too large” (414) 同样,请求的头部最长字段不能大于一个缓冲区,否则服务器将返回”Bad request” (400)。缓冲区只在需求时分开。默认一个缓冲区大小为操作系统中分页文件大小,通常是4k或8k,如果一个连接请求最终将状态转换为keep- alive,它所占用的缓冲区将被释放。 你还需要控制超时来提高服务器性能并与客户端断开连接。按照如下编辑: Start: Timeouts client_body_timeout 10; client_header_timeout 10; keepalive_timeout 5 5; send_timeout 10; End: Timeouts 1、client_body_timeout 10;-指令指定读取请求实体的超时时间。这里的超时是指一个请求实体没有进入读取步骤,如果连接超过这个时间而客户端没有任何响应,Nginx将返回一个”Request time out” (408)错误。 2、client_header_timeout 10;-指令指定读取客户端请求头标题的超时时间。这里的超时是指一个请求头没有进入读取步骤,如果连接超过这个时间而客户端没有任何响应,Nginx将返回一个”Request time out” (408)错误。 3、keepalive_timeout 5 5; – 参数的第一个值指定了客户端与服务器长连接的超时时间,超过这个时间,服务器将关闭连接。参数的第二个值(可选)指定了应答头中Keep-Alive: timeout=time的time值,这个值可以使一些浏览器知道什么时候关闭连接,以便服务器不用重复关闭,如果不指定这个参数,nginx不会在应 答头中发送Keep-Alive信息。(但这并不是指怎样将一个连接“Keep-Alive”)参数的这两个值可以不相同。 4、send_timeout 10; 指令指定了发送给客户端应答后的超时时间,Timeout是指没有进入完整established状态,只完成了两次握手,如果超过这个时间客户端没有任何响应,nginx将关闭连接。 九、控制并发连接 你可以使用NginxHttpLimitZone模块来限制指定的会话或者一个IP地址的特殊情况下的并发连接。编辑nginx.conf: Directive describes the zone, in which the session states are stored i.e. store in slimits. 1m can handle 32000 sessions with 32 bytes/session, set to 5m x 32000 session limit_zone slimits $binary_remote_addr 5m; Control maximum number of simultaneous connections for one session i.e. restricts the amount of connections from a single ip address limit_conn slimits 5; 上面表示限制每个远程IP地址的客户端同时打开连接不能超过5个。 十、只允许我们的域名的访问 如果机器人只是随机扫描服务器的所有域名,那拒绝这个请求。你必须允许配置的虚拟域或反向代理请求。你不必使用IP地址来拒绝。 Only requests to our Host are allowed i.e. nixcraft.in, images.nixcraft.in and www.nixcraft.in if ($host !~ ^(nixcraft.in|www.nixcraft.in|images.nixcraft.in)$ ) { return 444; } 十一、限制可用的请求方法 GET和POST是互联网上最常用的方法。 Web服务器的方法被定义在RFC 2616。如果Web服务器不要求启用所有可用的方法,它们应该被禁用。下面的指令将过滤只允许GET,HEAD和POST方法: Only allow these request methods if ($request_method !~ ^(GET|HEAD|POST)$ ) { return 444; } Do not accept DELETE, SEARCH and other methods 更多关于HTTP方法的介绍 GET方法是用来请求,如文件http://www.moqifei.com/index.php。 HEAD方法是一样的,除非该服务器的GET请求无法返回消息体。 POST方法可能涉及到很多东西,如储存或更新数据,或订购产品,或通过提交表单发送电子邮件。这通常是使用服务器端处理,如PHP,Perl和Python等脚本。如果你要上传的文件和在服务器处理数据,你必须使用这个方法。 十二、如何拒绝一些User-Agents? 你可以很容易地阻止User-Agents,如扫描器,机器人以及滥用你服务器的垃圾邮件发送者。 Block download agents if ($http_user_agent ~* LWP::Simple|BBBike|wget) { return 403; } 阻止Soso和有道的机器人: Block some robots if ($http_user_agent ~* Sosospider|YodaoBot) { return 403; } 十三、如何防止图片盗链 图片或HTML盗链的意思是有人直接用你网站的图片地址来显示在他的网站上。最终的结果,你需要支付额外的宽带费用。这通常是在论坛和博客。我强烈建议您封锁,并阻止盗链行为。 Stop deep linking or hot linking location /images/ { valid_referers none blocked www.example.com example.com; if ($invalid_referer) { return 403; } } 例如:重定向并显示指定图片 valid_referers blocked www.example.com example.com; if ($invalid_referer) { rewrite ^/images/uploads.*.(gif|jpg|jpeg|png)$ http://www.examples.com/banned.jpg last } 十四、目录限制 你可以对指定的目录设置访问权限。所有的网站目录应该一一的配置,只允许必须的目录访问权限。 通过IP地址限制访问 你可以通过IP地址来限制访问目录/admin/: location /docs/ { block one workstation deny 192.168.1.1; allow anyone in 192.168.1.0/24 allow 192.168.1.0/24; drop rest of the world deny all; } 通过密码保护目录 首先创建密码文件并增加“user”用户: mkdir /usr/local/nginx/conf/.htpasswd/ htpasswd -c /usr/local/nginx/conf/.htpasswd/passwd user 编辑nginx.conf,加入需要保护的目录: Password Protect /personal-images/ and /delta/ directories location ~ /(personal-images/.|delta/.) { auth_basic “Restricted”; auth_basic_user_file /usr/local/nginx/conf/.htpasswd/passwd; } 一旦密码文件已经生成,你也可以用以下的命令来增加允许访问的用户: htpasswd -s /usr/local/nginx/conf/.htpasswd/passwd userName 十五、Nginx SSL配置 HTTP是一个纯文本协议,它是开放的被动监测。你应该使用SSL来加密你的用户内容。 创建SSL证书 执行以下命令: cd /usr/local/nginx/conf openssl genrsa -des3 -out server.key 1024 openssl req -new -key server.key -out server.csr cp server.key server.key.org openssl rsa -in server.key.org -out server.key openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt 编辑nginx.conf并按如下来更新: server { server_name example.com; listen 443; ssl on; ssl_certificate /usr/local/nginx/conf/server.crt; ssl_certificate_key /usr/local/nginx/conf/server.key; access_log /usr/local/nginx/logs/ssl.access.log; error_log /usr/local/nginx/logs/ssl.error.log; } 重启nginx: /usr/local/nginx/sbin/nginx -s reload 十六、Nginx与PHP安全建议 PHP是流行的服务器端脚本语言之一。如下编辑/etc/php.ini文件: Disallow dangerous functions disable_functions = phpinfo, system, mail, exec Try to limit resources Maximum execution time of each script, in seconds max_execution_time = 30 Maximum amount of time each script may spend parsing request data max_input_time = 60 Maximum amount of memory a script may consume (8MB) memory_limit = 8M Maximum size of POST data that PHP will accept. post_max_size = 8M Whether to allow HTTP file uploads. file_uploads = Off Maximum allowed size for uploaded files. upload_max_filesize = 2M Do not expose PHP error messages to external users display_errors = Off Turn on safe mode safe_mode = On Only allow access to executables in isolated directory safe_mode_exec_dir = php-required-executables-path Limit external access to PHP environment safemode_allowed_env_vars = PHP Restrict PHP information leakage expose_php = Off Log all errors log_errors = On Do not register globals for input data register_globals = Off Minimize allowable PHP post size post_max_size = 1K Ensure PHP redirects appropriately cgi.force_redirect = 0 Disallow uploading unless necessary file_uploads = Off Enable SQL safe mode sql.safe_mode = On Avoid Opening remote files allow_url_fopen = Off 十七、如果可能让Nginx运行在一个chroot监狱 把nginx放在一个chroot监狱以减小潜在的非法进入其它目录。你可以使用传统的与nginx一起安装的chroot。如果可能,那使用FreeBSD jails,Xen,OpenVZ虚拟化的容器概念。 十八、在防火墙级限制每个IP的连接数 网络服务器必须监视连接和每秒连接限制。PF和Iptales都能够在进入你的nginx服务器之前阻止最终用户的访问。 Linux Iptables:限制每次Nginx连接数 下面的例子会阻止来自一个IP的60秒钟内超过15个连接端口80的连接数。 /sbin/iptables -A INPUT -p tcp –dport 80 -i eth0 -m state –state NEW -m recent –set /sbin/iptables -A INPUT -p tcp –dport 80 -i eth0 -m state –state NEW -m recent –update –seconds 60 –hitcount 15 -j DROP service iptables save 请根据你的具体情况来设置限制的连接数。 十九:配置操作系统保护Web服务器 像以上介绍的启动SELinux.正确设置/nginx文档根目录的权限。Nginx以用户nginx运行。但是根目录(/nginx或者/usr /local/nginx/html)不应该设置属于用户nginx或对用户nginx可写。找出错误权限的文件可以使用如下命令: find /nginx -user nginx find /usr/local/nginx/html -user nginx 确保你更所有权为root或其它用户,一个典型的权限设置 /usr/local/nginx/html/ ls -l /usr/local/nginx/html/ 示例输出: -rw-r–r– 1 root root 925 Jan 3 00:50 error4xx.html -rw-r–r– 1 root root 52 Jan 3 10:00 error5xx.html -rw-r–r– 1 root root 134 Jan 3 00:52 index.html 你必须删除由vi或其它文本编辑器创建的备份文件: find /nginx -name ‘.?’ -not -name .ht -or -name ‘~’ -or -name ‘.bak’ -or -name ‘.old*’ find /usr/local/nginx/html/ -name ‘.?’ -not -name .ht -or -name ‘~’ -or -name ‘.bak’ -or -name ‘.old*’ 通过find命令的-delete选项来删除这些文件。 二十、限制Nginx连接传出 黑客会使用工具如wget下载你服务器本地的文件。使用Iptables从nginx用户来阻止传出连接。ipt_owner模块试图匹配本地产生的数据包的创建者。下面的例子中只允许user用户在外面使用80连接。 /sbin/iptables -A OUTPUT -o eth0 -m owner –uid-owner vivek -p tcp –dport 80 -m state –state NEW,ESTABLISHED -j ACCEPT 通过以上的配置,你的nginx服务器已经非常安全了并可以发布网页。可是,你还应该根据你网站程序查找更多的安全设置资料。例如,wordpress或者第三方程序。
KB小秘书 2019-12-02 02:06:56 0 浏览量 回答数 0

回答

毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本。这个版本包含语言、编译器、库、工具和JVM等方面的十多个新特性。在本文中我们将学习这些新特性,并用实际的例子说明在什么场景下适合使用。 这个教程包含Java开发者经常面对的几类问题: 语言 编译器 库 工具 运行时(JVM) 2. Java语言的新特性 Java 8是Java的一个重大版本,有人认为,虽然这些新特性领Java开发人员十分期待,但同时也需要花不少精力去学习。在这一小节中,我们将介绍Java 8的大部分新特性。 2.1 Lambda表达式和函数式接口 Lambda表达式(也称为闭包)是Java 8中最大和最令人期待的语言改变。它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理:函数式开发者非常熟悉这些概念。很多JVM平台上的语言(Groovy、Scala等)从诞生之日就支持Lambda表达式,但是Java开发者没有选择,只能使用匿名内部类代替Lambda表达式。 Lambda的设计耗费了很多时间和很大的社区力量,最终找到一种折中的实现方案,可以实现简洁而紧凑的语言结构。最简单的Lambda表达式可由逗号分隔的参数列表、->符号和语句块组成,例如: Arrays.asList( "a", "b", "d" ).forEach( e -> System.out.println( e ) ); 在上面这个代码中的参数e的类型是由编译器推理得出的,你也可以显式指定该参数的类型,例如: Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) ); 如果Lambda表达式需要更复杂的语句块,则可以使用花括号将该语句块括起来,类似于Java中的函数体,例如: Arrays.asList( "a", "b", "d" ).forEach( e -> { System.out.print( e ); System.out.print( e ); } ); Lambda表达式可以引用类成员和局部变量(会将这些变量隐式得转换成final的),例如下列两个代码块的效果完全相同: String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) ); 和 final String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) ); Lambda表达式有返回值,返回值的类型也由编译器推理得出。如果Lambda表达式中的语句块只有一行,则可以不用使用return语句,下列两个代码片段效果相同: Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> e1.compareTo( e2 ) ); 和 Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> { int result = e1.compareTo( e2 ); return result; } ); Lambda的设计者们为了让现有的功能与Lambda表达式良好兼容,考虑了很多方法,于是产生了函数接口这个概念。函数接口指的是只有一个函数的接口,这样的接口可以隐式转换为Lambda表达式。java.lang.Runnable和java.util.concurrent.Callable是函数式接口的最佳例子。在实践中,函数式接口非常脆弱:只要某个开发者在该接口中添加一个函数,则该接口就不再是函数式接口进而导致编译失败。为了克服这种代码层面的脆弱性,并显式说明某个接口是函数式接口,Java 8 提供了一个特殊的注解@FunctionalInterface(Java 库中的所有相关接口都已经带有这个注解了),举个简单的函数式接口的定义: @FunctionalInterface public interface Functional { void method(); } 不过有一点需要注意,默认方法和静态方法不会破坏函数式接口的定义,因此如下的代码是合法的。 @FunctionalInterface public interface FunctionalDefaultMethods { void method(); default void defaultMethod() { } } Lambda表达式作为Java 8的最大卖点,它有潜力吸引更多的开发者加入到JVM平台,并在纯Java编程中使用函数式编程的概念。如果你需要了解更多Lambda表达式的细节,可以参考官方文档。 2.2 接口的默认方法和静态方法 Java 8使用两个新概念扩展了接口的含义:默认方法和静态方法。默认方法使得接口有点类似traits,不过要实现的目标不一样。默认方法使得开发者可以在 不破坏二进制兼容性的前提下,往现存接口中添加新的方法,即不强制那些实现了该接口的类也同时实现这个新加的方法。 默认方法和抽象方法之间的区别在于抽象方法需要实现,而默认方法不需要。接口提供的默认方法会被接口的实现类继承或者覆写,例子代码如下: private interface Defaulable { // Interfaces now allow default methods, the implementer may or // may not implement (override) them. default String notRequired() { return "Default implementation"; } } private static class DefaultableImpl implements Defaulable { } private static class OverridableImpl implements Defaulable { @Override public String notRequired() { return "Overridden implementation"; } } Defaulable接口使用关键字default定义了一个默认方法notRequired()。DefaultableImpl类实现了这个接口,同时默认继承了这个接口中的默认方法;OverridableImpl类也实现了这个接口,但覆写了该接口的默认方法,并提供了一个不同的实现。 Java 8带来的另一个有趣的特性是在接口中可以定义静态方法,例子代码如下: private interface DefaulableFactory { // Interfaces now allow static methods static Defaulable create( Supplier< Defaulable > supplier ) { return supplier.get(); } } 下面的代码片段整合了默认方法和静态方法的使用场景: public static void main( String[] args ) { Defaulable defaulable = DefaulableFactory.create( DefaultableImpl::new ); System.out.println( defaulable.notRequired() ); defaulable = DefaulableFactory.create( OverridableImpl::new ); System.out.println( defaulable.notRequired() ); } 这段代码的输出结果如下: Default implementation Overridden implementation 由于JVM上的默认方法的实现在字节码层面提供了支持,因此效率非常高。默认方法允许在不打破现有继承体系的基础上改进接口。该特性在官方库中的应用是:给java.util.Collection接口添加新方法,如stream()、parallelStream()、forEach()和removeIf()等等。 尽管默认方法有这么多好处,但在实际开发中应该谨慎使用:在复杂的继承体系中,默认方法可能引起歧义和编译错误。如果你想了解更多细节,可以参考官方文档。 2.3 方法引用 方法引用使得开发者可以直接引用现存的方法、Java类的构造方法或者实例对象。方法引用和Lambda表达式配合使用,使得java类的构造方法看起来紧凑而简洁,没有很多复杂的模板代码。 西门的例子中,Car类是不同方法引用的例子,可以帮助读者区分四种类型的方法引用。 public static class Car { public static Car create( final Supplier< Car > supplier ) { return supplier.get(); } public static void collide( final Car car ) { System.out.println( "Collided " + car.toString() ); } public void follow( final Car another ) { System.out.println( "Following the " + another.toString() ); } public void repair() { System.out.println( "Repaired " + this.toString() ); } } 第一种方法引用的类型是构造器引用,语法是Class::new,或者更一般的形式:Class ::new。注意:这个构造器没有参数。 final Car car = Car.create( Car::new ); final List< Car > cars = Arrays.asList( car ); 第二种方法引用的类型是静态方法引用,语法是Class::static_method。注意:这个方法接受一个Car类型的参数。 cars.forEach( Car::collide ); 第三种方法引用的类型是某个类的成员方法的引用,语法是Class::method,注意,这个方法没有定义入参: cars.forEach( Car::repair ); 第四种方法引用的类型是某个实例对象的成员方法的引用,语法是instance::method。注意:这个方法接受一个Car类型的参数: final Car police = Car.create( Car::new ); cars.forEach( police::follow ); 运行上述例子,可以在控制台看到如下输出(Car实例可能不同): Collided com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Repaired com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Following the com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d 如果想了解和学习更详细的内容,可以参考官方文档 2.4 重复注解 自从Java 5中引入注解以来,这个特性开始变得非常流行,并在各个框架和项目中被广泛使用。不过,注解有一个很大的限制是:在同一个地方不能多次使用同一个注解。Java 8打破了这个限制,引入了重复注解的概念,允许在同一个地方多次使用同一个注解。 在Java 8中使用@Repeatable注解定义重复注解,实际上,这并不是语言层面的改进,而是编译器做的一个trick,底层的技术仍然相同。可以利用下面的代码说明: package com.javacodegeeks.java8.repeatable.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; public class RepeatingAnnotations { @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) public @interface Filters { Filter[] value(); } @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) @Repeatable( Filters.class ) public @interface Filter { String value(); }; @Filter( "filter1" ) @Filter( "filter2" ) public interface Filterable { } public static void main(String[] args) { for( Filter filter: Filterable.class.getAnnotationsByType( Filter.class ) ) { System.out.println( filter.value() ); } } } 正如我们所见,这里的Filter类使用@Repeatable(Filters.class)注解修饰,而Filters是存放Filter注解的容器,编译器尽量对开发者屏蔽这些细节。这样,Filterable接口可以用两个Filter注解注释(这里并没有提到任何关于Filters的信息)。 另外,反射API提供了一个新的方法:getAnnotationsByType(),可以返回某个类型的重复注解,例如Filterable.class.getAnnoation(Filters.class)将返回两个Filter实例,输出到控制台的内容如下所示: filter1 filter2 如果你希望了解更多内容,可以参考官方文档。 2.5 更好的类型推断 Java 8编译器在类型推断方面有很大的提升,在很多场景下编译器可以推导出某个参数的数据类型,从而使得代码更为简洁。例子代码如下: package com.javacodegeeks.java8.type.inference; public class Value< T > { public static< T > T defaultValue() { return null; } public T getOrDefault( T value, T defaultValue ) { return ( value != null ) ? value : defaultValue; } } 下列代码是Value 类型的应用: package com.javacodegeeks.java8.type.inference; public class TypeInference { public static void main(String[] args) { final Value< String > value = new Value<>(); value.getOrDefault( "22", Value.defaultValue() ); } } 参数Value.defaultValue()的类型由编译器推导得出,不需要显式指明。在Java 7中这段代码会有编译错误,除非使用Value. defaultValue()。 2.6 拓宽注解的应用场景 Java 8拓宽了注解的应用场景。现在,注解几乎可以使用在任何元素上:局部变量、接口类型、超类和接口实现类,甚至可以用在函数的异常定义上。下面是一些例子: package com.javacodegeeks.java8.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; import java.util.ArrayList; import java.util.Collection; public class Annotations { @Retention( RetentionPolicy.RUNTIME ) @Target( { ElementType.TYPE_USE, ElementType.TYPE_PARAMETER } ) public @interface NonEmpty { } public static class Holder< @NonEmpty T > extends @NonEmpty Object { public void method() throws @NonEmpty Exception { } } @SuppressWarnings( "unused" ) public static void main(String[] args) { final Holder< String > holder = new @NonEmpty Holder< String >(); @NonEmpty Collection< @NonEmpty String > strings = new ArrayList<>(); } } ElementType.TYPE_USER和ElementType.TYPE_PARAMETER是Java 8新增的两个注解,用于描述注解的使用场景。Java 语言也做了对应的改变,以识别这些新增的注解。 Java编译器的新特性 3.1 参数名称 为了在运行时获得Java程序中方法的参数名称,老一辈的Java程序员必须使用不同方法,例如Paranamer liberary。Java 8终于将这个特性规范化,在语言层面(使用反射API和Parameter.getName()方法)和字节码层面(使用新的javac编译器以及-parameters参数)提供支持。 package com.javacodegeeks.java8.parameter.names; import java.lang.reflect.Method; import java.lang.reflect.Parameter; public class ParameterNames { public static void main(String[] args) throws Exception { Method method = ParameterNames.class.getMethod( "main", String[].class ); for( final Parameter parameter: method.getParameters() ) { System.out.println( "Parameter: " + parameter.getName() ); } } } 在Java 8中这个特性是默认关闭的,因此如果不带-parameters参数编译上述代码并运行,则会输出如下结果: Parameter: arg0 如果带-parameters参数,则会输出如下结果(正确的结果): Parameter: args 如果你使用Maven进行项目管理,则可以在maven-compiler-plugin编译器的配置项中配置-parameters参数: org.apache.maven.plugins maven-compiler-plugin 3.1 -parameters 1.8 1.8 4. Java官方库的新特性 Java 8增加了很多新的工具类(date/time类),并扩展了现存的工具类,以支持现代的并发编程、函数式编程等。 4.1 Optional Java应用中最常见的bug就是空值异常。在Java 8之前,Google Guava引入了Optionals类来解决NullPointerException,从而避免源码被各种null检查污染,以便开发者写出更加整洁的代码。Java 8也将Optional加入了官方库。 Optional仅仅是一个容易:存放T类型的值或者null。它提供了一些有用的接口来避免显式的null检查,可以参考Java 8官方文档了解更多细节。 接下来看一点使用Optional的例子:可能为空的值或者某个类型的值: Optional< String > fullName = Optional.ofNullable( null ); System.out.println( "Full Name is set? " + fullName.isPresent() ); System.out.println( "Full Name: " + fullName.orElseGet( () -> "[none]" ) ); System.out.println( fullName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) ); 如果Optional实例持有一个非空值,则isPresent()方法返回true,否则返回false;orElseGet()方法,Optional实例持有null,则可以接受一个lambda表达式生成的默认值;map()方法可以将现有的Opetional实例的值转换成新的值;orElse()方法与orElseGet()方法类似,但是在持有null的时候返回传入的默认值。 上述代码的输出结果如下: Full Name is set? false Full Name: [none] Hey Stranger! 再看下另一个简单的例子: Optional< String > firstName = Optional.of( "Tom" ); System.out.println( "First Name is set? " + firstName.isPresent() ); System.out.println( "First Name: " + firstName.orElseGet( () -> "[none]" ) ); System.out.println( firstName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) ); System.out.println(); 这个例子的输出是: First Name is set? true First Name: Tom Hey Tom! 如果想了解更多的细节,请参考官方文档。 4.2 Streams 新增的Stream API(java.util.stream)将生成环境的函数式编程引入了Java库中。这是目前为止最大的一次对Java库的完善,以便开发者能够写出更加有效、更加简洁和紧凑的代码。 Steam API极大得简化了集合操作(后面我们会看到不止是集合),首先看下这个叫Task的类: public class Streams { private enum Status { OPEN, CLOSED }; private static final class Task { private final Status status; private final Integer points; Task( final Status status, final Integer points ) { this.status = status; this.points = points; } public Integer getPoints() { return points; } public Status getStatus() { return status; } @Override public String toString() { return String.format( "[%s, %d]", status, points ); } } } Task类有一个分数(或伪复杂度)的概念,另外还有两种状态:OPEN或者CLOSED。现在假设有一个task集合: final Collection< Task > tasks = Arrays.asList( new Task( Status.OPEN, 5 ), new Task( Status.OPEN, 13 ), new Task( Status.CLOSED, 8 ) ); 首先看一个问题:在这个task集合中一共有多少个OPEN状态的点?在Java 8之前,要解决这个问题,则需要使用foreach循环遍历task集合;但是在Java 8中可以利用steams解决:包括一系列元素的列表,并且支持顺序和并行处理。 // Calculate total points of all active tasks using sum() final long totalPointsOfOpenTasks = tasks .stream() .filter( task -> task.getStatus() == Status.OPEN ) .mapToInt( Task::getPoints ) .sum(); System.out.println( "Total points: " + totalPointsOfOpenTasks ); 运行这个方法的控制台输出是: Total points: 18 这里有很多知识点值得说。首先,tasks集合被转换成steam表示;其次,在steam上的filter操作会过滤掉所有CLOSED的task;第三,mapToInt操作基于每个task实例的Task::getPoints方法将task流转换成Integer集合;最后,通过sum方法计算总和,得出最后的结果。 在学习下一个例子之前,还需要记住一些steams(点此更多细节)的知识点。Steam之上的操作可分为中间操作和晚期操作。 中间操作会返回一个新的steam——执行一个中间操作(例如filter)并不会执行实际的过滤操作,而是创建一个新的steam,并将原steam中符合条件的元素放入新创建的steam。 晚期操作(例如forEach或者sum),会遍历steam并得出结果或者附带结果;在执行晚期操作之后,steam处理线已经处理完毕,就不能使用了。在几乎所有情况下,晚期操作都是立刻对steam进行遍历。 steam的另一个价值是创造性地支持并行处理(parallel processing)。对于上述的tasks集合,我们可以用下面的代码计算所有任务的点数之和: // Calculate total points of all tasks final double totalPoints = tasks .stream() .parallel() .map( task -> task.getPoints() ) // or map( Task::getPoints ) .reduce( 0, Integer::sum ); System.out.println( "Total points (all tasks): " + totalPoints ); 这里我们使用parallel方法并行处理所有的task,并使用reduce方法计算最终的结果。控制台输出如下: Total points(all tasks): 26.0 对于一个集合,经常需要根据某些条件对其中的元素分组。利用steam提供的API可以很快完成这类任务,代码如下: // Group tasks by their status final Map< Status, List< Task > > map = tasks .stream() .collect( Collectors.groupingBy( Task::getStatus ) ); System.out.println( map ); 控制台的输出如下: {CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]} 最后一个关于tasks集合的例子问题是:如何计算集合中每个任务的点数在集合中所占的比重,具体处理的代码如下: // Calculate the weight of each tasks (as percent of total points) final Collection< String > result = tasks .stream() // Stream< String > .mapToInt( Task::getPoints ) // IntStream .asLongStream() // LongStream .mapToDouble( points -> points / totalPoints ) // DoubleStream .boxed() // Stream< Double > .mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream .mapToObj( percentage -> percentage + "%" ) // Stream< String> .collect( Collectors.toList() ); // List< String > System.out.println( result ); 控制台输出结果如下: [19%, 50%, 30%] 最后,正如之前所说,Steam API不仅可以作用于Java集合,传统的IO操作(从文件或者网络一行一行得读取数据)可以受益于steam处理,这里有一个小例子: final Path path = new File( filename ).toPath(); try( Stream< String > lines = Files.lines( path, StandardCharsets.UTF_8 ) ) { lines.onClose( () -> System.out.println("Done!") ).forEach( System.out::println ); } Stream的方法onClose 返回一个等价的有额外句柄的Stream,当Stream的close()方法被调用的时候这个句柄会被执行。Stream API、Lambda表达式还有接口默认方法和静态方法支持的方法引用,是Java 8对软件开发的现代范式的响应。 4.3 Date/Time API(JSR 310) Java 8引入了新的Date-Time API(JSR 310)来改进时间、日期的处理。时间和日期的管理一直是最令Java开发者痛苦的问题。java.util.Date和后来的java.util.Calendar一直没有解决这个问题(甚至令开发者更加迷茫)。 因为上面这些原因,诞生了第三方库Joda-Time,可以替代Java的时间管理API。Java 8中新的时间和日期管理API深受Joda-Time影响,并吸收了很多Joda-Time的精华。新的java.time包包含了所有关于日期、时间、时区、Instant(跟日期类似但是精确到纳秒)、duration(持续时间)和时钟操作的类。新设计的API认真考虑了这些类的不变性(从java.util.Calendar吸取的教训),如果某个实例需要修改,则返回一个新的对象。 我们接下来看看java.time包中的关键类和各自的使用例子。首先,Clock类使用时区来返回当前的纳秒时间和日期。Clock可以替代System.currentTimeMillis()和TimeZone.getDefault()。 // Get the system clock as UTC offset final Clock clock = Clock.systemUTC(); System.out.println( clock.instant() ); System.out.println( clock.millis() ); 这个例子的输出结果是: 2014-04-12T15:19:29.282Z 1397315969360 第二,关注下LocalDate和LocalTime类。LocalDate仅仅包含ISO-8601日历系统中的日期部分;LocalTime则仅仅包含该日历系统中的时间部分。这两个类的对象都可以使用Clock对象构建得到。 // Get the local date and local time final LocalDate date = LocalDate.now(); final LocalDate dateFromClock = LocalDate.now( clock ); System.out.println( date ); System.out.println( dateFromClock ); // Get the local date and local time final LocalTime time = LocalTime.now(); final LocalTime timeFromClock = LocalTime.now( clock ); System.out.println( time ); System.out.println( timeFromClock ); 上述例子的输出结果如下: 2014-04-12 2014-04-12 11:25:54.568 15:25:54.568 LocalDateTime类包含了LocalDate和LocalTime的信息,但是不包含ISO-8601日历系统中的时区信息。这里有一些关于LocalDate和LocalTime的例子: // Get the local date/time final LocalDateTime datetime = LocalDateTime.now(); final LocalDateTime datetimeFromClock = LocalDateTime.now( clock ); System.out.println( datetime ); System.out.println( datetimeFromClock ); 上述这个例子的输出结果如下: 2014-04-12T11:37:52.309 2014-04-12T15:37:52.309 如果你需要特定时区的data/time信息,则可以使用ZoneDateTime,它保存有ISO-8601日期系统的日期和时间,而且有时区信息。下面是一些使用不同时区的例子: // Get the zoned date/time final ZonedDateTime zonedDatetime = ZonedDateTime.now(); final ZonedDateTime zonedDatetimeFromClock = ZonedDateTime.now( clock ); final ZonedDateTime zonedDatetimeFromZone = ZonedDateTime.now( ZoneId.of( "America/Los_Angeles" ) ); System.out.println( zonedDatetime ); System.out.println( zonedDatetimeFromClock ); System.out.println( zonedDatetimeFromZone ); 这个例子的输出结果是: 2014-04-12T11:47:01.017-04:00[America/New_York] 2014-04-12T15:47:01.017Z 2014-04-12T08:47:01.017-07:00[America/Los_Angeles] 最后看下Duration类,它持有的时间精确到秒和纳秒。这使得我们可以很容易得计算两个日期之间的不同,例子代码如下: // Get duration between two dates final LocalDateTime from = LocalDateTime.of( 2014, Month.APRIL, 16, 0, 0, 0 ); final LocalDateTime to = LocalDateTime.of( 2015, Month.APRIL, 16, 23, 59, 59 ); final Duration duration = Duration.between( from, to ); System.out.println( "Duration in days: " + duration.toDays() ); System.out.println( "Duration in hours: " + duration.toHours() ); 这个例子用于计算2014年4月16日和2015年4月16日之间的天数和小时数,输出结果如下: Duration in days: 365 Duration in hours: 8783 对于Java 8的新日期时间的总体印象还是比较积极的,一部分是因为Joda-Time的积极影响,另一部分是因为官方终于听取了开发人员的需求。如果希望了解更多细节,可以参考官方文档。 4.4 Nashorn JavaScript引擎 Java 8提供了新的Nashorn JavaScript引擎,使得我们可以在JVM上开发和运行JS应用。Nashorn JavaScript引擎是javax.script.ScriptEngine的另一个实现版本,这类Script引擎遵循相同的规则,允许Java和JavaScript交互使用,例子代码如下: ScriptEngineManager manager = new ScriptEngineManager(); ScriptEngine engine = manager.getEngineByName( "JavaScript" ); System.out.println( engine.getClass().getName() ); System.out.println( "Result:" + engine.eval( "function f() { return 1; }; f() + 1;" ) ); 这个代码的输出结果如下: jdk.nashorn.api.scripting.NashornScriptEngine Result: 2 4.5 Base64 对Base64编码的支持已经被加入到Java 8官方库中,这样不需要使用第三方库就可以进行Base64编码,例子代码如下: package com.javacodegeeks.java8.base64; import java.nio.charset.StandardCharsets; import java.util.Base64; public class Base64s { public static void main(String[] args) { final String text = "Base64 finally in Java 8!"; final String encoded = Base64 .getEncoder() .encodeToString( text.getBytes( StandardCharsets.UTF_8 ) ); System.out.println( encoded ); final String decoded = new String( Base64.getDecoder().decode( encoded ), StandardCharsets.UTF_8 ); System.out.println( decoded ); } } 这个例子的输出结果如下: QmFzZTY0IGZpbmFsbHkgaW4gSmF2YSA4IQ== Base64 finally in Java 8! 新的Base64API也支持URL和MINE的编码解码。 (Base64.getUrlEncoder() / Base64.getUrlDecoder(), Base64.getMimeEncoder() / Base64.getMimeDecoder())。 4.6 并行数组 Java8版本新增了很多新的方法,用于支持并行数组处理。最重要的方法是parallelSort(),可以显著加快多核机器上的数组排序。下面的例子论证了parallexXxx系列的方法: package com.javacodegeeks.java8.parallel.arrays; import java.util.Arrays; import java.util.concurrent.ThreadLocalRandom; public class ParallelArrays { public static void main( String[] args ) { long[] arrayOfLong = new long [ 20000 ]; Arrays.parallelSetAll( arrayOfLong, index -> ThreadLocalRandom.current().nextInt( 1000000 ) ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); Arrays.parallelSort( arrayOfLong ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); } } 上述这些代码使用parallelSetAll()方法生成20000个随机数,然后使用parallelSort()方法进行排序。这个程序会输出乱序数组和排序数组的前10个元素。上述例子的代码输出的结果是: Unsorted: 591217 891976 443951 424479 766825 351964 242997 642839 119108 552378 Sorted: 39 220 263 268 325 607 655 678 723 793 4.7 并发性 基于新增的lambda表达式和steam特性,为Java 8中为java.util.concurrent.ConcurrentHashMap类添加了新的方法来支持聚焦操作;另外,也为java.util.concurrentForkJoinPool类添加了新的方法来支持通用线程池操作(更多内容可以参考我们的并发编程课程)。 Java 8还添加了新的java.util.concurrent.locks.StampedLock类,用于支持基于容量的锁——该锁有三个模型用于支持读写操作(可以把这个锁当做是java.util.concurrent.locks.ReadWriteLock的替代者)。 在java.util.concurrent.atomic包中也新增了不少工具类,列举如下: DoubleAccumulator DoubleAdder LongAccumulator LongAdder 5. 新的Java工具 Java 8提供了一些新的命令行工具,这部分会讲解一些对开发者最有用的工具。 5.1 Nashorn引擎:jjs jjs是一个基于标准Nashorn引擎的命令行工具,可以接受js源码并执行。例如,我们写一个func.js文件,内容如下: function f() { return 1; }; print( f() + 1 ); 可以在命令行中执行这个命令:jjs func.js,控制台输出结果是: 2 如果需要了解细节,可以参考官方文档。 5.2 类依赖分析器:jdeps jdeps是一个相当棒的命令行工具,它可以展示包层级和类层级的Java类依赖关系,它以.class文件、目录或者Jar文件为输入,然后会把依赖关系输出到控制台。 我们可以利用jedps分析下Spring Framework库,为了让结果少一点,仅仅分析一个JAR文件:org.springframework.core-3.0.5.RELEASE.jar。 jdeps org.springframework.core-3.0.5.RELEASE.jar 这个命令会输出很多结果,我们仅看下其中的一部分:依赖关系按照包分组,如果在classpath上找不到依赖,则显示"not found". org.springframework.core-3.0.5.RELEASE.jar -> C:\Program Files\Java\jdk1.8.0\jre\lib\rt.jar org.springframework.core (org.springframework.core-3.0.5.RELEASE.jar) -> java.io -> java.lang -> java.lang.annotation -> java.lang.ref -> java.lang.reflect -> java.util -> java.util.concurrent -> org.apache.commons.logging not found -> org.springframework.asm not found -> org.springframework.asm.commons not found org.springframework.core.annotation (org.springframework.core-3.0.5.RELEASE.jar) -> java.lang -> java.lang.annotation -> java.lang.reflect -> java.util 更多的细节可以参考官方文档。 JVM的新特性 使用Metaspace(JEP 122)代替持久代(PermGen space)。在JVM参数方面,使用-XX:MetaSpaceSize和-XX:MaxMetaspaceSize代替原来的-XX:PermSize和-XX:MaxPermSize。 结论 通过为开发者提供很多能够提高生产力的特性,Java 8使得Java平台前进了一大步。现在还不太适合将Java 8应用在生产系统中,但是在之后的几个月中Java 8的应用率一定会逐步提高(PS:原文时间是2014年5月9日,现在在很多公司Java 8已经成为主流,我司由于体量太大,现在也在一点点上Java 8,虽然慢但是好歹在升级了)。作为开发者,现在应该学习一些Java 8的知识,为升级做好准备。 关于Spring:对于企业级开发,我们也应该关注Spring社区对Java 8的支持,可以参考这篇文章——Spring 4支持的Java 8新特性一览 参考资料 What’s New in JDK 8 The Java Tutorials WildFly 8, JDK 8, NetBeans 8, Java EE Java 8 Tutorial JDK 8 Command-line Static Dependency Checker The Illuminating Javadoc of JDK The Dark Side of Java 8 Installing Java™ 8 Support in Eclipse Kepler SR2 Java 8 Oracle Nashorn. A Next-Generation JavaScript Engine for the JVM 举报
游客2q7uranxketok 2021-02-08 10:54:06 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT 阿里云科技驱动中小企业数字化