• 关于

    比例系统可以做什么

    的搜索结果

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。
hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

如何快速掌握性能知识体系,做好性能测试?

做开发测试的同学都知道,网站性能是影响用户访问的一个重要因素。如果你的网站打开速度很慢,那么你的访客很容易流失,这样会造成业务受损。所以做好性能测试,是开发测试人员必须考虑的问题。阿里...
云效平台 2019-12-01 21:40:27 4526 浏览量 回答数 0

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

演讲人:章文嵩博士,阿里集团的高级研究员与副总裁,主要负责基础核心软件研发和云计算产品研发、推进网络软硬件方面的性能优化、搭建下一代高可扩展低碳低成本电子商务基础设施。他也是开放源码及 Linux内...
云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

回答

互联网时代,大家提倡敏捷迭代,总嫌传统方式太重,流程复杂,影响效率,什 么都希望短平快,在扁平化的组织中,经常是需求火速分发到一线研发,然后就靠个 人折腾去了,其实技术架构评审这同样是一个非常重要的环节。架构评审或技术方案 评审的价值在于集众人的力量大家一起来分析看看方案里是否有坑,方案上线后是否会遇到不可逾越的重大技术问题,提前尽可能把一些事情先考虑到提出质疑其实对项 目的健康发展有很大的好处。 基于架构评审,我们的目标核心是要满足以下几点: 1. 设计把关,确保方案合格,各方面都考虑到了,避免缺陷和遗漏,不求方案 多牛,至少不犯错。 2. 保证架构设计合理和基本一致,符合整体原则。 3. 维持对系统架构的全局认知,避免黑盒效应。 4. 通过评审发掘创新亮点,推广最佳实践。 5. 架构设计既要保证架构设计的合理性和可扩展性,又要避免过度设计。架构设计 不仅仅是考虑功能实现,还有很多非功能需求,以及持续运维所需要的工作,需要工 程实践经验,进行平衡和取舍。 架构评审需要以下几点: 1. 技术选型:为什么选用 A 组件不选用 B、C 组件,A 是开源的,开源协议是 啥?基于什么语言开发的,出了问题我们自身是否能够维护?性能方面有没 有压测过?这些所有问题作为技术选型我们都需要考虑清楚,才能做最终决定。 2. 高性能:产品对应的 TPS、QPS 和 RT 是多少?设计上会做到的 TPS、 QPS 和 RT 是多少?而实际上我们整体随着数据量的增大系统性能会不会出 现明显问题?随着业务量、数据量的上升,我们的系统的性能如何去进一步 提高?系统哪个环节会是最大的瓶颈?是否有抗突发性能压力的能力,大概 可以满足多少的 TPS 和 QPS,怎么去做来实现高性能,这些问题都需要我 们去思考。 3. 高可用:是否有单点的组件,非单点的组件如何做故障转移?是否考虑过多活 的方案?是否有数据丢失的可能性?数据丢失如何恢复?出现系统宕机情况, 对业务会造成哪些影响?有无其他补救方案?这些问题需要想清楚,有相应 的解决方案。 4. 可扩展性:A 和 B 的业务策略相差无几,后面会不会继续衍生出 C 的业务策 略,随着业务的发展哪些环节可以做扩展,如何做扩展?架构设计上需要考 虑到业务的可扩展性。 5. 可伸缩性:每个环节的服务是不是无状态的?是否都是可以快速横向扩展的? 扩容需要怎么做手动还是自动?扩展后是否可以提高响应速度?这所有的问 题都需要我们去思考清楚,并有对应的解决方案。 6. 弹性处理:消息重复消费、接口重复调用对应的服务是否保证幂等?是否考虑 了服务降级?哪些业务支持降级?支持自动降级还是手工降级?是否考虑了 服务的超时熔断、异常熔断、限流熔断?触发熔断后对客户的影响?服务是 否做了隔离,单一服务故障是否影响全局?这些问题统统需要我们想清楚对 应的解决方案,才会进一步保证架构设计的合理性。 7. 兼容性:上下游依赖是否梳理过,影响范围多大?怎么进行新老系统替换?新 老系统能否来回切换?数据存储是否兼容老的数据处理?如果对你的上下游 系统有影响,是否通知到上下游业务方?上下游依赖方进行升级的方案成本 如何最小化?这些问题需要有完美的解决方案,稍有不慎会导致故障。 8. 安全性:是否彻底避免 SQL 注入和 XSS ?是否有数据泄露的可能性?是否 做了风控策略?接口服务是否有防刷保护机制?数据、功能权限是否做了控制?小二后台系统是否做了日志审计?数据传输是否加密验签?应用代码中 是否有明文的 AK/SK、密码?这些安全细节问题需要我们统统考虑清楚,安 全问题任何时候都不能轻视。 9. 可测性:测试环境和线上的差异多大?是否可以在线上做压测?线上压测怎 么隔离测试数据?是否有测试白名单功能?是否支持部署多套隔离的测试环 境?测试黑盒白盒工作量的比例是怎么样的?新的方案是否非常方便测试, 在一定程度也需要考量。 10. 可运维性:系统是否有初始化或预热的环节?数据是否指数级别递增?业务 数据是否需要定期归档处理?随着时间的推移如果压力保持不变的话系统需 要怎么来巡检和维护?业务运维方面的设计也需要充分考虑到。 11. 监控与报警:对外部依赖的接口是否添加了监控与报警?应用层面系统内部 是否有暴露了一些指标作监控和报警?系统层面使用的中间件和存储是否有 监控报警?只有充分考虑到各个环节的监控、报警,任何问题会第一时间通 知到研发,阻止故障进一步扩散。 其实不同阶段的项目有不同的目标,我们不会在项目起步的时候做 99.99% 的 可用性支持百万 QPS 的架构,高效完成项目的业务目标也是架构考虑的因素之一。 而且随着项目的发展,随着公司中间件和容器的标准化,很多架构的工作被标准化替 代,业务代码需要考虑架构方面伸缩性运维性等等的需求越来越少,慢慢的这些工作 都能由架构和运维团队来接。一开始的时候我们可以花一点时间来考虑这些问题,但 是不是所有的问题都需要有最终的方案。
Lee_tianbai 2020-12-30 18:33:39 0 浏览量 回答数 0

回答

主持人:大家好,2009是计算机专业实行全国统考的第一年,我们邀请到海天·跨考专业课辅导中心张老师来给大家讲讲2009年计算机考研大纲,张老师好。 张文平:主持人好,大家好。 主持人:2009年计算机专业考研主要在哪些方面做了改革。 张文平:计算机专业考研在2009年做了非常重大的改革,首先是采用了全国统考的方式来实行统一命题;其次,考试的范围(针对各校初试而言)加大至四门科目,即数据结构、计算机组成原理、操作系统、计算机网络四个部分组成;第三,专业课复试的比例和权重将会有所增加。因为到目前为止,绝大部分公布了招生简章的学校都表示将参加计算机统考,但是各个学校的计算机专业的侧重点和研究方向还是差异非常大的,这就导致了将会有比较多的学校会通过复试的方式来选拔自己所需的人才。 主持人:2009计算机大纲大概的范围是怎么分布的。 张文平:各个科目之间所占分数如下:数据结构和计算机组成原理各占45分,操作系统占了35分,计算机网络占了25分。总的来看,计算机统考后加大了考试的范围和考试的知识面,但总体的考试的重难点还是传统的考试科目占据优势,比如数据结构和计算机组成原理(一般学校的统考前的必考科目)占据了90分,所以说重难点还是在这两个科目上面,其他的像操作系统和计算机网络占据分值较少,并且相对来讲比数据结构和计算机原理简单,所以说复习的重难点还是在前两个科目上。比如,清华大学和北京航空航天大学这几年的初试科目均为数据结构、计算机组成原理和操作系统,北京邮电大学为数据结构和计算机组成原理,北京大学为数据结构和操作系统。 主持人:2009计算机统考的题型是怎么分布的? 张文平:统考后计算机只有两种题型:单项选择题和综合应用题,选择题占了80分,共四十道题,从这点上可以很明显的看出来,考查的知识点将会相对的比较全面,此外综合应用题占了70分,针对操作系统和数据结构的综合应用题都相对简单些,所以这块的重难点还是在数据结构和计算机原理上面。一般来讲,专业课统考第一次考试都往往比较简单,主要是方便广大考生备考,然后接下来的考试难道慢慢加大。这个从往年的那些统考科目里面得到了充分的体现,所以同学们完全没有必要担心考试科目和考试范围的加大,只要用心复习,按照大纲的要求把具体的考点掌握全,掌握牢固,拿高分还是非常有希望的。我对比了下统考后大纲的题型和往年各大高校的考试题型,像北京大学主要有填空题、简答题和算法分析题等。清华、北航主要有简答题、填空题、判断题和运算题等。所以,题型还是变化蛮大的,再者,从各科公布的考试知识点来讲,总体上并不是特别难,这给备考的同学们带来了很大的信心。 主持人:大纲公布后大家用什么参考书目比较合适。 张文平:由于统考课程分为数据结构、计算机组成原理、操作系统和计算机网络四个部分,因此,建议大家每个部分都找相应的专业课教材进行复习。 数据结构大家可以选择清华大学出版社的《数据结构(第二版)》(严蔚敏主编)。这本书有多种语言的版本,建议选择C语言的版本,在复习的过程中,还可以配以相应的习题集。 操作系统方面建议大家选择西安电子科技大学出版社的《计算机操作系统(第三版)》(汤小丹、汤子瀛等主编),该教材适合于初学者,写得比较简单。同时,也配以《计算机操作系统学习指导与题解》(西安电子科技大学出版社,汤子瀛等主编),效果会比较好。 计算机组成原理的复习,建议选择高等教育出版社的《计算机组成原理(第2版)(唐朔飞主编),该书写得比较好,曾经获得优秀教材称号,同时也是国家高等教育“十一五”教材。在学习的过程中,同样,配以《计算机组成原理:学习指导与习题解答》(唐朔飞,高等教育出版社)。 在计算机网络方面,推荐大家使用电子工业出版社的《计算机网络(第5版)》(谢希仁主编)。另外,高等教育出版社的《数据通信与计算机网络(第2版)》(高传善、毛迪林、曹袖主编)也可以用来自学。 对于教材的学习,重点在于对基本概念和基本理论的理解,特别是计算机组成原理和计算机网络,概念性的知识居多,需要我们有充分的耐心,认真对待。而对于数据结构、操作系统,则除了掌握基本原理以外,还需要掌握理论知识的实际应用。这一点在综合应用题中将会体现的非常明显,一定要引起大家的足够重视。 主持人:如何参照大纲进行复习。 张文平:严格按照考试大纲复习。大纲出来后,一定要以考试大纲为准绳,科学安排如前分析,统一考试试卷最鲜明的特点就是严格按照考试大纲命题,无论命题思路、题型、比例乃至考查方式,无一不体现了考试大纲的要求。因此,复习最根本的要求就以大纲为指导确定复习内容和复习强度,全面复习与重点复习相结合。保证对知识点都能掌握,考试的重难点都能够把握。暑假参加计算机统考的同学专业课应该开始复习了。前期可以多看几遍书,不停的看,反复看。这样慢慢就会品出不同的滋味或者说找到自己复习知识时的盲点,仔细把课本从头到位看四五遍甚至更多这是很必要的。关于相应的复习规划这个届时各大网站都将有相关的复习攻略,这里就不多讲了。 主持人:是不是所有的学校都参加统考。 张文平:从目前的情况来看,绝大部分的学校都将参加计算机的统考。目标公布的参加统考的学校中,北大、清华、浙大、北航、北邮、上交大、西交大等都赫然在列,有这些学校作为带头,相信参加统考的学校的规模一定不少。所以同学们也可以放心的准备了,即使目前学校还没有定下来也没有关系,一般的学校都会参加统考。具体的择校咨询咱们可以在下期的节目中再做深入的交流。 张文平:谢谢大家,谢谢主持人。 推荐你去: 计算机考验快讯 计算机考研经验 计算机院校报考
寒凝雪 2019-12-02 01:23:07 0 浏览量 回答数 0

问题

ZooKeeper介绍、分析、理解

一、ZooKeeper是什么? ZooKeeper is a distributed, open-source coordination service for distributed applications. ...
小柒2012 2019-12-01 21:21:22 11496 浏览量 回答数 2

问题

性能测试技术怎么进行?

1 编写目的 制定性能测试实施指南,从技术角度制定性能测试实施过程中关键技术规范,更好的对系统进行性能测试,帮助客户更好地从技术上来规避系统上线后的风险。 2 适用范围 适用于性能测试所有需要...
猫饭先生 2019-12-01 21:26:08 1341 浏览量 回答数 0

回答

  算法,数据结构是关键,另外还有组合数学,特别是集合与图论,概率论也重要。推荐买一本《算法导论》,那本书行,看起来超爽。。。基本掌握语法还不行啊,语法的超熟练掌握,不然出了错误很难调试的。。。最重要的是超牛皮的头脑啦,分析能力,逻辑推理能力很重要。ACM很好玩啦,祝你成功。。。   acm是3人一组的,以学校为单位报名的,也就是说要得到学校同意,还要有2个一起搞的。其实可能是你不知道你们学校搞acm的地方,建议你好好询问下你们学校管科技创新方面的人。建议你找几个兴趣相同的一起做,互相探讨效果好多了,团队合作也是acm要求的3大能力之一。   数据结构远远不够的,建议你看算法导论,黑书,oj的话个人觉得还是poj好,有水题有好题,而且做的人多,要解题报告什么的也好找。我们就是一些做acm的学生一起搞,也没老师,这样肯定能行的。   基础的话是语言,然后数据结构,然后算法。   ACM有三个方向:算法,数学,实现   要求三种能力:英文,自学,团队协作   简单的说,你要能读懂英文的题意描述,要有一门acm能使用的编程语言,要会数据结构,有一点数学基础,一点编程方面天赋,要有兴趣和毅力(最重要),就具有做ACM的基本条件了。   做acm我推荐c,c++也可以,java在某些情况下好用,但是大多数情况的效率和代码量都不大好,所以建议主用c++,有些题目用java   还有什么问题,可以问我啊。   不好意思,没见过用java描述的acm书籍,大多数是用伪命令,其他有的用的c,c++,老一些的用pascal。java只是用来做高精度的一些题的,个人觉得不用专门看这方面的书,java的基本部分学好就够用了。所以我还是推荐主用c++,在高精度和个别题再用java。你可以找找java描述的算法设计与分析,这个好像有   数据结构:C语言版 清华大学出版社 严蔚敏 《数据结构》   算法:清华大学出版社 王晓东 《算法设计与分析》   麻省理工大学 中译本:机械工业出版社 《算法导论》   基本上这三本书就已经足够了,建议一般水平的人先不要看算法导论,待另外两本书看的差不多的时候,再看算法导论加深理解。   另外还有很多针对性更强的书籍,不过针对性太强,这里就不多介绍了。   以上一些都是些算法方面的书,最好的方式就是做题与看书相结合,很多在线做题的网站,PKU,ZOJ很多,推荐PKU,题目比较多,参与的人比较多。做一段时间的题,然后看书,研究算法,再做题,这样进步比较快。   还有关于ACM竞赛,我有自己的一点话说。   首先说下ACM/ICPC是个团队项目,最后的参赛名额是按照学校为单位的,所以找到志同道合的队友和学校的支持是很重要的。   刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇文章里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助。   一、语言是最重要的基本功   无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。其实,笔者并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。   接着说C和C++。许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。   而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。   C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。   通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误:   在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由于一个带缓冲一个不带,所以输出一长就混乱了。只是因为当时judge team中负责F题的人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地方的。   现在我们转入第二个方面的讨论,基础学科知识的积累。   二、以数学为主的基础知识十分重要   虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧。下面我来谈谈在竞赛中应用的数学的主要分支。   1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。   图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。   竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。   2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。   3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。   4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。   5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。   6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。   7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。   以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。   三、数据结构与算法是真正的核心   虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。   先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。   接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。   常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。   四、团队配合   通过以上的介绍大家也可以看出,信息学竞赛对于知识面覆盖的非常广,想凭一己之力全部消化这些东西实在是相当困难的,这就要求我们尽可能地发挥团队协作的精神。同组成员之间的熟练配合和默契的形成需要时间,具体的情况因成员的组成不同而不同,这里我就不再多说了。   五、练习、练习、再练习   知识的积累固然重要,但是信息学终究不是看出来的,而是练出来的,这是多少前人最深的一点体会,只有通过具体题目的分析和实践,才能真正掌握数学的使用和算法的应用,并在不断的练习中增加编程经验和技巧,提高对时间复杂度的感性认识,优化时间的分配,加强团队的配合。总之,在这里光有纸上谈兵是绝对不行的,必须要通过实战来锻炼自己。   大家一定要问,我们去哪里找题做,又如何检验程序是否正确呢。这大可不必担心,现在已经有了很多网上做题的站点,这些站点提供了大量的题库并支持在线判卷,你只需要把程序源码提交上去,马上就可以知道自己的程序是否正确,运行所使用的时间以及消耗的内存等等状况。下面我给大家推荐几个站点,笔者不建议大家在所有这些站点上做题,选择一个就可以了,因为每个站点的题都有一定的难易比例,系统地做一套题库可以使你对各种难度、各种类型的题都有所认识。   1、Ural:   Ural是中国学生对俄罗斯的Ural州立大学的简称 ,那里设立了一个Ural Online Problem Set,并且支持Online Judge。Ural的不少题目算法性和趣闻性都很强,得到了国内广大学生的厚爱。根据“信息学初学者之家”网站的统计,Ural的题目类型大概呈如下的分布:   题型   搜索   动态规划   贪心   构造   图论   计算几何   纯数学问题   数据结构   其它   所占比例   约10%   约15%   约5%   约5%   约10%   约5%   约20%   约5%   约25%   这和实际比赛中的题型分布也是大体相当的。有兴趣的朋友可以去看看。   2、UVA:   UVA代表西班牙Valladolid大学(University de Valladolid)。该大学有一个那里设立了一个PROBLEM SET ARCHIVE with ONLINE JUDGE ,并且支持ONLINE JUDGE,形式和Ural大学的题库类似。不过和Ural不同的是,UVA题目多的多,而且比较杂,而且有些题目的测试数据比较刁钻。这使得刚到那里做题的朋友往往感觉到无所适从,要么难以找到合适的题目,要么Wrong Answer了很多次以后仍然不知道错在那里。 如果说做Ural题目主要是为了训练算法,那么UVA题目可以训练全方位的基本功和一些必要的编程素质。UVA和许多世界知名大学联合办有同步网上比赛,因此那里强人无数,不过你先要使自己具有听懂他们在说什么的素质:)   3、ZOJ:   ZOJ是浙江大学建立的ONLINE JUDGE,是中国大学建立的第一个同类站点,也是最好和人气最高的一个,笔者和许多班里的同学就是在这里练习。ZOJ虽然也定位为一个英文网站,但是这里的中国学生比较多,因此让人觉得很亲切。这里目前有500多道题目,难易分配适中,且涵盖了各大洲的题目类型并配有索引,除此之外,ZOJ的JUDGE系统是几个网站中表现得比较好的一个,很少出现Wrong Answer和Presentation error混淆的情况。这里每月也办有一次网上比赛,只要是注册的用户都可以参加。   说起中国的ONLINE JUDGE,去年才开始参加ACM竞赛的北京大学现在也建立了自己的提交系统;而我们学校也是去年开始参加比赛,现在也有可能推出自己的提交系统,如果能够做成,到时候大家就可以去上面做题了。同类网站的飞速发展标志着有越来越多的同学有兴趣进入信息学的领域探索,这是一件好事,同时也意味着更激烈的竞争。
小旋风柴进 2019-12-02 01:20:20 0 浏览量 回答数 0

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现
剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

问题

性能优化总结:CPU和Load、NIO以及多线程:报错

当应用遇到规模化问题的时候,就是考虑性能优化的时候了。今天同事和我聊起了NIO在客户端的使用与BIO有什么优势,也勾起了我前一阵子和其他同 学交流优化的一些想法,纯粹个人的一点想法。 CPU利用率...
kun坤 2020-06-07 21:31:24 0 浏览量 回答数 1

问题

性能测试:软件测试的重中之重

       性能测试在软件的质量保证中起着重要的作用,它包括的测试内容丰富多样。中国软件评测中心将性能测试概括为三个方面:应用在客户端性能的测试、应用在网络上性能的测试和应用在服务器端性能的测试。通常情况下&#...
云效平台 2019-12-01 21:45:09 5839 浏览量 回答数 1

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

问题

安卓与iOS百问,开发者系统指南

iOS与安卓的主要区别在于1、两者运行机制不同:iOS采用的是沙盒运行机制,安卓采用的是虚拟机运行机制。2、两者后台制度不同:iOS中任何第三方程序都不能在后台运行;安卓中任何程序都能在后台运行,直到没有内存才会关闭。因此在进行应用开发的时...
yq传送门 2019-12-01 20:14:48 27317 浏览量 回答数 26

问题

#职场 8期 程序员的付费课程怎么赚钱

适合程序员创造的资产·付费课程 投入:★★★★ 前期要准备,后期要剪辑,录音还可能要购买硬件产出:★★★★★ 用户愿意为好的课程花钱持久性:★★★ 技术类课程大概半年需...
游客ih62co2qqq5ww 2020-05-06 14:34:31 12 浏览量 回答数 1

回答

转自DT财经 ,作者陷入焦虑的DT君 前两周播出的《明星大侦探—MGQ时尚风云》中,节目组设计了一个与中年危机相关的案件: 撒贝宁在这期节目中饰演一位40岁“上有老,下有狗”的杂志社时装编辑,虽然月入12w,但是每个月刨去房贷、车贷、儿子补习班费用、父母医疗保健费用以及各种家庭开支后,只能剩下1块钱。被主编无理辞退后,他由于年龄过大而迟迟找不到新工作,在家庭经济重担的支配下,对老板心生杀机…… 节目中的设定确实有些夸张,但剧本却是来源于真实生活的情绪。2019年“太南了”的一系列感叹中,充满了中年职场人的辛酸与苦涩。 微博上#35岁以上职场人去了哪儿#、#35岁定律#等话题屡屡冲上热搜,随便就能收获近亿的阅读量,知乎、朋友圈、头条……到处充斥着怎么应对35岁危机的回答和文章,“35岁危机”俨然已经成为一个大家公认的专有名词。 (图片说明:百度百科收录的“35岁危机”词条) 这让还未到35岁的小编,内心多少有些焦虑:35岁的职场人就业真有这么难吗?他们都面临着怎样的中年危机?难道除了卖保险,真的就无处可去了吗? DT财经联合智联招聘共同做了个小研究,通过招聘方与应聘者的数据,来看看35岁职场人真实的生存情况。 35岁真的很难吗? 首先,我们想知道,35岁真的面临一个更残酷的世界吗? 从人口结构的大盘面粗略判断,当代中年所面临的竞争,其实并不如他们的前辈或后辈那样激烈。 根据2010年国家第六次人口普查数据,到2019年我国34-43岁的中年人口数量为1.98亿,而44-53岁人口数量为2.42亿,24-33岁人口数量为2.27亿。 也就是说,不管是曾经的,还是未来的中年人,都比现在叫嚷着中年危机的劳动力数量旺盛不少,而他们所面临的,可并不是高速发展的黄金十年。 既然如此,为什么35岁危机的话题一直不绝于耳呢? 招聘方对岗位需求的描述,一定程度上能反映出职场的变幻风向。 从招聘需求来看,2019年第三季度所有的招聘岗位中,只有5%明确要求求职者的年龄低于35岁。 这个看起来并不高的比例,可能并不能完全说明市场的真实需求情况,毕竟从大家的日常吐槽和我们的小范围调研来看,许多公司对年龄的苛刻要求很多时候秉持着只干不说的原则,并不会明晃晃地写在岗位简介里。 但我们注意到一个变化趋势,明确要求求职者35岁以下的岗位比例,与两年前相比上涨了2个百分点,涨幅其实挺大的(60%)。这事实上表明,35岁职场人面临的境遇,确实是比两年前更难了些。 以这5%要求35岁以下的招聘职位作为研究样本,我们大致研究了下不同地方对中年职场人的友好度。 在各类企业中,要求35岁以下的职位比例最高的是国企,而民营公司在岗位要求中对35岁的求职者其实相对温和。 而从公司规模来看,规模越大的公司,要求35岁以下的职位比例就越高。10000人以上的超大公司在2017年就已超过6%;500-999人肩部大公司在两年前的比例还仅有2.1%,但两年间提高了近4个百分点至6%。 哪些行业更看重35岁的年龄线? 要求35岁以下的职位比例越来越高,其实与就业大环境和新兴行业的发展有关。 Linda在一家大数据创业公司做HR,她告诉小编:“这两年在招人的时候确实会优先选择35岁以下,甚至是30岁以下的年轻人,尤其是18年的裁员潮过后,大家其实都不好过。一般达到35岁的职场人在公司都担任比较重要的职务,而我们大数据属于新兴行业,公司的业务变化很快,在探索阶段并不需要那么多指挥官,我们更需要富有创造力、行动力强听指挥的战士。” Linda的话意味着,是否能在35岁前找到一家托付终身的企业至关重要。 可是,在35岁就找到能够让自己奋斗一生的公司,就和20岁就找到长相厮守的老伴一样不靠谱。这时候,选对行业很关键。 小编整理了2019年招聘需求中要求35岁以下职位比例最高和最低的行业。 我们发现,在众多行业中,银行、外包服务、中介服务、保险和通信行业对年龄的限制最大。也就是说,这些行业中有相对更多的岗位只需要年轻力壮的劳动力。 但也有计算机行业、检验检测、IT服务、学术科研和教育培训等行业,在招聘需求中对35岁以上的职场人相对比较宽容。 如果看一下这些行业给大家的固有印象,我们可以认为,在招聘中更看重35岁年龄线的行业,多属于大家印象中的传统行业;而在要求35岁以下职位比例最低的队伍中,新兴行业的比例会更高些。 从岗位来看,商超、保健、银行、房地产、社区等技术门槛较低的基础类岗位,在招聘中要求35岁以下的职位比例最高。 总结下来就是,工作内容更简单或对知识性技能要求更低的岗位,会更偏爱年轻人,毕竟人到中年,精力和体力都无法和年轻人相比。对于用人单位来说,与其去招一个成本更高的中年员工,不如多招几个应届大学生,年轻力壮,生产力更强。 而要求35岁以下职位比例最低的10个岗位中,IT、软件、硬件开发、IT管理、互联网产品、IT运维等互联网/技术岗位占去了大半,这都是对专业技术、创新性要求更高的行业岗位。至少从招聘需求来看,他们并不会太多强调年龄。 显然,这与我们的日常感受并不一致。 35岁话题中最常被吐槽的,恰好是这些不那么强调年龄的岗位从业者,而那些在招聘需求中有更多年龄限制的岗位,存在感并不太强。 这到底是为啥? 为什么35岁的你觉得“太南了” 我们需要明确的是,一个行业或岗位对年龄的限制少,并不意味着中年的求职者就会获得青睐。 35岁求职者的优势在于有更多经验与技能积累,而劣势在于体力和精力不够充沛,只有在更需要经验而非体力的岗位,中年职场人才会有更强的竞争力。 即使我们默认那些并没有对35岁划线的岗位都不需要干体力活,也并不意味着在这些岗位上,经验、积累和阅历就会有比较大的增值效果——如果年龄buff不能增效,用人单位自然会聘请更年轻、薪资要求更低的求职者。 所以,关键点在于,中年职场人是否进入了自己具备优势的行业。 根据智联招聘2019年第三季度的数据,互联网、房地产、教育培训、专业服务、计算机软件等行业,挤下了最多的35岁及以上求职者,而行政/后勤、销售业务、财务/审计/税务、人力资源和软件/互联网开发/系统集成等则是他们投递最多的职位。 我们计算了各个行业和岗位中简历投递数量与最终录用数量的比值,命名为竞争指数,以此来衡量应聘竞争的激烈程度。 我们发现,互联网、房地产、计算机软件、IT服务的行业竞争都格外激烈,而从职位来看,软件/互联网开发/系统集成的竞争指数更是一骑绝尘,97个人参与摸奖,只有1个人能获得offer,另外财务/审计/税务、人力资源、行政等职位的竞争指数也挺高。 这就意味着,上述岗位中,中年职场人不仅要和同龄人竞争,还要和年轻人竞争。 那么,在这些岗位中,中年职场人能获得年龄加成从而脱颖而出吗? 我们统计了各个职位要求工作经验10年以上的岗位数量,数量排名越靠前,则意味着这个职位对经验和阅历的需求度就更高,中年职场人也就相对更有优势。 从结果来看,要求工作经验10年以上岗位数量最多的职位主要可以分为两类,一类是管理向的,包括占比最多的高级管理,以及销售管理、生产管理、项目管理、质量管理等各类管理岗;一类是专业向的,包括土木建筑、财务审计、医院医疗、机械设计等等。 前面提到的竞争激烈的财务/审计/税务、人力资源和房地产相关职位,对工作经验的需求度都排在前列,中年职场人在这些赛道上握着更多本钱。 但相信你也注意到了,挤满了35岁以上求职者的互联网/IT/技术相关职位中,对于工作经验的需求度并没有那么高。虽然这是个典型的高薪赛道,但年龄并不会给中年求职者带来加成效果,如果薪资要求还比较高,实在很难竞争得过除了经验、什么都有的年轻人。 我们总结上述分析,被35岁危机困扰的核心问题可能在于,“理想”的薪资和岗位期望与“现实”竞争力存在分歧,而互联网、IT服务、计算机软件等行业的分歧更为严重。 38岁的陈斌曾经在一家互联网公司做新媒体运营,现在和朋友经营一家外贸公司,他也认同有些中年求职者理想与现实不匹配的问题:“见识过各行各业形形色色的中年求职者,他们对薪资的要求都很高,但被问到有什么核心竞争力的时候,又讲不出个所以然,对自己的未来也没有什么明确的规划。” 同样经历过35岁的他,认为并不存在什么35岁危机,没有能力每个年龄段其实都有危机:“足球运动员到了30岁一般都要大幅降薪,我觉得35岁的普通职场人应该要接受这个事实。你不接受,社会的毒打会让你清醒的。勿骄勿躁,努力提升自己,同时做好期望管理,少听媒体瞎bb。” 这话说得挺残酷,但从“35岁危机”中脱困的最好办法,确实是找到问题根本那个“理想”与“现实”的差距,实实在在地缩短它。 当然,对于已经有了家庭羁绊、要努力维持生活品质的中年人,这又是另外一个要不断感叹“太南了”的过程。 写到这里,我们突然想用《黄金时代》里的一段话作为结尾: “那一天我二十一岁,在我一生的黄金时代。我有好多奢望。我想爱,想吃,还想在一瞬间变成天上半明半暗的云。后来我才知道,生活就是个缓慢受锤的过程,人一天天老下去,奢望也一天天消失,最后变得像挨了锤的牛一样。可是我过二十一岁生日时没有预见到这一点。我觉得自己会永远生猛下去,什么也锤不了我。” (应受访者要求,Linda、陈斌为化名)
茶什i 2020-01-15 11:55:56 0 浏览量 回答数 0

问题

使用RDS不得不知的注意事项

1、RDS实例升级需要注意的事项 RDS在进行实例升级的过程中会出现最长30秒左右的连接闪断,需要您提前做好准备,并设置好程序跟RDS的自动重连,避免因为升级的闪断导致您的服务不可用。 2、...
belle.zhoux 2019-12-01 21:58:04 7668 浏览量 回答数 1

问题

ECS-CentOS  /etc/fstab格式简介

/etc/fstab 格式简介 <file system>     <dir>     <type>      <options>       <dump>      ...
ethnicity 2019-12-01 21:03:38 10993 浏览量 回答数 1

问题

使用RDS不得不知的注意事项

我要实例升级;我要数据回滚;RDS故障切换;我要,我要,我要~~ 亲,这些操作可是有风险的哦,你知道么? 让我们风险预知&#...
加菲 2019-12-01 21:29:54 15320 浏览量 回答数 6

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络
养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

问题

如何以最低的价格使用阿里云的带宽

一台1核+512M++20G系统盘+5M带宽的阿里云,价格157RMB。 20台的价格3140RMB。累计100M带宽。 对于BGP带宽,这个价格是非常实惠的(...
云代维 2019-12-01 21:45:12 36563 浏览量 回答数 17

回答

  开发者们都知道在高端智能手机系统中有两种应用程序:一种是基于本地(操作系统)运行的APP;一种是基于高端机的浏览器运行的WebApp,本文将主要讲解后者。   WebApp与Native App有何区别呢?   Native App:   1、开发成本非常大。   一般使用的开发语言为JAVA、C++、Objective-C。   2、更新体验较差、同时也比较麻烦   每一次发布新的版本,都需要做版本打包,且需要用户手动更新(有些应用程序即使不需要用户手动更新,但是也需要有一个恶心的提示)。   3、非常酷   因为native app可以调用IOS中的UI控件以UI方法,它可以实现WebApp无法实现的一些非常酷的交互效果   4、Native app是被Apple认可的   Native app可以被Apple认可为一款可信任的独立软件,可以放在Apple Stroe出售,但是Web app却不行。   Web App:   1、开发成本较低   使用web开发技术就可以轻松的完成web app的开发   2、升级较简单   升级不需要通知用户,在服务端更新文件即可,用户完全没有感觉   3、维护比较轻松   和一般的web一样,维护比较简单,它其实就是一个站点   Webapp说白了就是一个针对Iphone、Android优化后的web站点,它使用的技术无非就是HTML或HTML5、CSS3、JavaScript,服务端技术JAVA、PHP、ASP。   当然,因为这些高端智能手机(Iphone、Android)的内置浏览器都是基于webkit内核的,所以在开发WEBAPP时,多数都是使用HTML5和CSS3技术做UI布局。当使用HTML5和CSS3l做UI时,若还是遵循着一般web开发中使用HTML4和CSS2那样的开发方式的话,这也就失去了WEBAPP的本质意义了,且有些效果也无法实现的,所以在此又回到了我们的主题–webapp的布局方式和技术。   哥在此说明一下,在此所说的移动平台前端开发是指针对高端智能手机(如Iphone、Android)做站点适配也就是WebApp,并非是针对普通手机开发Wap 2.0,所以在阅读本篇文章以前,你需要对webkit内核的浏览器有一定的了解,你需要对HTML5和CSS3有一定的了解。如果你已经对此有所了解,那现在就开始往下阅读吧……   1、首先我们来看看webkit内核中的一些私有的meta标签,这些meta标签在开发webapp时起到非常重要的作用   1   <meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0;" name="viewport" />   2   <meta content="yes" name="apple-mobile-web-app-capable" />   3   <meta content="black" name="apple-mobile-web-app-status-bar-style" />   4   <meta content="telephone=no" name="format-detection" />      第一个meta标签表示:强制让文档的宽度与设备的宽度保持1:1,并且文档最大的宽度比例是1.0,且不允许用户点击屏幕放大浏览;   第二个meta标签是iphone设备中的safari私有meta标签,它表示:允许全屏模式浏览;   第三个meta标签也是iphone的私有标签,它指定的iphone中safari顶端的状态条的样式;   第四个meta标签表示:告诉设备忽略将页面中的数字识别为电话号码   2、HTML5标签的使用   在开始编写webapp时,哥建议前端工程师使用HTML5,而放弃HTML4,因为HTML5可以实现一些HTML4中无法实现的丰富的WEB应用程序的体验,可以减少开发者很多的工作量,当然了你决定使用HTML5前,一定要对此非常熟悉,要知道HTML5的新标签的作用。比如定义一块内容或文章区域可使用section标签,定义导航条或选项卡可以直接使用nav标签等等。   3、放弃CSS float属性   在项目开发过程中可以会遇到内容排列排列显示的布局(见下图),假如你遇见这样的视觉稿,哥建议你放弃float,可以直接使用display:block;   4、利用CSS3边框背景属性   这个按钮有圆角效果,有内发光效果还有高光效果,这样的按钮使用CSS3写是无法写出来的,当然圆角可以使用CSS3来写,但高光和内发光却无法使用CSS3编写,   这个时候你不妨使用-webkit-border-image来定义这个按钮的样式。   -webkit-border-image就个很复杂的样式属性。   5、块级化a标签   请保证将每条数据都放在一个a标签中,为何这样做?因为在触控手机上,为提升用户体验,尽可能的保证用户的可点击区域较大。   6、自适应布局模式   在编写CSS时,我不建议前端工程师把容器(不管是外层容器还是内层)的宽度定死。为达到适配各种手持设备,我建议前端工程师使用自适应布局模式(支付宝采用了自适应布局模式),因为这样做可以让你的页面在ipad、itouch、ipod、iphone、android、web safarik、chrome都能够正常的显示,你无需再次考虑设备的分辨率。      7、学会使用webkit-box   上一节,我们说过自适应布局模式,有些同学可能会问:如何在移动设备上做到完全自适应呢?很感谢webkit为display属性提供了一个webkit-box的值,它可以帮助前端工程师做到盒子模型灵活控制。   8、如何去除Android平台中对邮箱地址的识别   看过iOS webapp API的同学都知道iOS提供了一个meta标签:用于禁用iOS对页面中电话号码的自动识别。在iOS中是不自动识别邮件地址的,但在Android平台,它会自动检测邮件地址,当用户touch到这个邮件地址时,Android会弹出一个框提示用户发送邮件,如果你不想Android自动识别页面中的邮件地址,你不妨加上这样一句meta标签在head中   1   <meta content="email=no" name="format-detection" />      9、如何去除iOS和Android中的输入URL的控件条   你的老板或者PD或者交互设计师可能会要求你:能否让我们的webapp更加像nativeapp,我不想让用户看见那个输入url的控件条?   答案是可以做到的。我们可以利用一句简单的javascript代码来实现这个效果   1   setTimeout(scrollTo,0,0,0);      请注意,这句代码必须放在window.onload里才能够正常的工作,而且你的当前文档的内容高度必须是高于窗口的高度时,这句代码才能有效的执行。   10、如何禁止用户旋转设备   我曾经也想禁止用户旋转设备,也想实现像某些客户端那样:只能在肖像模式或景观模式下才能正常运行。但现在我可以很负责任的告诉你:别想了!在移动版的webkit中做不到!   至少Apple webapp API已经说到了:我们为了让用户在safari中正常的浏览网页,我们必须保证用户的设备处于任何一个方位时,safari都能够正常的显示网页内容(也就是自适应),所以我们禁止开发者阻止浏览器的orientationchange事件,看来苹果公司的出发点是正确的,苹果确实不是一般的苹果。   iOS已经禁止开发者阻止orientationchange事件,那Android呢?对不起,我没有找到任何资料说Android禁止开发者阻止浏览器orientationchange事件,但是在Android平台,确实也是阻止不了的。   11、如何检测用户是通过主屏启动你的webapp   看过Apple webapp API的同学都知道iOS为safari提供了一个将当前页面添加主屏的功能,按下iphoneipodipod touch底部工具中的小加号,或者ipad顶部左侧的小加号,就可以将当前的页面添加到设备的主屏,在设备的主屏会自动增加一个当前页面的启动图标,点击该启动图标就可以快速、便捷的启动你的webapp。从主屏启动的webapp和浏览器访问你的webapp最大的区别是它清除了浏览器上方和下方的工具条,这样你的webapp就更加像是nativeapp了,还有一个区别是window对像中的navigator子对象的一个standalone属性。iOS中浏览器直接访问站点时,navigator.standalone为false,从主屏启动webapp时,navigator.standalone为true, 我们可以通过navigator.standalone这个属性获知用户当前是否是从主屏访问我们的webapp的。   在Android中从来没有添加到主屏这回事!   12、如何关闭iOS中键盘自动大写   我们知道在iOS中,当虚拟键盘弹出时,默认情况下键盘是开启首字母大写的功能的,根据某些业务场景,可能我们需要关闭这个功能,移动版本webkit为input元素提供了autocapitalize属性,通过指定autocapitalize=”off”来关闭键盘默认首字母大写。      13、iOS中如何彻底禁止用户在新窗口打开页面   有时我们可能需要禁止用户在新窗口打开页面,我们可以使用a标签的target=”_self“来指定用户在新窗口打开,或者target属性保持空,但是你会发现iOS的用户在这个链接的上方长按3秒钟后,iOS会弹出一个列表按钮,用户通过这些按钮仍然可以在新窗口打开页面,这样的话,开发者指定的target属性就失效了,但是可以通过指定当前元素的-webkit-touch-callout样式属性为none来禁止iOS弹出这些按钮。这个技巧仅适用iOS对于Android平台则无效。   14、iOS中如何禁止用户保存图片\复制图片   我们在第13条技巧中提到元素的-webkit-touch-callout属性,同样为一个img标签指定-webkit-touch-callout为none也会禁止设备弹出列表按钮,这样用户就无法保存\复制你的图片了。   15、iOS中如何禁止用户选中文字   我们通过指定文字标签的-webkit-user-select属性为none便可以禁止iOS用户选中文字。   16、iOS中如何获取滚动条的值   桌面浏览器中想要获取滚动条的值是通过document.scrollTop和document.scrollLeft得到的,但在iOS中你会发现这两个属性是未定义的,为什么呢?因为在iOS中没有滚动条的概念,在Android中通过这两个属性可以正常获取到滚动条的值,那么在iOS中我们该如何获取滚动条的值呢?   通过window.scrollY和window.scrollX我们可以得到当前窗口的y轴和x轴滚动条的值。   17、如何解决盒子边框溢出   当你指定了一个块级元素时,并且为其定义了边框,设置了其宽度为100%。在移动设备开发过程中我们通常会对文本框定义为宽度100%,将其定义为块级元素以实现全屏自适应的样式,但此时你会发现,该元素的边框(左右)各1个像素会溢了文档,导致出现横向滚动条,为解决这一问题,我们可以为其添加一个特殊的样式-webkit-box-sizing:border-box;用来指定该盒子的大小包括边框的宽度。   18、如何解决Android 2.0以下平台中圆角的问题   如果大家够细心的话,在做wap站点开发时,大家应该会发现android 2.0以下的平台中问题特别的多,比如说边框圆角这个问题吧。   在对一个元素定义圆角时,为完全兼容android 2.0以下的平台,我们必须要按照以下技巧来定义边框圆角:   1\-webkit这个前缀必须要加上(在iOS中,你可以不加,但android中一定要加);   2\如果对针对边框做样式定义,比如border:1px solid #000;那么-webkit-border-radius这属性必须要出现在border属性后。   3\假如我们有这样的视觉元素,左上角和右上角是圆角时,我们必须要先定义全局的(4个角的圆角值)-webkit-border-radius:5px;然后再依次的覆盖左下角和右下角,-webkit-border-bottom-left-radius:0;-webkit-border-bottom-right-border:0;否则在android 2.0以下的平台中将全部显示直角,还有记住!-webkit这个前缀一定要加上!   19、如何解决android平台中页面无法自适应   虽然你的html和css都是完全自适应的,但有一天如果你发现你的页面在android中显示的并不是自适应的时候,首先请你确认你的head标签中是否包含以下meta标签:   1   <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=1.0,user-scalable=0;" />      如果有的话,那请你再仔细的看清楚有没有这个属性的值width=device-width,如果没有请立即加上吧!   20、如何解决iOS 4.3版本中safari对页面中5位数字的自动识别和自动添加样式   新的iOS系统也就是4.3版本,升级后对safari造成了一个bug:即使你添加了如下的meta标签,safari仍然会对页面中的5位连续的数字进行自动识别,并且将其重新渲染样式,也就是说你的css对该标签是无效的。   1   <meta name="format-detection" content="telphone=no" />      我们可以用一个比较龌龊的办法来解决。比如说支付宝wap站点中显示金额的标签,我们都做了如下改写:   1   <button class="t-balance"style="background:none;padding:0;border:0;">95009.00</button>元    “答案来源于网络,供您参考” 希望以上信息可以帮到您!
牧明 2019-12-02 02:17:31 0 浏览量 回答数 0

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20201202)

产品简介 什么是MaxCompute呢? https://developer.aliyun.com/ask/289579 使用MaxCompute需要什么专业技能? https://developer.aliyun.co...
亢海鹏 2020-05-29 15:10:00 27621 浏览量 回答数 35

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。
剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    
石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

问题

《三体》里的超级计算机,我们今天能造出来吗?

                  在科幻巨作《三体》里,刘慈欣有这么一段描述:                        每秒500万亿次浮点运算的计算机,出现在“面壁计划”里。这是...
宝惜 2019-12-01 21:17:16 6348 浏览量 回答数 6

问题

阿里云和盛大云社区对比http://v9zz.com/node/153

最近在阿里云的论坛逛了逛,主要是熟悉下社区,发发外链,况且阿里云最近推出了性价比极高的中低端产品,我也有些心痒。经过这两天的交流,我决定对两家社区做个小小对比。阿里云社区...
qilu 2019-12-01 20:16:37 6568 浏览量 回答数 3

问题

如何彻底消灭Bug?

提高缺陷响应力有助于提升软件质量,如果我们不能把Bug扼杀在摇篮里,就尽快干掉它,把它变为一个happy accident吧! 太长不读版 Why do programm...
问问小秘 2020-06-29 11:07:58 13 浏览量 回答数 2

问题

如何用发展的眼光看待seo

    如今,人们的日常生活越来越离不开网络,网络的发展已经成为像电视、报纸一样重要的媒体。精明的商家自然不忽略这样重要的的媒体,想通过各种办法,在网络上展示自己的产品,...
纸鸳鸯 2019-12-01 22:01:22 7256 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

Maven本地仓库配置报错:配置报错  GO语言配置什么的都没问题,但就是LiteIDE配置不好。。。:配置报错  Maven 配置nexus仓库 POM文件报错:配置报错  10个你可能从未用过的PHP函数:配置报错  QT...
问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板