• 关于

    外存储子系统问题怎么解决

    的搜索结果

回答

转自:思否 话说当下技术圈的朋友,一起聚个会聊个天,如果不会点大数据的知识,感觉都融入不了圈子,为了以后聚会时让你有聊有料,接下来就跟随我的讲述,一起与大数据混个脸熟吧,不过在“撩”大数据之前,还是先揭秘一下研发这些年我们都经历了啥? 缘起:应用系统架构的从 0 到 1 揭秘:研发这些年我们都经历了啥? 大道至简。生活在技术圈里,大家静下来想想,无论一个应用系统多庞大、多复杂,无非也就是由一个漂亮的网站门面 + 一个丑陋的管理模块 + 一个闷头干活的定时任务三大板块组成。 我们负责的应用系统当然也不例外,起初设计的时候三大模块绑在一起(All in one),线上跑一个 Tomcat 轻松就搞定,可谓是像极了一个大泥球。 衍化至繁。由于网站模块、管理平台、定时任务三大模块绑定在一起,开发协作会比较麻烦,时不时会有代码合并冲突出现;线上应用升级时,也会导致其它模块暂时不能使用,例如如果修改了一个定时任务的配置,可能会导致网站、管理平台的服务暂时不能用。面对诸多的不便,就不得不对 All in one 的大泥球系统进行拆解。 随着产品需求的快速迭代,网站 WEB 功能逐渐增多,我们起初设计时雄心勃勃(All in one 的单体架构),以为直接按模块设计叠加实现就好了,谁成想系统越发显得臃肿(想想也是走弯路啦!)。所以不得不改变实现思路,让模块服务下沉,分布式思想若现——让原来网站 WEB 一个系统做的事,变成由子系统分担去完成。 应用架构的演变,服务模块化拆分,随之而来的就是业务日志、业务数据散落在各处。随着业务的推广,业务量逐日增多,沉淀的数据日益庞大,在业务层面、运维层面上的很多问题,逐渐开始暴露。 在业务层面上,面对监管机构的监管,整合提取散落在各地的海量数据稍显困难;海量数据散落,想做个统计分析报表也非常不易。在运维层面上,由于缺少统一的日志归档,想基于日志做快速分析也比较困难;如果想从散落在各模块的日志中,进行调用链路的分析也是相当费劲。 面对上述问题,此时一个硕大的红色问号出现在我们面前,到底该如何解决? 面对结构化的业务数据,不妨先考虑采用国内比较成熟的开源数据库中间件 Sharding-JDBC、MyCat 看是否能够解决业务问题;面对日志数据,可以考虑采用 ELK 等开源组件。如果以上方案或者能尝试的方式都无法帮我们解决,尝试搬出大数据吧。 那到底什么时候需要用大数据呢?大数据到底能帮我们解决什么问题呢?注意,前方高能预警,门外汉“撩”大数据的正确姿势即将开启。 邂逅:一起撬开大数据之门 槽点:门外汉“撩”大数据的正确姿势 与大数据的邂逅,源于两个头痛的问题。第一个问题是海量数据的存储,如何解决?第二个问题是海量数据的计算,如何解决? 面对这两个头痛的问题,不得不提及谷歌的“三驾马车”(分布式文件系统 GFS、MapReduce 和 BigTable),谷歌“三驾马车”的出现,奠定了大数据发展的基石,毫不夸张地说,没有谷歌的“三驾马车”就没有大数据,所以接下来很有必要逐一认识。 大家都知道,谷歌搜索引擎每天要抓取数以亿计的网页,那么抓取的海量数据该怎么存储? 谷歌痛则思变,重磅推出分布式文件系统 GFS。面对谷歌推出的分布式文件系统 GFS 架构,如 PPT 中示意,参与角色着实很简单,主要分为 GFS Master(主服务器)、GFS Chunkserver(块存储服务器)、GFS Client(客户端)。 不过对于首次接触这个的你,可能还是一脸懵 ,大家心莫慌,接下来容我抽象一下。 GFS Master 我们姑且认为是古代的皇上,统筹全局,运筹帷幄。主要负责掌控管理所有文件系统的元数据,包括文件和块的命名空间、从文件到块的映射、每个块所在的节点位置。说白了,就是要维护哪个文件存在哪些文件服务器上的元数据信息,并且定期通过心跳机制与每一个 GFS Chunkserver 通信,向其发送指令并收集其状态。 GFS Chunkserver 可以认为是宰相,因为宰相肚子里面能撑船,能够海纳百川。主要提供数据块的存储服务,以文件的形式存储于 Chunkserver 上。 GFS Client 可以认为是使者,对外提供一套类似传统文件系统的 API 接口,对内主要通过与皇帝通信来获取元数据,然后直接和宰相交互,来进行所有的数据操作。 为了让大家对 GFS 背后的读写流程有更多认识,献上两首歌谣。 到这里,大家应该对分布式文件系统 GFS 不再陌生,以后在饭桌上讨论该话题时,也能与朋友交涉两嗓子啦。 不过这还只是了解了海量数据怎么存储,那如何从海量数据存储中,快速计算出我们想要的结果呢? 面对海量数据的计算,谷歌再次创新,推出了 MapReduce 编程模型及实现。 MapReduce 主要是采取分而治之的思想,通俗地讲,主要是将一个大规模的问题,分成多个小规模的问题,把多个小规模问题解决,然后再合并小规模问题的结果,就能够解决大规模的问题。 也有人说 MapReduce 就像光头强的锯子和锤子,世界上的万事万物都可以先锯几下,然后再锤几下,就能轻松搞定,至于锯子怎么锯,锤子怎么锤,那就是个人的手艺了。 这么解释不免显得枯燥乏味,我们不妨换种方式,走进生活真实感受 MapReduce。 斗地主估计大家都玩过,每次开玩之前,都会统计一副牌的张数到底够不够,最快的步骤莫过于:分几份给大家一起数,最后大家把数累加,算总张数,接着就可以愉快地玩耍啦... ...这不就是分而治之的思想吗?!不得不说架构思想来源于人们的生活! 再举个不太贴切的例子来感受MapReduce 背后的运转流程,估计很多人掰过玉米,每当玉米成熟的季节,地主家就开始忙碌起来。 首先地主将一亩地的玉米分给处于空闲状态的长工来处理;专门负责掰玉米的长工领取任务,开始掰玉米操作(Map 操作),并把掰好的玉米放到在麻袋里(缓冲区),麻袋装不下时,会被装到木桶中(溢写),木桶被划分为蓝色的生玉米木桶、红色的熟玉米木桶(分区),地主通知二当家来“收”属于自己的那部分玉米,二当家收到地主的通知后,就到相应的长工那儿“拿回”属于自己的那部分玉米(Fetch 操作),二当家对收取的玉米进行处理(Reduce 操作),并把处理后的结果放入粮仓。 一个不太贴切的生活体验 + 一张画得不太对的丑图 = 苦涩难懂的技术,也不知道这样解释,你了解了多少?不过如果以后再谈大数据,知道 MapReduce 这个词的存在,那这次的分享就算成功(哈哈)。 MapReduce 解决了海量数据的计算问题,可谓是力作,但谷歌新的业务需求一直在不断出现。众所周知,谷歌要存储爬取的海量网页,由于网页会不断更新,所以要不断地针对同一个 URL 进行爬取,那么就需要能够存储一个 URL 不同时期的多个版本的网页内容。谷歌面临很多诸如此类的业务场景,面对此类头痛的需求,该怎么办? 谷歌重磅打造了一款类似以“URL + contents + time stamp”为 key,以“html 网页内容”为值的存储系统,于是就有了 BigTable 这个键值系统的存在(本文不展开详述)。 至此,两个头痛的问题就算解决了。面对海量数据存储难题,谷歌推出了分布式文件系统 GFS、结构化存储系统 BigTable;面对海量数据的计算难题,谷歌推出了 MapReduce。 不过静下来想想,GFS 也好、MapReduce 也罢,无非都是秉承了大道至简、一人掌权、其它人办事、人多力量大的设计理念。另外画龙画虎难画骨,建议闲暇之余也多些思考:为什么架构要这么设计?架构设计的目标到底是如何体现的? 基于谷歌的“三驾马车”,出现了一大堆开源的轮子,不得不说谷歌的“三驾马车”开启了大数据时代。了解了谷歌的“三驾马车”的设计理念后,再去看这些开源的轮子,应该会比较好上手。 好了,门外汉“撩”大数据就聊到这儿吧,希望通过上文的分享能够了解几个关键词:大道至简、衍化至繁、谷歌三驾马车(GFS、MapReduce、BigTable)、痛则思变、开源轮子。 白头:番外篇 扯淡:不妨换一种态度 本文至此也即将接近尾声,最后是番外篇~ 首先,借用日本剑道学习心诀“守、破、离”,希望我们一起做一个精进的人。 最后,在有限的时间内要多学习,不要停下学习的脚步,在了解和使用已经有的成熟技术之时,更要多思考,开创适合自己工作场景的解决方案。 文章来源:宜信技术学院 & 宜信支付结算团队技术分享第6期-宜信支付结算部支付研发团队高级工程师许赛赛《揭秘:“撩”大数据的正确姿势》 分享者:宜信支付结算部支付研发团队高级工程师许赛赛 原文首发于公号-野指针

茶什i 2020-01-10 15:19:51 0 浏览量 回答数 0

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 38616 浏览量 回答数 14

问题

【精品问答】初级程序员必备2020最新MYSQL面试题

问问小秘 2020-03-31 13:32:17 1670 浏览量 回答数 1

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20200921)

亢海鹏 2020-05-29 15:10:00 19050 浏览量 回答数 5

问题

【javascript学习全家桶】934道javascript热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:22 6202 浏览量 回答数 1

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

转自:思否 本文作者:Michael van der Gulik 原文链接:《Why WebAssembly is a big deal》 译者:敖小剑 WebAssembly 是每个程序员都应该关注的技术。WebAssembly 会变得更流行。 WebAssembly 将取代 JavaScript。WebAssembly 将取代 HTML 和 CSS。 WebAssembly 将取代手机应用。WebAssembly 将取代桌面应用。在 10 年内,我保证每个程序员至少需要知道如何使用工具来操作 WebAssembly 并理解它是如何工作的。 你可能会说,“太离谱了!” 好吧,请继续阅读。 什么是 WebAssembly 当前形式的 WebAssembly 是 Web 浏览器的新扩展,可以运行预编译代码…快速地。在 C ++ 中编写了一些小代码,然后使用 Emscripten 编译器将该代码编译为 WebAssembly。通过一些 Javascript 粘合,就可以在 Web 浏览器中调用这一小段代码,例如,运行粒子模拟。 WebAssembly 文件,扩展名为.wasm,本身是包含可执行指令的二进制格式。要使用该文件,必须编写一个运行某些 Javascript 的 HTML 文件来获取、编译和执行 WebAssembly 文件。WebAssembly 文件在基于堆栈的虚拟机上执行,并使用共享内存与其 JavaScript 包装器进行通信。 到目前为止,这似乎并不有趣。它看起来只不过是 JavaScript 的加速器。但是,聪明的读者会对 WebAssembly 可能成为什么有所了解。 WebAssembly 将成为什么? 第一个重要发现是 WebAssembly 是一个安全的沙盒虚拟机。可以从 Internet 运行喜欢的 WebAssembly 代码,而确保它不会接管 PC 或服务器。四个主流 Web 浏览器对它的安全性非常有信心,它已经默认实现并启用了。它的真正安全性还有待观察,但安全性是 WebAssembly 的核心设计目标。 第二个重要发现是 WebAssembly 是一个通用的编译目标。它的原始编译器是一个 C 编译器,这个编译器很好地指示了 WebAssembly 虚拟机的低级和可重定向性。许多编程语言都使用 C 语言编写虚拟机,其他一些语言甚至使用 C 本身作为编译目标。 此时,有人整理了一个可以编译为 WebAssembly 的编程语言列表。这份名单将在未来很多年中继续增长。 WebAssembly 允许使用任何编程语言编写代码,然后让其他人在任何平台上安全地运行该代码,无需安装任何内容。朋友们,这是美好梦想的开始。 部署问题 我们来谈谈如何将软件提供给用户。 为新项目选择编程语言的一个重要因素是如何将项目部署到客户。您的程序员喜欢用 Haskell,Python,Visual Basic 或其他语言编写应用程序,具体取决于他们的喜好。要使用喜欢的语言,他们需要编译应用,制作一些可安装的软件包,并以某种方式将其安装在客户端的计算机上。有许多方法可以提供软件 - 包管理器,可执行安装程序或安装服务,如 Steam,Apple App Store,Google Play 或 Microsoft store。 每一个安装机制都意味着痛苦,从应用商店安装时的轻微疼痛,到管理员要求在他的 PC 上运行一些旧的 COBOL 代码时的集群头痛。 部署是一个问题。对于开发人员和系统管理员来说,部署一直是一个痛点。我们使用的编程语言与我们所针对的平台密切相关。如果大量用户在 PC 或移动设备上,我们使用 HTML 和 Javascript。如果用户是 Apple 移动设备用户,我们使用……呃…… Swift?(我实际上不知道)。如果用户在 Android 设备上,我们使用 Java 或 Kotlin。如果用户在真实计算机上并且愿意处理掉他们的部署问题,那么我们开发人员才能在我们使用的编程语言中有更多选择。 WebAssembly 有可能解决部署问题。 有了 WebAssembly,您可以使用任何编程语言编写应用,只要这些编程语言可以支持 WebAssembly,而应用可以在任何设备和任何具有现代 Web 浏览器的操作系统上运行。 硬件垄断 想购买台式机或笔记本电脑。有什么选择?好吧,有英特尔,有 AMD。多年来一直是双寡头垄断。保持这种双寡头垄断的一个原因是 x86 架构只在这两家公司之间交叉许可,而且通常预编译的代码需要 x86 或 x86-64(也就是 AMD-64)架构。还有其他因素,例如设计世界上最快的 CPU 是一件很艰难但也很昂贵的事情。 WebAssembly 是一种可让您在任何平台上运行代码的技术(之一)。如果它成为下一个风口,硬件市场将变得商品化。应用编译为 WebAssembly,就可以在任何东西上运行 - x86,ARM,RISC-V,SPARC。即便是操作系统市场也会商品化;您所需要的只是一个支持 WebAssembly 的浏览器,以便在硬件可以运行时运行最苛刻的应用程序。 编者注:Second State 研发的专为服务端优化的 WebAssembly 引擎 SSVM 已经可以运行在高通骁龙芯片上。Github 链接:https://github.com/second-sta... 云计算 但等等,还有更多。云计算成为IT经理办公室的流行词已有一段时间,WebAssembly 可以直接迎合它。 WebAssembly 在安全沙箱中执行。可以制作一个容器,它可以在服务器上接受和执行 WebAssembly 模块,而资源开销很小。对于提供的每个服务,无需在虚拟机上运行完整的操作系统。托管提供商只提供对可以上传代码的WebAssembly 容器的访问权限。它可以是一个原始容器,接收 socket 并解析自己的 HTTP 连接,也可以是一个完整的 Web 服务容器,其中 WebAssembly 模块只需要处理预解析的HTTP请求。 这还不存在。如果有人想变得富有,那么可以考虑这个想法。 编者注:目前已经有人正在实现这个想法,Byte Alliance 计划将WebAssembly 带到浏览器之外,Second State 已经发布了为服务端设计的WebAssembly 引擎开发者预览版。 不是云计算 WebAssembly 足以取代 PC 上本地安装的大多数应用程序。我们已经使用 WebGL(又名OpenGL ES 2.0)移植了游戏。我预测不久之后,受益于WebAssembly,像 LibreOffice 这样的大型应用可以直接从网站上获得,而无需安装。 在这种情况下,在本地安装应用没什么意义。本地安装的应用和 WebAssembly 应用之间几乎没有区别。WebAssembly 应用已经可以使用屏幕,键盘和鼠标进行交互。它可以在 2D 或 OpenGL 中进行图形处理,并使用硬件对视频流进行解码。可以播放和录制声音。可以访问网络摄像头。可以使用 WebSockets。可以使用 IndexedDB 存储大量数据在本地磁盘上。这些已经是 Web 浏览器中的标准功能,并且都可以使用 JavaScript 向 WebAssembly 暴露。 目前唯一困难的地方是 WebAssembly 无法访问本地文件系统。好吧,可以通过 HTML 使用文件上传对话,但这不算。最终,总会有人为此创建 API,并可能称之为 “WASI”。 “从互联网上运行应用程序!?胡说八道!“,你说。好吧,这是使用 Qt 和 WebAssembly 实现的文本编辑器 (以及更多)。 这是一个简单的例子。复杂的例子是在 WebBrowser 中运行的 Adobe Premier Pro 或 Blender。或者考虑像 Steam 游戏一样可以直接从网络上运行。这听起来像小说,但从技术上说这并非不能发生。 它会来的。 让我们裸奔! 目前,WebAssembly 在包含 HTML 和 Javascript 包装器的环境中执行。为什么不脱掉这些?有了 WebAssembly,为什么还要在浏览器中包含 HTML 渲染器和 JavaScript 引擎? 通过为所有服务提供标准化 API,这些服务通常是 Web 浏览器提供的,可以创建裸 WebAssembly。就是没有 HTML和 Javascript 包装来管理的 WebAssembly。访问的网页是 .wasm 文件,浏览器会抓取并运行该文件。浏览器为WebAssembly 模块提供画布,事件处理程序以及对浏览器提供的所有服务的访问。 这目前还不存在。如果现在使用 Web 浏览器直接访问 .wasm 文件,它会询问是否要下载它。我假设将设计所需的 API 并使其工作。 结果是 Web 可以发展。网站不再局限于 HTML,CSS 和 Javascript。可以创建全新的文档描述语言。可以发明全新的布局引擎。而且,对于像我这样的 polyglots 最相关,我们可以选择任何编程语言来实现在线服务。 可访问性 但我听到了强烈抗议!可访问性怎么样??搜索引擎怎么办? 好吧,我还没有一个好的答案。但我可以想象几种技术解决方案。 一个解决方案是我们保留内容和表现的分离。内容以标准化格式编写,例如 HTML。演示文稿由 WebAssembly 应用管理,该应用可以获取并显示内容。这允许网页设计师使用想要的任何技术进行任意演示 - 不需要 CSS,而搜索引擎和需要不同类型的可访问性的用户仍然可以访问内容。 请记住,许多 WebAssembly 应用并不是可以通过文本访问的,例如游戏和许多应用。盲人不会从图像编辑器中获得太多好处。 另一个解决方案是发明一个 API,它可以作为 WebAssembly 模块,来提供想在屏幕上呈现的 DOM,供屏幕阅读器或搜索引擎使用。基本上会有两种表示形式:一种是在图形画布上,另一种是产生结构化文本输出。 第三种解决方案是使用屏幕阅读器或搜索引擎可以使用的元数据来增强画布。执行 WebAssembly 并在画布上呈现内容,其中包含描述渲染内容的额外元数据。例如,该元数据将包括屏幕上的区域是否是菜单以及存在哪些选项,或者区域是否想要文本输入,以及屏幕上的区域的自然排序(也称为标签顺序)是什么。基本上,曾经在 HTML 中描述的内容现在被描述为具有元数据的画布区域。同样,这只是一个想法,它可能在实践中很糟糕。 可能是什么 1995年,Sun Microsystems 发布了 Java,带有 Java applets 和大量的宣传。有史以来第一次,网页可以做一些比 和 GIF 动画更有趣的事情。开发人员可以使应用完全在用户的 Web 浏览器中运行。它们没有集成到浏览器中,而是实现为繁重的插件,需要安装整个 JVM。1995年,这不是一个小的安装。applets 也需要一段时间来加载并使用大量内存。我们现在凭借大量内存,这不再是一个问题,但在 Java 生命的第一个十年里,它让体验变得令人厌烦。 applets 也不可靠。无法保证它们会运行,尤其是在用户使用 Microsoft 的实现时。他们也不安全,这是棺材里的最后一颗钉子。 以 JVM 为荣,其他语言最终演变为在 JVM 上运行。但现在,那艘船航行了。 FutureSplash / Macromedia / Adobe Flash 也是一个竞争者,但是是专有的,具有专有工具集和专有语言的专有格式。我读到他们确实在2009年开启了文件格式。最终从浏览器中删除了支持,因为它存在安全风险。 这里的结论是,如果希望您的技术存在于每个人的机器上,那么安全性就需要正视。我真诚地希望 WebAssembly 作为标准对安全问题做出很好的反应。 需要什么? WebAssembly 仍处于初期阶段。它目前能很好的运行代码,而规范版本是 1.0,二进制格式定型。目前正在开展SIMD 指令支持。通过 Web Workers 进行多线程处理也正在进行中。 工具可用,并将在未来几年不断改进。浏览器已经让你窥视 WebAssembly 文件。至少 Firefox 允许查看WebAssembly 字节码,设置断点并查看调用堆栈。我听说浏览器也有 profiling 支持。 语言支持包括一套不错的语言集合–C,C++和Rust是一流的公民。C#,Go和Lua显然有稳定的支持。Python,Scala,Ruby,Java和Typescript都有实验性支持。这可能是一个傲慢的陈述,但我真的相信任何想要在21世纪存在的语言都需要能够在 WebAssembly 上编译或运行。 在访问外部设备的 API 支持方面,我所知道的唯一可用于裸 WebAssembly 的 API 是 WASI,它允许文件和流访问等核心功能,允许 WebAssembly 在浏览器外运行。否则,任何访问外部世界的 API 都需要在浏览器中的 Javascript 中实现。除了本地机器上的文件访问,打印机访问和其他新颖的硬件访问(例如非标准蓝牙或USB设备)之外,应用所需的一切几乎都可以满足。“裸WebAssembly”并不是它成功的必要条件; 它只是一个小的优化,不需要浏览器包含对 HTML,CSS 或 Javascript 的支持。 我不确定在桌面环境中让 WebAssembly 成为一等公民需要什么。需要良好的复制和粘贴支持,拖放支持,本地化和国际化,窗口管理事件以及创建通知的功能。也许这些已经可以从网络浏览器中获得; 我经常惊讶与已经可能的事情。 引发爆炸的火花是创建允许现有应用移植的环境。如果创造了“用于 WebAssembly 的 Linux 子系统”,那么可以将大量现有的开源软件移植到 WebAssembly 上。它需要模拟一个文件系统 - 可以通过将文件系统的所有只读部分都缓存为 HTTP 请求来完成,并且所有可写部分都可以在内存中,远程存储或使用浏览器可以提供的任何文件访问。图形支持可以通过移植 X11 或 Wayland 的实现来使用 WebGL(我理解已经作为 AIGLX 存在?)。 一些 SDL 游戏已经被移植到 WebAssembly - 最着名的是官方演示。 一旦 JVM 在 WebAssembly 中运行,就可以在浏览器中运行大量的 Java 软件。同样适用于其他虚拟机和使用它们的语言。 与 Windows 软件的巨大世界一样,我没有答案。WINE 和 ReactOS 都需要底层的 x86 或 x86-64 机器,所以唯一的选择是获取源代码并移植它,或者使用 x86 模拟器。 尾声 WebAssembly 即将到来。 它来得很慢,但现在所有的部分都可以在你正在使用的浏览器上使用。现在我们等待构建用于从各种编程语言中定位 WebAssembly 的基础设施。一旦构建完成,我们将摆脱 HTML,CSS 和 Javascript 的束缚。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-07 10:32:35 0 浏览量 回答数 0

回答

Layout Go工程项目的整体组织 首先我们看一下整个 Go 工程是怎么组织起来的。 很多同事都在用 GitLab 的,GitLab 的一个 group 里面可以创建很多 project。如果我们进行微服务化改造,以前很多巨石架构的应用可能就拆成了很多个独立的小应用。那么这么多小应用,你是要建 N 个 project 去维护,还是说按照部门或者组来组织这些项目呢?在 B 站的话,我们之前因为是 Monorepo,现在是按照部门去组织管理代码,就是说在单个 GitLab 的 project 里面是有多个 app 的,每一个 app 就表示一个独立的微服务,它可以独立去交付部署。所以说我们看到下面这张图里面,app 的目录里面是有好多个子目录的,比方说我们的评论服务,会员服务。跟 app 同级的目录有一个叫 pkg,可以存放业务有关的公共库。这是我们的一个组织方式。当然,还有一种方式,你可以按照 GitLab 的 project 去组织,但我觉得这样的话可能相对要创建的 project 会非常多。 如果你按部门组织的话,部门里面有很多 app,app 目录怎么去组织?我们实际上会给每一个 app 取一个全局唯一名称,可以理解为有点像 DNS 那个名称。我们对业务的命名也是一样的,我们基本上是三段式的命名,比如账号业务,它是一个账号业务、服务、子服务的三段命名。三段命名以后,在这个 app 目录里面,你也可以按照这三层来组织。比如我们刚刚说的账号目录,我可能就是 account 目录,然后 VIP,在 VIP 目录下可能会放各种各样的不同角色的微服务,比方说可能有一些是做 job,做定时任务或者流式处理的一些任务,有可能是做对外暴露的 API 的一些服务,这个就是我们关于整个大的 app 的组织的一种形式。 微服务中的 app 服务分类 微服务中单个 app 的服务里又分为几类不同的角色。我们基本上会把 app 分为 interface(BFF)、service、job(补充:还有一个 task,偏向定时执行,job 偏向流式) 和 admin。 Interface 是对外的业务网关服务,因为我们最终是面向终端用户的 API,面向 app,面向 PC 场景的,我们把这个叫成业务网关。因为我们不是统一的网关,我们可能是按照大的业务线去独立分拆的一些子网关,这个的话可以作为一个对外暴露的 HTTP 接口的一个目录去组织它的代码,当然也可能是 gRPC 的(参考 B 站对外的 gRPC Moss 分享)。 Service 这个角色主要是面向对内通信的微服务,它不直接对外。也就是说,业务网关的请求会转发或者是会 call 我们的内部的 service,它们之间的通讯可能是使用自己的 RPC,在 b 站我们主要是使用 gRPC。使用 gRPC 通讯以后,service 它因为不直接对外,service 之间可能也可以相互去 call。 Admin 区别于 service,很多应用除了有面向用户的一些接口,实际上还有面向企业内部的一些运营侧的需求,通常数据权限更高,从安全设计角度需要代码物理层面隔离,避免意外。 第四个是 ecode。我们当时也在内部争论了很久,我们的错误码定义到底是放在哪里?我们目前的做法是,一个应用里面,假设你有多种角色,它们可能会复用一些错误码。所以说我们会把我们的 ecode 给单独抽出来,在这一个应用里面是可以复用的。注意,它只在这一个应用里面复用,它不会去跨服跨目录应用,它是针对业务场景的一个业务错误码的组织。 App 目录组织 我们除了一个应用里面多种角色的这种情况,现在展开讲一下具体到一个 service 里面,它到底是怎么组织的。我们的 app 目录下大概会有 api、cmd、configs、 internal 目录,目录里一般还会放置 README、CHANGELOG、OWNERS。 API 是放置 api 定义以及对应的生成的 client 代码,包含基于 pb 定义(我们使用 PB 作为 DSL 描述 API) 生成的 swagger.json。 而 cmd,就是放 main 函数的。Configs 目录主要是放一些服务所需的配置文件,比方说说我们可能会使用 TOML 或者是使用 YAML 文件。 Internal 的话,它里面有四个子目录,分别是 model、dao、service 和 server。Model 的定位职责就是对我们底层存储的持久化层或者存储层的数据的映射,它是具体的 Go 的一个 struct。我们再看 dao,你实际就是要操作 MySQL 或者 Redis,最终返回的就是这些 model(存储映射)。Service 组织起来比较简单,就是我们通过 dao 里面的各个方法来完成一个完整的业务逻辑。我们还看到有个 server,因为我一个微服务有可能企业内部不一定所有 RPC 都统一,那我们处于过渡阶段,所以 server 里面会有两个小目录,一个是 HTTP 目录,暴露的是 HTTP 接口,还有一个是 gRPC 目录,我们会暴露 gRPC 的协议。所以在 server 里面,两个不同的启动的 server,就是说一个服务和启动两个端口,然后去暴露不同的协议,HTTP 接 RPC,它实际上会先 call 到 service,service 再 call 到 dao,dao 实际上会使用 model 的一些数据定义 struct。但这里面有一个非常重要的就是,因为这个结构体不能够直接返回给我们的 api 做外对外暴露来使用,为什么?因为可能从数据库里面取的敏感字段,当我们实际要返回到 api 的时候,可能要隐藏掉一些字段,在 Java 里面,会抽象的一个叫 DTO 的对象,它只是用来传输用的,同理,在我们 Go 里面,实际也会把这些 model 的一些结构体映射成 api 里面的结构体(基于 PB Message 生成代码后的 struct)。 Rob Pike 当时说过的一句话,a little copying is better than a little dependency,我们就遵循了这个理念。在我们这个目录结构里面,有 internal 目录,我们知道 Go 的目录只允许这个目录里面的人去 import 到它,跨目录的人实际是不能直接引用到它的。所以说,我们看到 service 有一个 model,那我的 job 代码,我做一些定时任务的代码或者是我的网关代码有可能会映射同一个 model,那是不是要把这个 model 放到上一级目录让大家共享?对于这个问题,其实我们当时内部也争论过很久。我们认为,每一个微服务应该只对自己的 model 负责,所以我们宁愿去做一小部分的代码 copy,也不会去为了几个服务之间要共享这一点点代码,去把这个 model 提到和 app 目录级别去共用,因为你一改全错,当然了,你如果是拷贝的话,就是每个地方都要去改,那我们觉得,依赖的问题可能会比拷贝代码相对来说还是要更复杂的。 这个是一个标准的 PB 文件,就是我们内部的一个 demo 的 service。最上面的 package 是 PB 的包名,demo.service.v1,这个包使用的是三段式命名,全局唯一的名称。那这个名称为什么不是用 ID?我见过有些公司对内部做的 CMDB 或者做服务树去管理企业内部微服务的时候,是用了一些名称加上 ID 来搞定唯一性,但是我们知道后面那一串 ID 数字是不容易被传播或者是不容易被记住的,这也是 DNS 出来的一个意义,所以我们用绝对唯一的一个名称来表示这个包的名字,在后面带上这一个 PB 文件的版本号 V1。 我们看第二段定义,它有个 Service Demo 代码,其实就表示了我们这个服务要启动的服务的一个名称,我们看到这个服务名称里面有很多个 RPC 的方法,表示最终这一个应用或者这个 service 要对外暴露这几个 RPC 的方法。这里面有个小细节,我们看一下 SayHello 这个方法,实际它有 option 的一个选项。通过这一个 PB 文件,你既可以描述出你要暴露的是 gRPC 协议,又暴露出 HTTP 的一个接口,这个好处是你只需要一个 PB 文件描述你暴露的所有 api。我们回想一下,我们刚刚目录里面有个 api 目录,实际这里面就是放这一个 PB 文件,描述这一个工程到底返回的接口是什么。不管是 gRPC 还是 HTTP 都是这一个文件。还有一个好处是什么?实际上我们可以在 PB 文件里面加上很多的注释。用 PB 文件的好处是你不需要额外地再去写文档,因为写文档和写服务的定义,它本质上是两个步骤,特别容易不一致,接口改了,文档不同步。我们如果基于这一个 PB 文件,它生成的 service 代码或者调用代码或者是文档都是唯一的。 依赖顺序与 api 维护 就像我刚刚讲到的,model 是一个存储层的结构体的一一映射,dao 处理一些数据读写包,比方说数据库缓存,server 的话就是启动了一些 gRPC 或者 HTTP Server,所以它整个依赖顺序如下:main 函数启动 server,server 会依赖 api 定义好的 PB 文件,定义好这些方法或者是服务名之后,实际上生成代码的时候,比方说 protocbuf 生成代码的时候,它会把抽象 interface 生成好。然后我们看一下 service,它实际上是弱依赖的 api,就是说我的 server 启动以后,要注册一个具体的业务代码的逻辑,映射方法,映射名字,实际上是弱依赖的 api 生成的 interface 的代码,你就可以很方便地启动你的 server,把你具体的 service 的业务逻辑给注入到这个 server,和方法进行一一绑定。最后,dao 和 service 实际上都会依赖这个 model。 因为我们在 PB 里面定义了一些 message,这些 message 生成的 Go 的 struct 和刚刚 model 的 struct 是两个不同的对象,所以说你要去手动 copy 它,把它最终返回。但是为了快捷,你不可能每次手动去写这些代码,因为它要做 mapping,所以我们又把 K8s 里类似 DeepCopy 的两个结构体相互拷贝的工具给抠出来了,方便我们内部 model 和 api 的 message 两个代码相互拷贝的时候,可以少写一些代码,减少一些工作量。 上面讲的就是我们关于工程的一些 layout 实践。简单回溯一下,大概分为几块,第一就是 app 是怎么组织的,app 里面有多种角色的服务是怎么组织的,第三就是一个 app 里面的目录是怎么组织的,最后我重点讲了一下 api 是怎么维护的。 Unittest 测试方法论 现在回顾一下单元测试。我们先看这张图,这张图是我从《Google 软件测试之道》这本书里面抠出来的,它想表达的意思就是最小型的测试不能给我们的最终项目的质量带来最大的信心,它比较容易带来一些优秀的代码质量,良好的异常处理等等。但是对于一个面向用户场景的服务,你只有做大型测试,比方做接口测试,在 App 上验收功能的这种测试,你应用交付的信心可能会更足。这个其实要表达的就是一个“721 原则”。我们就是 70% 写小型测试,可以理解为单元测试,因为它相对来说好写,针对方法级别。20% 是做一些中型测试,可能你要连调几个项目去完成你的 api。剩下 10% 是大型测试,因为它是最终面向用户场景的,你要去使用我们的 App,或者用一些测试 App 去测试它。这个就是测试的一些简单的方法论。 单元测试原则 我们怎么去对待 Go 里面的单元测试?在《Google 软件测试之道》这本书里面,它强调的是对于一个小型测试,一个单元测试,它要有几个特质。它不能依赖外部的一些环境,比如我们公司有测试环境,有持续集成环境,有功能测试环境,你不能依赖这些环境构建自己的单元测试,因为测试环境容易被破坏,它容易有数据的变更,数据容易不一致,你之前构建的案例重跑的话可能就会失败。 我觉得单元测试主要有四点要求。第一,快速,你不能说你跑个单元测试要几分钟。第二,要环境一致,也就是说你跑测试前和跑测试后,它的环境是一致的。第三,你写的所有单元测试的方法可以以任意顺序执行,不应该有先后的依赖,如果有依赖,也是在你测试的这个方法里面,自己去 setup 和 teardown,不应该有 Test Stub 函数存在顺序依赖。第四,基于第三点,你可以做并行的单元测试,假设我写了一百个单元测试,一个个跑肯定特别慢。 doker-compose 最近一段时间,我们演进到基于 docker-compose 实现跨平台跨语言环境的容器依赖管理方案,以解决运行 unittest 场景下的容器依赖问题。 首先,你要跑单元测试,你不应该用 VPN 连到公司的环境,好比我在星巴克点杯咖啡也可以写单元测试,也可以跑成功。基于这一点,Docker 实际上是非常好的解决方式。我们也有同学说,其他语言有一些 in-process 的 mock,是不是可以启动 MySQL 的 mock ,然后在 in-process 上跑?可以,但是有一个问题,你每一个语言都要写一个这样的 mock ,而且要写非常多种,因为我们中间件越来越多,MySQL,HBase,Kafka,什么都有,你很难覆盖所有的组件 Mock。这种 mock 或者 in-process 的实现不能完整地代表线上的情况,比方说,你可能 mock 了一个 MySQL,检测到 query 或者 insert ,没问题,但是你实际要跑一个 transaction,要验证一些功能就未必能做得非常完善了。所以基于这个原因,我们当时选择了 docker-compose,可以很好地解决这个问题。 我们对开发人员的要求就是,你本地需要装 Docker,我们开发人员大部分都是用 Mac,相对来说也比较简单,Windows 也能搞定,如果是 Linux 的话就更简单了。本地安装 Docker,本质上的理解就是无侵入式的环境初始化,因为你在容器里面,你拉起一个 MySQL,你自己来初始化数据。在这个容器被销毁以后,它的环境实际上就满足了我们刚刚提的环境一致的问题,因为它相当于被重置了,也可以很方便地快速重置环境,也可以随时随地运行,你不需要依赖任何外部服务,这个外部服务指的是像 MySQL 这种外部服务。当然,如果你的单元测试依赖另外一个 RPC 的 service 的话,PB 的定义会生成一个 interface,你可以把那个 interface 代码给 mock 掉,所以这个也是能做掉的。对于小型测试来说,你不依赖任何外部环境,你也能够快速完成。 另外,docker-compose 是声明式的 API,你可以声明你要用 MySQL,Redis,这个其实就是一个配置文件,非常简单。这个就是我们在单元测试上的一些实践。 我们现在看一下,service 目录里面多了一个 test 目录,我们会在这个里面放 docker-compose 的 YAML 文件来表示这次单元化测试需要初始化哪些资源,你要构建自己的一些测试的数据集。因为是这样的,你是写 dao 层的单元测试的话,可能就需要 database.sql 做一些数据的初始化,如果你是做 service 的单元测试的话,实际你可以把整个 dao 给 mock 掉,我觉得反而还相对简单,所以我们主要针对场景就是在 dao 里面偏持久层的,利用 docker-compose 来解决。 容器的拉起,容器的销毁,这些工作到底谁来做?是开发同学自己去拉起和销毁,还是说你能够把它做成一个 Library,让我们的同学写单元测试的时候比较方便?我倾向的是后者。所以在我们最终写单元测试的时候,你可以很方便地 setup 一个依赖文件,去 setup 你的容器的一些信息,或者把它销毁掉。所以说,你把环境准备好以后,最终可以跑测试代码也非常方便。当然我们也提供了一些命令函,就是 binary 的一些工具,它可以针对各个语言方便地拉起容器和销毁容器,然后再去执行代码,所以我们也提供了一些快捷的方式。 刚刚我也提到了,就是我们对于 service 也好,API 也好,因为依赖下层的 dao 或者依赖下层的 service,你都很方便 mock 掉,这个写单元测试相对简单,这个我不展开讲,你可以使用 GoMock 或者 GoMonkey 实现这个功能。 Toolchain 我们利用多个 docker-compose 来解决 dao 层的单元测试,那对于我刚刚提到的项目的一些规范,单元测试的一些模板,甚至是我写了一些 dao 的一些占位符,或者写了一些 service 代码的一些占位符,你有没有考虑过这种约束有没有人会去遵循?所以我这里要强调一点,工具一定要大于约束和文档,你写了约束,写了文档,那么你最终要通过工具把它落实。所以在我们内部会有一个类似 go tool 的脚手架,叫 Kratos Tool,把我们刚刚说的约定规范都通过这个工具一键初始化。 对于我们内部的工具集,我们大概会分为几块。第一块就是 API 的,就是你写一个 PB 文件,你可以基于这个 PB 文件生成 gRPC,HTTP 的框架代码,你也可以基于这个 PB 文件生成 swagger 的一些 JSON 文件或者是 Markdown 文件。当然了,我们还会生成一些 API,用于 debug 的 client 方便去调试,因为我们知道,gRPC 调试起来相对麻烦一些,你要去写代码。 还有一些工具是针对 project 的,一键生成整个应用的 layout,非常方便。我们还提了 model,就是方便 model 和 DTO,DTO 就是 API 里面定义的 message 的 struct 做 DeepCopy,这个也是一个工具。 对于 cache 的话,我们操作 memcache,操作 Redis 经常会要做什么逻辑?假如我们有一个 cache aside 场景,你读了一个 cache,cache miss 要回原 DB,你要把这个缓存回塞回去,甚至你可能这个回塞缓存想异步化,甚至是你要去读这个 DB 的时候要做归并回源(singleflight),我们把这些东西做成一些工具,让它整个回源到 DB 的逻辑更加简单,就是把这些场景描述出来,然后你通过工具可以一键生成这些代码,所以也是会比较方便。 我们再看最后一个,就是 test 的一些工具。我们会基于项目里面,比方说 dao 或者是 service 定义的 interface 去帮你写好 mock 的代码,我直接在里面填,只要填代码逻辑就行了,所以也会加速我们的生产。 上图是 Kratos 的一个 demo,基本就是支持了一些 command。这里就是一个 kratos new kratos-demo 的一个工程,-d YourPath 把它导到某一个路径去,--proto 顺便把 API 里面的 proto 代码也生成了,所以非常简单,一行就可以很快速启动一个 HTTP 或者 gRPC 服务。 我们知道,一个微服务的框架实际非常重,有很多初始化的方式等等,非常麻烦。所以说,你通过脚手架的方式就会非常方便,工具大于约定和文档这个这个理念就是这么来的。 Configuration 讲完工具以后,最后讲一下配置文件。我为什么单独提一下配置文件?实际它也是工程化的一部分。我们一个线上的业务服务包含三大块,第一,应用程序,第二,配置文件,第三,数据集。配置文件最容易导致线上出 bug,因为你改一行配置,整个行为可能跟 App 想要的行为完全不一样。而且我们的代码的开发交付需要经过哪些流程?需要 commit 代码,需要 review,需要单元测试,需要 CD,需要交付到线上,需要灰度,它的整个流程是非常长的。在一步步的环境里面,你的 bug 需要前置解决,越前置解决,成本越低。因为你的代码的开发流程是这么一个 pipeline,所以 bug 最终流到线上的概率很低,但是配置文件没有经过这么复杂的流程,可能大家发现线上有个问题,决定要改个线上配置,就去配置中心或者配置文件改,然后 push 上线,接着就问题了,这个其实很常见。 从 SRE 的角度来说,导致线上故障的主因就是来自配置变更,所以 SRE 很大的工作是控制变更管理,如果能把变更管理做好,实际上很多问题都不会出现。配置既然在整个应用里面这么重要,那在我们整个框架或者在 Go 的工程化实践里面,我们应该对配置文件做一些什么事情? 我觉得是几个。第一,我们的目标是什么?配置文件不应该太复杂,我见过很多框架,或者是业务的一些框架,它实际功能非常强大,但是它的配置文件超级多。我就发现有个习惯,只要有一个同事写错了这个配置,当我新起一个项目的时候,一定会有人把这个错误的配置拷贝到另外一个系统里面去。然后当发现这个应用出问题的时候,我们一般都会内部说一下,你看看其他同事有没有也配错的,实际这个配错概率非常高。因为你的配置选项越多,复杂性越高,它越容易出错。所以第一个要素就是说,尽量避免复杂的配置文件。配得越多,越容易出错。 第二,实际我们的配置方式也非常多,有些用 JSON,有些用 YAML,有些用 Properties,有些用 INI。那能不能收敛成通用的一种方式呢?无论它是用 Python 的脚本也好,或者是用 JSON 也好,你只要有一种唯一的约定,不需要太多样的配置方式,对我们的运维,对我们的 SRE 同时来说,他跨项目的变更成本会变低。 第三,一定要往简单化去努力。这句话其实包含了几个方面的含义。首先,我们很多配置它到底是必须的还是可选的,如果是可选,配置文件是不是就可以把它踢掉,甚至不要出现?我曾经有一次看到我们 Java 同事的配置 retry 有一个重试默认是零,内部重试是 80 次,直接把 Redis cluster 打故障了,为什么?其实这种事故很低级,所以简单化努力的另外一层含义是指,我们在框架层面,尤其是提供 SDK 或者是提供 framework 的这些同事尽量要做一些防御编程,让这种错配漏配也处于一个可控的范围,比方重试 80 次,你觉得哪个 SDK 会这么做?所以这个是我们要考虑的。但是还有一点要强调的是,我们对于业务开发的同事,我们的配置应该足够的简单,这个简单还包含,如果你的日志基本上都是写在这个目录,你就不要提供这个配置给他,反而不容易出错。但是对于我们内部的一些 infrastructure,它可能需要非常复杂的配置来优化,根据我的场景去做优化,所以它是两种场景,一种是业务场景,足够简单,一种是我要针对我的通用的 infrastructure 去做场景的优化,需要很复杂的配置,所以它是两种场景,所以我们要想清楚你的业务到底是哪一种形态。 还有一个问题就是我们配置文件一定要做好权限的变更和跟踪,因为我们知道上线出问题的时候,我们的第一想法不是查 bug,是先止损,止损先找最近有没有变更。如果发现有变更,一般是先回滚,回滚的时候,我们通常只回滚了应用程序,而忘记回滚了配置。每个公司可能内部的配置中心,或者是配置场景,或者跟我们的二进制的交付上线都不一样,那么这里的理念就是你的应用程序和配置文件一定是同一个版本,或者是某种意义上让他们产生一个版本的映射,比方说你的应用程序 1.0,你的配置文件 2.0,它们之间存在一个强绑定关系,我们在回滚的时候应该是一起回滚的。我们曾经也因为类似的一些不兼容的配置的变更,二进制程序上线,但配置文件忘记回滚,出现过事故,所以这个是要强调的。 另外,配置的变更也要经过 review,如果没问题,应该也是按照 App 发布一样,先灰度,再放量,再全量等等类似的一种方式去推,演进式的这种发布,我们也叫滚动发布,我觉得配置文件也是一样的思路。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 原文链接

有只黑白猫 2020-01-09 17:29:54 0 浏览量 回答数 0

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 42 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站