• 关于

    实体访问怎么用

    的搜索结果

问题

如何优化tomcat配置?

之前没有考虑过tomcat优化,只在out of memory的时候,把-xms -xmn增加到2G,反正不溢出了今天人一多访问响应变得非常慢,才认识到tomcat没有优化,主要是不知道怎么优化,有经验的大大给指条路该如何考虑这个问题,要看...
落地花开啦 2019-12-01 19:35:55 1214 浏览量 回答数 1

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

swagger如何测试List<实体类>?报错

最近的项目刚开始使用swagger。版本2.9.2。不知道怎么用swagger测试包含实体类的list数组。求各位大佬指教。 接口的相关注解如下: //@ApiImplicitParam(name = &#...
爱吃鱼的程序员 2020-06-06 09:44:24 0 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

100+款试用云产品,最长免费试用12个月!拨打95187-1,咨询专业上云建议!

回答

首先,还是先解释一下如何使用数据库,按照上面的方法就可以连接数据库了。这里要解释两件事情。  1.执行sql语句返回的reCount是什么?  这个recount不是我们执行sql的时候查出的内容,而是,明白了吧,就是这样,喵~~~  2.cur是什么?  这里的cur指的是游标。游标是映射在结果集中一行数据上的位置实体,有了游标,用户就可以访问结果集中的任意一行数据了,将游标放置到某行后,即可对该行数据进行操作。然而这些都是mysql内部的事情了,我们只需要知道要写上这么两句话,在执行sql语句前实例化一个游标对象,并在执行完sql语句提交后,关掉这个游标就好了。  批量插入数据    对就是这么简单,参数换成列表,方法换成executemany,搞定!需要注意的是那个占位符类似物:%s,要记得list里有几个元素就写几个。  cur.lastrowid和conn.insert_id():    cursor.lastrowid:最后一条记录的主键ID    conn.insert_id():最新插入记录的主键ID    网上说:结果一般情况下是一样的,最后一条记录肯定就是刚刚插入的记录。但如果是并发插入就不一样了。自己起了多线程,也并没有发现什么。。。如果有小伙伴知道,欢迎指教~~~上面两个方法需要注意的是一定要在conn.commit()之前执行。否则只会返回0。这两个方法也只能返回本次conn连接中插入数据的信息,放在select之后是不好用的哦!使用mysql数据库——删、改 删   改  删除操作和修改操作与插入操作唯一的不同就是——sql不同。。。还要怎么简单!!!使用mysql数据库——查  在python的MySQLdb模块中,有三个查找方法,fetchone,fetchmany和fetchall。常用的只有fetchall。需要注意的是,fetch的结果默认返回tuple。((item1,item2,...),(item1,item2,...)),第一层是行,第二层是列(也就是一行中的每一项)。当然可以修改返回值的格式。下面介绍~~~  fetchone    jiang~就是上面这样,这个时候好像就知道游标是怎么一回事儿了吧?  fetchmany    为什么说fetchone,fetchonemany并没有什么用呢?我们看上面的方法,其实都是执行了一样的sql,也就是说,我们其实是将所有的数据读到了内存中,再从中选取我们需要的,但是这一步我们在写sql的时候就可以做到了,读到内存里占用了大量的内存空间,绝对得不偿失~~~  fetchall    在最后补上修改返回结果格式为dict的方法。这就是mysql的基本操作啦~~~
xuning715 2019-12-02 01:09:57 0 浏览量 回答数 0

回答

使用mysql数据库——增  插入一条数据    首先,还是先解释一下如何使用数据库,按照上面的方法就可以连接数据库了。这里要解释两件事情。  1.执行sql语句返回的reCount是什么?  这个recount不是我们执行sql的时候查出的内容,而是,明白了吧,就是这样,喵~~~  2.cur是什么?  这里的cur指的是游标。游标是映射在结果集中一行数据上的位置实体,有了游标,用户就可以访问结果集中的任意一行数据了,将游标放置到某行后,即可对该行数据进行操作。然而这些都是mysql内部的事情了,我们只需要知道要写上这么两句话,在执行sql语句前实例化一个游标对象,并在执行完sql语句提交后,关掉这个游标就好了。  批量插入数据    对就是这么简单,参数换成列表,方法换成executemany,搞定!需要注意的是那个占位符类似物:%s,要记得list里有几个元素就写几个。  cur.lastrowid和conn.insert_id():    cursor.lastrowid:最后一条记录的主键ID    conn.insert_id():最新插入记录的主键ID    网上说:结果一般情况下是一样的,最后一条记录肯定就是刚刚插入的记录。但如果是并发插入就不一样了。自己起了多线程,也并没有发现什么。。。如果有小伙伴知道,欢迎指教~~~上面两个方法需要注意的是一定要在conn.commit()之前执行。否则只会返回0。这两个方法也只能返回本次conn连接中插入数据的信息,放在select之后是不好用的哦!使用mysql数据库——删、改 删   改  删除操作和修改操作与插入操作唯一的不同就是——sql不同。。。还要怎么简单!!!使用mysql数据库——查  在python的MySQLdb模块中,有三个查找方法,fetchone,fetchmany和fetchall。常用的只有fetchall。需要注意的是,fetch的结果默认返回tuple。((item1,item2,...),(item1,item2,...)),第一层是行,第二层是列(也就是一行中的每一项)。当然可以修改返回值的格式。下面介绍~~~  fetchone    jiang~就是上面这样,这个时候好像就知道游标是怎么一回事儿了吧?  fetchmany    为什么说fetchone,fetchonemany并没有什么用呢?我们看上面的方法,其实都是执行了一样的sql,也就是说,我们其实是将所有的数据读到了内存中,再从中选取我们需要的,但是这一步我们在写sql的时候就可以做到了,读到内存里占用了大量的内存空间,绝对得不偿失~~~  fetchall    在最后补上修改返回结果格式为dict的方法。这就是mysql的基本操作啦~~~
xuning715 2019-12-02 01:10:43 0 浏览量 回答数 0

问题

安卓与iOS百问,开发者系统指南

iOS与安卓的主要区别在于1、两者运行机制不同:iOS采用的是沙盒运行机制,安卓采用的是虚拟机运行机制。2、两者后台制度不同:iOS中任何第三方程序都不能在后台运行;安卓中任何程序都能在后台运行,直到没有内存才会关闭。因此在进行应用开发的时...
yq传送门 2019-12-01 20:14:48 27317 浏览量 回答数 26

问题

云计算之路-阿里云上:希望从今天开始乌云变蓝天

博文原文: 云计算之路-阿里云上:希望从今天开始乌云变蓝天 真没想到云计算之路上的天气如此糟糕,比杭州的交通还要糟糕;今天上海晴空万里,希望从今天开始“云”上的天气也...
cnblogs 2019-12-01 21:13:29 13392 浏览量 回答数 16

问题

大数据时代——数据存储技术百问

如今计算机已经渗透到企业运作的各个角落,企业依靠所存放的这些业务数据进行决策,因此企业如何存放数据成为企业信息系统的重中之重,这也掀起了如今的存储热潮。根据不同的应用环境通过采取合理、安全、有效的方式将数据保存并能保证有效的访问需要更高要求...
yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

问题

Java技术1000问(3)【精品问答】

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的Java语言概述、数据类型和运算符、面向对象等维度内容。 我们会以每天至少50条的速度,增...
问问小秘 2020-06-02 14:27:10 11463 浏览量 回答数 3

问题

JNI中调用任何标准输入输出处理流导致JVM崩溃?403.10 禁止访问:配置无效 

大家好,我是JNI萌新!最近碰到一个很无解的问题,如标题所言。然后我也在Stackoverflow上搜索了一番,发现一个和我差不多的问题;但是解决办法对我没什么作用&#x...
kun坤 2020-05-28 13:23:32 6 浏览量 回答数 1

问题

深入理解Magento – 第六章 – 高级Magento模型:配置报错 

深入理解Magento 作者: Alan Storm 翻译: Hailong Zhang 第六章 – 高级Magento模型 我们讲过Magento有两种模型,简单模型和EAV(En...
kun坤 2020-06-02 14:47:07 2 浏览量 回答数 1

问题

深入理解Magento – 第六章 – 高级Magento模型 :报错

深入理解Magento 作者:Alan Storm 翻译:Hailong Zhang 第六章 – 高级Magento模型 我们讲过Magento有两种模型,简单模型和EAV(En...
kun坤 2020-06-14 15:19:25 0 浏览量 回答数 1

问题

深入理解Magento – 第六章 – 高级Magento模型 - Magento报错

" 深入理解Magento 作者:Alan Storm 翻译:Hailong Zhang 第六章 – 高级Magento模型 我们讲过Magento有两种模型,简单模型和EAV&#x...
montos 2020-06-03 20:30:01 2 浏览量 回答数 1

问题

如何实现PostObject错误及排查?

PostObject简介 PostObject使用表单上传文件到OSS。PostObject的消息实体通过 [backcolor=transparent]多重表单格式multipart/form-data 编码,详...
青衫无名 2019-12-01 22:00:48 2503 浏览量 回答数 0

回答

Nacos 服务发现提供与其他服务发现产品不太一样的机制以及概念,在这里稍作介绍,下文中的内容都会多次提到这里介绍的概念,因此掌握这些概念,对于用好 Nacos 服务发现至关重要。 不同于 Consul, Eureka, Nacos 的服务发现使用的领域数据模型是服务 - 集群 - 实例这样的三层结构。最上面是服务,注册端(服务发布者)和订阅端(服务消费者)使用服务来与其他服务做区分,服务发现中,服务是必须指定的。集群则是中间一层,一个服务又会划分为多个集群,每个集群都有它的自定义配置,Nacos 提供了一个默认集群和相应的默认配置,在不需要多集群的场景下,可以不用指定集群。最下一层是实例,每个集群又会包含多个实例,这样对服务进行发现时,可以发现多个集群的所有实例,也可以指定集群,来发现特定集群的实例。 环境准备 首先,需要有一个 Nacos Server 部署起来,目前 Nacos 支持单机模式,也支持集群模式,部署文档可以参考 Nacos 快速入门。然后添加 Nacos 客户端最新版本依赖: <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>[latest-version]</version></dependency> 你可以配置从中央仓库直接依赖,也可以将 Nacos 最新源码下载下来,本地构建客户端版本。 Hello World 我们先来进行一个最简单的服务注册与发现。Nacos 支持从客户端注册服务实例和订阅服务,具体步骤如下: 配置 Nacos 客户端 Properties:Properties properties = new Properties();properties.setProperty(PropertyKeyConst.SERVER_ADDR, "127.0.0.1:8848"); 创建 Nacos Naming 客户端:NamingService namingService = NacosFactory.createNamingService(properties); 注册一个实例:namingService.registerInstance("nacos.test.1", InetAddress.getLocalHost().getHostAddress(), 8080); 查找这个服务的实例:System.out.println(namingService.getAllInstances("nacos.test.1")); 至此一个最简单的 Nacos 服务发现的使用已经完成了。这里要对一些细节稍作解释。首先在第一步中,属性 PropertyKeyConst.SERVER_ADDR 表示的是 Nacos 服务端的地址,这个地址的格式为 IP:port,IP:port。对于单机版,只需要指定一个 IP:port。甚至您可以将端口省略,这样将会访问 Nacos 的默认端口 8848。在第二步中,将创建一个 NamingService 实例,客户端将为该实例创建单独的资源空间,包括缓存、线程池以及配置等。Nacos 客户端没有对该实例做单例的限制,请小心维护这个实例,以防新建了多于预期的实例。第三步注册服务中,使用的是最简单的 API 注册方式,只需要传入服务名、IP、端口就可以。第四步是获取服务下的所有实例列表,包括健康和不健康的。 构建自定义实例 在一些场景中,我们希望注册的实例中,有一些能够被分配更多的流量,而另外一些分配较少的流量,或者能够传入一些实例的元信息存储到 Nacos 服务端,例如 IP 所属的应用或者所在的机房,这样在客户端可以根据服务下挂载的实例的元信息,来自定义负载均衡模式。别担心,我们有另外的注册实例接口,让你可以在注册的时候指定实例的属性: /** * Register a instance to service with specified instance properties * * @param serviceName name of service * @param instance instance to register * @throws NacosException / void registerInstance(String serviceName, Instance instance) throws NacosException; 这个方法可以在注册服务的时候,传入一个 Instanc 实例,而在 Instance 实例中,可以设置实例的若干属性: public class Instance { /* * Unique ID of this instance. / private String instanceId; /* * Instance ip / private String ip; /* * Instance port / private int port; /* * Instance weight / private double weight = 1.0D; /* * Instance health status / @JSONField(name = "valid") private boolean healthy = true; /* * Cluster information of instance / @JSONField(serialize = false) private Cluster cluster = new Cluster(); /* * Service information of instance / @JSONField(serialize = false) private Service service; /* * User extended attributes / private Map<String, String> metadata = new HashMap<String, String>(); ....} 其中,InstanceId 是由服务端生成返回给客户端,用于唯一标识该实例。IP、端口是实例的基本属性,除此之外,还有 weight 权重,可以设置该实例所分配流量的多少,这应该也比较好理解,权重越大,实例分配的流量就会越大。healthy 字段代表该实例是否健康,这个值也是由服务端返回给客户端的。cluster 和 service 分别表示该实例对应的集群和服务的一些信息,这些信息会在下面做介绍。最后是实例的元数据,这个元数据一个 String 对 String 的 Map。那么可以用如下代码来注册一个自定义实例: Instance instance = new Instance();instance.setIp(InetAddress.getLocalHost().getHostAddress());instance.setPort(8080);instance.setWeight(100);Map<String, String> metadata = new HashMap<String, String>(16);metadata.put("app", "nacos");metadata.put("site", "beijing");instance.setMetadata(metadata);namingService.registerInstance("nacos.test.1", instance); 构建自定义集群 Nacos 引入了集群的概念,在服务这个维度下面,可以对服务下的实例列表再做个划分。这在阿里巴巴内部非常普遍。一个典型的场景是这个服务下的实例,需要配置多种健康检查方式,有一些实例使用 TCP 的健康检查方式,另外一些使用 HTTP 的健康检查方式。另一个场景是,这个服务下挂载的机器分属不同的环境,我们希望能够在某些情况下(包括演练)将某个环境的流量全部切走,这样可以通过配置一个环境属于一个集群,来做到一次性切流。 在客户端构建自定义集群,有一些陷阱需要小心。当前我们只有注册实例的接口,实例内部的 cluster 字段可以配置集群的属性。但是多个实例之间如果配置了不同的集群属性,这时候会发生什么呢?Nacos 只会接受第一次注册该集群所传入的集群属性,也就是说,先注册的实例,获得优先权,将它对应的集群信息注册到 Nacos 服务端。只有 Nacos 服务端已经存在该集群的配置,后续的注册请求里的集群信息,都会被忽略。为了确保你的应用保持预期的行为,请务必让同一个集群下的实例使用相同的集群配置。 下面来看看可以为集群定义哪些配置: public class Cluster { /* * Name of belonging service / private String serviceName; /* * Name of cluster / private String name = ""; /* * Health check config of this cluster / private AbstractHealthChecker healthChecker = new AbstractHealthChecker.Tcp(); /* * Default registered port for instances in this cluster. / private int defaultPort = 80; /* * Default health check port of instances in this cluster. / private int defaultCheckPort = 80; /* * Whether or not use instance port to do health check. / private boolean useIPPort4Check = true; private Map<String, String> metadata = new HashMap<String, String>(); ...} 首先是集群对应的服务名,用来表示该集群所属的服务;然后是集群的名字、健康检查方式、默认的端口、默认的健康检查端口以及是否使用是的端口做健康检查。我们先来说简单的,默认端口表示注册时实例默认的端口,这个在客户端并没有体现,但是当使用 API 注册实例的时候,端口是可以不传入的,此时就会用这个默认端口作为实例的端口。然后是默认的健康检查端口,当健康检查方式中没有配置端口时,就会用这个端口来和实例通信,进行健康检查。下一个属性是是否使用实例端口做健康检查,如果设为 true,则会使用实例注册的端口来和实例进行通信。最后一个属性是集群的元数据,Nacos 支持多个维度的元数据,实例支持,集群支持,下面介绍的服务属性也支持。 健康检查方式,客户端心跳是一种模式,由客户端主动上报健康状态。服务端检测是另外一种模式,Nacos 目前支持三种:TCP、HTTP 和 MYSQL。TCP 方式会从 Nacos 服务端建立一个连接到实例,如果连接建立成功,则表示该实例健康。HTTP 方式则会从 Nacos 服务端想实例发起一个 HTTP 请求,可以配置的属性有访问的相对路径,访问的 HTTP 头部,这个头部使用竖线进行分割,以及预期的请求返回码,默认为 200: private String path = "";private String headers = "";private int expectedResponseCode = 200; MYSQL 健康检查方式,则可以让 Nacos 往实例执行一条 MySQL 命令,可以配置的属性有用户名、密码和执行的命令。执行结果如果不抛异常,则表示实例健康: private String user;private String pwd;private String cmd; 构建自定义服务 同理,服务也可能需要自定义的配置,Nacos 的服务随着实例的注册而存在,并随着所有实例的注销而消亡。目前除了使用 HTTP API 可以修改服务的属性外(这将在未来的篇章中进行介绍),就只能使用注册实例时传入服务属性来进行服务的自定义配置。这里的服务与 Consul 或者 Eureka 不同,Consul 与 Eureka 的服务其实就是指的实例,而每个实例有一个服务名,通过这个服务名来获取相同服务名下的实例列表,服务本身并不是一个数据实体。在真正的生产环境中,我们认为服务本身也是具有数据存储需求的,例如作用于服务下所有实例的配置、权限控制等。虽然有一些配置可以放到实例级别,例如健康检查是否开启。但是当服务的规模成千上万后,想要整体修改这些实例的健康检查开关,就是一个繁重的运维操作。另一些配置,例如下文会提到的健康保护阈值,是一定是一个服务只有一个唯一的值的,多个值将会造成逻辑上的冲突。 /* * Service name / private String name; /* * Protect threshold / private float protectThreshold = 0.0F; /* * Application name of this service / private String app; /* * Service group which is meant to classify services into different sets. / private String group; /* * Health check mode. / private String healthCheckMode; private Map<String, String> metadata = new HashMap<String, String>(); 服务的属性存储在 Service 类中,自上而下,依次是服务的名称、服务的健康保护阈值、服务的应用名、服务的分组、服务的健康检查模式以及服务的元数据。相关概念这里不再做一一陈述,你可以参考 Nacos 官网 概念介绍。这里要提到的是服务的健康保护阈值,在阿里巴巴内部,这个值被广泛的设置和调优。在这里对该属性的初衷做一个简单的介绍。分布式服务场景下的一个问题是在部分实例不健康的情况下,是否能够将流所有流量引向其他健康实例?在一些情况下,这可能造成雪崩效应。即本来健康的实例被多余的流量冲击,也变得不健康,然后导致健康的实例越来越少,最后整个服务崩溃。此时可以使用这个健康保护阈值,当健康实例与所有实例的比例小于这个值的时候,则认为所有实例都是健康的,这样虽然部分流量流向了不健康的实例,但是剩余健康的实例还是能够正常访问的。 服务发现 Nacos 的服务发现,有主动拉取和推送两种模式,这与一般的服务发现架构相同。在拉取方式中,提供了三个方法,一个是查询所有注册的实例,一个是只查询健康且上线的实例,还有一个是获取一个健康且上线的实例。一般情况下,订阅端并不关心不健康的实例或者权重设为 0 的实例,但是也不排除一些场景下,有一些运维或者管理的场景需要拿到所有的实例。目前的版本同时还支持根据服务端设定的负载均衡策略,来查询单个可用的实例。就好像 DNS 解析一样,虽然每次都返回一个后端 IP,但是整体可以保证域名挂载的所有 IP 会按照一定的策略都能够被客户端解析到。 /* * Get all instances of a service * * @param serviceName name of service * @return A list of instance * @throws NacosException /List<Instance> getAllInstances(String serviceName) throws NacosException;/* * Get qualified instances of service * * @param serviceName name of service * @param healthy a flag to indicate returning healthy or unhealthy instances * @return A qualified list of instance * @throws NacosException /List<Instance> selectInstances(String serviceName, boolean healthy) throws NacosException;/* * Select one healthy instance of service using predefined load balance strategy * * @param serviceName name of service * @return qualified instance * @throws NacosException /Instance selectOneHealthyInstance(String serviceName) throws NacosException; 前两个查询方法会返回所有实例的列表,这允许用户通过额外的工作,将实例的权重或者元数据运用到负载均衡中。对于一般的微服务场景,针对每个实例轮询,这样已经足够了。事实上,不管是在 Eureka 还是 Consul 里,其原生客户端都是只负责服务的发现,并不支持负载均衡。这样就需要第三方的 ribbon 或者 fabio 来完成负载均衡工作,此时它们的负载均衡,是完全放在客户端的。 Nacos 也会支持客户端侧的负载均衡,并支持用户扩展的负载均衡策略。不过在阿里巴巴内部,通常只需要由服务端来配置负载均衡策略,所有的调用端不区分业务的使用同一套负载均衡策略。因为实际上,调用端往往并不关心自身访问的服务的流量分配,而只需要一个可用的服务节点就可以了。而服务提供端,则由于其部署规模很大和部署环境的复杂,需要对环境信息敏感的流量分配以及对流量的绝对控制权。这时,往往需要提供端审慎的配置好统一的负载均衡策略,来保证所有订阅端按照这个策略来进行访问。 除了主动查询实例列表,Nacos 还提供订阅模式来感知服务下实例列表的变化,包括服务配置或者实例配置的变化。可以使用下面的接口来进行订阅或者取消订阅: /* * Subscribe service to receive events of instances alteration * * @param serviceName name of service * @param listener event listener * @throws NacosException /void subscribe(String serviceName, EventListener listener) throws NacosException;/* * Unsubscribe event listener of service * * @param serviceName name of service * @param listener event listener * @throws NacosException */void unsubscribe(String serviceName, EventListener listener) throws NacosException; 控制台使用 Nacos 0.3.0 版本上线了控制台,作为生产环境基本的运维工具,服务发现也通过控制台释放了部分的运维能力。虽然控制台承担的是运维为主的工作,但是开发人员也需要通过控制台来查看当前服务的注册状态和健康状态等,服务发现的控制台页面介绍可以参考 https://nacos.io/en-us/blog/discovery-console.html。虽然这篇文章中的一些页面通过社区的反馈而做了细微的调整,但是通过这篇文章应该可以掌握怎么使用服务发现的控制台了。控制台的启动方式也很简单,将 Nacos 安装包下载安装启动(安装教程)之后,直接访问:http://localhost:8848/nacos/index.html 即可打开最新的控制台界面。 小 结 Nacos 目前的版本,集成了服务发现和配置管理的基本能力以及部分高级特性。作为最小生产可用版本,Nacos 未来还会继续开放新特性,结合 SpringCloud、K8S、Dubbo 等生态,为开发者提供极致易用和稳定的服务管理和配置管理能力。在可预期的几个版本内,将会支持元数据的管理及 DNS 的服务发现。争取将使用 Nacos,作为服务发现和配置管理选型的最佳实践。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:00:16 0 浏览量 回答数 0

问题

迷你书下载 精彩片段: 恶名昭著的指针究竟是什么:报错

指针——C语言的灵魂 为什么说C指针是C语言的灵魂? 买前必读: 迷你书下载 精彩片段: 恶名昭著的指针究竟是什么:报错 为什么说C指针是C语言的灵魂? 来...
kun坤 2020-06-09 15:10:04 4 浏览量 回答数 1

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。
有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

回答

重试作用: 对于重试是有场景限制的,不是什么场景都适合重试,比如参数校验不合法、写操作等(要考虑写是否幂等)都不适合重试。 远程调用超时、网络突然中断可以重试。在微服务治理框架中,通常都有自己的重试与超时配置,比如dubbo可以设置retries=1,timeout=500调用失败只重试1次,超过500ms调用仍未返回则调用失败。 比如外部 RPC 调用,或者数据入库等操作,如果一次操作失败,可以进行多次重试,提高调用成功的可能性。 优雅的重试机制要具备几点: 无侵入:这个好理解,不改动当前的业务逻辑,对于需要重试的地方,可以很简单的实现 可配置:包括重试次数,重试的间隔时间,是否使用异步方式等 通用性:最好是无改动(或者很小改动)的支持绝大部分的场景,拿过来直接可用 优雅重试共性和原理: 正常和重试优雅解耦,重试断言条件实例或逻辑异常实例是两者沟通的媒介。 约定重试间隔,差异性重试策略,设置重试超时时间,进一步保证重试有效性以及重试流程稳定性。 都使用了命令设计模式,通过委托重试对象完成相应的逻辑操作,同时内部封装实现重试逻辑。 Spring-tryer和guava-tryer工具都是线程安全的重试,能够支持并发业务场景的重试逻辑正确性。 优雅重试适用场景: 功能逻辑中存在不稳定依赖场景,需要使用重试获取预期结果或者尝试重新执行逻辑不立即结束。比如远程接口访问,数据加载访问,数据上传校验等等。 对于异常场景存在需要重试场景,同时希望把正常逻辑和重试逻辑解耦。 对于需要基于数据媒介交互,希望通过重试轮询检测执行逻辑场景也可以考虑重试方案。 优雅重试解决思路: 切面方式 这个思路比较清晰,在需要添加重试的方法上添加一个用于重试的自定义注解,然后在切面中实现重试的逻辑,主要的配置参数则根据注解中的选项来初始化 优点: 真正的无侵入 缺点: 某些方法无法被切面拦截的场景无法覆盖(如spring-aop无法切私有方法,final方法) 直接使用aspecj则有些小复杂;如果用spring-aop,则只能切被spring容器管理的bean 消息总线方式 这个也比较容易理解,在需要重试的方法中,发送一个消息,并将业务逻辑作为回调方法传入;由一个订阅了重试消息的consumer来执行重试的业务逻辑 优点: 重试机制不受任何限制,即在任何地方你都可以使用 利用EventBus框架,可以非常容易把框架搭起来 缺点: 业务侵入,需要在重试的业务处,主动发起一条重试消息 调试理解复杂(消息总线方式的最大优点和缺点,就是过于灵活了,你可能都不知道什么地方处理这个消息,特别是新的童鞋来维护这段代码时) 如果要获取返回结果,不太好处理, 上下文参数不好处理 模板方式 优点: 简单(依赖简单:引入一个类就可以了; 使用简单:实现抽象类,讲业务逻辑填充即可;) 灵活(这个是真正的灵活了,你想怎么干都可以,完全由你控制) 缺点: 强侵入 代码臃肿 把这个单独捞出来,主要是某些时候我就一两个地方要用到重试,简单的实现下就好了,也没有必用用到上面这么重的方式;而且我希望可以针对代码快进行重试 这个的设计还是非常简单的,基本上代码都可以直接贴出来,一目了然: 复制代码 public abstract class RetryTemplate { private static final int DEFAULT_RETRY_TIME = 1; private int retryTime = DEFAULT_RETRY_TIME; private int sleepTime = 0;// 重试的睡眠时间 public int getSleepTime() { return sleepTime; } public RetryTemplate setSleepTime(int sleepTime) { if(sleepTime < 0) { throw new IllegalArgumentException("sleepTime should equal or bigger than 0"); } this.sleepTime = sleepTime; return this; } public int getRetryTime() { return retryTime; } public RetryTemplate setRetryTime(int retryTime) { if (retryTime <= 0) { throw new IllegalArgumentException("retryTime should bigger than 0"); } this.retryTime = retryTime; return this; } /** * 重试的业务执行代码 * 失败时请抛出一个异常 * * todo 确定返回的封装类,根据返回结果的状态来判定是否需要重试 * * @return */ protected abstract Object doBiz() throws Exception; //预留一个doBiz方法由业务方来实现,在其中书写需要重试的业务代码,然后执行即可 public Object execute() throws InterruptedException { for (int i = 0; i < retryTime; i++) { try { return doBiz(); } catch (Exception e) { log.error("业务执行出现异常,e: {}", e); Thread.sleep(sleepTime); } } return null; } public Object submit(ExecutorService executorService) { if (executorService == null) { throw new IllegalArgumentException("please choose executorService!"); } return executorService.submit((Callable) () -> execute()); } } 复制代码 使用示例: 复制代码 public void retryDemo() throws InterruptedException { Object ans = new RetryTemplate() { @Override protected Object doBiz() throws Exception { int temp = (int) (Math.random() * 10); System.out.println(temp); if (temp > 3) { throw new Exception("generate value bigger then 3! need retry"); } return temp; } }.setRetryTime(10).setSleepTime(10).execute(); System.out.println(ans); } 复制代码 spring-retry Spring Retry 为 Spring 应用程序提供了声明性重试支持。 它用于Spring批处理、Spring集成、Apache Hadoop(等等)的Spring。 在分布式系统中,为了保证数据分布式事务的强一致性,在调用RPC接口或者发送MQ时,针对可能会出现网络抖动请求超时情况采取一下重试操作。 用的最多的重试方式就是MQ了,但是如果你的项目中没有引入MQ,就不方便了。 还有一种方式,是开发者自己编写重试机制,但是大多不够优雅。 缺陷 spring-retry 工具虽能优雅实现重试,但是存在两个不友好设计: 一个是重试实体限定为 Throwable 子类,说明重试针对的是可捕捉的功能异常为设计前提的,但是我们希望依赖某个数据对象实体作为重试实体, 但 sping-retry框架必须强制转换为Throwable子类。 另一个是重试根源的断言对象使用的是 doWithRetry 的 Exception 异常实例,不符合正常内部断言的返回设计。 Spring Retry 提倡以注解的方式对方法进行重试,重试逻辑是同步执行的,当抛出相关异常后执行重试, 如果你要以返回值的某个状态来判定是否需要重试,可能只能通过自己判断返回值然后显式抛出异常了。只读操作可以重试,幂等写操作可以重试,但是非幂等写操作不能重试,重试可能导致脏写,或产生重复数据。 @Recover 注解在使用时无法指定方法,如果一个类中多个重试方法,就会很麻烦。 spring-retry 结构 BackOff:补偿值,一般指失败后多久进行重试的延迟值。 Sleeper:暂停应用的工具,通常用来应用补偿值。 RetryState:重试状态,通常包含一个重试的键值。 RetryCallback:封装你需要重试的业务逻辑(上文中的doSth) RecoverCallback:封装了多次重试都失败后你需要执行的业务逻辑(上文中的doSthWhenStillFail) RetryContext:重试语境下的上下文,代表了能被重试动作使用的资源。可用于在多次Retry或者Retry 和Recover之间传递参数或状态(在多次doSth或者doSth与doSthWhenStillFail之间传递参数) RetryOperations: 定义了“重试”的模板(重试的API),要求传入RetryCallback,可选传入RecoveryCallback; RetryTemplate :RetryOperations的具体实现,组合了RetryListener[],BackOffPolicy,RetryPolicy。 RetryListener:用来监控Retry的执行情况,并生成统计信息。 RetryPolicy:重试的策略或条件,可以简单的进行多次重试,可以是指定超时时间进行重试(上文中的someCondition),决定失败能否重试。 BackOffPolicy: 重试的回退策略,在业务逻辑执行发生异常时。如果需要重试,我们可能需要等一段时间(可能服务器过于繁忙,如果一直不间隔重试可能拖垮服务器),当然这段时间可以是0,也可以是固定的,可以是随机的(参见tcp的拥塞控制算法中的回退策略)。回退策略在上文中体现为wait(); RetryPolicy提供了如下策略实现: NeverRetryPolicy:只允许调用RetryCallback一次,不允许重试; AlwaysRetryPolicy:允许无限重试,直到成功,此方式逻辑不当会导致死循环; SimpleRetryPolicy:固定次数重试策略,默认重试最大次数为3次,RetryTemplate默认使用的策略; TimeoutRetryPolicy:超时时间重试策略,默认超时时间为1秒,在指定的超时时间内允许重试; CircuitBreakerRetryPolicy:有熔断功能的重试策略,需设置3个参数openTimeout、resetTimeout和delegate delegate:是真正判断是否重试的策略,当重试失败时,则执行熔断策略;应该配置基于次数的SimpleRetryPolicy或者基于超时的TimeoutRetryPolicy策略,且策略都是全局模式,而非局部模式,所以要注意次数或超时的配置合理性。 openTimeout:openWindow,配置熔断器电路打开的超时时间,当超过openTimeout之后熔断器电路变成半打开状态(主要有一次重试成功,则闭合电路); resetTimeout:timeout,配置重置熔断器重新闭合的超时时间 CompositeRetryPolicy:组合重试策略,有两种组合方式,乐观组合重试策略是指只要有一个策略允许重试即可以,悲观组合重试策略是指只要有一个策略不允许重试即可以,但不管哪种组合方式,组合中的每一个策略都会执行。 BackOffPolicy 提供了如下策略实现: NoBackOffPolicy:无退避算法策略,即当重试时是立即重试; FixedBackOffPolicy:固定时间的退避策略,需设置参数sleeper(指定等待策略,默认是Thread.sleep,即线程休眠)、backOffPeriod(休眠时间,默认1秒); UniformRandomBackOffPolicy:随机时间退避策略,需设置sleeper、minBackOffPeriod、maxBackOffPeriod,该策略在[minBackOffPeriod,maxBackOffPeriod之间取一个随机休眠时间,minBackOffPeriod默认500毫秒,maxBackOffPeriod默认1500毫秒; ExponentialBackOffPolicy:指数退避策略,需设置参数sleeper、initialInterval、maxInterval和multiplier。initialInterval指定初始休眠时间,默认100毫秒,maxInterval指定最大休眠时间,默认30秒,multiplier指定乘数,即下一次休眠时间为当前休眠时间*multiplier; ExponentialRandomBackOffPolicy:随机指数退避策略,引入随机乘数,固定乘数可能会引起很多服务同时重试导致DDos,使用随机休眠时间来避免这种情况。 RetryTemplate主要流程实现: 复制代码 //示例一 public void upload(final Map<String, Object> map) throws Exception { // 构建重试模板实例 RetryTemplate retryTemplate = new RetryTemplate(); // 设置重试策略,主要设置重试次数 SimpleRetryPolicy policy =         new SimpleRetryPolicy(3, Collections.<Class<? extends Throwable>, Boolean> singletonMap(Exception.class, true)); // 设置重试回退操作策略,主要设置重试间隔时间 FixedBackOffPolicy fixedBackOffPolicy = new FixedBackOffPolicy(); fixedBackOffPolicy.setBackOffPeriod(100); retryTemplate.setRetryPolicy(policy); retryTemplate.setBackOffPolicy(fixedBackOffPolicy); // 通过RetryCallback 重试回调实例包装正常逻辑逻辑,第一次执行和重试执行执行的都是这段逻辑 final RetryCallback<Object, Exception> retryCallback = new RetryCallback<Object, Exception>() { //RetryContext 重试操作上下文约定,统一spring-try包装 public Object doWithRetry(RetryContext context) throws Exception { System.out.println("do some thing"); Exception e = uploadToOdps(map); System.out.println(context.getRetryCount()); throw e;//这个点特别注意,重试的根源通过Exception返回 } }; // 通过RecoveryCallback 重试流程正常结束或者达到重试上限后的退出恢复操作实例 final RecoveryCallback recoveryCallback = new RecoveryCallback() { public Object recover(RetryContext context) throws Exception { System.out.println("do recory operation"); return null; } }; try { // 由retryTemplate 执行execute方法开始逻辑执行 retryTemplate.execute(retryCallback, recoveryCallback); } catch (Exception e) { e.printStackTrace(); } } //示例二 protected <T, E extends Throwable> T doExecute(RetryCallback<T, E> retryCallback,RecoveryCallback recoveryCallback,   RetryState state) throws E, ExhaustedRetryException { //重试策略 RetryPolicy retryPolicy = this.retryPolicy; //退避策略 BackOffPolicy backOffPolicy = this.backOffPolicy; //重试上下文,当前重试次数等都记录在上下文中 RetryContext context = open(retryPolicy, state); try { //拦截器模式,执行RetryListener#open boolean running = doOpenInterceptors(retryCallback, context); //判断是否可以重试执行 while (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { try {//执行RetryCallback回调 return retryCallback.doWithRetry(context); } catch (Throwable e) {//异常时,要进行下一次重试准备 //遇到异常后,注册该异常的失败次数 registerThrowable(retryPolicy, state, context, e); //执行RetryListener#onError doOnErrorInterceptors(retryCallback, context, e); //如果可以重试,执行退避算法,比如休眠一小段时间后再重试 if (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { backOffPolicy.backOff(backOffContext); } //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy, context, state)) { throw RetryTemplate. wrapIfNecessary(e); } } //如果是有状态重试,且有GLOBAL_STATE属性,则立即跳出重试终止;       //当抛出的异常是非需要执行回滚操作的异常时,才会执行到此处,CircuitBreakerRetryPolicy会在此跳出循环; if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } } //重试失败后,如果有RecoveryCallback,则执行此回调,否则抛出异常 return handleRetryExhausted(recoveryCallback, context, state); } catch (Throwable e) { throw RetryTemplate. wrapIfNecessary(e); } finally { //清理环境 close(retryPolicy, context, state, lastException == null || exhausted); //执行RetryListener#close,比如统计重试信息 doCloseInterceptors(retryCallback, context, lastException); } } 复制代码 有状态or无状态 无状态重试,是在一个循环中执行完重试策略,即重试上下文保持在一个线程上下文中,在一次调用中进行完整的重试策略判断。如远程调用某个查询方法时是最常见的无状态重试: 复制代码 RetryTemplate template = new RetryTemplate(); //重试策略:次数重试策略 RetryPolicy retryPolicy = new SimpleRetryPolicy(3); template.setRetryPolicy(retryPolicy); //退避策略:指数退避策略 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy(); backOffPolicy.setInitialInterval(100); backOffPolicy.setMaxInterval(3000); backOffPolicy.setMultiplier(2); backOffPolicy.setSleeper(new ThreadWaitSleeper()); template.setBackOffPolicy(backOffPolicy); //当重试失败后,抛出异常 String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { throw new RuntimeException("timeout"); } }); //当重试失败后,执行RecoveryCallback String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }); 复制代码 有状态重试,有两种情况需要使用有状态重试,事务操作需要回滚、熔断器模式。 事务操作需要回滚场景时,当整个操作中抛出的是数据库异常DataAccessException,则不能进行重试需要回滚,而抛出其他异常则可以进行重试,可以通过RetryState实现: 复制代码 //当前状态的名称,当把状态放入缓存时,通过该key查询获取 Object key = "mykey"; //是否每次都重新生成上下文还是从缓存中查询,即全局模式(如熔断器策略时从缓存中查询) boolean isForceRefresh = true; //对DataAccessException进行回滚 BinaryExceptionClassifier rollbackClassifier = new BinaryExceptionClassifier(Collections.<Class<? extends Throwable>>singleton(DataAccessException.class)); RetryState state = new DefaultRetryState(key, isForceRefresh, rollbackClassifier); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new TypeMismatchDataAccessException(""); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); 复制代码 RetryTemplate中在有状态重试时,回滚场景时直接抛出异常处理代码: //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy,context, state)) { throw RetryTemplate. wrapIfNecessary(e); } 熔断器场景。在有状态重试时,且是全局模式,不在当前循环中处理重试,而是全局重试模式(不是线程上下文),如熔断器策略时测试代码如下所示。 复制代码 RetryTemplate template = new RetryTemplate(); CircuitBreakerRetryPolicy retryPolicy = new CircuitBreakerRetryPolicy(new SimpleRetryPolicy(3)); retryPolicy.setOpenTimeout(5000); retryPolicy.setResetTimeout(20000); template.setRetryPolicy(retryPolicy); for (int i = 0; i < 10; i++) { try { Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key, isForceRefresh); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); System.out.println(result); } catch (Exception e) { System.out.println(e); } } 复制代码 为什么说是全局模式呢?我们配置了isForceRefresh为false,则在获取上下文时是根据key “circuit”从缓存中获取,从而拿到同一个上下文。 Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key,isForceRefresh); 如下RetryTemplate代码说明在有状态模式下,不会在循环中进行重试。 if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } 判断熔断器电路是否打开的代码: 复制代码 public boolean isOpen() { long time = System.currentTimeMillis() - this.start; boolean retryable = this.policy.canRetry(this.context); if (!retryable) {//重试失败 //在重置熔断器超时后,熔断器器电路闭合,重置上下文 if (time > this.timeout) { this.context = createDelegateContext(policy, getParent()); this.start = System.currentTimeMillis(); retryable = this.policy.canRetry(this.context); } else if (time < this.openWindow) { //当在熔断器打开状态时,熔断器电路打开,立即熔断 if ((Boolean) getAttribute(CIRCUIT_OPEN) == false) { setAttribute(CIRCUIT_OPEN, true); } this.start = System.currentTimeMillis(); return true; } } else {//重试成功 //在熔断器电路半打开状态时,断路器电路闭合,重置上下文 if (time > this.openWindow) { this.start = System.currentTimeMillis(); this.context = createDelegateContext(policy, getParent()); } } setAttribute(CIRCUIT_OPEN, !retryable); return !retryable; } 复制代码 从如上代码可看出spring-retry的熔断策略相对简单: 当重试失败,且在熔断器打开时间窗口[0,openWindow) 内,立即熔断; 当重试失败,且在指定超时时间后(>timeout),熔断器电路重新闭合; 在熔断器半打开状态[openWindow, timeout] 时,只要重试成功则重置上下文,断路器闭合。 注解介绍 @EnableRetry 表示是否开始重试。 序号 属性 类型 默认值 说明 1 proxyTargetClass boolean false 指示是否要创建基于子类的(CGLIB)代理,而不是创建标准的基于Java接口的代理。当proxyTargetClass属性为true时,使用CGLIB代理。默认使用标准JAVA注解 @Retryable 标注此注解的方法在发生异常时会进行重试 序号 属性 类型 默认值 说明 1 interceptor String ”” 将 interceptor 的 bean 名称应用到 retryable() 2 value class[] {} 可重试的异常类型 3 include class[] {} 和value一样,默认空,当exclude也为空时,所有异常都重试 4 exclude class[] {} 指定异常不重试,默认空,当include也为空时,所有异常都重试 5 label String ”” 统计报告的唯一标签。如果没有提供,调用者可以选择忽略它,或者提供默认值。 6 maxAttempts int 3 尝试的最大次数(包括第一次失败),默认为3次。 7 backoff @Backoff @Backoff() 重试补偿机制,指定用于重试此操作的backoff属性。默认为空 @Backoff 不设置参数时,默认使用FixedBackOffPolicy(指定等待时间),重试等待1000ms 序号 属性 类型 默认值 说明 1 delay long 0 指定延迟后重试 ,如果不设置则默认使用 1000 milliseconds 2 maxDelay long 0 最大重试等待时间 3 multiplier long 0 指定延迟的倍数,比如delay=5000l,multiplier=2时,第一次重试为5秒后,第二次为10秒,第三次为20秒(大于0生效) 4 random boolean false 随机重试等待时间 @Recover 用于恢复处理程序的方法调用的注释。返回类型必须与@retryable方法匹配。 可抛出的第一个参数是可选的(但是没有它的方法只会被调用)。 从失败方法的参数列表按顺序填充后续的参数。 用于@Retryable重试失败后处理方法,此注解注释的方法参数一定要是@Retryable抛出的异常,否则无法识别,可以在该方法中进行日志处理。 说明: 使用了@Retryable的方法不能在本类被调用,不然重试机制不会生效。也就是要标记为@Service,然后在其它类使用@Autowired注入或者@Bean去实例才能生效。 要触发@Recover方法,那么在@Retryable方法上不能有返回值,只能是void才能生效。 使用了@Retryable的方法里面不能使用try...catch包裹,要在发放上抛出异常,不然不会触发。 在重试期间这个方法是同步的,如果使用类似Spring Cloud这种框架的熔断机制时,可以结合重试机制来重试后返回结果。 Spring Retry不只能注入方式去实现,还可以通过API的方式实现,类似熔断处理的机制就基于API方式实现会比较宽松。 转载于:https://www.cnblogs.com/whatarewords/p/10656514.html
养狐狸的猫 2019-12-02 02:11:54 0 浏览量 回答数 0

问题

Docker怎么入门

什么是docker docker 是一个开源的[backcolor=transparent]应用容器引擎,基于 Go 语言并遵从 Apache2.0 协议开源。Docker 可以让开发者打包他们的应用以及依赖包...
boxti 2019-12-01 21:49:35 2878 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT 阿里云科技驱动中小企业数字化