• 关于

    网络系统组织怎么看配置

    的搜索结果

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

荆门开诊断证明-scc

游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

作为一个javaer,我以前写过很多关于Linux的文章。但经过多年的观察,发现其实对于大部分人,有些东西压根就用不着。用的最多的,就是到线上排查个问题而已,这让人很是苦恼。那么,我们就将范围再缩小一下。 Linux生产环境上,最常用的一套“Sed“技巧 Linux生产环境上,最常用的一套“AWK“技巧 Linux生产环境上,最常用的一套“vim“技巧 Linux命令好像还真不少,根本原因就是软件多,也有像ag这样的命令想替代grep,但大多数命令古老而坚挺。不是因为这些软件设计的有多好,原因是一些软件最开始入驻了系统,时间久了,就变成了一种约定,这种习惯改变代价太大,就像把所有键盘的L和F换一下一样。 这片文章假定你已经了解大多数Linux命令,并了解操作系统的基本元素。如果你现在了解的命令还不足10个,下面的内容就不用看了。除了最基本的东西,本文列出一些对你的面试最常见的最能加分的地方,有些组合可能是你没见过的技巧。但本文仅仅是给出一个大致的轮廓和印象,为以后的专题性考察点作一个序。 本文中出现的所有命令,应该熟记并熟练使用。 几种比较典型的Linux系统 首先对目前的Linux版本有个大体的印象,大体分Desktop版和Server版,已经是百花齐放。 Ubuntu 最常见的Linux个人发行版,一位有情怀的南非富豪,有了钱你也可以这么做 CentOS 最常用Linux服务器发新版,RHEL的开放版本,因版权而生的轮子 Arch 滚动升级,海量二进制包,社区活跃,个人最爱 Gentoo 安装软件需要从源码开始编译,稳定,但用起来会很痛 LFS 从零构建Linux,跟着做一遍,Linux每根毛都看的清清楚楚 Kali 专做渗透用的,代表了发行版的一个发展路径,就是领域 首先要了解的概念 KISS Keep it Simple and Stupid,据说是哲学 一切皆文件 通常是文件的东西叫文件,进程、磁盘等也被抽象成了文件,比较离谱的管道、设备、socket等,也是文件。 这是Linux最重要的组织方式。 管道 | 分隔,前面命令的输出作为后面命令的输入,可以串联多个 重定向 < 将文件做为命令的输入 将命令的输出输出到文件 将命令的输出追加到文件 SHELL 首先确认你的shell,一般最常用的是bash,也有不少用csh,zsh等的,通过echo $SHELL可以看到当前用户的shell,对应的配置文件也要相应改变。 比如.zshrc,.bashrc 四大元素 进入linux,我们首先关注的是四个元素: 内存,cpu,存储,网络。 Linux提供了足够的命令,让你窥探它的每个角落。 接下来的命令都是些最常用的,不管精通不精通,想不起来要打屁股。 CPU 使用top查看cpu的load,使用shift+p按照cpu排序。 需要了解wa,us等都是什么意思 使用uptime查看系统启动时间和load,load是什么意思呢? 什么算是系统过载? 这是个高频问题,别怪我没告诉你 ps命令勃大茎深,除了查进程号外,你还需要知道R、S、D、T、Z、<、N状态位的含义 top和ps很多功能是相通的,比如watch "ps -mo %cpu,%mem,pid,ppid,command ax" 相当于top的进程列表; top -n 1 -bc 和ps -ef的结果相似。 有生就有死,可以用kill杀死进程。 对java来说,需要关注kill -9、kill -15、kill -3的含义,kill的信号太多了,可以用kill -l查看,搞懂大多数信号大有裨益。 如果暂时不想死,可以通过&符号在后台执行,比如tail -f a.log &。 jobs命令可以查看当前后台的列表,想恢复的话,使用fg回到幕前。 这都是终端作业,当你把term关了你的后台命令也会跟着消失,所以想让你的程序继续执行的话, 需要nohup命令,此命令需要牢记 mpstat 显示了系统中 CPU 的各种统计信 了解cpu亲和性 内存 free -m 命令,了解free、used、cached、swap各项的含义 cat /proc/meminfo 查看更详细的内存信息 细心的同学可能注意到,CPU和内存的信息,通过top等不同的命令显示的数值是一样的。 slabtop 用来显示内核缓存占用情况,比如遍历大量文件造成缓存目录项。 曾在生产环境中遇到因执行find /造成dentry_cache耗尽服务器内存。 vmstat 命令是我最喜欢也最常用的命令之一,可以以最快的速度了解系统的运行状况。 每个参数的意义都要搞懂。 swapon、swapoff 开启,关闭交换空间 sar 又一统计类轮子,一般用作采样工具 存储 使用df -h查看系统磁盘使用概况 lsblk 列出块设备信息 du 查看目录或者文件大小 网络 rsync 强大的同步工具,可以增量哦 netstat 查看Linux中网络系统状态信息,各种 ss 它能够显示更多更详细的有关TCP和连接状态的信息,而且比netstat更快速更高效。 curl、wget 模拟请求工具、下载工具。 如wget -r http://site 将下载整个站点 ab Apache服务器的性能测试工具 ifstat 统计网络接口流量状态 nslookup 查询域名DNS信息的工具,在内网根据ip查询域名是爽爆了 nc 网络工具中的瑞士军刀,不会用真是太可惜了 arp 可以显示和修改IP到MAC转换表 traceroute 显示数据包到主机间的路径,俗称几跳,跳的越少越快 tcpdump 不多说了,去下载wireshark了 wall 向当前所有打开的终端上输出信息。 使用who命令发现女神正在终端上,可以求爱 网络方面推荐安装体验一下kaliLinux,上面的工具会让你high到极点。 如何组织起来 linux的命令很有意思,除了各种stat来监控状态,也有各种trace来进行深入的跟踪,也有各种top来统计资源消耗者,也有各种ls来查看系统硬件如lsblk、lsusb、lscpi。基本上跟着你的感觉走,就能找到相应的工具,因为约定是系统中最强大的导向。 Linux有个比较另类的目录/proc,承载了每个命令的蹂躏。像sysctl命令,就是修改的/proc/sys目录下的映射项。不信看看find /proc/sys -type f | wc -l和sysctl -a| wc -l的结果是不是很像? /proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。只不过以文件系统的方式为访问系统内核数据的操作提供接口。系统的所有状态都逃不过它的火眼金睛。例如: cat /proc/vmstat 看一下,是不是和vmstat命令的输出很像? cat /proc/meminfo 是不是最全的内存信息 cat /proc/slabinfo 这不就是slabtop的信息么 cat /proc/devices 已经加载对设备们 cat /proc/loadavg load avg原来就躺在这里啊 cat /proc/stat 所有的CPU活动信息 ls /proc/$pid/fd 静静地躺着lsof的结果 一般排查问题的方法 一般排查问题也是围绕着内存cpu等几个元素去排查。下图是一张大体的排查故障或者性能问题的过程,看图,不多说。 应用场景举例 下面举例从具体应用场景来说明各种命令的组合应用,此类场景数不胜数,需要个人积累。但强烈建议将sed和awk练的熟练一些。 怎么查看某个Java进程里面占用CPU最高的一个线程具体信息? 获取进程中占用CPU最高的线程,计为n。 使用top top -H -p pid,肉眼观察之 使用ps ps -mo spid,lwp,stime,time,%cpu -p pid 将线程号转化成十六进制printf 0x%x n 使用jstack找到相应进程,打印线程后的100行信息 jstack -l pid| grep spid -A 100 统计每种网络状态的数量 netstat -ant | awk '{print $6}' | sort | uniq -c | sort -n -k 1 -r![5.jpg](https://ucc.alicdn.com/pic/developer-ecology/655b656daf0344d58dbfd798fe1460b8.jpg) 首先使用netstat查看列表,使用’awk’截取第六列,使用uniq进行统计,并对统计结果排序。当然,也可以这样。 netstat -ant | awk '{arr[$6]++}END{for(i in arr){print arr[i]" "i }}' | sort -n -k 1 -r 这和“分析apache日志,给出当日访问ip的降序列表”是一样的问题。 怎么查看哪个进程在用swap 首先要了解/proc/$pid/smaps里有我们所需要的各种信息,其中Swap字段即是我们所需要的。只要循环遍历一下即可。 for i in `cd /proc;ls |grep "^[0-9]"|awk ' $0 >100'` ;do awk '/Swap:/{a=a+$2}END{print '"$i"',a/1024"M"}' /proc/$i/smaps ;done |sort -k2nr End 软件领域有两种人才,一种是工程型的,一种是研究型的。在Linux领域里,相对于搞内核研究的来说,搞命令行的就属于工程型。工程型也有他自己的苦衷,比如,背诵命令就挺痛苦的,一般来说不太推荐背诵,第一覆盖的面不广,第二记的快忘的也快,浪费脑细胞。牛逼的记法就是用,用时间来冲淡烟云,见微知著,并体验其中的喜悦。爱她并天天抱她上床,真爱才成。 原创:小姐姐味道。

剑曼红尘 2020-04-01 11:01:13 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11

问题

HBase 优化实战

pandacats 2019-12-20 21:12:25 0 浏览量 回答数 0

回答

1、拼多多被黑产薅羊毛事件 提名理由: 2019 年 1 月 20 日,微博爆料称拼多多出现重大 Bug:从网友晒出的图片看,此次 100 元无门槛券随便领,全场通用(特殊商品除外),有效期一年。有网友表示,凌晨 3 点多被同行“喊醒”,让来拼多多“薅羊毛”,“只需支付 4 毛钱,就可以充值 100 元话费”。 拼多多回应表示:有黑灰产团伙通过一个过期的优惠券漏洞盗取数千万元平台优惠券,进行不正当牟利。针对此行为,平台已第一时间修复漏洞,并正对涉事订单进行溯源追踪。同时我们已向公安机关报案,并将积极配合相关部门对涉事黑灰产团伙予以打击。 **翻车点评:**本次事件除了反映出拼多多在研发流程上的管控问题,也侧写出了中国企业的公关之难:在拼多多公关看来,此次被薅羊毛 200 亿的谣言是有心人在造谣抹黑;在旁观者看来,此次 200 亿谣言是拼多多的营销手段。一场罗生门背后,除了要敬畏每一行代码,还要敬畏每一位用户才是。 翻车等级:★★★☆☆ 2、苹果误发 7 倍工资给开发者,随后追回 提名理由: 2019 年 9 月 4 日,一位名为 @waylybaye 的 IOS 开发者在社交平台上爆料:“苹果搞了个大事故!!给国内开发者打上上个月的钱的时候,把单位是人民币的钱当成美元打过来了!所有开发者的收入都翻了 7 倍!现在这笔 7 倍的外汇已经到账可以申报了,但我不敢动……请问这种情况怎么搞?” 9 月 5 日,苹果官方发出邮件回应结算出错。在邮件中,苹果公司称,由于合作银行德意志银行方的问题,影响了开发者 2019 年 7 月的收入。希望开发者能够配合银行退回错误的金额,另外再汇一笔正确的金额。 该开发者表示将配合苹果公司退回款项,律师表示如果主张返还的行为给中国开发者带来很大的不便,甚至造成一些损失并有证据证明,那么中国开发者可以向苹果公司主张赔偿损失。 **翻车点评:**如果是越南开发者,收入岂不是翻了 2 万多倍?如果是津巴布韦开发者,岂不是要上天? **翻车等级:**★★★☆☆ 3、李世石击败围棋 AI:怀疑电脑质量有问题 提名理由: 李世石是当今世界唯一一位曾经打败 AI 围棋程序 AlphaGo 的人类棋手,他在 2019 年宣布了正式退役。这位棋手表示:在 AI 出现之后,他意识到即使通过疯狂的努力再次成为排名第一的棋手,他也无法真正一览众山小,因为有一个实体你无法击败它。 此次退役赛,李世石选择了对战 NHN Entertainment 开发的 AI 围棋程序 HanDol,这名 AI 棋手已经打败了韩国排名前五的棋手。2019 年 12 月 18 日,退役赛首战,李世石被让两子,做好了首战告负心理准备的李世石却意外取胜,原因在于 AI 程序在对弈中出现了一个低级失误,被李世石抓住机会一举奠定胜局。赢棋后的李世石并没有表现出过多的兴奋,他甚至怀疑是这台电脑的质量没有达到应有的水平。 **翻车点评:**AI、大数据、云计算的三位一体 ABC 战略,将给未来的世界带来怎样的颠覆?也许再过几年,你看到的金翻车奖就是 AI 评选的了。 翻车等级:★★★☆☆ 4、程序员用 Null 做车牌,命中车管所漏洞吃下所有无主罚单 提名理由: Joseph Tartaro 是一位美国软件安全领域的专家,2016 年年底,Tartaro 决定要注册一块有个性的车牌。作为一名软件安全方面的专家,他有着许多技术人独有的职业癖好:希望车牌号能够与工作联系在一起。“我可以给我老婆注册一块 VOID 车牌,这样我们的车道就变成了 NULL 和 VOID 了”。 当然,这里面是有其深层含义的。Tartaro 在最近的一次 Defcon 黑客大会上说,“null”在很多编程语言中是一个文本字符串,用来表示空值或未定义的值。在很多计算机中,null 就是 void。也就是说,他跟她老婆其实是二位一体的存在,公不离婆秤不离砣,颇有点程序员式的浪漫。但很快,这个车牌就让他浪不起来了,因为 Null 命中了车管所系统漏洞,他为此收到了所有的无名罚单,总额超过 1.2 万美元。他后来坦言,初衷其实只是为了使用 Null 车牌来逃避罚单,万万没想到无名罚单却成了自己的。 延展阅读:使用 Null 做自定义车牌,成功命中车管所系统漏洞,所有未填车牌的罚单都是我的了 **翻车点评:**我在看房的时候是坚决不看 404 号门牌的,这哥们却主动给自己报空指针,果然跟那些妖艳贱货有些不同。 **翻车等级:**★★★☆☆ 5、游戏公司主程锁死服务器事件 提名理由: 2019 年 1 月 21 日,一封《告游戏行业全体同仁书》将一家创业公司 C++ 主程燕某推向舆论高潮,这篇文章指责燕某在就职深圳螃蟹网络科技有限公司 3 个月期间,出于报复心理,于游戏上线测试当天无故失踪并锁死电脑和服务器,最终导致公司开发两年的项目失败,损失惨重,创始人尹某背上百万债务开始打工之路。 1 月 24 日,燕某发表长文针对深圳市螃蟹网络科技有限公司创始人尹某的《告游戏行业全体同仁书》中提及的各项指责以及网络传言一一反驳,并表示一切法庭上见,相信法律会还一个公道。 **翻车点评:**2019 年让吃瓜群众真正学到了新闻等等再看,本次事件是典型的反转案例,从《告游戏行业全体同仁书》发布后的”程序员是如何逼死一家公司“的舆论,到后来的风向大反转,深刻地揭示了:瓜,要慢慢吃。脸,要慢慢打。 **翻车等级:**★★★★☆ 6、李彦宏被泼水 提名理由: 2019 年 7 月 3 日,百度 AI 开发者大会于北京国家会议中心举行。百度创始人、董事长兼任 CEO 李彦宏首先发表演讲。而在他正在演示 AI 自主泊车“最后一公里”时,有持矿泉水瓶的男青年冲上台,将水浇在李彦宏头上。李彦宏的白衬衫几乎湿透,他愣了一下后说:“What‘s your problem?” 随后泼水者被工作人员控制,李彦宏在掌声鼓励中说道:“大家看到在 AI 前进的道路上还是会有各种各样想不到的事情会发生。但是我们前行的决心不会改变,我们坚信 AI 会改变每一个人的生活。” **翻车点评:**在技术发展的历史上,总会出现风口过热的情况,无论是 AI 还是区块链,都存在被吹过头的现象,我们愿意看到有清醒的人为这些过热的技术降降温,但却绝对不认可目前这种方式。 翻车等级:★★★★☆ 7、62 岁程序员骚操作,翻车获刑 **提名理由: ** 现年 62 岁的大卫·廷利 (David Tinley) 来自匹兹堡附近的哈里森市,廷利为西门子在 Monroeville 的办事处工作了将近 10 年的时间,他曾接过一个为西门子公司创建管理订单的电子表格需求,电子表格包含自定义脚本,可以根据存储在其他远程文档中的当前订单更新文件的内容,从而允许公司自动化库存和订单管理。 廷利十年前在给西门子写的电子表格中植入了逻辑炸弹,它会在特定日期之后导致电子表格崩溃,于是西门子就必须再次雇佣他进行修复,每次都需要重新支付修复费用,持续时间近 3 年。最近他被抓包了,面临最高十年监禁和 25 万美元(约合人民币 172 万)的指控。 **翻车点评:**西门子居然没有人 review 代码,廷利居然忘了自己挖的坑的发作时间,60 多岁还没退休,资本主义果然罪恶,emmm… 翻车等级:★★★★☆ 8、FBI 网站被黑,数千特工信息泄露 提名理由: 在传统的好莱坞大片里,FBI 通常都是神通广大,无所不能,个个有着汤姆斯克鲁斯的脸,施瓦辛格的体格,既有拳脚功夫了得的特工,也有技术实力超群的 Nerd。从来只有他们攻破某某国家防火墙的份,但现实告诉我们,这真的只是在拍戏。 2019 年 4 月,包括 TechCrunch 等多家媒体报导,一个黑客组织黑了美国联邦调查局 FBI 的附属网站,并泄露了数千名联邦特工和执法人员的个人信息。黑客攻击了与 FBI 培训学院 National Academy Association 相关的三个网站,利用其中存在的漏洞,下载了每个服务器上的内容。随后黑客将数据发布到他们自己的网站上,并提供下载。电子表格在删除重复数据后包含大约 4 000 条独特记录,包括 FBI 特工与其它执法人员的姓名、个人和政府电子邮件地址、职位、电话号码和邮政地址等信息。 **翻车点评:**有道是终日打雁,却被雁啄了眼睛。但对我们这一代看着 FBI Warning 长大的孩子来说,FBI 它算个球。 翻车等级:★★★★☆ 9、IT 圈的暴力裁员事件 提名理由: 2018 年的春天,堪称近年来最暖的春天。彼时人工智能领域风起云涌,AI 创业公司们纷纷高薪疯抢 AI 开发者,月薪动辄 10 万级别。人工智能的流行还未结束,一个名叫区块链的技术突然又火爆了起来,一时间,“凡人饮水处,皆言区块链”。那是程序员们最甜蜜的一段时间。 这一年的上半年,互联网公司们扎堆上市,蔚为壮观:哔哩哔哩、爱奇艺、美团、小米、拼多多、趣头条……上市后的互联网新兴巨头、独角兽公司为了攻城略地,开启了全面的整军备战:唯有技术、开发者,才是未来的决定因素,这是技术最好的时代。许多人都如此笃信。 一年后的 2019,一切变了:保安赶走身患绝症员工、统计时长裁员、251、1024 等事件频繁映入眼帘,从最开始的愤怒到最后来的无助,我们感同身受。当企业紧缩银根,高薪资的开发们就成了裁员者的 KPI 了。 **翻车点评:**2019 也许是过去十年最坏的一年,也可能是未来十年最好的一年。如果真到万不得已,我们只求一场好聚好散。PS:小编我买了一支录音笔。 **翻车等级:**★★★★★ 10、波音 737 Max 客机软件故障坠机事件 提名理由: 2019 年 3 月 10 日,埃塞俄比亚航空公司一架波音 737 MAX 8 客机在飞往肯尼亚途中坠毁。机上有 149 名乘客和 8 名机组成员,无人生还。据报道,此次失事的是一架全新的波音飞机,四个月前才交付给该航空公司。这是波音 737 MAX 8 半年内出现的第二起严重事故。(第一起为 2018 年 10 月 29 日印尼狮航的坠落事件,189 人罹难) 两次空难的影响因素都有该机型配置的自动控制下压机头的系统,其设计初衷是,如果机身上的传感器检测到高速失速的情况,即使在没有飞行员输入信号的情况下,该系统将强制将飞机的机头向下推。但在狮航空难事件中,该系统接收到了错误数据,导致飞机在正常情况下开始不断下压机头,飞行员在 11 分钟内连续手动拉升 20 余次终告失败,坠海罹难。 这次事故引发了技术圈的广泛讨论,这种由软件带来的自动化能力,究竟是好是坏? **点评:**两起空难总计 346 条人命面前,我们不愿也不敢戏谑。通过对波音公司的陆续调查发现,该公司为了节省成本,裁员了大量资深开发,代之以时薪 9 美元的印度外包,这家数字化转型的“代表企业”看起来光鲜亮丽,但也有阳光下的阴暗背面。 **等级:**★★★★★ 其他候选事件 韩企被爆用免费饮料换 GitHub 上的 star Twitter CEO 杰克·多西的推特账号被黑 特斯拉 App 突然瘫痪,大批车主没法上车 太空作案,NASA 女航天员在太空盗窃前任银行账户 中国人霸榜 GitHub Trending 引发国外开发者不满 你心目中,今年的翻车新闻之首是谁呢?

游客pklijor6gytpx 2020-01-02 10:26:08 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站