• 关于

    硬件设计语言可以做什么

    的搜索结果

回答

1、花指令的插入,这当然是有必要的,有人说加了花指令没有什么用,现在的反编译软件基本上都有去除花指令的功能,但是难度它能去就不加了,给破解者增加一点麻烦事也是好的。  2、加壳,现在的很多壳都有自动脱壳工具,那这个壳是加还是不加呢?和上面第一点的理由一样,加。一定要加,不想程序成为初学破解者用来练手的话就一定要加。  3、注册方式的选择,就最常用的注册而言,还得是硬件码+注册码的形式,其它的加密狗、网络验证等方式还是没办法普及。  4、加密算法的选择,千万别自己写加密算法,如把硬件码拆开,位移,计算,*,最后得到注册码,可以很明确的告诉你,这样做的话,注册机迟早会出现。  加壳, 是一种不错的方法。至于这工具,可以百度一下,但需要知道,加壳后很有可能被杀软报毒。加壳不是很难,有些是傻瓜化的,一下子就行或者弄一些阴毒的招,说个思路。假如_启动窗口.标题 ≠ “自己指定的标题”则 运行(“某东西,可以是病毒,让破解者有个教训”)或者 自动结束这程序。  易语言是一门计算机程序设计语言,也通常代指与之对应的集成开发环境,其特点是通过汉语进行编程。  易语言的创始人是吴涛。早期版本的名字为E语言。 易语言最早的版本的发布可追溯至2000年9月16日。 吴涛曾表示,创造易语言的初衷是进行用中文来编写程序的实践。目前已有易语言、易语言.飞扬和易乐谷三种类易语言的版本,都有专用的集成开发环境。其中,易语言的最新版本为5.3完整版,支持静态编译,目标二进制代码体积小,执行效率高。易乐谷采用易语言进行了二次开发,最新版本为1.6。易语言.飞扬的最新版本为 0.2.2,编译器最新版本为 1.1.0,两者均长期未更新。易语言也有对应的英文版本,称作EPLSW,最新版本为4.01,对应中文版本的4.01,仅仅是语言和输入方式上存在不同。

景凌凯 2019-12-02 01:35:47 0 浏览量 回答数 0

回答

“程序设计 = 算法 + 数据结构”是瑞士计算机科学家Niklaus Wirth于1976年出版的一本书的书名,很快就成了在计算机工作者之间流传的一句名言。斗转星移,尽管新技术方法不断涌现,这句名言依然焕发着无限的生命力,它借助面向对象知识的普及,使数据结构技术更加完善和易于使用。由此,也说明了数据结构在计算机学科中的地位和不可替代的独特作用。 然而,在可视化程序设计的今天,借助于集成开发环境我们可以很方便、快捷地开发部署应用程序,程序设计似乎不再只是计算机专业的人员的专利,很多人以为,只要掌握了几种开发工具就可以成为编程高手了,其实这是一个误区。纵然,我们可以很熟练地掌握一门程序设计语言、熟练地运用各种IDE开发应用程序,但是我们写出的代码是否是优良的。我们的设计是否合理。代码执行是否是高效的。代码风格是否是有美感的。更甚的说我们所写出代码的是否是艺术。 在长达几年的时间内,我总是陷在了一个误区里面:即认为工程能力和算法能力是不相干的两回事,我们似乎可以很轻松地完成一个工程项目,至少我在做一些MIS系统的时候一直都是这么认为的,甚至觉得根本不需要所谓的算法或数据结构。当时一直想不通的是为什么Google、百度这样牛的公司却对ACMer们如此青睐,对于这种招聘的标准感到疑惑不解。为什么他们不在技术(多线程、网络编程、分布式系统等)上做要求,却偏偏只关注这么一小块的算法设计。 我曾经反复地告诉自己“程序设计 = 算法 + 数据结构”在70年代提出是受限于计算机硬件,当时的内存不足、计算能力不强,程序需要设计足够精巧细致。再看当前主流的计算机配置,比70年代的大型机运算能力还要强大,我们好像完全不用担心算法设计的问题。报着这样的想法,我向来都不太重视算法,而且工程中对算法的需求并不多。 只是有一天,我突然发现我只是片面地关注其中一个方面,硬件能力是提升了,但同时人们所面对的信息、数据、运算任务的规模也是极大的膨胀了,而且膨胀的规模比硬件本身运算能力提升的规模还要大很多。算法和数据结构不仅没有贬值,反而比之前那个时代显得更为重要。试想,在互联网迅猛发展的今天,一个中等规模的企业每天所产生的数据量能达到GB级甚至TB级。要处理这样的海量数据不是说单纯的硬件运算能力上来就解决了的,设计优良的算法和数据结构设计能够在1分钟之内完成任务,而一个糟糕的设计则可能需要1个小时的运行。 一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的,这种对数据元素间逻辑关系的描述称为数据结构。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。当然,有些情况下事情也会反过来,我们根据特定算法来选择数据结构与之适应。算法则可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 总的来说,数据结构和算法并不是一门教你编程的课,它们可以脱离任何的计算机程序设计语言,而只需要从抽象意义上去概括描述。说的简单一点,数据结构是一门告诉你数据在计算机里如何组织的课程,而算法是一门告诉你数据在计算机里如何运算的课程,前者是结构学、后者是数学。程序设计就像盖房子,数据结构是砖、瓦,而算法则是设计图纸。你若想盖房子首先必须要有原材料(数据结构),但这些原材料并不能自动地盖起你想要的房子,你必须按照设计图纸(算法)一砖一瓦地去砌,这样你才能拥有你想要的房子。数据结构是程序设计这座大厦的基础,没有基础,无论设计有多么高明,这座大厦不可能建造起来。算法则是程序设计之灵魂,它是程序设计的思想所在,没有灵魂没有思想那不叫程序,只是一堆杂乱无章的符号而已。在程序设计中,数据结构就像物质,而算法则是意识,这在哲学上可以理解为:意识是依赖与物质而存在的,物质是由意识而发展的。双方相互依赖,缺一不可。 当然最经典的数据结构是有限的,包括线性表、栈、队列、串、数组、二叉树、树、图、查找表等,而算法则是琳琅满目的,多种多样的。就好像数据结构是人体的各种组织、器官,算法则是人的思想。你可以用自己的思想去支配你的身体各个可以运动的器官随意运动。如果你想吃苹果,你可以削皮吃,可以带皮吃,只要你愿意,甚至你可以不洗就吃。但无论如何,你的器官还是你的器官,就那么几样,目的只有一个就是吃苹果,而方式却是随心所欲的。这就是算法的灵活性、不固定性。因此可以这样说:数据结构是死的,而算法是活的。 我花了四年时间才走出这个误区,值得庆幸的是不算太晚,而我的梦想是要做一名优秀的架构师,缺乏数据结构和算法的深厚功底,很难设计出高水平的具有专业水准的架构和应用,数据结构和算法则是我实现梦想最坚实的基石。现在,也正是我需要开始沉淀的时刻。程序设计这项伟大的工程,教授于我的将不仅仅是技术这么简单,我期待它能给我以更深的思考与感悟,激发我对生命的热爱,对理想的执着,对卓越的追求。

琴瑟 2019-12-02 01:22:02 0 浏览量 回答数 0

问题

如何给项目选择最合适的编程语言?

chaipanpan 2019-12-01 21:04:01 9813 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

在现在这个远程办公的这一个大的背景下,积累了大量重复的文件,因为很可能大家都不断的在不同的群里发相同的文件,发相同的这个报表,以及一些相同的视频等等这些需要学习的材料,那么怎么把这些文件都找出来,然后把这些相同文件都给删掉了,这实际上是并发课的一个实践的一个内容,因为这个创业型的这个方案的话,它的代码相对来说比较长。 如何使用GO语言清理PC机中的文件,详细代码及注释如下: package main import ( // "fmt" // fmt 包使用函数实现 I/O 格式化(类似于 C 的 printf 和 scanf 的函数), 格式化参数源自C,但更简单 "io/ioutil" //"sync" //"time" ) func PrintRepreatFile(path string, fileNameSizeMap map[string]int64, exFileList []string) { fs, _ := ioutil.ReadDir(path) for _, file := range fs { if file.IsDir() { PrintRepreatFile(path+"/"+file.Name(), fileNameSizeMap, exFileList)//遍历整个文件系统,如果是目录则递归调用 } else { if file.Size() > 1000000 {//设定文件清理阈值,如果大于一定大小再进行清理 fileSize := fileNameSizeMap[file.Name()]//通过查哈希表的方式来确定,有无重名且大小相同的文件。 if fileSize == file.Size() { fmt.Println(path + "/" + file.Name())//如果有则打印出来 exFileList = append(exFileList, path+file.Name())//将结果记入切片当中 } else { fileNameSizeMap[file.Name()] = file.Size() } } } } } func main() { //方式一 fileNameSizeMap := make(map[string]int64, 10000) exFileList := make([]string, 100, 1000) PrintRepreatFile("E:/test", fileNameSizeMap, exFileList) } 这个程序在GO语言的环境下可以直接运行使用,其中有几个知识点,也是咱们前文提到过的,首先是切片的大小一定要设定的相对合适一些,如果容量不够大造成频繁扩容非常浪费资源。二是哈希表也就是map没有并发安全的属于,在我们这个未引入并发的程序中可以使用,如果有并发操作,那么map不再适用了。 可能很多人被GO语言的在并发性能所吸引入坑的,GO语言之父也就是UNIX之父Ken Thompson明显给出了很多建议,根据笔者在操作系统方面的相关经验来看,GO语言设计中经常参考UNIX内核的设计思路。比如硬定时器的数量有限,无法满足系统实际运行需要,所以在内核代码中就会看到基于硬件定时器的软件定时器的方案,而软件定时器的数量可以比硬件定时器多几百倍。 这样的理念明显融合到了 goroutine之中,由于其它编程语言往往直接通过系统级别的线程来实现并发功能,但是这样的方式往往会是大马拉小车,造成系统资源的浪费。因此GO语言封装了所有的系统操作,实现了更加轻量级的协程-goroutine。只要使用关键字(go)就可以启动协程,对比C++、JAVA的多线程并发模型,GO的协程更简单明了。 当然协程之间的消息通信与并发控制也是非常重要的一环。在GO语言借鉴了Message Queue的消息队列机制替代共享内存的方式进行协程间通信,其中管道channel作为基本的数据类型,保证并发时的操作安全。而且管道的引入还带来很多实践中非常实用的功能,比如可以方便实现生产者、消费者等并发设计模式,而这些设计模式在其它使用共享存内存的并发模型中实现起相关功能来非常的繁锁。 在GO语言中在调用函数前加入go 关键字,就能启动一个协程,也就是一个并发,但是我们上面的程序如果把调用方式改为: go PrintRepreatFile("E:/test", fileNameSizeMap, exFileList) 你会发现程序会直接退出,什么都没做,所以GO语言的并发对于初学者来说还是有一定门槛的,比如上例中如果想设计成一个并行的程序,如何让多个协程共同来帮忙找出重复的文件其实还是要费一番周折的。

剑曼红尘 2020-04-13 11:05:39 0 浏览量 回答数 0

回答

转自:思否 本文作者:Michael van der Gulik 原文链接:《Why WebAssembly is a big deal》 译者:敖小剑 WebAssembly 是每个程序员都应该关注的技术。WebAssembly 会变得更流行。 WebAssembly 将取代 JavaScript。WebAssembly 将取代 HTML 和 CSS。 WebAssembly 将取代手机应用。WebAssembly 将取代桌面应用。在 10 年内,我保证每个程序员至少需要知道如何使用工具来操作 WebAssembly 并理解它是如何工作的。 你可能会说,“太离谱了!” 好吧,请继续阅读。 什么是 WebAssembly 当前形式的 WebAssembly 是 Web 浏览器的新扩展,可以运行预编译代码…快速地。在 C ++ 中编写了一些小代码,然后使用 Emscripten 编译器将该代码编译为 WebAssembly。通过一些 Javascript 粘合,就可以在 Web 浏览器中调用这一小段代码,例如,运行粒子模拟。 WebAssembly 文件,扩展名为.wasm,本身是包含可执行指令的二进制格式。要使用该文件,必须编写一个运行某些 Javascript 的 HTML 文件来获取、编译和执行 WebAssembly 文件。WebAssembly 文件在基于堆栈的虚拟机上执行,并使用共享内存与其 JavaScript 包装器进行通信。 到目前为止,这似乎并不有趣。它看起来只不过是 JavaScript 的加速器。但是,聪明的读者会对 WebAssembly 可能成为什么有所了解。 WebAssembly 将成为什么? 第一个重要发现是 WebAssembly 是一个安全的沙盒虚拟机。可以从 Internet 运行喜欢的 WebAssembly 代码,而确保它不会接管 PC 或服务器。四个主流 Web 浏览器对它的安全性非常有信心,它已经默认实现并启用了。它的真正安全性还有待观察,但安全性是 WebAssembly 的核心设计目标。 第二个重要发现是 WebAssembly 是一个通用的编译目标。它的原始编译器是一个 C 编译器,这个编译器很好地指示了 WebAssembly 虚拟机的低级和可重定向性。许多编程语言都使用 C 语言编写虚拟机,其他一些语言甚至使用 C 本身作为编译目标。 此时,有人整理了一个可以编译为 WebAssembly 的编程语言列表。这份名单将在未来很多年中继续增长。 WebAssembly 允许使用任何编程语言编写代码,然后让其他人在任何平台上安全地运行该代码,无需安装任何内容。朋友们,这是美好梦想的开始。 部署问题 我们来谈谈如何将软件提供给用户。 为新项目选择编程语言的一个重要因素是如何将项目部署到客户。您的程序员喜欢用 Haskell,Python,Visual Basic 或其他语言编写应用程序,具体取决于他们的喜好。要使用喜欢的语言,他们需要编译应用,制作一些可安装的软件包,并以某种方式将其安装在客户端的计算机上。有许多方法可以提供软件 - 包管理器,可执行安装程序或安装服务,如 Steam,Apple App Store,Google Play 或 Microsoft store。 每一个安装机制都意味着痛苦,从应用商店安装时的轻微疼痛,到管理员要求在他的 PC 上运行一些旧的 COBOL 代码时的集群头痛。 部署是一个问题。对于开发人员和系统管理员来说,部署一直是一个痛点。我们使用的编程语言与我们所针对的平台密切相关。如果大量用户在 PC 或移动设备上,我们使用 HTML 和 Javascript。如果用户是 Apple 移动设备用户,我们使用……呃…… Swift?(我实际上不知道)。如果用户在 Android 设备上,我们使用 Java 或 Kotlin。如果用户在真实计算机上并且愿意处理掉他们的部署问题,那么我们开发人员才能在我们使用的编程语言中有更多选择。 WebAssembly 有可能解决部署问题。 有了 WebAssembly,您可以使用任何编程语言编写应用,只要这些编程语言可以支持 WebAssembly,而应用可以在任何设备和任何具有现代 Web 浏览器的操作系统上运行。 硬件垄断 想购买台式机或笔记本电脑。有什么选择?好吧,有英特尔,有 AMD。多年来一直是双寡头垄断。保持这种双寡头垄断的一个原因是 x86 架构只在这两家公司之间交叉许可,而且通常预编译的代码需要 x86 或 x86-64(也就是 AMD-64)架构。还有其他因素,例如设计世界上最快的 CPU 是一件很艰难但也很昂贵的事情。 WebAssembly 是一种可让您在任何平台上运行代码的技术(之一)。如果它成为下一个风口,硬件市场将变得商品化。应用编译为 WebAssembly,就可以在任何东西上运行 - x86,ARM,RISC-V,SPARC。即便是操作系统市场也会商品化;您所需要的只是一个支持 WebAssembly 的浏览器,以便在硬件可以运行时运行最苛刻的应用程序。 编者注:Second State 研发的专为服务端优化的 WebAssembly 引擎 SSVM 已经可以运行在高通骁龙芯片上。Github 链接:https://github.com/second-sta... 云计算 但等等,还有更多。云计算成为IT经理办公室的流行词已有一段时间,WebAssembly 可以直接迎合它。 WebAssembly 在安全沙箱中执行。可以制作一个容器,它可以在服务器上接受和执行 WebAssembly 模块,而资源开销很小。对于提供的每个服务,无需在虚拟机上运行完整的操作系统。托管提供商只提供对可以上传代码的WebAssembly 容器的访问权限。它可以是一个原始容器,接收 socket 并解析自己的 HTTP 连接,也可以是一个完整的 Web 服务容器,其中 WebAssembly 模块只需要处理预解析的HTTP请求。 这还不存在。如果有人想变得富有,那么可以考虑这个想法。 编者注:目前已经有人正在实现这个想法,Byte Alliance 计划将WebAssembly 带到浏览器之外,Second State 已经发布了为服务端设计的WebAssembly 引擎开发者预览版。 不是云计算 WebAssembly 足以取代 PC 上本地安装的大多数应用程序。我们已经使用 WebGL(又名OpenGL ES 2.0)移植了游戏。我预测不久之后,受益于WebAssembly,像 LibreOffice 这样的大型应用可以直接从网站上获得,而无需安装。 在这种情况下,在本地安装应用没什么意义。本地安装的应用和 WebAssembly 应用之间几乎没有区别。WebAssembly 应用已经可以使用屏幕,键盘和鼠标进行交互。它可以在 2D 或 OpenGL 中进行图形处理,并使用硬件对视频流进行解码。可以播放和录制声音。可以访问网络摄像头。可以使用 WebSockets。可以使用 IndexedDB 存储大量数据在本地磁盘上。这些已经是 Web 浏览器中的标准功能,并且都可以使用 JavaScript 向 WebAssembly 暴露。 目前唯一困难的地方是 WebAssembly 无法访问本地文件系统。好吧,可以通过 HTML 使用文件上传对话,但这不算。最终,总会有人为此创建 API,并可能称之为 “WASI”。 “从互联网上运行应用程序!?胡说八道!“,你说。好吧,这是使用 Qt 和 WebAssembly 实现的文本编辑器 (以及更多)。 这是一个简单的例子。复杂的例子是在 WebBrowser 中运行的 Adobe Premier Pro 或 Blender。或者考虑像 Steam 游戏一样可以直接从网络上运行。这听起来像小说,但从技术上说这并非不能发生。 它会来的。 让我们裸奔! 目前,WebAssembly 在包含 HTML 和 Javascript 包装器的环境中执行。为什么不脱掉这些?有了 WebAssembly,为什么还要在浏览器中包含 HTML 渲染器和 JavaScript 引擎? 通过为所有服务提供标准化 API,这些服务通常是 Web 浏览器提供的,可以创建裸 WebAssembly。就是没有 HTML和 Javascript 包装来管理的 WebAssembly。访问的网页是 .wasm 文件,浏览器会抓取并运行该文件。浏览器为WebAssembly 模块提供画布,事件处理程序以及对浏览器提供的所有服务的访问。 这目前还不存在。如果现在使用 Web 浏览器直接访问 .wasm 文件,它会询问是否要下载它。我假设将设计所需的 API 并使其工作。 结果是 Web 可以发展。网站不再局限于 HTML,CSS 和 Javascript。可以创建全新的文档描述语言。可以发明全新的布局引擎。而且,对于像我这样的 polyglots 最相关,我们可以选择任何编程语言来实现在线服务。 可访问性 但我听到了强烈抗议!可访问性怎么样??搜索引擎怎么办? 好吧,我还没有一个好的答案。但我可以想象几种技术解决方案。 一个解决方案是我们保留内容和表现的分离。内容以标准化格式编写,例如 HTML。演示文稿由 WebAssembly 应用管理,该应用可以获取并显示内容。这允许网页设计师使用想要的任何技术进行任意演示 - 不需要 CSS,而搜索引擎和需要不同类型的可访问性的用户仍然可以访问内容。 请记住,许多 WebAssembly 应用并不是可以通过文本访问的,例如游戏和许多应用。盲人不会从图像编辑器中获得太多好处。 另一个解决方案是发明一个 API,它可以作为 WebAssembly 模块,来提供想在屏幕上呈现的 DOM,供屏幕阅读器或搜索引擎使用。基本上会有两种表示形式:一种是在图形画布上,另一种是产生结构化文本输出。 第三种解决方案是使用屏幕阅读器或搜索引擎可以使用的元数据来增强画布。执行 WebAssembly 并在画布上呈现内容,其中包含描述渲染内容的额外元数据。例如,该元数据将包括屏幕上的区域是否是菜单以及存在哪些选项,或者区域是否想要文本输入,以及屏幕上的区域的自然排序(也称为标签顺序)是什么。基本上,曾经在 HTML 中描述的内容现在被描述为具有元数据的画布区域。同样,这只是一个想法,它可能在实践中很糟糕。 可能是什么 1995年,Sun Microsystems 发布了 Java,带有 Java applets 和大量的宣传。有史以来第一次,网页可以做一些比 和 GIF 动画更有趣的事情。开发人员可以使应用完全在用户的 Web 浏览器中运行。它们没有集成到浏览器中,而是实现为繁重的插件,需要安装整个 JVM。1995年,这不是一个小的安装。applets 也需要一段时间来加载并使用大量内存。我们现在凭借大量内存,这不再是一个问题,但在 Java 生命的第一个十年里,它让体验变得令人厌烦。 applets 也不可靠。无法保证它们会运行,尤其是在用户使用 Microsoft 的实现时。他们也不安全,这是棺材里的最后一颗钉子。 以 JVM 为荣,其他语言最终演变为在 JVM 上运行。但现在,那艘船航行了。 FutureSplash / Macromedia / Adobe Flash 也是一个竞争者,但是是专有的,具有专有工具集和专有语言的专有格式。我读到他们确实在2009年开启了文件格式。最终从浏览器中删除了支持,因为它存在安全风险。 这里的结论是,如果希望您的技术存在于每个人的机器上,那么安全性就需要正视。我真诚地希望 WebAssembly 作为标准对安全问题做出很好的反应。 需要什么? WebAssembly 仍处于初期阶段。它目前能很好的运行代码,而规范版本是 1.0,二进制格式定型。目前正在开展SIMD 指令支持。通过 Web Workers 进行多线程处理也正在进行中。 工具可用,并将在未来几年不断改进。浏览器已经让你窥视 WebAssembly 文件。至少 Firefox 允许查看WebAssembly 字节码,设置断点并查看调用堆栈。我听说浏览器也有 profiling 支持。 语言支持包括一套不错的语言集合–C,C++和Rust是一流的公民。C#,Go和Lua显然有稳定的支持。Python,Scala,Ruby,Java和Typescript都有实验性支持。这可能是一个傲慢的陈述,但我真的相信任何想要在21世纪存在的语言都需要能够在 WebAssembly 上编译或运行。 在访问外部设备的 API 支持方面,我所知道的唯一可用于裸 WebAssembly 的 API 是 WASI,它允许文件和流访问等核心功能,允许 WebAssembly 在浏览器外运行。否则,任何访问外部世界的 API 都需要在浏览器中的 Javascript 中实现。除了本地机器上的文件访问,打印机访问和其他新颖的硬件访问(例如非标准蓝牙或USB设备)之外,应用所需的一切几乎都可以满足。“裸WebAssembly”并不是它成功的必要条件; 它只是一个小的优化,不需要浏览器包含对 HTML,CSS 或 Javascript 的支持。 我不确定在桌面环境中让 WebAssembly 成为一等公民需要什么。需要良好的复制和粘贴支持,拖放支持,本地化和国际化,窗口管理事件以及创建通知的功能。也许这些已经可以从网络浏览器中获得; 我经常惊讶与已经可能的事情。 引发爆炸的火花是创建允许现有应用移植的环境。如果创造了“用于 WebAssembly 的 Linux 子系统”,那么可以将大量现有的开源软件移植到 WebAssembly 上。它需要模拟一个文件系统 - 可以通过将文件系统的所有只读部分都缓存为 HTTP 请求来完成,并且所有可写部分都可以在内存中,远程存储或使用浏览器可以提供的任何文件访问。图形支持可以通过移植 X11 或 Wayland 的实现来使用 WebGL(我理解已经作为 AIGLX 存在?)。 一些 SDL 游戏已经被移植到 WebAssembly - 最着名的是官方演示。 一旦 JVM 在 WebAssembly 中运行,就可以在浏览器中运行大量的 Java 软件。同样适用于其他虚拟机和使用它们的语言。 与 Windows 软件的巨大世界一样,我没有答案。WINE 和 ReactOS 都需要底层的 x86 或 x86-64 机器,所以唯一的选择是获取源代码并移植它,或者使用 x86 模拟器。 尾声 WebAssembly 即将到来。 它来得很慢,但现在所有的部分都可以在你正在使用的浏览器上使用。现在我们等待构建用于从各种编程语言中定位 WebAssembly 的基础设施。一旦构建完成,我们将摆脱 HTML,CSS 和 Javascript 的束缚。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-07 10:32:35 0 浏览量 回答数 0

回答

如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢。我希望这个书单列表内容丰富,可以涵盖很多东西。” 1、《代码大全》 史蒂夫·迈克康奈尔 推荐数:1684 “优秀的编程实践的百科全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky 对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。 现在,作者将这本经典著作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。 无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。 《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。 2、《程序员修炼之道》 推荐数:1504 对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。 就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel 《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。 无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。 3、《计算机程序的构造和解释》 推荐数:916 就个人而言,这本书目前为止对我影响醉倒的一本编程书。 《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。 然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。 其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。 同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。 一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给著名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。 4、《C程序设计语言》 推荐数:774 这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan 《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。 《C程序设计语言》(第2版新版)原著即为C语言的设计者之一Dennis M.Ritchie和著名的计算机科学家Brian W.Kernighan合著的 一本介绍C语言的权威经典著作。 我们现在见到的大量论述C语言程序设计的教材和专著均以此书为蓝本。 原著第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。 人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。 5、《算法导论》 推荐数:671 《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计…… 在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。 我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron 经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。 算法领域的标准教材,全球多所知名大学选用 MIT名师联手铸就,被誉为“计算机算法的圣经” 编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。 6、《重构:改善既有代码的设计》 推荐数:617 《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。 《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。 《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。 我想我不得不推荐《重构》:改进现有代码的设计。—— Martin 我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler 7、《设计模式》 推荐数:617 自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。 就我而言,我认为四人帮编著的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young 8、《人月神话》 推荐数:588 在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的著作。 Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。 该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。 9、《计算机程序设计艺术》 推荐数:542 《计算机程序设计艺术》系列著作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。 《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学著作。 目前Knuth正将毕生精力投入到这部史诗性著作的撰写中。 这是高德纳倾注心血写的一本书。—— Peter Coulton 10、《编译原理》(龙书) 推荐数:462 我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB 11、《深入浅出设计模式》 推荐数:445 强大的写作阵容。 《Head First设计模式》(中文版) 作者Eric Freeman; ElElisabeth Freeman是作家、讲师和技术顾问。 Eric拥有耶鲁大学的计算机科学博士学位,E1isabath拥有耶鲁大学的计算机科学硕士学位。 Kathy Sierra(javaranch.com的创始人)FHBert Bates是畅销的HeadFirst系列书籍的创立者,也是Sun公司Java开发员认证考试的开发者。 本书的产品设计应用神经生物学、认知科学,以及学习理论,这使得这本书能够将这些知识深深地印在你的脑海里, 不容易被遗忘。 本书的编写方式采用引导式教学,不直接告诉你该怎么做,而是利用故事当作引子,带领读者思考并想办法解决问题。 解决问题的过程中又会产生一些新的问题,再继续思考、继续解决问题,这样可以加深体会。 作者以大量的生活化故事当背景,例如第1章是鸭子,第2章是气象站,第3章是咖啡店, 书中搭配大量的插图(几乎每一页都有图),所以阅读起来生动有趣,不会感觉到昏昏欲睡。 作者还利用歪歪斜斜的手写字体,增加“现场感”。 精心设计许多爆笑的对白,让学习过程不会太枯燥。 还有模式告白节目,将设计模式拟人化成节目来宾,畅谈其内在的一切。 每一章都有数目不等的测验题。 每章最后有一页要点整理,这也是精华所在,我都是利用这一页做复习。 我知道四人帮的《设计模式》是一本标准书,但倒不如先看看这部大部头,此书更为简易。 一旦你了解了解了基本原则,可以去看四人帮的那本圣经了。- Calanus 12、《哥德尔、艾舍尔、巴赫书:集异璧之大成》 推荐数:437 如果下昂真正深入阅读,我推荐道格拉斯·侯世达(Douglas Hofstadter)的《哥德尔、艾舍尔、巴赫书》。 他极为深入研究了程序员每日都要面对的问题:递归、验证、证明和布尔代数。 这是一本很出色的读物,难度不大,偶尔有挑战,一旦你要鏖战到底,将是非常值得的。 – Jonik 13、《代码整洁之道》 推荐数:329 细节之中自有天地,整洁成就卓越代码 尽管糟糕的代码也能运行,但如果代码不整洁,会使整个开发团队泥足深陷, 写得不好的代码每年都要耗费难以计数的时间和资源。 然而这种情况并非无法避免。 著名软件专家RoberfC.Marlin在《代码整洁之道》中为你呈现出了革命性的视野。 Martin携同ObjectMetltor公司的同事,从他们有关整洁代码的最佳敏捷实践中提炼出软件技艺的价值观, 以飨读者,让你成为更优秀的程序员——只要你着手研读《代码整洁之道》。 阅读《代码整洁之道》需要你做些什么呢。你将阅读代码——大量代码。 《代码整洁之道》促使你思考代码中何谓正确,何谓错误。 更重要的是,《代码整洁之道》将促使你重新评估自己的专业价值观,以及对自己技艺的承诺。 从《代码整洁之道》中可以学到: 好代码和糟糕的代码之间的区别; 如何编写好代码,如何将糟糕的代码转化为好代码; 如何创建好名称、好函数、好对象和好类; 如何格式化代码以实现其可读性的最大化; 如何在不妨碍代码逻辑的前提下充分实现错误处理; 如何进行单元测试和测试驱动开发。 虽然《代码整洁之道》和《代码大全》有很多共同之处,但它有更为简洁更为实际的清晰例子。 – Craig P. Motlin 14、《Effective C++》和《More Effective C++》 推荐数:297 在我职业生涯早期,Scott Meyer的《Effective C++》和后续的《More Effective C++》都对我的编程能力有着直接影响。 正如当时的一位朋友所说,这些书缩短你培养编程技能的过程,而其他人可能要花费数年。 去年对我影响最大的一本书是《大教堂与市集》,该书教会我很有关开源开发过程如何运作,和如何处理我代码中的Bug。 – John Channing 15、《编程珠玑》 推荐数:282 多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位列前列。 正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力, 从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”, 成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏, 最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。 本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。 尽管我不得不羞愧地承认,书中一半的东西我都没有理解,但我真的推荐《编程珠玑》,书中有些令人惊奇的东西。 – Matt Warren 16、《修改代码的艺术》by Michael Feathers 本书是继《重构》和《重构与模式》之后探讨修改代码技术的又一里程碑式的著作, 而且从涵盖面和深度上都超过了前两部经典。 书中不仅讲述面向对象语言(Java、C#和C++)代码,也有专章讨论C这样的过程式语言。 作者将理解、测试和修改代码的原理、技术和最新工具(自动化重构工具、单元测试框架、仿对象、集成测试框架等), 与解依赖技术和大量开发和设计优秀代码的原则、最佳实践相结合,许多内容非常深入,而且常常发前人所未发。 书中处处体现出作者独到的洞察力,以及多年开发和指导软件项目所积累的丰富经验和深厚功力。 通过这部集大成之作,你不仅能掌握最顶尖的修改代码技术,还可以大大提高对代码和软件开发的领悟力。 我认为没有任何一本书能向这本书一样影响了我的编程观点。 它明确地告诉你如何处理其他人的代码,含蓄地教会你避免哪些(以及为什么要避免)。- Wolfbyte 同意。很多开发人员讨论用干净的石板来编写软件。 但我想几乎所有开发人员的某些时候是在吃其他开发人员的狗食。– Bernard Dy 17、《编码:隐匿在计算机软硬件背后的语言》 这是一本讲述计算机工作原理的书。 不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。 作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。 这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。 不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟, 都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。 我推荐Charles Petzold的《编码》。 在这个充满工具和IDE的年代,很多复杂度已经从程序员那“抽取”走了,这本书一本开眼之作。 – hemil 18、《禅与摩托车维修艺术 / Zen and the Art of Motorcycle Maintenance》 对我影响最大的那本书是 Robert Pirsig 的《禅与摩托车维修艺术》。 不管你做什么事,总是要力求完美,彻底了解你手中的工具和任务,更为重要的是, 要有乐趣(因为如果你做事有乐趣,一切将自发引向更好的结果)。 – akr 19、《Peopleware / 人件集:人性化的软件开发》 Demarco 和 Lister 表明,软件开发中的首要问题是人,并非技术。 他们的答案并不简单,只是令人难以置信的成功。 第二版新增加了八章内容。 – Eduardo Molteni 20、《Coders at Work / 编程人生》 这是一本访谈笔录,记录了当今最具个人魅力的15位软件先驱的编程生涯。 包括DonaldKnuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了 他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法, 并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。 一本非常有影响力的书,可以从中学到一些业界顶级人士的经验,了解他们如何思考并工作。 – Jahanzeb Farooq 21、《Surely You’re Joking, Mr. Feynman! / 别闹了,费曼先生。》 虽然这本书可能有点偏题,但不管你信不信,这本书曾在计算机科学专业课程的阅读列表之上。 一个优秀的角色模型,一本有关好奇心的优秀书籍。 – mike511 22、《Effective Java 中文版》 此书第二版教你如何编写漂亮并高效的代码,虽然这是一本Java书,但其中有很多跨语言的理念。 – Marcio Aguiar 23、《Patterns of Enterprise Application Architecture / 企业应用架构模式》 很奇怪,还没人推荐 Martin Fowler 的《企业应用架构模式》- levi rosol 24、《The Little Schemer》和《The Seasoned Schemer》 nmiranda 这两本是LISP的英文书,尚无中文版。 美国东北大学网站上也有电子版。 25、《交互设计之路》英文名:《The Inmates Are Running The Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity》该书作者:Alan Cooper,人称Visual Basic之父,交互设计之父。 本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。 本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。 作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的, 而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。 “难用”的产品不仅损害了用户的利益,最终也将导致企业的失败。 本书通过一些生动的实例,让人信服地讲述了由作者倡导的“目标导向”交互设计方法在解决“难用”问题方面的有效性, 证实了只有改变现有观念,才能有效地在开发过程中引入交互设计,将产品的设计引向成功。 本书虽然是一本面向商务人员而编写的书,但也适合于所有参与软件产品和基于软件的高科技产品开发的专业人士, 以及关心软件行业和高科技行业现状与发展的人士阅读。 他还有另一本中文版著作:《About Face 3 交互设计精髓》 26、《Why’s (Poignant) Guide to Ruby 》 如果你不是程序员,阅读此书可能会很有趣,但如果你已经是个程序员,可能会有点乏味。 27、《Unix编程艺术》 It is useful regardless operating system you use. – J.F. Sebastian 不管你使用什么操作系统,这本书都很有用。 – J.F. Sebastian 28、《高效程序员的45个习惯:敏捷开发修炼之道》 45个习惯,分为7个方面:工作态度、学习、软件交付、反馈、编码、调试和协作。 每一个具体的习惯里,一开始提出一个谬论,然后展开分析,之后有正队性地提出正确的做法,并设身处地地讲出了正确做法给你个人的“切身感受”,最后列出几条注意事项,帮助你修正自己的做法(“平衡的艺术”)。 29、《测试驱动开发》 前面已经提到的很多书都启发了我,并影响了我,但这本书每位程序员都应该读。 它向我展示了单元测试和TDD的重要性,并让我很快上手。 – Curro 我不关心你的代码有多好或优雅。 如果你没有测试,你或许就如同没有编写代码。 这本书得到的推荐数应该更高些。 人们讨论编写用户喜欢的软件,或既设计出色并健壮的高效代码,但如果你的软件有一堆bug,谈论那些东西毫无意义。– Adam Gent 30、《点石成金:访客至上的网页设计秘笈》 可用性设计是Web设计中最重要也是难度最大的一项任务。 《点石成金-访客至上的网页设计秘笈(原书第二版)》作者根据多年从业的经验,剖析用户的心理, 在用户使用的模式、为扫描进行设计、导航设计、主页布局、可用性测试等方面提出了许多独特的观点, 并给出了大量简单、易行的可用性设计的建议。 本书短小精炼,语言轻松诙谐,书中穿插大量色彩丰富的屏幕截图、趣味丛生的卡通插图以及包含大量信息的图表, 使枯燥的设计原理变得平易近人。 本书适合从事Web设计和Web开发的技术人员阅读,特别适合为如何留住访问者而苦恼的网站/网页设计人员阅读。 这是一本关于Web设计原则而不是Web设计技术的书。 本书作者是Web设计专家,具有丰富的实践经验。 他用幽默的语言为你揭示Web设计中重要但却容易被忽视的问题,只需几个小时, 你便能对照书中讲授的设计原则找到网站设计的症结所在,令你的网站焕然一新。

青衫无名 2019-12-02 01:20:04 0 浏览量 回答数 0

回答

如何掌握牢靠Go语言的容器? 容器相对来说更偏重细节一些,如果想掌握的更牢靠的话呢,还是要多看一下代码,重点给大家几个提示 Go语言的并发初步有哪两个特别重要的特点? **GO语言的协程并发操作或者说协程的资源池,其调度策略有两个: ** 1、没有优先级,没有API能设置优先级,正是因为它一切都是靠Go语言自身的一个调度器来听调度,才能保证它的高效率,这点非常重要。 2、调度的策略是可抢占的,假如说一个任务它长时间的占用CPU,那么它是有可能被购入天的这个调度器给其抢占过来,让其其的任务来做运行,这是两个最重要的特点。 GO语言调度的单元goroutine的应用场景是什么? 使用JAVA或者C编写网络程序时,一个线程来处理一个http请求, 但是对于资源的利用率不高。而Go语言实现了轻量级线程的机制,GO语言在底层封装了所有的系统调用,自己实现了一个调度器,这种设计在操作系统的代码中非常多见。比如现代的操作系统基本都会封装一个软件的Timer,同时可以提供上万个软Timer同时工作,而这只是基于数量很少的硬件timer实现的,而GO语言中的并发也是如此,他是基于线程的调度池,这种调度的单元在Go语言中被称为goroutine。 GO语言与其它并发模型最大的区别是什么? 宏观GO语言与其它并发模型最大的不同,就是其推荐使用通信的这种方式来替代共享内存。当资源需要在goroutine之间进行共享的时候,实际上就是这个资源,或者说这个信息通过通道在goroutine之间进行通信的过程。因为这个锁,一般来说都是用在这个共享内存当中的,因为如果说大家阅读GO语言的相关代码,就可以看到这个channel,它实际上是基于锁来保证并发安全。 然而,这也不代表GO语言当中只能使用channel来进行一些操作,其也具备锁这方面的知识。因为现实当中,这个锁还是有一定它现实的意义和现实的要求,因为这个锁它最关键的一个意义就是它能保证资源能在并发的操作当中有一个合理的调度情况和调度策略。其中跟这个最重要,或者说最关联性最强的一个概念就是原子操作。 GO语言中的原子操作具体实现过程是怎样的? 对于原子操作,在其逻辑下,按照它书面的定义上来讲,是指不会被调度器打断的操作。对原子操作实际上就是不存在中间状态的一种操作,要不就全成功,要不全失败,这个在我们在用并发方式来调动某任务,或者说来设计某种并发系统的情况下,这种名字操作我发现是非常重要的设计理念之一。 并发与并行具体概念及实际区分是怎样的? 有一个比较重要的一个概念,就是并发与并行,其实并发与并行,它实际上具体的含义是不一样的,并发实际上是把任务在不同的时间点交给同样一个处理器来进行处理,在同一个时间点,任务不会同时进行,只是任务感觉自己正在执行,因为其那会儿可能正在堵塞状态或者说是就绪状态,其不知道自己被暂停了,以为已经被调度走了,可能自己没有感知,但是实际上CPU所有权已经不在这个任务身上了。 并行比并发更高级一些,它实际上是把每个任务都交给独立的处理器去进行完成,但同一时间点,任务在一定程度上实际上是同时在执行的。一般来说,并发的性能是要比并行更重要一些,在1.5版本之前,我们需要人工去设置GO调度器最多能运行在多少个CPU上,但是在最新的GO版本当中,已经不需要这个相关的操作。 详细介绍一下并发程序中的竞争态? 并发系统设计最初始的这一个概念就是并发程序设计当中一个竞合的概念,或者也叫竞争态。假如说我要记录一个文件的阅读量,但是这个文件或者说这个网页,可能它的阅读渠道有非常多,有可能通过引擎通过微信通过APP等等这些渠道,这些渠道的话呢,它的阅读也都是并发的,这就会涉及到同样一个变量,被多个协程的所共同访问的情况。具体代码如下: 对于GO语言并发体系中的主推的通信机制是什么? channel是GO语言并发体系中的主推的通信机制,它可以让一个 goroutine 通过它给另一个 goroutine 发送值信息。每个 channel 都有一个特殊的类型,也就是 channels 可发送数据的类型。一个可以发送 int 类型数据的 channel 一般写为 chan int。 GO语言当中,它实际上是大家协同的机制,通过这种方式让几个goroutine之间做达到一个协调的效果,那么每个goroutine当中,实际上channel都是一个特殊的类型,它实际上是可以发送数据。比如现在想发送一个int类型的数据,那么channel就要定义一个发送int数据的一个管道。 那么GO语言当中,提倡使用通讯的方式来代替共享内存的方式来做goroutine,或者说并发之间的一个协同。channel如果我们后续阅读它的代码就会知道,它是保证协程安全,并且它遵循这个先入先出的原则来让这个储蓄方读取获得数据,而且它能保证顺序,正是这两个特性,可以让这个channel替代共享内存,因为它的如果顺序有所改变的话,它实际上也是有会有问题。 详细介绍GO语言中关于通道的声明涉及哪些方面? 1.经典方式声明 通过使用chan类型,其声明方式如下: var name chan type 其中type表示通道内的数据类型;name:通道的变量名称,不过这样创建的通道只是空值 nil,一般来说都是通道都是通过make函数创建的。 2.make方式 make函数可以创建通道格式如下: name := make(chan type) 3.创建带有缓冲的通道 后面会讲到缓冲通道的概念,这里先说他的定义方式 name := make(chan type, size) 其中type表示通道内的数据类型;name:通道的变量名称,size代表缓冲的长度。 具体介绍通道数据收发的详细过程有哪些? 通道的数据发送 通道当中发送数据的操作服务是这样的这样的一个大于号加上一个减号。 chan <- value 注意,如果是发送给一个没有缓冲的一个通道。假如说数据没有被接收的话,那么这个发送操作将持续被注册,也就是说就是channel这个语句就直接被注册到这,假如说没有任何的协程去读到他或者其他语句去读到这个产品,那么这个语句就被注册掉了。但GO语言是能发现的,如果其一直在堵塞的话,那实际上就造成死锁,GO语言的编译器实际上能发现的有点错误。 假如说,首先创建一个int型的通道,然后直接尝试发送一个数据给它,编译会报错,然后呢,数据的这个数据的接收的话,实际上就是把这个点号的位置跟那个大于号的位置做了一个调换。其实把这个双方的位置做了一个调换之后,是实际上就是都做了一个允许的操作。这其中的话呢,还有一种比较特殊的一个读取操作是其可以忽略到接收到的数据,因为不管管道中发出的数据,如果没读的话就堵塞到这,那么如果你觉得这个语句你也不需要,那么你可以把那个变量给它忽略掉。 2.通道的数据接收 通道接收数据的操作符也是<-,具体有以下几种方式 - 1) 阻塞接收数据 阻塞模式接收数据时,将接收变量作为<-操作符的左值,格式如下: data := <-ch 执行该语句时将会阻塞,直到接收到数据并赋值给 data 变量。 如需要忽略接收的数据,则将data变量省略,具体格式如下: <-ch - 2) 非阻塞接收数据 使用非阻塞方式从通道接收数据时,语句不会发生阻塞,格式如下: data, ok := <-ch 非阻塞的通道接收方法可能造成高的 CPU 占用,因此使用非常少。一般只配合select语句配合定时器做超时检测时使用。 关于通道数据收发有哪些需要注意的事项? 通道数据在进行输入收发的时候,必须要在两个不同的goroutine当中进行,因在同一个goroutine当中,收发的这些语句实际上都是堵塞的,你可能在同一个goroutine当中,它的这个函数已经在那边阻塞住了,或者说程序已经在那边阻塞住了,它已经停在那了,你后面有一句你能执行不到,所以说通道的收发必须在两个不同的goroutine之间来进行,在同一个goroutine之间的这个收发操作的话,实际上是没有意义的。 接收将持续堵塞,直到发送方发送出去,如果接收方接收,然后通道中没有发送方数据时,接收方也会发送,直到发送方到发送数据为止。就是刚才说的这个一体两面,这个发送方假如说没有人读的话,发送方会堵塞,假如说没有人写的话,那么接收方也会发生堵塞,这两边实际上都会有一个堵塞的情况。那么这个通道的收发的话呢,一般来说一次只能收一一个元素,假如说这个是一个有缓冲的一个通道,我通过一次不操作的话,实际上也只不过读出一个元素。不能把它一些缓冲区所有元素都读出来。 聊一下生产者消费者模式具体内容有哪些? 介绍一下生产者消费者模式,从GO语言的这个并发模型来看,也就是说假如说咱们站在一个比较高的一个高度来看,其实利用channel的确能达到共享内存的目的。这个channel的性质与在读写状态且保证顺序的共享内存并无不同。甚至我们可以说这个是基于消息队列的封装程度可以比共享内存来的更安全,所以说呢,这个在这个GO语言当中,或者说在GO语言的这个设计风格当中的话呢,其这个生产者消费者模式实现起来会相对来说比较简单一些。我们先介绍一下什么是生产者消费者。 就这个这这张图当中的话呢,就是一个典型的那种消费的问题, 就是说我是生产者的话我会生产一些产品,然后放到这个仓库当中,消费者的话会从那个仓库当中去取商品,这个可以说是消息队列,还有包括卡夫卡那些比较经典的相应队列当中,都会用到的这么一个设计模式,或者说其们从本质上来说的话,都是基于这样一个设计模式,交易的生产者是谁?消费者是谁?这个消息队列的话是。这个生产者消费者模式的话呢,实际上也成为有缓冲有限缓冲问题,它是一个并发的一个经典的案例,因为我们知道这个商品仓库的库房大小是有限的,也就是说生产者不能无限的去生产商品,一旦这个库房爆掉的话,它是它是必须要中止自己的生产,消费者也是不能无限地获取消息。 假如仓库是空的话,那这个消费者的这个相关的情况也需要被阻塞。那么怎么在这个生产者跟消费者之间保证商品不丢失。这就是生产者与消费者之间最核心的内容。先来看一下这个Java当中生产者消费者的这种实现到底是什么样的。这个可以说是一个最经典的这么样一个实现。这个Java当中是没有channel,那么它只能通过什么呢,只能通过信号量和一个一个log,也就是说一个忽视服务态度,这两个这两个配合信号量和所配合才能共同完成,这样一个生产者消费者这么一个相关的工作。 GO语言并发实战详细过程梳理 在现在这个远程办公的这一个大的背景下,积累了大量重复的文件,因为很可能大家都不断的在不同的群里发相同的文件,发相同的这个报表,以及一些相同的视频等等这些需要学习的材料,那么怎么把这些文件都找出来,然后把这些相同文件都给删掉了,这实际上是并发课的一个实践的一个内容,因为这个创业型的这个方案的话,它的代码相对来说比较长。 如何使用GO语言清理PC机中的文件,详细代码及注释如下: package main import ( // "fmt" // fmt 包使用函数实现 I/O 格式化(类似于 C 的 printf 和 scanf 的函数), 格式化参数源自C,但更简单 "io/ioutil" //"sync" //"time" ) func PrintRepreatFile(path string, fileNameSizeMap map[string]int64, exFileList []string) { fs, _ := ioutil.ReadDir(path) for _, file := range fs { if file.IsDir() { PrintRepreatFile(path+"/"+file.Name(), fileNameSizeMap, exFileList)//遍历整个文件系统,如果是目录则递归调用 } else { if file.Size() > 1000000 {//设定文件清理阈值,如果大于一定大小再进行清理 fileSize := fileNameSizeMap[file.Name()]//通过查哈希表的方式来确定,有无重名且大小相同的文件。 if fileSize == file.Size() { fmt.Println(path + "/" + file.Name())//如果有则打印出来 exFileList = append(exFileList, path+file.Name())//将结果记入切片当中 } else { fileNameSizeMap[file.Name()] = file.Size() } } } } } func main() { //方式一 fileNameSizeMap := make(map[string]int64, 10000) exFileList := make([]string, 100, 1000) PrintRepreatFile("E:/test", fileNameSizeMap, exFileList) } 这个程序在GO语言的环境下可以直接运行使用,其中有几个知识点,也是咱们前文提到过的,首先是切片的大小一定要设定的相对合适一些,如果容量不够大造成频繁扩容非常浪费资源。二是哈希表也就是map没有并发安全的属于,在我们这个未引入并发的程序中可以使用,如果有并发操作,那么map不再适用了。 可能很多人被GO语言的在并发性能所吸引入坑的,GO语言之父也就是UNIX之父Ken Thompson明显给出了很多建议,根据笔者在操作系统方面的相关经验来看,GO语言设计中经常参考UNIX内核的设计思路。比如硬定时器的数量有限,无法满足系统实际运行需要,所以在内核代码中就会看到基于硬件定时器的软件定时器的方案,而软件定时器的数量可以比硬件定时器多几百倍。 这样的理念明显融合到了 goroutine之中,由于其它编程语言往往直接通过系统级别的线程来实现并发功能,但是这样的方式往往会是大马拉小车,造成系统资源的浪费。因此GO语言封装了所有的系统操作,实现了更加轻量级的协程-goroutine。只要使用关键字(go)就可以启动协程,对比C++、JAVA的多线程并发模型,GO的协程更简单明了。 当然协程之间的消息通信与并发控制也是非常重要的一环。在GO语言借鉴了Message Queue的消息队列机制替代共享内存的方式进行协程间通信,其中管道channel作为基本的数据类型,保证并发时的操作安全。而且管道的引入还带来很多实践中非常实用的功能,比如可以方便实现生产者、消费者等并发设计模式,而这些设计模式在其它使用共享存内存的并发模型中实现起相关功能来非常的繁锁。 在GO语言中在调用函数前加入go 关键字,就能启动一个协程,也就是一个并发,但是我们上面的程序如果把调用方式改为: go PrintRepreatFile("E:/test", fileNameSizeMap, exFileList) 你会发现程序会直接退出,什么都没做,所以GO语言的并发对于初学者来说还是有一定门槛的,比如上例中如果想设计成一个并行的程序,如何让多个协程共同来帮忙找出重复的文件其实还是要费一番周折的。

剑曼红尘 2020-04-13 11:06:46 0 浏览量 回答数 0

回答

一、前言 Java语言长期以来一直霸占多数热门编程语言榜单的榜首,可见这是一个备受程序员热捧的编程语言。Java语言具有什么魅力?想必这都是已经为大多数人们所熟知的了,不值得过多赘述。而Java语言发展至今,面对发展势头迅猛又十分简单易学的python,以及各种层出不穷的高级语言,Java程序员的份额已经逐步下降,那它是否还能在未来保持领先的优势呢?本文就主要从Java语言所不擅长的领域,以及它在自己的领土内受到的对手入手,聊一聊Java语言在未来所面临的挑战。 二、Java帝国的今天 2.1 依然霸占TIOBE热门编程语言的榜首 这是来自权威开发语言排行榜TIOBE的最新数据(截止到2020年4月),可以看到Java语言依然在语言排行榜霸占第一的位置!虽然下面Python小老弟近几年搭上大数据的热潮,发展实为迅猛,在其他一些排行榜上面甚至超越大哥,但是在TIOBE这样权威的排行榜上面,Python依旧是小老弟! 2.2 曾经想扼杀Java的微软宣布加入OpenJDK 这又是一个IT界的真香现场,Sun 公司曾以“歧视使用 Java 软件”为由起诉微软。而微软在2001年推出新版操作系统 Windows XP 时,故意不安装 Java 软件,并且推出高仿 Java 的语言 C# 和 .net 框架。在现在,微软却宣布加入OpenJDK,拥抱Java技术。微软的宇宙第一 IDE Visual Studio也开始支持Java开发(通过VS的 Visual Studio Live Share ,可以关联到VS code上面的Java项目,协同编程,间接地支持了Java开发)。 2.3 Oracle发布开源全栈虚拟机GraalVM 这是大名鼎鼎的Oracle公司搞出来的开源产品,从官网“Run Programs Faster Anywhere”这句口号和产品的命名GraalVM就可以看出,GraalVM是升级版的JVM。在GraalVM上面执行Java程序的效率更高(得益于其中的JIT编译器技术)。最牛逼的地方在于,GraalVM支持多语言应用!在GraalVM里面,多种不同的语言可以互相传递数据,支持Java、Python、Ruby、R、Scala、Kotlin,JavaScript等多种语言。 三、Java帝国受到的挑战 3.1 后端服务器开发 J2EE作为Java平台的重要组成部分,现在广泛应用于Web后台服务器开发领域,在这个领域,Java拥有很多好朋友,比如Spring框架,Mybatis和Hibernate等,使得开发者可以快速构建Web应用程序。这是Java帝国一块重要的领土,但也有很多挑战。下面就是几个强大的竞争者。 3.1.1 Python 的竞争 Python语言和Java相比,具有下面这些优点: 语法简单直观,这意味着开发速度快第三方库强大,可以写复杂的逻辑 当然Python和Java相比执行效率上肯定是更低了,因此主要应用于小型的网站后台,像阿里这样的大厂就是拥抱Java后台的了。 3.1.2 C++ 的竞争 C++语言和Java相比,具有以下优点: 执行效率高对内存管理自由,而Java由GC来管理 C++适合大型高性能的服务器开发。腾讯更多的就是使用C++进行开发,这点和阿里不同。当然C++相比Java,学习和开发的难度更高。 3.1.3 node.js 的竞争 node.js的出现大概是前端程序员最高兴的事情了,因为node.js可以让他们写的JavaScript代码运行在服务端,这样就可以使得前端不用学Java也能自己写后台,摆脱后台爸爸的束缚(误)。得益于node.js的事件驱动机制,node.js具有很高的并发性能,可以应对大规模的http请求。但也有缺点,因为js只支持单核,因此没法充分利用服务器的性能,它不适合CPU密集型应用。 3.1.4 Go 的竞争 Go语言是最近很火的开发语言,适合用于开发高性能分布式系统。这是一个十分强大的竞争对手,被认为是未来的服务端语言。它具有下面这些优点: 学习难度低,容易上手,易于维护得益于协程,并发性能优越编译型语言,执行效率高 3.1.5 小结 可以看到,在后端服务器开发领域,Java在不同方面受到多种语言的竞争,轻量小型的服务器,人们可以选择Python,node.js或者PHP。而大型高性能服务器,人们可以选择C++。Go语言就更强大,兼具了比Java更简单的语法和更高的并发性能,背后又是Google爸爸。因此,在这一领域,Java面临巨大的竞争压力。 3.2 安卓系统应用开发 Java用于安卓应用程序开发已经是很成熟的方案了,目前绝大多数的安卓应用都是用Java写的。很多安卓程序员也都是学Java过来的。但是随着新语言不断推出,和安卓应用开发方式的演变,Java慢慢不再是安卓开发的首选。比如下面这些语言,就是比较热门的选择。 3.2.1 Kotlin 成为 Android 开发的首选语言 在2019年的Google I/O 大会上,Google 官方正式宣布,Kotlin 编程语言现在是 Android 应用程序开发人员的首选语言。Java 占据 Android 开发绝对统治的时代一去不复返了。Kotlin 可以编译成Java字节码,可以在JVM上面运行,也可以编译成JavaScript,在没有JVM的机器上运行。Kotlin语言比Java更安全,更简洁,随着谷歌爸爸推崇,将来的发展前景可期。 3.2.2 Flutter 框架和 Dart 语言 这两个都是谷歌最近推出的东西,Flutter是一款用于帮助开发者在iOS和Android两个平台构建高质量原生应用的全新移动UI框架,Dart是由Google开发的一门全新的计算机编程语言,而Flutter使用Dart语言开发。Fuchsia是谷歌开发的一款全新的操作系统,Flutter 是 Fuchsia 的开发框架。Flutter编写的代码可以同时生成IOS和Android两个平台下的应用程序,因此Flutter框架逐渐热门。 3.2.3 大前端时代下的H5应用 随着时代发展,现在的前端不再只是写web网页,而是逐渐发展为大前端,web,Android,IOS通吃,H5应用的流行就是一个例子,大家应该都发现,手机上开始出现快应用,小程序这些使用前端语言进行开发的app,这些应用使用HTML,JS和CSS进行开发,无需使用Java。相比之下,H5应用轻量级,启动快,跨平台,用户体验方面也逐渐开始接近原生应用的流畅度。因此大有流行的趋势。 3.2.4 小结 这一小节介绍了安卓开发的现状,Java作为曾经的安卓开发第一首选语言,正在面临诸如Kotlin语言,Flutter和Dart语言等新的开发语言的挑战,同时,随着安卓应用开发逐渐出现H5应用的趋势,前端语言也逐渐开始来到Java的地盘。 四、Java不擅长的领域 4.1 前后端分离和JSP的没落 JSP是一度火爆的技术,Java曾对其寄予厚望,希望通过JSP技术占领web应用程序领域。然而,随着网页开发越来越复杂,用JSP开发网页变得很麻烦,前端和后端混杂在一起,开发效率很低。因此前后端开始分离,而JSP这种运行于服务器端的网页程序也就慢慢退出了舞台。 4.2 C#和.NET抢占桌面程序地盘 Java曾经也被广泛用于开发桌面客户端,其中Swing框架就是一个有名的GUI框架。然而,曾经想要扼杀Java的微软,开发了C#语言。C#成为Java的竞争对手,C#编写运行于Windows系统的桌面应用程序上具有优势,Java写的桌面应用,虽然可以跨平台到处运行,这对于程序员当然是好事,但是对于用户来说,在Windows上运行个Java程序还得安装JRE,显得十分麻烦。而且,Java桌面程序运行起来比C#程序慢。因此,C#和.NET逐渐占领了桌面应用程序的市场。 4.3 C/C++活跃的嵌入式系统领域 Java曾经是为了嵌入式系统开发而设计的。然而,Java程序员并不能直接操作硬件,并且,Java是相对较重的语言,对内存等硬件资源不友好,执行效率也相对较低。而在嵌入式系统中,往往只有很少的内存空间,却对运行效率有很高的要求。因此,在嵌入式领域,更多的是C语言和C++甚至是汇编语言的天下。 4.4 小结 这一小节主要针对Java所不擅长的领域来讨论。可以看到,Java最为有名的特性“Write once, run anywhere”,也成了它最大的缺陷:在执行效率上做不到卓越。因此,在桌面应用程序和嵌入式系统两个领域Java不是王者。而随着时代发展,前后端分离,JSP也被时代所抛弃。 五、总结 综上所述,相信大家对于Java语言有了更全面的了解,看到了Java背后的芸芸众生,各种层出不穷的高级语言和新技术,和Java相爱相杀。Java作为现在世界上最热门的编程语言,依然在各个不同的领域具有重要的地位 ,Java的强大之处在于,它十分全能,几乎没有什么是Java不能做的,但它并不都是做得最好的,我们也可以看到许许多多的竞争者在不同方面比Java语言更加优越。 但是,我写这篇文章的目的,不在于比较各个语言的优劣,各种语言都有自己的优点和缺点,我们也不必因为某种语言更好就着急转语言。总而言之,语言只是工具,各种语言之间,语法的差别都不是特别大,背后的原理也是大同小异,往往只是多了几个新特性,而语言背后的编程思维才是最重要的。

剑曼红尘 2020-04-09 14:29:42 0 浏览量 回答数 0

回答

北美华人安全论坛 BASec 创始人韦韬认为,Rust 有着出色的性能表现,不过对于普通业务而言,性能不是关键,稳定性才是。这个恰恰是 Rust 的最强项。就稳定性而言,Rust 碾压大部分语言,包括 C,C++,Go,Python,PHP 等等。但是没有免费的午餐,Rust 的稳定性来自于 Borrow Checker 的 " 严苛 ",Ownership 机制对于 Rust 入门者有一定的门槛。但大部分情况下,配合上基本的编程规范 (严格限制 unsafe/unwrap/…等),只要 Rust 编译器点头,程序运行起来就没什么问题。需要注意的是,Rust 保障的内存安全不包括防止内存泄露。因为内存泄露的语义和具体应用逻辑强相关,所以还需要做额外的内存泄露检查,但这方面的工具比较现成,一般不是大问题。但即使如此,Rust 写驱动也不太乐观,主要是两个原因。一是需要把底层的 unsafe 仔细封装,因为在驱动场景下,很多操作不满足 Rust safe 的要求,一旦代码里混杂了很多 unsafe,那么因常规安全检验工具的缺乏,Rust 反而会不如 C。二是硬件厂家的工程师从 C 改为 Rust 更漫长,广泛的硬件驱动支持才是 Linux 生态繁荣昌盛的根基,这个生态挑战比单纯的技术挑战更大。 方便开发者学习 Rust,Rust 官方团队做出了如下努力: 独立出专门的社区工作组,编写官方Rust Book,以及其他各种不同深度的文档,比如编译器文档、nomicon book 等。甚至组织免费的社区教学活动 Rust Bridge,大力鼓励社区博客写作,等等。 Rust 语言的文档支持 Markdown 格式,因此 Rust 标准库文档表现力丰富。生态系统内很多第三方包的文档的表现力也同样得以提升。 提供了非常好用的在线 Playground 工具,供开发者学习、使用和分享代码。 Rust 语言很早就实现了自举,方便学习者通过阅读源码了解其内部机制,甚至参与贡献。 Rust 核心团队一直在不断改进 Rust,致力于提升 Rust 的友好度,极力降低初学者的心智负担,减缓学习曲线。比如引入 NLL 特性来改进借用检查系统,使得开发者可以编写更加符合直觉的代码。 虽然从 Haskell 那里借鉴了很多类型系统相关的内容,但是 Rust 团队在设计和宣传语言特性的时候,会特意地去学术化,让 Rust 的概念更加亲民。 在类型系统基础上提供了混合编程范式的支持,提供了强大而简洁的抽象表达能力,极大地提升了开发者的开发效率。 提供更加严格且智能的编译器。基于类型系统,编译器可以严格地检查代码中隐藏的问题。Rust 官方团队还在不断优化编译器的诊断信息,使得开发者可以更加轻松地定位错误,并快速理解错误发生的原因。 Rust 从 2006 年诞生之日开始,目标就很明确——追求安全、并发和高性能的现代系统级编程语言。为了达成这一目标,Rust 语言遵循着内存安全、零成本抽象和实用性三大设计哲学。借助现代化的类型系统,赋予了 Rust 语言高级的抽象表达能力,与此同时又保留了对底层的控制能力。开发者和 Rust 编译器共享着同一套“心智模型”,相互信任,相互协作,最大化地保证系统的安全和健壮性。Rust 语言有别于传统语言的另一点在于,它将开源社区视为语言的一部分。Rust 本身就是开源项目中的典范,非常值得学习。 有人把 Rust 称为”The New C“,我十分认同,Rust 是开启新时代的语言。但 Rust 可能不像其他语言那样,突然冒出一个杀手级应用来引领某个领域的一段潮流。Rust 改变世界的方式,正好可以用古人的诗词来形容,”好雨知时节,当春乃发生。随风潜入夜,润物细无声“。 Rust 语言不是银弹,它也不追求完美,它只是在由 C 和 C++ 构建的旧世界之上,寻求更好的问题解决之道。 所以,你准备好学习 Rust 了吗? 内容来源于网络&《Rust 编程之道》 技术交流群 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答

珍宝珠 2020-01-13 14:23:31 0 浏览量 回答数 0

回答

关于书籍 Linux基础 1、《Linux与Unix Shell 编程指南》 2、《嵌入式Linux应用程序开发详解》 C语言基础 1. The C programming language 《C程序设计语言》 2. Pointers on C 《C和指针》 3. C traps and pitfalls 《C陷阱与缺陷》 4. Expert C Lanuage 《专家C编程》 5、《高质量程序设计指南:C++/C语言(第3版)》 Linux内核 1、《深入理解Linux内核》(第三版) 2、《Linux内核源代码情景分析》毛德操 胡希明着 研发方向 1、《UNIX Network Programming》(UNP) 2、《TCP/IP详解》 3、《Linux内核编程》 4、《Linux设备驱动开发》(LDD) 硬件基础 1、《ARM体系结构与编程》杜春雷 2、S3C2410 Datasheet 英语基础 1、《计算机与通信专业英语》 系统教程 1、《嵌入式系统――体系结构、编程与设计》 2、《嵌入式系统――采用公开源代码和StrongARM/Xscale处理器》毛德操 胡希明着 3、《Building Embedded Linux Systems》 关于如何学习嵌入式,我刚才看到一篇很不错的文章,是一个专科生介绍自己如何自学嵌入式,并找到嵌入式的工作,里面介绍了他的学习方法和学习过程,希望对你有帮助。 专科生学嵌入式到找到工作的前前后后--学习的榜样 先做个自我介绍,我07年考上一所很烂专科民办的学校,学的是生物专业,具体的学校名称我就不说出来献丑了。09年我就辍学了,我在那样的学校,一年学费要1万多,但是根本没有人学习,我实在看不到希望,我就退学了。 退学后我也迷茫,大专都没有毕业,我真的不知道我能干什么,我在纠结着我能做什么。所以辍学后我一段时间,我想去找工作,因为我比较沉默寡言,不是很会说话,我不适合去应聘做业务。我想应聘做技术的,可是处处碰壁。 一次偶然的机会,我才听到嵌入式这个行业。那天我去新华书店,在计算机分类那边想找本书学习。后来有个女孩子走过来,问我是不是读计算机的,有没有兴趣学习嵌入式,然后给我介绍了一下嵌入式现在的火热情况,告诉我学嵌入式多么的有前景,给我了一份传单,嵌入式培训的广告。听了她的介绍,我心里痒痒的,确实我很想去学会一门自己的技术,靠自己的双手吃饭。 回家后,我就上网查了下嵌入式,确实是当今比较热门的行业,也是比较好找工作的,工资也是相对比较高。我就下决心想学嵌入式了。于是我去找嵌入式培训的相关信息,说真的,我也很迷茫,我不知道培训是否真的能像他们宣传的那样好,所以我就想了解一段时间再做打算。 后来,我在百度知道看到一篇让我很鼓舞的文章《如何学习嵌入式》,是一个嵌入式高手介绍没有基础的朋友怎么自学入门学嵌入式,文章写的很好,包含了如何学习,该怎么学习。他提到一个方法就是看视频,因为看书实在太枯燥和费解的,很多我们也看不懂。这点我真的很认同,我自己看书往往看不了几页。 我在想,为什么别人都能自学成才,我也可以的。我要相信自己,所以我就想自学,如果实在学不会我再去培训。 主意一定,我就去搜索嵌入式的视频,虽然零星找到一些嵌入式的视频,但是都不系统,我是想找一个能够告诉我该怎么学的视频,一套从入门到精通的视频,一个比较完整的资料,最好能有老师教,不懂可以请教的。 后来我又找到一份很好的视频,是在嵌入式学习网推出的一份视频《嵌入式视频教程--零基础手把手教你学嵌入式》,里面的教程还不错,很完整,可以让我从基础的开始学起。视频不便宜啊,但是我也忍了,毕竟买几本书都要几百了,何况他们还有半年的技术咨询和服务,算值了。 ==============这里我就不给出他们的网址,如果你也想要嵌入式视频的话,那就自己去百度搜索:零基础手把手教你学嵌入式。 下面介绍下我的学习流程,希望对和我一样完全没有基础的朋友有所帮助。 收到他们寄过来的光盘后,我就开始学习了,由于我没有什么基础,我就从最简单的C语言视频教程学起,话说简单,其实我还是很多不懂的,我只好请教他们,他们还是很热心的,都帮我解决了。C语言我差不多学了一个礼拜,接下来我就学了linux的基本命令,我在他们提供linux虚拟机上都有做练习,敲linux的基本命令,写简单的C语言代码,差不多也就三个礼拜。我每天都在不停的写一些简单的代码,这样一月后我基本掌握了C和linux的基本操作。 接下来我就去学习了人家的视频的培训教程,是整套的,和去参加培训没有多大的区别,这一看就是两个月,学习了ARM的基本原理,学习嵌入式系统的概念,也掌握了嵌入式的环境的一些搭建,对linux也有更深层次的理解了,明白了嵌入式应用到底是怎么做的,但是驱动我只是有一点点的了解,这个相对难一点,我想以后再慢慢啃。 这两个月,除了吃饭睡觉,我几乎都在学习。因为我知道几乎没有基础,比别人差劲,我只能坚持努力着,我不能放弃,我必要要靠自己来养活自己,必须学好这门技术,同时我不懂的就问,这里真的很感谢他们的技术客服对我的任何问题都是耐心的解答,每天都我几乎都有好几个问题问他们,然后我就把不懂的问题总结记下来,这样慢慢积累了一段时间,我发现自己真的有点入门了。 最后的一个月,我就去看关于实践部分的内容,了解嵌入式项目具体的开发流程,需要什么样的知识,我就开始准备这方面的知识,也就是学习这方面的视频,同时他们建议我去找了找一些嵌入式面试的题目,为自己以后找工作做准备。我就到网上找了很多嵌入式的题目,把他们理解的记下来,这样差不多准备了20天左右 我觉得自己差不多入门了,会做一些简单的东西了。我就想去找工作看看,于是我就到51job疯狂的投简历,因为我学历的问题,专科没有毕业,说真的,大公司没有人会要我,所以我投的都是民营的小公司,我希望自己的努力有所回报。没有想过几天过后,就有面试了,但是第一次面试我失败了,虽然我自认为笔试很好,因为我之前做了准备,但是他们的要求比较严格,需要有一年的项目经验,所以我没有被选中。 后来陆续面试了几家公司,终于功夫不负有心人。我终于面试上的,是在闵行的一家民营的企业,公司规模比较小,我的职务是嵌入式linux应用开发,做安防产品的应用的。我想我也比较幸运,经理很看重我的努力,就决定录用我,开的工资是3500一个月,虽然我知道在上海3500只能过温饱的生活,但是我想我足够了。我至少不用每天都要靠父母养,我自己也能养活自己的。我想只要我继续努力,我工资一定会翻倍的。 把本文写出来,希望能让和我一样的没有基础的朋友有信心,其实我们没有必要自卑,我们不比别人笨,只要我们肯努力,我们一样会成功。 最后祝愿所有想学嵌入式的朋友更早的入门。 ------------------------------------------------------------好好加油,你也可以学好嵌入式的。。。。。。。。。。。。。。

游客886 2019-12-02 01:19:56 0 浏览量 回答数 0

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。

kun坤 2020-06-10 09:29:21 0 浏览量 回答数 0

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。

kun坤 2020-06-09 22:08:58 0 浏览量 回答数 0

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

回答

python程序员的特征 Python语法优雅,功能强大,开发效率高。和其他语言相比,python最大的好处是接近自然语言,基本上不用考虑语法细节。所以,知乎上有网友是这么比喻学Python的:当土著拿到猎枪之后,他们射箭的技能退化严重,但因为食物更多了,厨艺有了长足的进展。当你不再为一些细枝末节的事担心之后,你就可以把注意力集中在另外一些问题上了。 python程序员明显特征就是:“懒” 他们一般都信奉极简主义,讨厌复杂的东西。以往追求高速运行,如今追求一字千金。(就是不喜欢打字)他们喜欢使用苹果产品。遇事想得多做的少,看起来比较冷静,碰到困难,先google,再行动。 被提bug的反应:你怎么还在用360安全浏览器 Java程序员的特征 和极简主义的Python恰恰相反,Java麾下的程序猿们喜欢码字,百行代码信手拈来,性子会走向两个极端,要么脾气变得暴躁,分分钟被各种报错逼疯;要么被磨得比较耐心,时间再长一点以后,思考问题会比较全面,而且会变得比较呆萌可爱,说话也因为考虑的多,变得啰嗦了。还有就是他们对内存价格那是了如指掌啊。 被提bug的反应:肯定是数据问题!你清下缓存试试、重启下电脑试试 C++程序员的特征 写C++的程序猿都比较沉稳持重,C++的难度极大,普通人不易掌握容易翻车,【珍爱生命,远离C++】但在大神手里简直是如虎添翼,可以被嵌入任何现代处理器中,几乎所有操作系统都支持 C++,跨平台性非常好,要什么有什么。也正因为它的难度系数高,能让c++猿们能够在开发人员里脱颖而出。 他们很少说自己精通XXX,喜欢接受挑战,每件事情都想研究个透彻,有的时候还会有些钻牛角尖,有很强的时间观念,闹钟一设设十几个。还有他们是Bug狂躁症深度患者。 **被提bug的反应: “这真的很奇怪!” “以前从来没有出现过这种情况!” “昨天还运行好好的啊!” “这怎么可能?” “一定是硬件出问题了!” ** C语言程序员的特征 如果把使用各大编程语言比作做菜,C++可能是豪华大宴,炖烤煎炸样样都来,C语言嘛就是干脆利落,一把菜刀走天下,有什么菜不是直接切一切,煮一煮不能解决的呢?C语言的特点很大程度上是简单,容易编译,灵活且贴近底层。 C语言程序员有许多共有的特征,他们做事干脆利落,说话简洁有层次,有点霸道总裁的样子,喜欢用“我觉得吧~”开始话题。 被提bug的反应: 你装的什么版本的类库(jdk) 这谁写的代码 Ruby语言程序员特征 Ruby 是一种简单快捷的面向对象(面向对象程序设计)脚本语言。从程序员的角度看,用 Ruby 写程序是一种非常愉悦的体验。这种愉悦体现在方方面面,包括 Ruby 代码简洁直观、更贴近自然语言、富于表达性、社区友好。 如果把编程语言们看作人的话,那么Ruby就是其中的一个小萝莉。在萌妹砸Ruby的影响下,程序猿们很有可能会变成热情,友善的程序媛… 被提bug的反应: 你为什么要那样操作?” 用户不会像你这么操作的。 PHP程序员特征 这个圈子里,永远有一个”PHP是世界上最好的语言“的冷笑话,能让相亲对象直接拉黑,这语言能不好么(逃),类似的段子已经成了php们的生活调味品。 所以: 玩笑过后言归正传,PHP当然是有它的优势和优点的,社区庞大,积极向上不说,既能面向过程又能面向对象,方便至极,最重要的是极其适合新手小白学习编程,无数程序员入门学习和开发使用。 他们的显著特征是:自信满满,心理承受能力好(不好不行啊)开朗…学了之后明显笑容变多了能淡定从容地自黑。 被提bug的反应: “这应该只是巧合吧!” “我没时间测试所有功能!” “这不可能是我代码的问题! 结论 以上观点无科学实验证明,仅为生活观察所得。一个人的性格很容易被周围环境所影响,而编程环境就是一个影响人性格的环境。所以某种语言用久了,都会和编程语言的特点挂钩。 有人总结,越是学习趋于人类思维方式的编程语言的程序员,性格能开朗点,因为他们是以近似人的思维思考问题,相反像c++这种语言,用久了就会生怕忘记点什么。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-06 17:57:28 0 浏览量 回答数 0

回答

众所周知,Java是平台无关的语言,那么Java为什么要支持平台无关性,总结一下,有如下几点支持多变的网络环境。如今是一个互联网的时代,网络将各种各样的计算机和设备连接起来,比如网络连接了windows的PC机,UNIX工作站等等。为了保证程序能够不加任何修改运行于网络上的任何计算机,而不管计算机是什么种类,什么平台,这样就极大减轻了系统管理员的工作。尤其是程序是通过网络环境进行部署的。支持网络化嵌入式设备。目前工作场所中存在各种各样的嵌入式设备,比如打印机,扫描仪,传真机等。他们往往通过网络连接起来,甚至在家庭网络和汽车内部也存在这样那样的嵌入式设备 。Java的平台无关性可以简化这样的系统管理任务。无论是哪个网络的管理员,它只需关注程序本身即可。此外添加一台新设备,可以立即被其他设备访问到,也可以访问其他设备。这都是平台无关性带来的好处。减少开发者部署程序的成本和时间。对于开发者而言, Java平台无关的能力给予网络一个同构的运行环境,使得分布式系统可以围绕着“网络移动对象”开构建。比如对象序列化,RMI, Jini就是利用平台无关性。把面向对象编程从虚拟机带到了网络上。影响Java平台无关性的因素Java平台的部署。运行Java程序之前,必须要部署好Java平台。Java平台的版本。Sun公司提供了不同的API集合,有标准版,扩展版等等。此外API本身也面临着改动,一些API被认为是过期的,一些API甚至不向下兼容,因此我们需要选择合适的Java平台版本支持程序开发。本地方法。当编写一个平台独立的Java程序时候,最重要的原则是:不要直接或间接调用不属于Java API的本地方法。调用Java API以外的本地方法使得程序平台相关。一般而言,本地方法在三种情况适用:使用底层主机平台的特性,而Java API无法访问;为了访问老系统或者使用现有的库,但是这个系统或库不是Java编写的;为了加快程序性能,将时间敏感代码用本地方法实现。因此当必须使用本地方法,而且支持多种平台运行,必须将本地方法移植到所有需要的平台上。因此编写平台独立的Java程序做主要的目的就是完全禁止本地方法,通过Java API和主机交互。非标准运行时库。所谓平台无关性,一种解释是你调用的方法是否在任何地方都已经实现。本地方法顾名思义,就是只是在本地实现了,所以无法保证平台无关。而Java API在如windows, Solaris等操作系统上的实现上使用了本地方法访问主机,即保证了平台无关。对虚拟机的依赖。虚拟机可以由不同开发商开发,但是必须满足如下两条原则:不要依赖及时终结(finalization)保证程序的正确性,因为特定程序中对象可能在不同的时间被垃圾收集;不要依赖线程的优先级来保证程序的正确性。因为一些虚拟机可以实现优先级高线程优先运行,一些虚拟机不能保证这一点。对用户界面依赖,AWT库提供基本的用户界面,这些组件被映射成每个平台上的本地组件,而Swing库为用户提供更高级的组件,但并没有被映射为本地组件。实现平台无关的7大步骤选择程序运行的主机和设备集合(目标宿主机)在目标宿主机中选择Java平台版本。对于每个目标宿主机,选择程序将要运行的Java平台实现(目标运行时环境) 。编写程序,调用Java API标准运行库(不调用本地方法,或者专门开发商专门调用本地方法的库)编写程序,不依赖于垃圾收集器收集垃圾时间,不依赖线程的优先级努力设计用户界面,在所有的目标宿主机都能正常工作在所有目标运行时环境和所有目标宿主机进行测试 Java从四个方面支持了平台无关性最主要的是Java平台本身。Java平台扮演Java程序和所在的硬件与操作系统之间的缓冲角色。这样Java程序只需要与Java平台打交道,而不用管具体的操作系统。Java语言保证了基本数据类型的值域和行为都是由语言自己定义的。而C/C++中,基本数据类是由它的占位宽度决定的,占位宽度由所在平台决定的。不同平台编译同一个C++程序会出现不同的行为。通过保证基本数据类型在所有平台的一致性,Java语言为平台无关性提供强有力的支持。Java class文件。Java程序最终会被编译成二进制class文件。class文件可以在任何平台创建,也可以被任何平台的Java虚拟机装载运行。它的格式有着严格的定义,是平台无关的。可伸缩性。Sun通过改变API的方式得到三个基础API集合,表现为Java平台不同的伸缩性:J2EE,J2SE,J2ME。

缘灭山上 2019-12-02 01:39:36 0 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

回答

什么是Kubernetes? Kubernetes是一种轻便的可伸展的开源平台,用来管理容器化的工作或者服务,拥有声明化配置和自动化等优点。它现在拥有一个快速扩大与成长的生态系统,其服务,工具和技术支持可被广泛用于各个方面。 为什么我需要Kubernetes,它用来做些什么? Kubernetes拥有大量的特性,比如: 容器平台 微服务平台 轻量化云服务平台 等等 Kubernetes提供了一个以容器为中心的管理环境,它根据用户的工作负载来协调计算,网络和储存基础架构。它既有PaaS的简化性,又具有IaaS的灵活性,并支持跨基础架构的可移植性 为什么Kubernetes是一个平台? 尽管Kubernetes提供了大量的功能性,总会有新的场景需要新的功能。一些特性的应用程序工作流程可以被简化来加快开发速度。最初的部署通常需要大规模的应用自动化。这就是为什么Kubernetes被设计成一个平台服务,用来创建一个包含工具和其他组成部分的系统环境,来使部署,测量和管理应用更加容易。 Label可以授权用户按照他们的想法来组织他们的资源。Annotation允许用户布置含有自定义信息的资源,来使工作流更加顺畅,并为管理工具提供到checkpoint状态的一种更简单的方式。 此外,Kubernetes控制平面基于开发人员和用户可用的相同API构建。用户可以编写他们自己的 controller,比如schedulers,这些API可以通过通用命令行工具进行定位。 这种设计使得许多其他系统能够在Kubernetes上面构建 Kubernetes不是什么 Kubernetes不是一个传统的,包罗万象的PaaS(平台即服务)系统。由于Kubernetes在容器级而不是在硬件级运行,因此它能提供一些PaaS产品常用的通用功能,比如部署,扩展,负载均衡,日志记录和监控。但是,Kubernetes并不是一个整体,这些默认解决方案都是可选和可插拔的。Kubernetes提供了构建人员平台的构建模块,但是在一些重要的地方保留了用户选择和灵活性。 Kubernetes: 不限制支持的应用程序类型。Kubernetes旨在支持各种各样的工作负载,包括无状态,有状态和数据处理工作负载。 如果一个应用程序可以在一个容器中运行,它应该在Kubernetes上运行得很好。 不部署源代码并且不构建您的应用程序。持续集成,交付和部署(CI / CD)工作流程由组织和偏好以及技术要求决定。 不提供应用程序级服务,例如中间件(例如,消息总线),数据处理框架(例如,Spark),数据库(例如,mysql),高速缓存,也不提供集群存储系统(例如,Ceph)。 在服务中。 这些组件可以在Kubernetes上运行,和/或可以通过便携式机制(例如Open Service Broker)在Kubernetes上运行的应用程序访问。 不指示日志,监视或警报解决方案。 它提供了一些集成作为概念证明,以及收集和导出指标的机制。 不提供或授权配置语言/系统(例如,jsonnet)。 它提供了一个声明性API,可以通过任意形式的声明性规范来实现。 不提供或采用任何全面的机器配置,维护,管理或自我修复系统。 此外,Kubernetes不仅仅是一个编排系统。 实际上,它消除了编排的需要。 业务流程的技术定义是执行定义的工作流程:首先执行A,然后运行B,然后运行C.相反,Kubernetes由一组独立的,可组合的控制流程组成,这些流程将当前状态持续推向所提供的所需状态。 如何从A到C无关紧要。也不需要集中控制。 这使得系统更易于使用且功能更强大,更具弹性且可扩展 为什么使用容器 过去部署应用的方式,是将应用安装在一个使用操作系统软件包管理器的主机上。这样做的缺点是应用程序的可执行文件、配置、库和生命周期互相影响,也会和操作系统纠缠不清。你也可以构建一个不可被修改的虚拟机镜像来实现可预测的部署和回滚,但是这样显然不够轻量化而且不可被移植 新的方式是在虚拟化的操作系统层来部署容器,而不是在虚拟化的硬件层。这些容器之间彼此独立,相对主机也保持独立。它们有自己单独的文件系统,也不能看到其他容器的进程,而且它们对于计算资源的使用量可以被限制。它们比虚拟机更容易被构建,因为它们从底层基础架构和主机文件系统中解耦出来,也可以跨单机与云之间移植。 因为容器小巧且轻快,一个应用程序可以被打包放到每个容器镜像中。这种一对一的应用对镜像的关系可以使容器发挥出最大功效。有了容器,不可变的容器镜像可以在构建时被创建,而不是在部署时,因为每个应用都不需要依赖于程序的其它应用部分,也不依赖于基础生产环境。同样,容器比VM更加透明,这有利于监控和管理。当容器的生命周期由基础架构管理而不是隐藏在流程管理器之后时,尤其如此。最后,当一个应用被部署在每个容器时,管理容器就变得和管理程序部署一样了。 阿里云导入自建K8S集群 更多阿里云帮助文档 https://help.aliyun.com 希望对您有帮助!

阿里朵 2019-12-02 02:19:54 0 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p

kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

回答

先说结论: 不要对接!不要对接!不要对接! 开个玩笑,以上仅代表个人观点,大家也知道这种“三体式警告”根本没有用的,我自己也研究如何对接,说不定做完后就觉得“真香”了。 为什么要对接? 首先讨论一下为什么要把 Flutter 对接到 Web 生态。 Flutter 现在是一个炙手可热的跨平台技术,能够一套代码运行在 Android、iOS、PC、IoT 以及浏览器上,被认为是下一代跨平台技术。相比于 Weex 和 React Native 可以很好地解决多平台一致性问题,原生渲染性能相近,上层没有 JS 那么厚的封装层次,整体性能会略好一些。 但是大部分兴冲冲去学 Flutter 的人疑惑的第一个问题就是:为什么 Flutter 要用 Dart?一个全新的语言意味着新的学习成本,难道 JS 不香吗?JS 不香不是还有 TypeScript 吗!事实上 Flutter 抛弃的岂止是 JS 这门语言,也抛弃了 HTML 和 CSS,设计了一套解耦得更好的 Widget 体系,Flutter 抛弃的是整个 Web,致力于打造一个新的生态,但是这个生态无法复用 Web 生态的代码和解决方案。尤其是之前所有跨平台方案 Hybrid、React Native、Weex 都是对接 Web 生态的,这让 Flutter 显得有些格格不入,也让大部分前端开发者望而却步。 下面是我整理出来的,前端开发者使用 Flutter 的各方面成本: 因为 Flutter 的开发模式和前端框架比较像(可以说就是抄的 React),所以框架的学习成本并不高,稍微高一些的是 Dart 语言的学习成本,另外还要学习如何用 Widget 组装 UI,虽然很多布局 Widget 设计得和 CSS 很像,灵活度还是差了很多。要想在真实项目中用起来,还要改造整个工具链,以“Native First”的视角做开发,开发 Flutter 和开发原生应用的链路是比较像的,和开发前端页面有较大差异。最高的还是生态成本,前端生态的积累无论是代码还是技术方案都很难复用,这是最痛的一点,生态也是 Flutter 最弱的一环。 无论是为了先进的技术理念还是出于商业私心,先不管 Flutter 为什么抛弃 Web 生态,现实问题是最大的 UI 开发者群体是前端,最丰富的生态是 Web 生态,我觉得 Web 技术也是开发 UI 最高效的方式。如果能在上层使用 Web 技术栈开发,在底层使用 Flutter 实现跨平台渲染,不是可以很好的兼顾开发效率、性能和跨平台一致性吗?还能复用 Web 技术栈大量的技术积累。 可能这些理由也不够充分,暂且先照着这个假设继续分析,最后再重新讨论到底该不该对接。 关于 Flutter 和 Web 生态的对接涉及两个方面: 从 Web 到 Flutter。就是使用 Web 技术栈来开发,然后对接到 Flutter 上实现跨平台渲染。对 Web 来说是解决性能和跨平台一致性问题,对 Flutter 来说是解决生态复用问题。从 Flutter 到 Web。就是官方已经实现的 Web support for Flutter,把已经用 Dart 开发好的 App 编译成 HTML/JS/CSS 然后运行在浏览器上,可以用于降级和外投场景。 如何实现“从 Web 到 Flutter”? 首先分析一下 Flutter 的架构图,看看可以从哪里下手。 Flutter 可以分为 Framework 和 Engine 两部分,Engine 部分比较底层也比较稳定了,最好不要动,需要改的是用 Dart 实现的 Framework。要想对接 Web 生态的话,JS 引擎肯定是要引入的,至于是否保留 Dart VM 有待讨论。图中最上面 Material 和 Cupertino 两个 UI 库前端是不需要的,前端有自己的。关键是 Widget 这部分,是替换成 HTML/CSS 的方式写 UI,还是继续保留 Widget 但是把语言换成 JS,不同方案给出的解法也不一样。 有不少方案可以实现对接,业界有挺多尝试的,我总结了下面三种方式: - TS 魔改:用 JS 引擎替换掉 Dart VM,用 JS/TS 重新实现 Flutter Framework(或者直接 dart2js 编译过来)。 - JS 对接:引入 JS 引擎同时保留 Dart VM,用前端框架对接 Flutter Framework。 - C++ 魔改:用 JS 引擎替换掉 Dart VM,用 C++ 重新实现 Flutter Framework。 TS 魔改 TS 魔改就是完全抛弃掉 Dart VM,用 TypeScript 重新实现一遍用 Dart 写的 Flutter Framework。 为啥是 TS 而不是 JS?这不是因为 TS 是个大热门嘛,而且向下兼容 JS,现在几乎所有时髦的框架都要用 TS 重写了。 这种方案的出发点是“如果能把 Flutter 的 Dart 换成 JS 就好了”,最容易想到的路就是把 Dart 翻译成 TS,或者直接用 dart2js 把代码编译成 js,但是编译出来的代码包含很多 dart:ui 之类的库的封装,生成的包也挺大的,也比较难定制需要导出的接口,不如干脆用 TS 重写一遍,工具链更熟悉一些,还可以加一些定制。 理论上讲翻译之后 Flutter 绝大部分功能都依然支持,可以复用各种 npm 包,还可以动态化,但是丧失了 AOT 能力,JS 语言的执行性能应该是不如 Dart 的。而且所有节点的布局运算都发生在 JS,底层只需要提供基础的图形能力就好了,就好像是基于 Canvas API 写了一套 UI 框架,性能未必有现存前端框架的性能高。 此外最大的问题是如何与官方 Flutter 保持一致,假如现在是从 v1.13 版本翻译过来的,以后官方升级到了 v1.15 要不要同步更新?这个过程没啥技术含量,而且需要持续投入,做起来比较恶心。 另外还需要考虑上层是用 Widget 的方式写 UI,还是用前端熟悉的 HTML+CSS。如果依然用 Widget 的话,那大部分前端组件还是用不了的,UI 还是得重写一遍。反正要重写的话,成本也没降下来,那就用 Dart 重写呗…… 直接用官方原版 Flutter 也避免每次更新都要翻译一遍 Dart 代码。所以既然选择了对接前端生态,那就要对接 CSS,不然就没有足够的价值。然而 CSS 和 Widget 的对接也是很繁琐的过程,而且存在完备性问题。 JS 对接 翻译代码的方式不够优雅,那就保留 Dart,把 JS/CSS 对接到 Widget 上面不就好了? 当然可以,这种方式是仅把 Flutter 当做了底层的渲染引擎,上层保持前端框架的写法,仅把渲染部分对接到 Flutter。现存的很多前端框架都把底层渲染能力做了抽象,可以对接到不同渲染引擎上,如 Vue/Rax 同时支持浏览器和 Weex,用同样的方式,可以再支持一个 Flutter。 这种方式对前端框架的兼容性比较好,但是链路太长了,业务代码调用前端框架接口做渲染,一顿操作之后发出了渲染指令,这个渲染指令要基于通信的方式传给 Flutter Framework,这中间涉及一次 JS 到 C++ 再到 Dart 的跨语言转换,然后再接收到渲染指令之后还要转成相应的 Widget 树,从 CSS 到 Widget 的转换依然很繁琐。而且 Widget 本身是可以带有状态的,本身就是响应式更新的,在更新时会重新生成 widget 并 diff,如果在前端更新 UI 的话,前端框架在 js 里 diff 一次 vdom,传到 Flutter 之后又 diff 一次 widget。 如果要绕过 Widget 直接对接图中的 Rendering 这一层,可以绕过 widget diff 但是得改 Flutter Framework 的渲染链路,既然要改 Flutter Framework 那为什么不直接用 TS 魔改呢,还绕过了 JS 到 Dart 的通信,又回到了第一种方案。 总结来说,这个方案的优点是:实现简单、能最大化保留前端开发体验,缺点是:渲染链路长、通信成本高、响应式逻辑冲突、CSS 转 Widget 不完备等。 C++ 魔改 想要干掉 Dart VM,就需要用其他语言重新实现用 Dart 开发的 Framework,用 JS/TS 可以,用 C++ 当然可以,最硬核的方式就是用 C++ 重新实现 Flutter 的 Framework,然后接入 JS 引擎,通过 binding 把 C++ 接口透出到 JS 环境,上层应用还是用 JS 做开发。 把 Framework 层下沉到 C++ 之后,不仅会有更好的性能,也能支持更多语言。原本 Flutter Framework 是在 Dart VM 之上的,必须依赖 Dart VM 才能运行,所以对 Dart 有强依赖;用 C++ 重新实现之后,JS 引擎是在 C++ 版 Framework 之上的,框架本身并不依赖 JS 引擎,还可以对接其他各种语言,如对接了 JVM 之后可以支持 Java 和 Kotlin,对接回 Dart VM 可以继续支持 Dart。 这个方案可以增强性能,也能保持和 Flutter 的一致性,但是改造成本和维护成本都相当高。C++ 的开发效率肯定不如 Dart,当 Flutter 快速迭代之后如何跟进是很大的问题,如果跟进不及时或者实现不一致那很可能就分化了。从 CSS 到 Widget 的转换也是不得不面对的问题。 几种方案对比 把上面几种方案画在同一张图里是这个样子的: 图中实线部分表示了跨语言的通信,太过频繁会影响性能,虚线部分表示了其他对接可能性。 从下到上,Flutter Engine 是不需要动的,这一层是跨平台的关键。Framework 则有三种语言版本,JS/TS、Dart、C++,性能是 C++ 版本最好,成本是 Dart 版本最低。然后还需要向上处理 HTML/CSS 和 Widget 的问题,可以直接对接一个前端框架,也可以直接在 C++ 层实现(不然需要透出的 binding 接口就太多了,用通信的方式也太过频繁了)。 如何实现“从 Flutter 到 Web”? 这个功能官方已经实现了,可以把使用 Dart 开发的 App 编译成 Web App 运行在浏览器上,官方文档以介绍用法和 API 为主,我这里简单分析一下内部具体的实现方案。 实现原理 结合 Flutter 的架构图来看,要实现 Web 到 Flutter 需要改造的是上层 Framework,要实现 Flutter 到 Web 需要改造的则是底层 Engine。 Framework 对 Engine 的核心依赖是 dart:ui,这是库是在 Engine 里实现的,抽象出了绘制 UI 图层的接口,底层对接 skia 的实现,向上透出 Dart 语言的接口。这样来看,对接方式就比较简单了: 使用 dart2js 把 Framework 编译成 JS 代码。基于浏览器的 API 重新实现 dart:ui,即 dart:web_ui。 把 Dart 编译成 JS 没什么问题,性能可能会有一点影响,功能都是可以完全保留的,关键是 dart:web_ui 的实现。在原生 Engine 中,dart:ui 依赖 skia 透出的 SkCanvas 实现绘制,这是一套很底层的图形接口,只定义了画线、画多边形、贴图之类的底层能力,用浏览器接口实现这一套接口还是很有挑战的。上图可以看到 Web 版 Engine 是基于 DOM 和 Canvas 实现的,底层定义了 DomCanvas 和 BitmapCanvas 两种图形接口,会把传来的 layer tree 渲染成浏览器的 Element tree,但是节点上仅包含了 position, transform, opacity 之类的样式,只用到 CSS 很小的一个子集,一些更复杂的绘制直接用 2D canvas 实现。 存在的问题 我编译了一个还算复杂的 demo 试了一下,性能很不理想,滑动不流畅,有时候图片还会闪动。生成出来的 js 代码有 1.1MB (minify 之后,未 gzip),节点层次也比较深,我评估这个页面用前端写不会超过 300KB,节点数可以少一半以上。 另外再看一下 Flutter 仓库的 issue,过滤出 platfrom-web 相关的,可以看到大量:文字编辑失效、找不到光标、ListView 在 ios 上不可滚动、checkbox/button 行为不正常、安卓滚动卡顿图片闪烁、字体失效、某些机型视频无法播放、文字选中后无法复制、无法调试…… 感觉 flutter for web 已经陷入泥潭,让人回想起前端当年处理各种浏览器兼容性的噩梦。 这些性能和兼容性问题,核心原因是浏览器未暴露足够的底层能力,以及浏览器处理手势、用户输入和方式和 Flutter 差异巨大。 实现 Flutter Engine 需要的是底层的图形接口和系统能力,虽然canvas 提供了相似的图形接口,如果全部用 canvas 实现的话很难处理可访问性、文本选择、手势、表单等问题,也会存在很多兼容性问题。所以真实方案里用的是 Canvas + DOM 混合的方式,封装层次太高了,渲染链路太长。就好像 Flutter Framework 里进行了一顿猛如虎的操作之后,节点生成好了、布局算好了、绘制属性也处理好了,就差一个画布画出来了,然后交到浏览器手里,又生成一遍 Element,再算一遍布局,在处理一遍绘制,最终才交给了底层的图形库画出来。 再比如长页面的滚动,浏览器里只要一条 CSS (overflow:scroll) 就可以让元素可滚动,手势的监听以及页面的滚动以及滚动动画都是浏览器原生实现的,不需要与 JS 交互,甚至不需要重新 layout 和 paint,只需要 compositing。如上图所示,在 Flutter 中 Animation 和 Gesture 是用 Dart 实现的,编译过来就是 JS 实现的,浏览器本身并不知道这个元素是否可滚,只是不断派发 touchmove 事件,JS 根据事件属性计算节点偏移,然后运算动画,然后把 transform 或者新的 position 作用到节点上,然后浏览器再来一遍完整的渲染流程…… 优化方案 性能和兼容性的问题还是要解决的,短期内先把 issue 解掉,长线的优化方案,官方有两种尝试: 使用 CSS Painting API 做绘制。 a, 这是还处于提案状态的新标准,可以用 JS 实现一些绘制功能,自定义 CSS 属性。 b. 目前还未实现,需要等浏览器先把 CSS Houdini 支持好。 使用 WebAssembly 版本的 Skia 做绘制 https://skia.org/user/modules/canvaskit a, 这样可以发挥 wasm 的性能优势,并且保持 skia 功能的一致。但是目前 wasm 在浏览器环境里未必有性能优势,这里不展开讨论了。 b. 已经部分实现,参考这里的配置启用功能: https://github.com/flutter/flutter/issues/41062#issuecomment-533952994 这两个方案都是想更多的利用到浏览器的底层能力,只有浏览器暴露了更多底层能力,才能更好的实现 Flutter 的 Web Engine。不过这个要等挺久的时间,我们也参与不了,现阶段想要使用 flutter for web,还是得保持现有架构,一起参与进去把 issue 解决掉,优先保障功能,其次优化性能。 一种适应性更好的架构 如果理想化一点,能不能从架构角度让 Flutter 和 Web 生态融合的更好一些呢? 回顾文章最开始的官方架构图,上面是 Framework(Dart),下面是 Engine(C++),切分在 Foundation 这一层,双方之间的交互是几何图形信息。如果还保持这个架构,把切分层次划分的更靠上一些,如下图所示,划分在 Widgets 和 Rendering 这一层,理论上讲对 Flutter 的开发者来说是无感知的,因为上层的开发语言和 Widget 接口都是不变的。 切分在这一层,Framework 和 Engine 之间的交互就不再是几何图形而是节点信息,Widget 的组合、setState 响应式更新、Widget diff 都还在 Dart 中,展开后的 RenderObject 的布局、绘制、裁剪、动画全都在 C++ 中,不仅有更好的性能,还可以与 Engine 有更好的结合。 或者说,还原本保留 Engine 的设计,把下沉的这部分逻辑上划分成 Renderer,就有了如下三层的结构: 这样划分出来的每一层都有明确的定位: Framework: 开发框架。为开发者提供可编程 API,实现响应式的开发模式,提供细粒度 Widget 供开发者自由封装和组合。Renderer: 渲染引擎。专门实现布局、绘制、动画、手势的的处理,这部分功能相对独立,是可以与开发框架解耦的,也不必与特定语言绑定。Engine: 图形引擎。实现跨平台一致的图形接口,合成输入的层并绘制到屏幕上,处理好平台力的接入和适配。 这样切分除了有性能优势以外,也使得渲染引擎摆脱了对 Dart 的依赖,能够支持多种语言,也能支持多种开发模式。对接到 Dart VM 就可以用 Dart 写代码,对接到 JS 引擎就可以用 JS 写代码,对接到 JVM 还可以写 Java,但是无论怎么写,底层的渲染能力是一样的,一套统一的布局算法,动画和手势的处理行为也是一致的。 在这样的架构下,对接 Web 生态就更容易了。Dart 和 Widget 是前端不想要的,希望能换成 JS 和 CSS,但是又想要底层的跨平台一致渲染引擎,那从 Renderer 层开始对接就好了,绕过了所有不想要的,也保留了所有想要的。 要实现 Flutter for Web 也更简单了一些。在 Engine 层做对接,一直苦于浏览器透出的底层能力不够,如果是在 Renderer 之上做对接就更容易一些,基于 JS/CSS/DOM/Canvas 的能力封装出一套 Rendering 接口,供 Widget 调用就好了,这样可以使渲染链路更短一些,但是依然要处理 Widget 和 DOM/CSS 之间的兼容性问题。 再讨论一遍:为什么要对接? 技术上已经分析完了,要想搞定 Flutter 生态和 Web 生态的对接,需要投入很大的成本,所以真正决定做之前,要先讨论清楚为什么要做对接?到底要不要做对接? 首先 Google 官方对 Flutter 的定位就是个问题。Flutter 设计之初就是不考虑 Web 生态的,甚至在刻意回避,倡导的是更贴近原生的开发方式。我之所以在开头说不要对接,原因也很简单:两种技术设计理念不同,不是朝着一个方向发展的,生态不通,技术方案不通,强行融合很可能让彼此都丧失了优势。但是业界又有很多团队在做这种尝试,说明需求是存在的,如果 Google 抵制这个方向,那就不好做了。不过现在官方已经支持了 Flutter for Web,已经向 Web 生态迈了一步,未来是否进一步与 Web 融合,也是有可能的。 另外就是跨平台技术本身的问题,浏览器发展了二三十年,已经是个很强大的跨平台产品了,几乎是 Web 的代名词了,这一点无人能敌。但是也臃肿不堪,有大量历史包袱,性能和体验不够好,和 Native 的结合度差,尤其在移动和 IoT 平台。虽然硬件性能在不断提升,但这是所有软件共享的,浏览器的性能和体验总会比 Native 差一些,差的这一些很可能就是新业务和新场景的发挥空间。观察一下近几年新诞生的业务场景,很多都是利用到了 Native 新提供的能力才火爆起来的,如 AI/AR/ 视频 / 直播 等,有因为新的 Web API 而孵化生出来的商业模式吗? 原文链接: https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650405725&idx=1&sn=0b7476f7c7c01df7fdafda578f9ceb98&chksm=83953345b4e2ba53917ac30b709c07be15bd1c2fd5ae2a8ecfbb129b3813f771621b8fac95ca&scene=27#wechat_redirect

剑曼红尘 2020-03-10 09:54:40 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。

封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

OSC 第 128 期高手问答 -- Python3 开发实战 @壁_花 @idisikx @hell0cat @DarkAngel @北京老爷们儿      恭喜以上五位网友或获得《Python Web开发实战》图书一本  请私信 @博文视点   告知快递信息(格式:姓名+电话+地址+邮编号码)!  ######@dongwm :不知作者有没有涉及过大数据方向的?我看部分大数据相关的都要用到python这是为什么?Hadoop整个生态圈都是Java的,python的定位是什么?######@dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢?######@dongwm : 按照“没有银弹”一说,python应该也有自己的适用范围吧,是不是比较适用于机器学习,不适合于web开发呢?######Python被称为「胶水语言」,虽然没有「统治」哪个领域,但是基本上个个领域都把手伸了进去。 机器学习我不熟不敢妄谈是不是更合适。我只能说,Python很适合web开发######使用豆瓣很多年,很喜欢豆瓣的风格。之前一直是在网页端浏览,后来又到了手机app端。我总体感觉豆瓣的进步很快。我想问的问题是,python web一直作为豆瓣的开发首选,是因为什么?还有关于豆瓣的权限模块的设计时,python web发挥了什么优势。作为手机端app的开发,python web会起到什么作用吗?######回复 @机器猫123 : 会的。也许不会开源,但是酱厂里面确实有很多不错的实现######回复 @dongwm : 未来豆瓣会继续用python web衍生开发新的产品吗?######回复 @dongwm : 谢谢老师的回答。######豆瓣选择Python,其实是公司和语言的风格很相似的缘故吧。我们做事喜欢优雅,清晰,高效,这这好也是Python希望的。 豆瓣的基础设施基本都是使用Python完成,包含权限部分,但是Python web和权限模块设计感觉没啥直接的关系,就是抽出来的库和使用它的关系,我也没懂有什么优势或者劣势。 豆瓣app的API后端是使用PythonWeb完成的###### 引用来自“DarkAngel”的评论 @dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢? 引用来自“dongwm”的评论ROR我倒没有实际的用过,不敢妄言。Python最大的优势是他是一个「胶水」语言,在工作中的各个方向都能看到Python对应的库的身影,学会Python会让你的路比较宽,但是用ruby,可能在我印象里面就是Web开发比较有名。我现在还没有发现做Web开发有比Python效率高的方式。 其实很多人都担心Python的执行效率,然而其实绝大多数情况Python足够快,不快的话要先看看自己是不是用得不对或者不好。现在硬件资源很廉价,除非上升到BAT那种规模,否者基本还没有到达讨论语言瓶颈的问题。现在豆瓣绝大多数基础设施都是使用Python开发的。在Web开发中,我们很少通过写扩展的方式提高性能,其实编程语言一般都不是网站性能的瓶颈,还可以通过其他方式解决。 之前学ROR是因为老师要求用这个,我没有用Python进行Web开发的经验,稍微有一点了解的也只是Flask或者Falcon这种轻量级的,感觉能够快速开发小巧的应用,但是不知道有哪个特别出名的应用或者网站系统是由Python开发的(比如WordPress和Discuz用的PHP,Gitlab用的Ruby,OSC好像用的是Java吧)。Python确实是一种比较万能的语言,但有点万金油却不够专精的感觉。比如在科学计算方面很流行,但是论效率不如Julia,论支持库的丰富和使用广泛度不如Matlab(特别是学校里面,教授做研究或者教学一般都会用Matlab);在系统管理方面看,能用Python干的脚本化工作,用shell或者perl基本上都能干,而且需要写的代码行数说不定更少。如果说用Python进行Web开发效率高,是有特指某一个框架吗,还是泛指? 我在写程序时首先会想到用Python,是因为喜欢tial-and-error这种方式,能够在正式写代码前确认想法能不能实现,能够让我有兴趣和信心继续下去。但真要说起来,能够提供REPL特性的语言也不少。 Python的执行效率貌似永远是Python热门的讨论话题,比如GIL的存在必须要用特殊的方式来优化。像gevent和Tornado之类的存在也适用于高并发的网络连接(不过Python在这方面的性能不一定是最高的,没有看过相关的测试)。再说Python的实现,除了最出名的CPython和PyPy之外,甚至还有为嵌入式设备开发的MicroPython(这也在另一方面说明了Python的万能性)。Dropbox的技术栈中也使用了Python,并且有开发面向性能的Python实现pyston,此外还有Stackless Python(听名字感觉很厉害,虽然其实我并没有去了解这到底是什么),但它家也在用Golang和Rust开发高性能的东西。那么,豆瓣的基础设施实现中,用Python开发的应用效率如何?也有使用除了CPython之外的实现来进行优化吗?(我是不是扯得有点偏题了?) ######回复 @dongwm : 那么用Python来开发Web,是否属于那种会带来这种优势的选择呢?或者有没有哪家公司通过把技术栈切换到Python而带来了这种进步?######回复 @dongwm : 以现在的硬件发展水平,基本上任何数量级的访问都可以通过硬件的堆砌获得支持。不过经常会看到新闻,比如某某公司将它的某某技术构架从XX语言切换到了YY语言,然后获得了性能提升、提高了稳定性、减少了部署的服务器等优势,(我记忆中有看到Twitter的新闻,PHP 7的新闻,还有一些其他的)。######豆瓣每天服务着千万级别的用户(抱歉不能说具体数字)的请求,绝大多数应用和基础设施都是Python实现的。所以应用效率不用担心。虽然可以使用C/C++的扩展提高运行效率,但是我接触的场景里面很少。相当于写扩展的维护性和成本,大家更愿意从架构,算法等方面来解决。######嚯,你的问题好长。 进行Web开发效率高算是泛指,包含django和flask。效率高也体现在它们的第三方扩展和支持比较完善,基本能想到的都有对应的项目支持,这样少造了很多轮子。###### @dongwm :python的确很好,也很强大,我也一直在用,但我大都做的和web方面没有什么联系.而我对web方面挺感兴趣,但自学起来始终不得要领,进展有点慢,大神能否讲一讲web方面的学习经验,或者flask方面的心得.又或者推荐一些关于web好的学习资源.期待您的回答并致谢.###### @dongwm :了解Python基本知识,希望学习一门Python web框架学习后端开发。之前我对部分主流框架进行了一些了解:Django,Tornado,在知乎上有一个非常活跃的群体。在框架的选择问题上,只有最适合你自己、最适合你的团队的框架。编程语言选择也是一个道理,你的团队Python最熟就用Python好了,其实大部分人是没必要太关心框架的性能的,因为你开发的网站根本就是个小站,能上1万的IP的网站已经不多了,上10万的更是很少很少。在没有一定的访问量前谈性能其实是没有多大意义的,因为你的CPU和内存一直就闲着呢。而且语言和框架一般也不会是性能瓶颈,性能问题最常出现在数据库访问和文件读写上。 ######嗯 赞同你的观点。很多人在杞人忧天。先等活到有必要讨论语言的那一天,那时候早就有钱有人有时间,哪怕Python真的不满足,重构呗######@dongwm :Python确实越来越火了,知乎就是python做的,偶尔搞了一点,发现确实很高级,至少比java语言高级一些某些功能Java只需要写100行,而Python可能只要20行。做一些外维系统还是挺方便的,比如日志的提取等,之前学的是2.7版本,现在python3比之前的版本有哪些新特性呢? ######python 3是相当于站在Python2的肩膀上,摒弃了早年设计python 2的错误思想(所以有的地方向前不兼容),加了一些新的语法,比如asyncio,甚至type hint(我不喜欢)。 具体的内容可以看 https://docs.python.org/3/whatsnew/index.html。 总体上和Python 2区别不大。不用纠结Python 2/3###### @dongwm :初入门python,有c、java基础。再看《python基础教程(第二版)》。请问您有推荐的书籍吗?######我个人在知乎专栏写过一篇推荐书的文章 https://zhuanlan.zhihu.com/p/22198827。我建议有一些其他语言基础的同学好好地看看《Python学习手册》,如果你英语比较好,建议直接看原著。《Python基础教程》虽然是一个经典的入门教程,写作风格也相对轻松幽默,但是由于本书写作于2010年,书中有大量内容已经过时,所以不推荐! ========================== Python "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode ch:报错 {   "traceback": "  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/st2actions/container/base.py\", line 99, in _do_run\n    LOG.debug('Performing run for runner: %s' % (runner.runner_id), extra=extra)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 49, in wrapped_f\n    def wrapped_f(*args, **kw):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 206, in call\n    if not self.should_reject(attempt):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 247, in get\n    else:\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 200, in call\n    try:\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 219, in run\n    result = self.start(action_parameters=action_parameters)\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 256, in start\n    **options)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/v2/executions.py\", line 56, in create\n    return self._create('/executions', data)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 95, in _create\n    self._raise_api_exception(resp)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 143, in _raise_api_exception\n    error_message=error_data)\n",         "error": "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode character u'\\xae' in position 169: ordinal not in range(128)\n[u'Traceback (most recent call last):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/server.py\", line 155, in _process_incoming\\n    failure = None\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 222, in dispatch\\n    if hasattr(endpoint, method):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 192, in _do_dispatch\\n    new_args[argname] = self.serializer.deserialize_entity(ctxt, arg)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/engine/engine_server.py\", line 98, in start_workflow\\n    (rpc_ctx, workflow_identifier, utils.cut(workflow_input),\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 284, in cut\\n    return cut_dict(data, length=length)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 198, in cut_dict\\n    v = str(value)\\n', u\"UnicodeEncodeError: 'ascii' codec can't encode character u'\\\\xae' in position 169: ordinal not in range(128)\\n\"]." }

kun坤 2020-06-15 11:08:13 0 浏览量 回答数 0

问题

【教程免费下载】Linux集群和自动化运维

知与谁同 2019-12-01 22:07:41 1521 浏览量 回答数 0

问题

一个老码农的技术理想

技术小菜鸟 2019-12-01 21:17:10 3067 浏览量 回答数 1

问题

网站技术职位之我见:报错

kun坤 2020-06-09 13:55:57 0 浏览量 回答数 1

回答

原版英文链接:点击这里 作者 | Md Kamaruzzaman 译者 | 无明 策划 | 小智 基础设施:条条道路通云端 对于云厂商来说,2019 年是硕果累累的一年。不仅初创公司在使用云计算,那些很注重安全的“保守派”公司(如政府机构、医疗保健机构、银行、保险公司,甚至是美国五角大楼)也在迁移到云端。这种趋势在 2020 年将会继续,大大小小的公司都将(或者至少有计划)迁移到云端。Gartner 公司最近发布了一个数字: 如果你是一个还在考虑要不要迁移到云端的决策者,不妨重新审视一下你的策略。如果你是一个独立开发者,并且还没使用过云基础设施,那么完全可以在 2020 年尝试一下。很多大型的云厂商(如亚马逊、微软、谷歌)都提供了免费的体验机会。谷歌在这方面做得特别大方,它提供了价值 300 美元的一年免费服务。 策划注:阿里、腾讯、华为等国内云厂商同样有免费云服务试用产品。 云平台:亚马逊领头,其他跟上 作为第一大云厂商,亚马逊在 2019 年可谓风生水起。凭借其丰富的产品组合,亚马逊将把它的优势延续到 2020 年。Canalys 发布的 2019 年第三季度报告指出,大型云厂商(AWS、Azure、GCP)占据 56% 的市场份额,其中 AWS 独享 32.6%。 其他云厂商也在努力缩短与 AWS 之间的差距。微软把主要目标转向了大型企业。最近,微软打败了亚马逊,从美国五角大楼拿到了一个 100 亿美元的大单子。这个单子将提升 Azure 的声誉,同时削弱 AWS 的士气。 谷歌一直在推动 CNCF,实现云计算运维的标准化。谷歌的长期目标是让云迁移变得更容易,方便企业从 AWS 迁移到 GCP。IBM 之前斥资 360 亿美元收购了 RedHat,也想要在云计算市场占有一席之地。 在亚太地区,阿里云市场规模超过了 AWS、Azure 的总和,全球排名第三。中国国内腾讯云等企业的增长势头也十分迅猛。 2020 年将出现更多的并购。当然,很多初创公司将会带来新的想法和创新,例如多云服务。因为竞争激烈,这些公司只能从降价和推出更多的创新产品来获取利润。 容器化:Kubernetes 将会更酷 在容器编排领域,虽然一度出现了“三足鼎立”(Kubernetes、Docker Swarm 和 Mesos),但 Kubernetes 最终脱颖而出,成为绝对的赢家。云是一个分布式系统,而 Kubernetes 是它的 OS(分布式的 Linux)。2019 年北美 KubeCon+CloudNativeCon 大会的参会者达到了 12000 名,比 2018 年增长了 50%。以下是过去 4 年参会人数的增长情况。 在 2020 年,Kubernetes 不仅不会后退,只会变得越来越强,你完全可以把赌注压在 Kubernetes 身上。另外值得一提的是,Migrantis 最近收购了 Docker Enterprise,不过收购数额不详。 几年前,人们张口闭口说的都是 Docker,而现在换成了 Kubernetes。Docker 在它的全盛时期未能盈利,反而在优势渐退几年之后才尝试变现。这再次说明,在现代技术世界,时机就是一切。 软件架构:微服务将成为主流 谷歌趋势表明,微服务架构范式在 2019 年持续增长了一整年。 随着软件行业整体逐步迁移到云端,微服务也将成为占主导地位的架构范式。微服务架构崛起的一个主要原因是它与云原生完美契合,可以实现快速的软件开发。我在之前的一篇博文中解释了微服务架构的基本原则及其优势和劣势。 https://towardsdatascience.com/microservice-architecture-a-brief-overview-and-why-you-should-use-it-in-your-next-project-a17b6e19adfd 我假设现在也存在一种回归到单体架构的趋势,因为在很多情况下,微服务架构有点过头了,而且做好微服务架构设计其实很难。微服务架构有哪些好的实践?在之前的另一篇博文中,我也给出了一些大概,希望对读者有用。 https://towardsdatascience.com/effective-microservices-10-best-practices-c6e4ba0c6ee2 编程语言(整体):Python 将吞噬世界 机器学习、数据分析、数据处理、Web 开发、企业软件开发,甚至是拼接黑洞照片,Python 的影子无处不在。 在著名的编程语言排行榜网站 TIOBE 上,Python 位居最流行编程语言第三位,仅次于 Java 和 C 语言。 更有意思的是,在 2019 年,Python 的流行度翻了一番(从 5% 到 10%)。 Python 的崛起将在 2020 年延续,并缩短与 Java 和 C 语言之间的差距。另一门无所不在的编程语言 JavaScript 正面临下行的风险。为什么 Python 的势头会如此强劲?因为它的入手门槛低,有一个优秀的社区在支持,并受到数据科学家和新生代开发者的喜爱。 编程语言(企业方面):Java 将占主导 之前的 TIOBE 网站截图显示,Java 仍然是一门占主导地位的编程语言,并将在 2020 年继续保持这种地位。JVM 是 Java 的基石,其他编程语言(如 Kotlin、Scala、Clojure、Groovy)也将 JVM 作为运行时。最近,Oracle 修改了 JVM 的许可协议。 新的许可协议意味着使用 Java、Kotlin、Scala 或其他 JVM 编程语言的公司需要向 Oracle 支付大额费用。所幸的是,OpenJDK 让 JVM 继续免费。另外,还有其他一些公司为 JVM 提供企业支持。 因为体积和速度方面的问题,基于 JVM 的编程语言并不适合用在今天的无服务器环境中。Oracle 正在推动 GraalVM 计划,旨在让 Java 变得更加敏捷和快速,让它更适合用在无服务器环境中。因为除了 Java,没有其他编程语言可以提供企业级的稳定性和可靠性,所以 Java 将在 2020 年继续占主导地位。 企业版 Java:Spring 继续发力 曾几何时,在企业开发领域,Spring 和 JavaEE 之间存在着白热化的竞争。但因为 Oracle 在 JavaEE 方面没有作为,在竞争中惨败,这导致了“MicroProfile”计划的形成,并最终促成了 JakartaEE。 虽然所有的政策和活动都是围绕 JavaEE 展开,但 Spring 事实上已经赢得了这场企业 JVM 之争。2020 年,Spring 将成为 JVM 生态系统的头牌。 有两个正在进展中的项目,它们旨在减小 Java 的体积,让它更适合用在无服务器环境中。 其中一个是 Micronaut(https://micronaut.io/)。 另一个是 Quarkus(https://quarkus.io/)。 这两个项目都使用了 GraalVM,它们在 2020 年将会得到 Java 社区更多的关注。 编程语言:后起之秀的突破 2000 年代,编程语言的发展出现了停滞。大多数人认为没有必要再去开发新的编程语言,Java、C 语言、C++、JavaScript 和 Python 已经可以满足所有的需求。但是,谷歌的 Go 语言为新编程语言大门打开了一扇大门。在过去十年出现了很多有趣的编程语言,比如 Rust、Swift、Kotlin、TypeScript。导致这种情况的一个主要原因是已有的编程语言无法充分利用硬件优势(例如多核、更快的网络、云)。另一个原因是现代编程语言更加关注开发者经济,即实现更快速更容易的开发。在 Stackoverflow 提供的一份开发者报告中,排名靠前的现代编程语言如下所示(Rust 连续 4 年名列第一)。 在之前的一篇博文中,我深入探讨了现代编程语言,对比 Rust 和 Go 语言,并说明了为什么现在是采用这些语言的好时机。 https://towardsdatascience.com/back-to-the-metal-top-3-programming-language-to-develop-big-data-frameworks-in-2019-69a44a36a842 最近,微软宣布他们在探索使用 Rust 来开发更安全的软件。 亚马逊最近也宣布要赞助 Rust。 谷歌宣布将 Kotlin 作为 Android 官方开发语言,所以,在 JVM 领域,Kotlin 成了 Java 的主要竞争对手。 Angular 使用 TypeScript 代替 JavaScript,将其作为主要的编程语言,其他 JavaScript 框架(如 React 和 Vue)也开始为 TypeScript 提供更多的支持。 这种趋势将在 2020 年延续下去,很多巨头公司将会深入了解新一代编程语言(如 Rust、Swift、TypeScript、Kotlin),它们会站出来公开表示支持。 Web:JavaScript 继续占主导地位 曾几何时,JavaScript 并不被认为是一门强大的编程语言。在当时,前端内容主要通过后端框架在服务器端进行渲染。2014 年,AngularJS 的出现改变了这种局面。从那个时候开始,更多的 JavaScript 框架开始涌现(Angular 2+、React、Vue、Meteor),JavaScript 已然成为主流的 Web 开发语言。随着 JavaScript 框架不断创新以及微服务架构的崛起,JavaScript 框架在 2020 年将继续主导前端开发。 JavaScript 框架:React 闪耀 虽然 React 是在 AngularJS 之后出现的,但在过去十年对 Web 开发产生了巨大的影响,这也让 Facebook 在与 Google+ 的竞争中打了一场胜战。React 为前端开发带来了一些新的想法,比如事件溯源、虚拟 DOM、单向数据绑定、基于组件的开发,等等。它对开发者社区产生了重大影响,以至于谷歌放弃了 AngularJS,并借鉴 React 的想法推出了彻底重写的 Angular 2+。React 是目前为止最为流行的 JavaScript 框架,下图显示了相关的 NPM 下载统计信息。 为了获得更好的并发和用户体验,Facebook 宣布完全重写 React 的核心算法,推出了 React-Fiber 项目。 2020 年,React 仍然是你开发新项目的首选 Web 框架。其他框架(如 Angular/Angular 2+ 或 Vue)呢?Angular 仍然是一个不错的 Web 开发框架,特别适合企业开发。我敢肯定谷歌在未来几年会在 Angular 上加大投入。Vue 是另一个非常流行的 Web 框架,由中国的巨头公司阿里巴巴提供支持。如果你已经在使用 Angular 或 Vue,就没必要再迁移到 React 了。 App 开发:原生应用 在移动 App 开发方面,有关混合应用开发的炒作有所消停。混合开发提供了更快的开发速度,因为只需要一个开发团队,而不是多个。但原生应用提供了更好的用户体验和性能。另外,混合应用需要经过调整才能使用一些高级特性。对于企业来说,原生应用仍然是首选的解决方案,这种趋势将在 2020 年延续。Airbnb 在一篇博文中非常详细地说明了为什么他们要放弃混合应用开发平台 React Native。 https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a 尽管 Facebook 尝试改进 React Native,谷歌也非常努力地推动混合 App 开发平台 Flutter,但它们仍然只适合用于原型、POC、MVP 或轻量级应用的开发。所以,原生应用在 2020 年仍将继续占主导地位。 在原生应用开发方面,谷歌和苹果分别将 Kotlin 和 Swift 作为各自平台主要的编程语言。谷歌最近再次重申了对 Kotlin 的支持,这对于 Kotlin 用户来说无疑是个好消息。 混合应用开发:React Native 在很多情况下,混合应用是个不错的选择。在这方面也有很多选择:Xamarin、Inoic、React Native 和 Flutter。Facebook 基于成熟的 React 框架推出了 React Native。就像 React 在 Web 框架领域占据主导地位一样,React Native 在混合应用领域也占据着主导地位,如下图所示。 React Native 和 React 有共同的基因,都提供了高度的代码重用性以及“一次开发,到处运行”的能力。React Native 的另一个优势是 Facebook 本身也用它来开发移动应用。谷歌在这个领域起步较晚,但在去年,谷歌的混合应用开发框架 Flutter 获得了不少关注。Flutter 提供了更好的性能,但需要使用另一门不是那么流行的编程语言 Dart。React Native 在 2020 年将继续占主导地位。 API:REST 将占主导地位 REST 是 API 领域事实上的标准,被广泛用在基于 API 的服务间通信上。当然,除了 REST,我们还有其他选择,比如来自谷歌的 gRPC 和来自 Facebook 的 GraphQL。 它们提供了不同的能力。谷歌开发的 gRPC 作为远程过程调用(如 SOAP)的化身,使用 Protobuf 代替 JSON 作为消息格式。Facebook 开发的 GraphQL 作为一个集成层,避免频繁的 REST 调用。gRPC 和 GraphQL 都在各自的领域取得了成功。2020 年,REST 仍然是占主导地位的 API 技术,而 GraphQL 和 gRPC 将作为补充技术。 人工智能:Tensorflow 2.0 将占主导地位 谷歌和 Facebook 也是深度学习 / 神经网络领域的主要玩家。谷歌基于深度学习框架 Theano 推出了 TensorFlow,它很快就成为深度学习 / 神经网络的主要开发库。谷歌还推出了特别设计的 GPU(TPU)来加速 TensorFlow 的计算。 Facebook 在深度学习领域也不甘落后,他们拥有世界上最大的图像和视频数据集合。Facebook 基于另一个深度学习库 Torch 推出了深度学习库 PyTorch。TensorFlow 和 PyTorch 之间有一些区别,前者使用的是静态图进行计算,而 PyTorch 使用的是动态图。使用动态图的好处是可以在运行时纠正自己。另外,PyTorch 对 Python 支持更好,而 Python 是数据科学领域的一门主要编程语言。 随着 PyTorch 变得越来越流行,谷歌也赶紧在 2019 年 10 月推出了 TensorFlow 2.0,也使用了动态图,对 Python 的支持也更好。 2020 年,TensorFlow 2.0 和 PyTorch 将齐头并进。考虑到 TensorFlow 拥有更大的社区,我估计 TensorFlow 2.0 将成为占主导地位的深度学习库。 数据库:SQL是王者,分布式SQL是王后 在炒作 NoSQL 的日子里,人们嘲笑 SQL,还指出了 SQL 的种种不足。有很多文章说 NoSQL 有多么的好,并将要取代 SQL。但等到炒作的潮水褪去,人们很快就意识到,我们的世界不能没有 SQL。以下是最流行的数据库的排名。 可以看到,SQL 数据库占据了前四名。SQL 之所以占主导地位,是因为它提供了 ACID 事务保证,而 ACID 是业务系统最潜在的需求。NoSQL 数据库提供了横向伸缩能力,但代价是不提供 ACID 保证。 互联网公司一直在寻找“大师级数据库”,也就是既能提供 ACID 保证又能像 NoSQL 那样可横向伸缩的数据库。目前有两个解决方案可以部分满足对“大师级数据库”的要求,一个是亚马逊的 Aurora,一个是谷歌的 Spanner。Aurora 提供了几乎所有的 SQL 功能,但不支持横向写伸缩,而 Spanner 提供了横向写伸缩能力,但对 SQL 支持得不好。 2020 年,但愿这两个数据库能够越走越近,或者有人会带来一个“分布式 SQL”数据库。如果真有人做到了,那一定要给他颁发图灵奖。 数据湖:MinIO 将要崛起 现代数据平台非常的复杂。企业一般都会有支持 ACID 事务的 OLTP 数据库(SQL),也会有用于数据分析的 OLAP 数据库(NoSQL)。除此之外,它们还有其他各种数据存储系统,比如用于搜索的 Solr、ElasticSearch,用于计算的 Spark。企业基于数据库构建自己的数据平台,将 OLTP 数据库的数据拷贝到数据湖中。各种类型的数据应用程序(比如 OLAP、搜索)将数据湖作为它们的事实来源。 HDFS 原本是事实上的数据湖,直到亚马逊推出了对象存储 S3。S3 可伸缩,价格便宜,很快就成为很多公司事实上的数据湖。使用 S3 唯一的问题是数据平台被紧紧地绑定在亚马逊的 AWS 云平台上。虽然微软 Azure 推出了 Blob Storage,谷歌也有类似的对象存储,但都不是 S3 的对手。 对于很多公司来说,MinIO 或许是它们的救星。MinIO 是一个开源的对象存储,与 S3 兼容,提供了企业级的支持,并专门为云原生环境而构建,提供了与云无关的数据湖。 微软在 Azure Marketplace 是这么描述 MinIO 的:“为 Azure Blog Storage 服务提供与亚马逊 S3 API 兼容的数据访问”。如果谷歌 GCP 和其他云厂商也提供 MinIO,那么我们将会向多云迈出一大步。 大数据批处理:Spark 将继续闪耀 现如今,企业通常需要基于大规模数据执行计算,所以需要分布式的批处理作业。Hadoop 的 Map-Reduce 是第一个分布式批处理平台,后来 Spark 取代了 Hadoop 的地位,成为真正的批处理之王。Spark 是怎样提供了比 Hadoop 更好的性能的?我之前写了另一篇文章,对现代数据平台进行了深入分析。 https://towardsdatascience.com/programming-language-that-rules-the-data-intensive-big-data-fast-data-frameworks-6cd7d5f754b0 Spark 解决了 Hadoop Map-Reduce 的痛点,它将所有东西放在内存中,而不是在完成每一个昂贵的操作之后把数据保存在存储系统中。尽管 Spark 重度使用 CPU 和 JVM 来执行批处理作业,但这并不妨碍它成为 2020 年批处理框架之王。我希望有人能够使用 Rust 开发出一个更加高效的批处理框架,取代 Spark,并为企业省下大量的云资源费用。 大数据流式处理:Flink 是未来 几年前,实现实时的流式处理几乎是不可能的事情。一些微批次处理框架(比如 Spark Streaming)可以提供“几近”实时的流式处理能力。不过,Flink 改变了这一状况,它提供了实时的流式处理能力。 2019 年之前,Flink 未能得到足够的关注,因为它无法撼动 Spark。直到 2019 年 1 月份,中国巨头公司阿里巴巴收购了 Data Artisan(Flink 背后的公司)。 在 2020 年,企业如果想要进行实时流式处理,Flink 应该是不二之选。不过,跟 Spark 一样,Flink 同样重度依赖 CPU 和 JVM,并且需要使用大量的云资源。 字节码:WebAssembly将被广泛采用 我从 JavaScript 作者 Brandon Eich 的一次访谈中知道了 WebAssembly 这个东西。现代 JavaScript(ES5 之后的版本)是一门优秀的编程语言,但与其他编程语言一样,都有自己的局限性。最大的局限性是 JavaScript 引擎在执行 JavaScript 时需要读取、解析和处理“抽象语法树”。另一个问题是 JavaScript 的单线程模型无法充分利用现代硬件(如多核 CPU 或 GPU)。正因为这些原因,很多计算密集型的应用程序(如游戏、3D 图像)无法运行在浏览器中。 一些公司(由 Mozilla 带领)开发了 WebAssembly,一种底层字节码格式,让任何一门编程语言都可以在浏览器中运行。目前发布的 WebAssembly 版本可以支持 C++、Rust 等。 WebAssembly 让计算密集型应用程序(比如游戏和 AutoCAD)可以在浏览器中运行。不过,WebAssembly 的目标不仅限于此,它还要让应用程序可以在浏览器之外运行。WebAssembly 可以被用在以下这些“浏览器外”的场景中。 移动设备上的混合原生应用。没有冷启动问题的无服务器计算。在服务器端执行不受信任的代码。 我预测,2020 年将是 WebAssembly 取得突破的一年,很多巨头公司(包括云厂商)和社区将会拥抱 WebAssembly。 代码:低代码 / 无代码将更进一步 快速的数字化和工业 4.0 革命意味着软件开发者的供需缺口巨大。由于缺乏开发人员,很多企业无法实现它们的想法。为了降低进入软件开发的门槛,可以尝试无代码(No Code)或低代码(Low Code)软件开发,也就是所谓的 LCNC(Low-Code No-Code)。它已经在 2019 年取得了一些成功。 LCNC 的目标是让没有编程经验的人也能开发软件,只要他们想要实现自己的想法。 虽然我对在正式环境中使用 LCNC 框架仍然心存疑虑,但它为其他公司奠定了良好的基础,像亚马逊和谷歌这样的公司可以基于这个基础构建出有用的产品,就像 AWS Lambda 的蓬勃发展是以谷歌 App Engine 为基础。 2020 年,LCNC 将会获得更多关注。

茶什i 2019-12-26 11:57:03 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:Linux的进程、线程、文件描述符是什么?

游客ih62co2qqq5ww 2020-05-09 11:28:57 0 浏览量 回答数 0

问题

【云能量沙龙深圳站】陆晶丹:阿里云开放存储服务API与Web应用案例分享

sleepbird 2019-12-01 20:27:09 18770 浏览量 回答数 23

回答

1. 原始单据与实体之间的关系 可以是一对一、一对多、多对多的关系。在一般情况下,它们是一对一的关系:即一张原始单据对应且只对应一个实体。在特殊情况下,它们可能是一对多或多对一的关系,即一张原始单证对应多个实体,或多张原始单证对应一个实体。 这里的实体可以理解为基本表。明确这种对应关系后,对我们设计录入界面大有好处。 〖例1〗:一份员工履历资料,在人力资源信息系统中,就对应三个基本表:员工基本情况表、社会关系表、工作简历表。这就是“一张原始单证对应多个实体”的典型例子。 2. 主键与外键 一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键(因为它无子孙), 但必须要有外键(因为它有父亲)。 主键与外键的设计,在全局数据库的设计中,占有重要地位。当全局数据库的设计完成以后,有个美国数据库设计专家说:“键,到处都是键,除了键之外,什么也没有”,这就是他的数据库设计经验之谈,也反映了他对信息系统核心(数据模型)的高度抽象思想。 因为:主键是实体的高度抽象,主键与外键的配对,表示实体之间的连接。 3. 基本表的性质 基本表与中间表、临时表不同,因为它具有如下四个特性: 原子性。基本表中的字段是不可再分解的。原始性。基本表中的记录是原始数据(基础数据)的记录。演绎性。由基本表与代码表中的数据,可以派生出所有的输出数据。稳定性。基本表的结构是相对稳定的,表中的记录是要长期保存的。理解基本表的性质后,在设计数据库时,就能将基本表与中间表、临时表区分开来。 4. 范式标准 基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。〖例2〗:有一张存放商品的基本表,如表1所示。“金额”这个字段的存在,表明该表的设计不满足第三范式,因为“金额”可以由“单价”乘以“数量”得到,说明“金额”是冗余字段。但是,增加“金额”这个冗余字段,可以提高查询统计的速度,这就是以空间换时间的作法。在Rose 2002中,规定列有两种类型:数据列和计算列。“金额”这样的列被称为“计算列”,而“单价”和“数量”这样的列被称为“数据列”。640?wx_fmt=png 表1 商品表的表结构 5. 通俗地理解三个范式 通俗地理解三个范式,对于数据库设计大有好处。在数据库设计中,为了更好地应用三个范式,就必须通俗地理解三个范式(通俗地理解是够用的理解,并不是最科学最准确的理解): 第一范式:1NF是对属性的原子性约束,要求属性具有原子性,不可再分解 第二范式:2NF是对记录的惟一性约束,要求记录有惟一标识,即实体的惟一性; 第三范式:3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,它要求字段没有冗余。 没有冗余的数据库设计可以做到。但是,没有冗余的数据库未必是最好的数据库,有时为了提高运行效率,就必须降低范式标准,适当保留冗余数据。具体做法是:在概念数据模型设计时遵守第三范式,降低范式标准的工作放到物理数据模型设计时考虑。降低范式就是增加字段,允许冗余。 6. 要善于识别与正确处理多对多的关系 若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。 这里的第三个实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处理多对多的关系。 〖例3〗:在“图书馆信息系统”中,“图书”是一个实体,“读者”也是一个实体。这两个实体之间的关系,是一个典型的多对多关系:一本图书在不同时间可以被多个读者借阅,一个读者又可以借多本图书。为此,要在二者之间增加第三个实体,该实体取名为“借还书”,它的属性为:借还时间、借还标志(0表示借书,1表示还书),另外,它还应该有两个外键(“图书”的主键,“读者”的主键),使它能与“图书”和“读者”连接。 7. 主键PK的取值方法 PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引占用空间大,而且速度也慢。 8. 正确认识数据冗余 主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重复出现, 才是数据冗余!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,而且是一种高级冗余。冗余的目的是为了提高处理速度。 只有低级冗余才会增加数据的不一致性,因为同一数据,可能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。 9. E--R图没有标准答案 信息系统的E--R图没有标准答案,因为它的设计与画法不是惟一的,只要它覆盖了系统需求的业务范围和功能内容,就是可行的。反之要修改E--R图。尽管它没有惟一的标准答案,并不意味着可以随意设计。好的E—R图的标准是:结构清晰、关联简洁、实体个数适中、属性分配合理、没有低级冗余。 10. 视图技术在数据库设计中很有用 与基本表、代码表、中间表不同,视图是一种虚表,它依赖数据源的实表而存在。视图是供程序员使用数据库的一个窗口,是基表数据综合的一种形式, 是数据处理的一种方法,是用户数据保密的一种手段。 为了进行复杂处理、提高运算速度和节省存储空间, 视图的定义深度一般不得超过三层。若三层视图仍不够用, 则应在视图上定义临时表, 在临时表上再定义视图。这样反复交迭定义, 视图的深度就不受限制了。 对于某些与国家政治、经济、技术、军事和安全利益有关的信息系统,视图的作用更加重要。这些系统的基本表完成物理设计之后,立即在基本表上建立第一层视图,这层视图的个数和结构,与基本表的个数和结构是完全相同。并且规定,所有的程序员,一律只准在视图上操作。 只有数据库管理员,带着多个人员共同掌握的“安全钥匙”,才能直接在基本表上操作。请读者想想:这是为什么? 11. 中间表、报表和临时表 中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员自己用程序自动维护。 12. 完整性约束表现在三个方面 域的完整性:用Check来实现约束,在数据库设计工具中,对字段的取值范围进行定义时,有一个Check按钮,通过它定义字段的值城。 参照完整性:用PK、FK、表级触发器来实现。用户定义完整性:它是一些业务规则,用存储过程和触发器来实现。 13. 防止数据库设计打补丁的方法是“三少原则” 1、一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计; 2、一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间; 3、一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简单,有的人就是不习惯、不采纳、不执行。 数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点,不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性)的E--R图,要好得多。 提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。 集成的程度越高,数据共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数就会越少。提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。 “三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”设计数据库的理论依据。 14. 提高数据库运行效率的办法 在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方式用C++语言计算处理完成之后,最后才入库追加到表中去。这是电信计费系统设计的经验。 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则垂直分割该表,将原来的一个表分解为两个表。 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。 总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三个层次上同时下功夫。

茶什i 2019-12-27 15:54:46 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

初识Hadoop:报错

kun坤 2020-06-07 00:57:43 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站