• 关于

    异常记录不可用

    的搜索结果

问题

HBase 高可用原理与实践

pandacats 2019-12-20 21:19:02 0 浏览量 回答数 0

问题

负载均衡高可用框架

行者武松 2019-12-01 21:36:54 1691 浏览量 回答数 0

回答

Guns基于SpringBoot,致力于做更简洁的后台管理系统,完美整合springmvc + shiro + mybatis-plus + beetl!Guns项目代码简洁,注释丰富,上手容易,同时Guns包含许多基础模块(用户管理,角色管理,部门管理,字典管理等10个模块),可以直接作为一个后台管理系统的脚手架。Guns v3.0新增rest api服务,提供对接服务端接口的支持,并利用jwt token鉴权机制给予客户端的访问权限,传输数据进行md5签名保证传输过程数据的安全性!项目特点1、基于SpringBoot,简化了大量项目配置和maven依赖,让您更专注于业务开发,独特的分包方式,代码多而不乱。2、完善的日志记录体系,可记录登录日志,业务操作日志(可记录操作前和操作后的数据),异常日志到数据库,通过@BussinessLog注解和LogObjectHolder.me().set()方法,业务操作日志可具体记录哪个用户,执行了哪些业务,修改了哪些数据,并且日志记录为异步执行,详情请见@BussinessLog注解和LogObjectHolder,LogManager,LogAop类。3、利用beetl模板引擎对前台页面进行封装和拆分,使臃肿的html代码变得简洁,更加易维护。4、对常用js插件进行二次封装,使js代码变得简洁,更加易维护,具体请见webapp/static/js/common文件夹内js代码。5、利用ehcache框架对经常调用的查询进行缓存,提升运行速度,具体请见ConstantFactory类中@Cacheable标记的方法。6、controller层采用map + warpper方式的返回结果,返回给前端更为灵活的数据,具体参见com.stylefeng.guns.modular.system.warpper包中具体类。7、防止XSS攻击,通过XssFilter类对所有的输入的非法字符串进行过滤以及替换。8、简单可用的代码生成体系,通过SimpleTemplateEngine可生成带有主页跳转和增删改查的通用控制器、html页面以及相关的js,还可以生成Service和Dao,并且这些生成项都为可选的,通过ContextConfig下的一些列xxxSwitch开关,可灵活控制生成模板代码,让您把时间放在真正的业务上。9、控制器层统一的异常拦截机制,利用@ControllerAdvice统一对异常拦截,具体见com.stylefeng.guns.core.aop.GlobalExceptionHandler类。10、页面统一的js key-value单例模式写法,每个页面生成一个唯一的全局变量,提高js的利用效率,并且有效防止多个人员开发引起的函数名/类名冲突,并且可以更好地去维护代码。11、可以查看博文:热门开源项目:Guns-后台管理系统-博客-云栖社区-阿里云 https://yq.aliyun.com/articles/224607?spm=5176.8091938.0.0.aLr7RG

zwt9000 2019-12-02 00:24:40 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

在primary-secondary 类型的协议中,副本被分为两大类,其中有且仅有一个副本作为primary 副本, 除primary 以外的副本都作为secondary 副本。维护primary 副本的节点作为中心节点,中心节点负 责维护数据的更新、并发控制、协调副本的一致性。 Primary-secondary 类型的协议一般要解决四大类问题:数据更新流程、数据读取方式、Primary 副本的确定和切换、数据同步(reconcile)。 数据更新基本流程 1. 数据更新都由primary 节点协调完成。 2. 外部节点将更新操作发给primary 节点 3. primary 节点进行并发控制即确定并发更新操作的先后顺序 4. primary 节点将更新操作发送给secondary 节点 5. primary 根据secondary 节点的完成情况决定更新是否成功并将结果返回外部节点 在工程实践中,如果由primary 直接同时发送给其他N 个副本发送数据,则每个 secondary 的更新吞吐受限于primary 总的出口网络带宽,最大为primary 网络出口带宽的1/N。为了 解决这个问题,有些系统(例如,GFS),使用接力的方式同步数据,即primary 将更新发送给第一 个secondary 副本,第一个secondary 副本发送给第二secondary 副本,依次类推。 数据读取方式 数据读取方式也与一致性高度相关。如果只需要最终一致性,则读取任何副本都可以满足需求。如果需要会 话一致性,则可以为副本设置版本号,每次更新后递增版本号,用户读取副本时验证版本号,从而 保证用户读到的数据在会话范围内单调递增。使用primary-secondary 比较困难的是实现强一致性。 由于数据的更新流程都是由primary 控制的,primary 副本上的数据一定是最新的,所以 如果始终只读primary 副本的数据,可以实现强一致性。如果只读primary 副本,则secondary 副本 将不提供读服务。实践中,如果副本不与机器绑定,而是按照数据段为单位维护副本,仅有primary 副本提供读服务在很多场景下并不会造出机器资源浪费。 将副本分散到集群中个,假设primary 也是随机的确定的,那么每台机器 上都有一些数据的primary 副本,也有另一些数据段的secondary 副本。从而某台服务器实际都提供 读写服务。 - 由primary 控制节点secondary 节点的可用性。当primary 更新某个secondary 副本不成功 时,primary 将该secondary 副本标记为不可用,从而用户不再读取该不可用的副本。不可用的 secondary 副本可以继续尝试与primary 同步数据,当与primary 完成数据同步后,primary 可以副本 标记为可用。这种方式使得所有的可用的副本,无论是primary 还是secondary 都是可读的,且在一 个确定的时间内,某secondary 副本要么更新到与primary 一致的最新状态,要么被标记为不可用, 从而符合较高的一致性要求。这种方式依赖于一个中心元数据管理系统,用于记录哪些副本可用, 哪些副本不可用。某种意义上,该方式通过降低系统的可用性来提高系统的一致性。 primary 副本的确定与切换 在primary-secondary 类型的协议中,另一个核心的问题是如何确定primary 副本,尤其是在原 primary 副本所在机器出现宕机等异常时,需要有某种机制切换primary 副本,使得某个secondary 副本成为新的primary 副本。 通常的,在primary-secondary 类型的分布式系统中,哪个副本是primary 这一信息都属于元信 息,由专门的元数据服务器维护。执行更新操作时,首先查询元数据服务器获取副本的primary 信 息,从而进一步执行数据更新流程。 由于分布式系统中可靠的发现节点异常是需要一定的探测时间的,这样的探测时间通常是10 秒级别,这也意味着一旦primary 异常,最多需要10 秒级别的 发现时间,系统才能开始primary 的切换,在这10 秒时间内,由于没有primary,系统不能提供更 新服务,如果系统只能读primary 副本,则这段时间内甚至不能提供读服务。从这里可以看到, primary-backup 类副本协议的最大缺点就是由于primary 切换带来的一定的停服务时间。 数据同步 不一致的secondary 副本需要与primary 进行同步(reconcile)。 通常不一致的形式有三种:一、由于网络分化等异常,secondary 上的数据落后于primary 上的 数据。二、在某些协议下,secondary 上的数据有可能是脏数据,需要被丢弃。所谓脏数据是由于 primary 副本没有进行某一更新操作,而secondary 副本上反而进行的多余的修改操作,从而造成 secondary 副本数据错误。三、secondary 是一个新增加的副本,完全没有数据,需要从其他副本上 拷贝数据。 对于第一种secondary 数据落后的情况,常见的同步方式是回放primary 上的操作日志(通常是 redo 日志),从而追上primary 的更新进度。对于脏数据的情况, 较好的做法是设计的分布式协议不产生脏数据。如果协议一定有产生脏数据的可能,则也应该使得 产生脏数据的概率降到非常低得情况,从而一旦发生脏数据的情况可以简单的直接丢弃有脏数据的 副本,这样相当于副本没有数据。另外,也可以设计一些基于undo 日志的方式从而可以删除脏数据。 如果secondary 副本完全没有数据,则常见的做法是直接拷贝primary 副本的数据,这种方法往往比 回放日志追更新进度的方法快很多。但拷贝数据时primary 副本需要能够继续提供更新服务,这就 要求primary 副本支持快照(snapshot)功能。即对某一刻的副本数据形成快照,然后拷贝快照,拷贝 完成后使用回放日志的方式追快照形成后的更新操作。

kun坤 2020-04-24 15:30:53 0 浏览量 回答数 0

问题

万网虚拟主机用户受“备案管理系统”升级影响公告

西贝庄 2019-12-01 21:48:32 7419 浏览量 回答数 1

问题

DDoS高防CNAME接入流程

云栖大讲堂 2019-12-01 21:49:40 1447 浏览量 回答数 0

问题

三个看似简单但不容易解决的设计问题? 400 报错

爱吃鱼的程序员 2020-05-29 20:15:22 0 浏览量 回答数 1

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。

小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

回答

Re急求!!!关于邮箱被盗的原因及解决办法 是的 ,客户发了邮件截图给我,显示是用我的邮箱发出的,有我公司的落款,但是主体部分被改了,让客户打款到另外的银行另外的收款人接收,然后客户就打过去了,为什么会这样? ------------------------- 回1楼小柒2012的帖子 现在邮箱好像被封了,邮件被退信,退信原因:又想不可用或邮箱不存在,麻烦给处理一下吧 ------------------------- 回5楼小猪猪的帖子 昨天修改了几次密码,都已经复杂到自己都快记不住了,今天一登录情况就更糟了,发现从凌晨四点开始就不断有未知IP登陆我的阿里云邮箱,IP地址显示是在柬埔寨,大概四点多未知IP登完后我自己的IP又开始异常的登录,难道邮箱自己登的?而且我已经禁用了SMTP和POP收发,昨天登录的时候检查发现一直也是禁用的,为什么他还是会显示。虽然历史记录里显示登录状态是失败,可是我自己的IP登录记录也是失败,但我还是能在电脑上收发邮件,所以我担心我昨天发出的邮件又被黑客篡改了,你们的解决方案根本不行,能不能给我想个好的方案,还是说我这个邮箱就此不能用了?

深圳爱科学 2019-12-01 23:15:31 0 浏览量 回答数 0

问题

消息服务的事务消息是什么?

轩墨 2019-12-01 22:08:29 1151 浏览量 回答数 0

问题

结合云解析实现跨地域负载均衡

行者武松 2019-12-01 21:36:56 2533 浏览量 回答数 0

回答

第一种OutOfMemoryError: PermGen space发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。第二种OutOfMemoryError: Java heap space发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m第三种OutOfMemoryError:unable to create new native thread在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。那么是什么原因造成这种问题呢?每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。给出一个有关能够创建线程的最大个数的估算公式:(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads对于jdk1.5而言,假设操作系统保留120M内存:1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads对于栈大小为256KB的jdk1.4而言,1.5GB allocated to JVM: ~1520 threads1.0GB allocated to JVM: ~3520 threads 对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

蛮大人123 2019-12-02 02:27:59 0 浏览量 回答数 0

问题

健康检查常见问题

行者武松 2019-12-01 21:43:15 3573 浏览量 回答数 0

回答

域名不能正确解析可以更换其它的dns服务器,在百度搜索“公用dns”,选一个就行了 IIS状态代码的含义 概要 当用户试图通过HTTP或文件传输协议(FTP)访问一台正在运行Internet信息服务(IIS)的服务器上的内容时,IIS返回一个表示该请求的状态的数字代码。该状态代码记录在IIS日志中,同时也可能在Web浏览器或FTP客户端显示。状态代码可以指明具体请求是否已成功,还可以揭示请求失败的确切原因。 更多信息 日志文件的位置 在默认状态下,IIS把它的日志文件放在%WINDIR\System32\Logfiles文件夹中。每个万维网(WWW)站点和FTP站点在该目录下都有一个单独的目录。在默认状态下,每天都会在这些目录下创建日志文件,并用日期给日志文件命名(例如,exYYMMDD.log)。 HTTP 1xx-信息提示 这些状态代码表示临时的响应。客户端在收到常规响应之前,应准备接收一个或多个1xx响应。 100-继续。 101-切换协议。 2xx-成功 这类状态代码表明服务器成功地接受了客户端请求。 200-确定。客户端请求已成功。 201-已创建。 202-已接受。 203-非权威性信息。 204-无内容。 205-重置内容。 206-部分内容。 3xx-重定向 客户端浏览器必须采取更多操作来实现请求。例如,浏览器可能不得不请求服务器上的不同的页面,或通过代理服务器重复该请求。 301-对象已永久移走,即永久重定向。 302-对象已临时移动。 304-未修改。 307-临时重定向。 4xx-客户端错误 发生错误,客户端似乎有问题。例如,客户端请求不存在的页面,客户端未提供有效的身份验证信息。400-错误的请求。 401-访问被拒绝。IIS定义了许多不同的401错误,它们指明更为具体的错误原因。这些具体的错误代码在浏览器中显示,但不在IIS日志中显示: 401.1-登录失败。 401.2-服务器配置导致登录失败。 401.3-由于ACL对资源的限制而未获得授权。 401.4-筛选器授权失败。 401.5-ISAPI/CGI应用程序授权失败。 401.7–访问被Web服务器上的URL授权策略拒绝。这个错误代码为IIS6.0所专用。 403-禁止访问:IIS定义了许多不同的403错误,它们指明更为具体的错误原因: 403.1-执行访问被禁止。 403.2-读访问被禁止。 403.3-写访问被禁止。 403.4-要求SSL。 403.5-要求SSL128。 403.6-IP地址被拒绝。 403.7-要求客户端证书。 403.8-站点访问被拒绝。 403.9-用户数过多。 403.10-配置无效。 403.11-密码更改。 403.12-拒绝访问映射表。 403.13-客户端证书被吊销。 403.14-拒绝目录列表。 403.15-超出客户端访问许可。 403.16-客户端证书不受信任或无效。 403.17-客户端证书已过期或尚未生效。 403.18-在当前的应用程序池中不能执行所请求的URL。这个错误代码为IIS6.0所专用。 403.19-不能为这个应用程序池中的客户端执行CGI。这个错误代码为IIS6.0所专用。 403.20-Passport登录失败。这个错误代码为IIS6.0所专用。 404-未找到。 404.0-(无)–没有找到文件或目录。 404.1-无法在所请求的端口上访问Web站点。 404.2-Web服务扩展锁定策略阻止本请求。 404.3-MIME映射策略阻止本请求。 405-用来访问本页面的HTTP谓词不被允许(方法不被允许) 406-客户端浏览器不接受所请求页面的MIME类型。 407-要求进行代理身份验证。 412-前提条件失败。 413–请求实体太大。 414-请求URI太长。 415–不支持的媒体类型。 416–所请求的范围无法满足。 417–执行失败。 423–锁定的错误。 5xx-服务器错误 服务器由于遇到错误而不能完成该请求。 500-内部服务器错误。 500.12-应用程序正忙于在Web服务器上重新启动。 500.13-Web服务器太忙。 500.15-不允许直接请求Global.asa。 500.16–UNC授权凭据不正确。这个错误代码为IIS6.0所专用。 500.18–URL授权存储不能打开。这个错误代码为IIS6.0所专用。 500.100-内部ASP错误。 501-页眉值指定了未实现的配置。 502-Web服务器用作网关或代理服务器时收到了无效响应。 502.1-CGI应用程序超时。 502.2-CGI应用程序出错。application. 503-服务不可用。这个错误代码为IIS6.0所专用。 504-网关超时。 505-HTTP版本不受支持。 FTP 1xx-肯定的初步答复 这些状态代码指示一项操作已经成功开始,但客户端希望在继续操作新命令前得到另一个答复。 110重新启动标记答复。 120服务已就绪,在nnn分钟后开始。 125数据连接已打开,正在开始传输。 150文件状态正常,准备打开数据连接。 2xx-肯定的完成答复 一项操作已经成功完成。客户端可以执行新命令。200命令确定。 202未执行命令,站点上的命令过多。 211系统状态,或系统帮助答复。 212目录状态。 213文件状态。 214帮助消息。 215NAME系统类型,其中,NAME是AssignedNumbers文档中所列的正式系统名称。 220服务就绪,可以执行新用户的请求。 221服务关闭控制连接。如果适当,请注销。 225数据连接打开,没有进行中的传输。 226关闭数据连接。请求的文件操作已成功(例如,传输文件或放弃文件)。 227进入被动模式(h1,h2,h3,h4,p1,p2)。 230用户已登录,继续进行。 250请求的文件操作正确,已完成。 257已创建“PATHNAME”。 3xx-肯定的中间答复 该命令已成功,但服务器需要更多来自客户端的信息以完成对请求的处理。331用户名正确,需要密码。 332需要登录帐户。 350请求的文件操作正在等待进一步的信息。 4xx-瞬态否定的完成答复 该命令不成功,但错误是暂时的。如果客户端重试命令,可能会执行成功。421服务不可用,正在关闭控制连接。如果服务确定它必须关闭,将向任何命令发送这一应答。 425无法打开数据连接。 426Connectionclosed;transferaborted. 450未执行请求的文件操作。文件不可用(例如,文件繁忙)。 451请求的操作异常终止:正在处理本地错误。 452未执行请求的操作。系统存储空间不够。 5xx-永久性否定的完成答复 该命令不成功,错误是永久性的。如果客户端重试命令,将再次出现同样的错误。500语法错误,命令无法识别。这可能包括诸如命令行太长之类的错误。 501在参数中有语法错误。 502未执行命令。 503错误的命令序列。 504未执行该参数的命令。 530未登录。 532存储文件需要帐户。 550未执行请求的操作。文件不可用(例如,未找到文件,没有访问权限)。 551请求的操作异常终止:未知的页面类型。 552请求的文件操作异常终止:超出存储分配(对于当前目录或数据集)。 553未执行请求的操作。不允许的文件名。 常见的FTP状态代码及其原因 150-FTP使用两个端口:21用于发送命令,20用于发送数据。状态代码150表示服务器准备在端口20上打开新连接,发送一些数据。 226-命令在端口20上打开数据连接以执行操作,如传输文件。该操作成功完成,数据连接已关闭。 230-客户端发送正确的密码后,显示该状态代码。它表示用户已成功登录。 331-客户端发送用户名后,显示该状态代码。无论所提供的用户名是否为系统中的有效帐户,都将显示该状态代码。 426-命令打开数据连接以执行操作,但该操作已被取消,数据连接已关闭。 530-该状态代码表示用户无法登录,因为用户名和密码组合无效。如果使用某个用户帐户登录,可能键入错误的用户名或密码,也可能选择只允许匿名访问。如果使用匿名帐户登录,IIS的配置可能拒绝匿名访问。 550-命令未被执行,因为指定的文件不可用。例如,要GET的文件并不存在,或试图将文件PUT到您没有写入权限的目录。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:01:30 0 浏览量 回答数 0

回答

这个注解的说明就是一次性可以创建的最大的请求数,同时,我在ProxoolDataSource类中,也没有找到这个相关的属性字段,具体如下:private int loginTimeout; private PrintWriter logWriter; private String alias;//连接池的别名 private String driver;//驱动 private String fatalSqlExceptionWrapperClass; private long houseKeepingSleepTime;//保留线程处于睡眠状态的最长时间,house keeper 的职责就是检查各个连接的状态,并判断是否需要销毁或者创建. //;自动侦察各个连接状态的时间间隔(毫秒),侦察到空闲的连接就马上回收,超时的销毁 默认30秒, private String houseKeepingTestSql;// 如果发现了空闲的数据库连接.house keeper 将会用这个语句来测试.这个语句最好非常快的被执行.如果没有定义,测试过程将会被忽略。 private long maximumActiveTime;//线程最大活动时间,如果housekeeper 检测到某个线程的活动时间大于这个数值.它将会杀掉这个线程.所以确认一下你的服务器的带宽.然后定一个合适的值.默认是5分钟 private int maximumConnectionCount;//最大连接数 private long maximumConnectionLifetime;//一个线程的最大寿命 private int minimumConnectionCount;//最小链接数 private long overloadWithoutRefusalLifetime;//这可以帮助我们确定连接池的状态。如果我们已经拒绝了一个连接在这个设定值(毫秒),然后被认为是超载。默认为60秒。 private String password;//数据库密码 private int prototypeCount;//最保持的空闲连接数 private long recentlyStartedThreshold;//这可以帮助我们确定连接池的状态,连接数少还是多或超载。只要至少有一个连接已开始在此值(毫秒)内, //或者有一些多余的可用连接,那么我们假设连接池是开启的。默认为60秒 private int simultaneousBuildThrottle;//这是我们可一次建立的最大连接数。那就是新增的连接请求,但还没有可供使用的连接。由于连接可以使用多线程,在有限的时间之间建立联系从而带来可用连接, //但是我们需要通过一些方式确认一些线程并不是立即响应连接请求的,默认是10。 private String statistics;//连接池使用状况统计。 参数“10s,1m,1d” private String statisticsLogLevel;//日志统计跟踪类型。 参数“ERROR”或 “INFO” private boolean trace;//如果为true,那么每个被执行的SQL语句将会在执行期被log记录(DEBUG LEVEL).你也可以注册一个ConnectionListener (参看ProxoolFacade)得到这些信息 private String driverUrl;//数据库链接字符串 private String user;//数据库用户名 private boolean verbose; private boolean jmx; private String jmxAgentId; private boolean testBeforeUse;//如果为true,在每个连接被测试前都会服务这个连接,如果一个连接失败,那么将被丢弃,另一个连接将会被处理,如果所有连接都失败, //一个新的连接将会被建立。否则将会抛出一个SQLException异常。 private boolean testAfterUse;//如果为true,在每个连接被测试后都会服务这个连接,使其回到连接池中,如果连接失败,那么将被废弃

爵霸 2019-12-02 01:56:41 0 浏览量 回答数 0

回答

Lease 机制是最重要的分布式协议,广泛应用于各种实际的分布式系统中。 基于lease 的分布式cache 系统 基本的问题背景如下:在一个分布式系统中,有一个中心服务器节点,中心服务器存储、维护 着一些数据,这些数据是系统的元数据。系统中其他的节点通过访问中心服务器节点读取、修改其 上的元数据。由于系统中各种操作都依赖于元数据,如果每次读取元数据的操作都访问中心服务器 节点,那么中心服务器节点的性能成为系统的瓶颈。为此,设计一种元数据cache,在各个节点上 cache 元数据信息,从而减少对中心服务器节点的访问,提高性能。另一方面,系统的正确运行严 格依赖于元数据的正确,这就要求各个节点上cache 的数据始终与中心服务器上的数据一致,cache 中的数据不能是旧的脏数据。最后,设计的cache 系统要能最大可能的处理节点宕机、网络中断等 异常,最大程度的提高系统的可用性。 为此,利用lease 机制设计一套cache 系统,其基本原理为如下。中心服务器在向各节点发送数 据时同时向节点颁发一个lease。每个lease 具有一个有效期,和信用卡上的有效期类似,lease 上的 有效期通常是一个明确的时间点,例如12:00:10,一旦真实时间超过这个时间点,则lease 过期失效。 这样lease 的有效期与节点收到lease 的时间无关,节点可能收到lease 时该lease 就已经过期失效。 这里首先假设中心服务器与各节点的时钟是同步的,下节中讨论时钟不同步对lease 的影响。中心服 务器发出的lease 的含义为:在lease 的有效期内,中心服务器保证不会修改对应数据的值。因此, 节点收到数据和lease 后,将数据加入本地Cache,一旦对应的lease 超时,节点将对应的本地cache 数据删除。中心服务器在修改数据时,首先阻塞所有新的读请求,并等待之前为该数据发出的所有 lease 超时过期,然后修改数据的值。 基于lease 的cache,客户端节点读取元数据 判断元数据是否已经处于本地cache 且lease 处于有效期内 1.1 是:直接返回cache 中的元数据 1.2 否:向中心服务器节点请求读取元数据信息 1.2.1 服务器收到读取请求后,返回元数据及一个对应的lease 1.2.2 客户端是否成功收到服务器返回的数据 1.2.2.1 失败或超时:退出流程,读取失败,可重试 1.2.2.2 成功:将元数据与该元数据的lease 记录到内存中,返回元数据 基于lease 的cache,客户端节点修改元数据流程 2.1 节点向服务器发起修改元数据请求。 2.2 服务器收到修改请求后,阻塞所有新的读数据请求,即接收读请求,但不返回数据。 2.3 服务器等待所有与该元数据相关的lease 超时。 2.4 服务器修改元数据并向客户端节点返回修改成功。 上述机制可以保证各个节点上的cache 与中心服务器上的中心始终一致。这是因为中心服务器 节点在发送数据的同时授予了节点对应的lease,在lease 有效期内,服务器不会修改数据,从而客 户端节点可以放心的在lease 有效期内cache 数据。上述lease 机制可以容错的关键是:服务器一旦 发出数据及lease,无论客户端是否收到,也无论后续客户端是否宕机,也无论后续网络是否正常, 服务器只要等待lease 超时,就可以保证对应的客户端节点不会再继续cache 数据,从而可以放心的 修改数据而不会破坏cache 的一致性。 上述基础流程有一些性能和可用性上的问题,但可以很容易就优化改性。优化点一:服务器在 修改元数据时首先要阻塞所有新的读请求,造成没有读服务。这是为了防止发出新的lease 从而引起 不断有新客户端节点持有lease 并缓存着数据,形成“活锁”。优化的方法很简单,服务器在进入修 改数据流程后,一旦收到读请求则只返回数据但不颁发lease。从而造成在修改流程执行的过程中, 客户端可以读到元数据,只是不能缓存元数据。进一步的优化是,当进入修改流程,服务器颁发的 lease 有效期限选择为已发出的lease 的最大有效期限。这样做,客户端可以继续在服务器进入修改 流程后继续缓存元数据,但服务器的等待所有lease 过期的时间也不会因为颁发新的lease 而不断延 长。 最后,=cache 机制与多副本机制的区别。Cache 机制与多副本机制的相似之处都 是将一份数据保存在多个节点上。但Cache 机制却要简单许多,对于cache 的数据,可以随时删除 丢弃,并命中cache 的后果仅仅是需要访问数据源读取数据;然而副本机制却不一样,副本是不能 随意丢弃的,每失去一个副本,服务质量都在下降,一旦副本数下降到一定程度,则往往服务将不 再可用。 lease 机制的分析 lease 的定义:Lease 是由颁发者授予的在某一有效期内的承诺。颁发者一旦发 出lease,则无论接受方是否收到,也无论后续接收方处于何种状态,只要lease 不过期,颁发者一 定严守承诺;另一方面,接收方在lease 的有效期内可以使用颁发者的承诺,但一旦lease 过期,接 收方一定不能继续使用颁发者的承诺。 Lease 机制具有很高的容错能力。首先,通过引入有效期,Lease 机制能否非常好的容错网络异 常。Lease 颁发过程只依赖于网络可以单向通信,即使接收方无法向颁发者发送消息,也不影响lease 的颁发。由于lease 的有效期是一个确定的时间点,lease 的语义与发送lease 的具体时间无关,所以 同一个lease 可以被颁发者不断重复向接受方发送。即使颁发者偶尔发送lease 失败,颁发者也可以 简单的通过重发的办法解决。一旦lease 被接收方成功接受,后续lease 机制不再依赖于网络通信, 即使网络完全中断lease 机制也不受影响。再者,Lease 机制能较好的容错节点宕机。如果颁发者宕 机,则宕机的颁发者通常无法改变之前的承诺,不会影响lease 的正确性。在颁发者机恢复后,如果 颁发者恢复出了之前的lease 信息,颁发者可以继续遵守lease 的承诺。如果颁发者无法恢复lease 信息,则只需等待一个最大的lease 超时时间就可以使得所有的lease 都失效,从而不破坏lease 机制。 例如上节中的cache 系统的例子中,一旦服务器宕机,肯定不会修改元数据,重新恢复后,只需等 待一个最大的lease 超时时间,所有节点上的缓存信息都将被清空。对于接受方宕机的情况,颁发者 不需要做更多的容错处理,只需等待lease 过期失效,就可以收回承诺,实践中也就是收回之前赋予 的权限、身份等。最后,lease 机制不依赖于存储。颁发者可以持久化颁发过的lease 信息,从而在 宕机恢复后可以使得在有效期的lease 继续有效。但这对于lease 机制只是一个优化,如之前的分析, 即使颁发者没有持久化lease 信息,也可以通过等待一个最大的lease 时间的方式使得之前所有颁发 的lease 失效,从而保证机制继续有效。 Lease 机制依赖于有效期,这就要求颁发者和接收者的时钟是同步的。一方面,如果颁发者的 时钟比接收者的时钟慢,则当接收者认为lease 已经过期的时候,颁发者依旧认为lease 有效。接收 者可以用在lease 到期前申请新的lease 的方式解决这个问题。另一方面,如果颁发者的时钟比接收 者的时钟快,则当颁发者认为lease 已经过期的时候,接收者依旧认为lease 有效,颁发者可能将lease 颁发给其他节点,造成承诺失效,影响系统的正确性。对于这种时钟不同步,实践中的通常做法是 将颁发者的有效期设置得比接收者的略大,只需大过时钟误差就可以避免对lease 的有效性的影响。 基于lease 机制确定节点状态 分布式协议依赖于对节点状态认知的全局一致性,即一旦节点Q 认为某个节点 A 异常,则节点A 也必须认为自己异常,从而节点A 停止作为primary,避免“双主”问题的出现。 解决这种问题有两种思路,第一、设计的分布式协议可以容忍“双主”错误,即不依赖于对节点状 态的全局一致性认识,或者全局一致性状态是全体协商后的结果;第二、利用lease 机制。对于第一 种思路即放弃使用中心化的设计,而改用去中心化设计,超过本节的讨论范畴。下面着重讨论利用 lease 机制确定节点状态。 由中心节点向其他节点发送lease,若某个节点持有有效的lease,则认为该节点正常可以提供服 务。用于例2.3.1 中,节点A、B、C 依然周期性的发送heart beat 报告自身状态,节点Q 收到heart beat 后发送一个lease,表示节点Q 确认了节点A、B、C 的状态,并允许节点在lease 有效期内正常工 作。节点Q 可以给primary 节点一个特殊的lease,表示节点可以作为primary 工作。一旦节点Q 希 望切换新的primary,则只需等前一个primary 的lease 过期,则就可以安全的颁发新的lease 给新的 primary 节点,而不会出现“双主”问题。 在实际系统中,若用一个中心节点发送lease 也有很大的风险,一旦该中心节点宕机或网络异常, 则所有的节点没有lease,从而造成系统高度不可用。为此,实际系统总是使用多个中心节点互为副 本,成为一个小的集群,该小集群具有高可用性,对外提供颁发lease 的功能。chubby 和zookeeper 都是基于这样的设计。 lease 的有效期时间选择 工程中,常选择的lease 时长是10 秒级别,这是一个经 过验证的经验值,实践中可以作为参考并综合选择合适的时长。

kun坤 2020-04-24 15:31:41 0 浏览量 回答数 0

回答

概述 当客户端访问目标服务器出现ping丢包或ping不通时,可以通过tracert或mtr等工具进行链路测试来判断问题根源。本文介绍如何通过工具进行链路测试和分析。 详细信息 阿里云提醒您: 如果您对实例或数据有修改、变更等风险操作,务必注意实例的容灾、容错能力,确保数据安全。 如果您对实例(包括但不限于ECS、RDS)等进行配置与数据修改,建议提前创建快照或开启RDS日志备份等功能。 如果您在阿里云平台授权或者提交过登录账号、密码等安全信息,建议您及时修改。 本文分别介绍如下链路测试方法。 链路测试工具 测试结果的简要分析 常见的链路异常场景 链路测试步骤 测试完成后的解决方法 链路测试工具 操作系统类型不同,链路测试所使用的工具也有所不同。简要介绍如下。 Linux系统 此处简单介绍两个链路测试工具。 工具一:mtr命令 mtr(My traceroute)几乎是所有Linux发行版本预装的网络测试工具。其将ping和traceroute的功能合并,所以功能更强大。mtr默认发送ICMP数据包进行链路探测。您也可以通过“-u”参数来指定使用UDP数据包进行探测。相对于traceroute只会做一次链路跟踪测试,mtr会对链路上的相关节点做持续探测并给出相应的统计信息。所以,mtr能避免节点波动对测试结果的影响,所以其测试结果更正确,建议优先使用。 用法说明 mtr [-BfhvrwctglxspQomniuT46] [--help] [--version] [--report] [--report-wide] [--report-cycles=COUNT] [--curses] [--gtk] [--csv|-C] [--raw] [--xml] [--split] [--mpls] [--no-dns] [--show-ips] [--address interface] [--filename=FILE|-F] [--ipinfo=item_no|-y item_no] [--aslookup|-z] [--psize=bytes/-s bytes] [--order fields] [--report-wide|-w] [--inet] [--inet6] [--max-ttl=NUM] [--first-ttl=NUM] [--bitpattern=NUM] [--tos=NUM] [--udp] [--tcp] [--port=PORT] [--timeout=SECONDS] [--interval=SECONDS] HOSTNAME 常见可选参数说明 --report:以报告模式显示输出。 --split:将每次追踪的结果分别列出来,而非统计整个结果。 --psize:指定ping数据包的大小。 --no-dns:不对IP地址做域名反解析。 --address:主机有多个IP地址时,设置发送数据包的IP地址。 -4:只使用IPv4协议。 -6:只使用IPv6协议。 另外,也可以在mtr运行过程中,输入类似如下的字母来快速切换模式。 ?或h:显示帮助菜单。 d:切换显示模式。 n:启用或禁用DNS域名解析。 u:切换使用ICMP或UDP数据包进行探测。 命令输出示例 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Host):节点IP地址和域名。按 n 键可切换显示。 第二列(Loss%):节点丢包率。 第三列(Snt):每秒发送数据包数。默认值是10,可以通过“-c”参数指定。 第四列(Last):最近一次的探测延迟。 第五、六、七列(Avg、Best、Worst):分别是探测延迟的平均值、最小值和最大值。 第八列(StDev):标准偏差。越大说明相应节点越不稳定。 工具二:traceroute命令 traceroute也是几乎所有Linux发行版本预装的网络测试工具,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。traceroute先发送小的具有最大存活时间值(Max_TTL)的UDP探测数据包,然后侦听从网关开始的整个链路上的ICMP TIME_EXCEEDED响应。探测从TTL=1开始,TTL值逐步增加,直至接收到ICMP PORT_UNREACHABLE消息。ICMP PORT_UNREACHABLE消息用于标识目标主机已经被定位,或命令已经达到允许跟踪的最大TTL值。traceroute默认发送UDP数据包进行链路探测。可以通过“-I”参数来指定使用ICMP数据包进行探测。 用法说明 traceroute [-I] [ -m Max_ttl ] [ -n ] [ -p Port ] [ -q Nqueries ] [ -r ] [ -s SRC_Addr ] [ -t TypeOfService ] [ -f flow ] [ -v ] [ -w WaitTime ] Host [ PacketSize ] 常见可选参数说明 -d:使用Socket层级的排错功能。 -f:设置第一个检测数据包的存活数值TTL的大小。 -F:设置不要分段标识。 -g:设置来源路由网关,最多可设置8个。 -i:主机有多个网卡时,使用指定的网卡发送数据包。 -I:使用ICMP数据包替代UDP数据包进行探测。 -m:设置检测数据包的最大存活数值TTL的大小。 -n:直接使用IP地址而非主机名称(禁用DNS反查)。 -p:设置UDP传输协议的通信端口。 -r:忽略普通的Routing Table,直接将数据包发送到目标主机上。 -s:设置本地主机发送数据包的IP地址。 -t:设置检测数据包的TOS数值。 -v:详细显示指令的执行过程。 -w:设置等待远端主机回包时间。 -x:开启或关闭数据包的正确性检验。 命令输出示例 Windows系统 此处简单介绍两个链路测试工具。 工具一:WinMTR(建议优先使用) WinMTR是mtr工具在Windows环境下的图形化实现,但进行了功能简化,只支持部分mtr的参数。WinMTR默认发送ICMP数据包进行探测,无法切换。和mtr一样,相比tracert,WinMTR能避免节点波动对测试结果的影响,所以测试结果更正确。所以在WinMTR可用的情况下,建议优先使用WinMTR进行链路测试。 用法说明 WinMTR无需安装,直接解压运行即可。操作方法非常简单,说明如下。 如下图所示,运行程序后,在 Host 字段输入目标服务器域名或IP,注意不要包含空格。 单击 Start 开始测试。开始测试后,相应按钮变成了 Stop。 运行一段时间后,单击 Stop 停止测试。 其它选项说明如下。 Copy Text to clipboard:将测试结果以文本格式复制到粘贴板。 Copy HTML to clipboard:将测试结果以HTML格式复制到粘贴板。 Export TEXT:将测试结果以文本格式导出到指定文件。 Export HTML:将测试结果以HTML格式导出到指定文件。 Options:可选参数,包括的可选参数如下。 Interval(sec):每次探测的间隔(过期)时间。默认为1秒。 ping size(bytes):ping探测所使用的数据包大小,默认为64字节。 Max hosts in LRU list:LRU列表支持的最大主机数,默认值为128。 Resolve names:通过反查IP地址,以域名显示相关节点。 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Hostname):节点的IP或域名。 第二列(Nr):节点编号。 第三列(Loss%):节点丢包率。 第四列(Sent):已发送的数据包数量。 第五列(Recv):已成功接收的数据包数量。 第六、七、八、九列(Best 、Avg、Worst、Last):分别是到相应节点延迟的最小值、平均值、最大值和最后一次值。 工具二:tracert命令行工具 tracert(Trace Route)是Windows自带的网络诊断命令行程序,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。 tracert通过向目标地址发送 ICMP 数据包来确定到目标地址的路由。在这些数据包中,tracert使用了不同的IP“生存期”,即TTL值。由于要求沿途的路由器在转发数据包前必须至少将TTL减少1,因此TTL实际上相当于一个跃点计数器(hop counter)。当某个数据包的TTL达到0时,相应节点就会向源计算机发送一个ICMP超时的消息。 tracert第一次发送TTL为1的数据包,并在每次后续传输时将TTL增加1,直到目标地址响应或达到TTL的最大值。中间路由器发送回来的ICMP超时消息中包含了相应节点的信息。 用法说明 tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name 常见可选参数说明 -d:不要将地址解析为主机名(禁用DNS反解)。 -h:maximum_hops,指定搜索目标地址时的最大跃点数。 -j: host-list,指定沿主机列表的松散源路由。 -w:timeout,等待每个回复的超时时间(以毫秒为单位)。 -R:跟踪往返行程路径(仅适用于IPv6)。 -S:srcaddr,要使用的源地址(仅适用于IPv6)。 -4:强制使用IPv4。 -6:强制使用IPv6。 target_host:目标主机域名或IP地址。 命令输出示例 C:> tracert -d 223.5.5.5 通过最多 30 个跃点跟踪到 223.5.5.5 的路由 1 请求超时。 2 9 ms 3 ms 12 ms 192.168.X.X 3 4 ms 9 ms 2 ms X.X.X.X 4 9 ms 2 ms 1 ms XX.XX.XX.XX 5 11 ms 211.XX.X.XX 6 3 ms 2 ms 2 ms 2XX.XX.1XX.XX 7 2 ms 2 ms 1 ms 42.XX.2XX.1XX 8 32 ms 4 ms 3 ms 42.XX.2XX.2XX 9 请求超时。 10 3 ms 2 ms 2 ms 223.5.5.5 跟踪完成。 测试结果的简要分析 由于mtr(WinMTR)有更高的准确性,本文以其测试结果为例,参考如下要点进行分析。此处分析时以如下示例图为基础。 要点一:网络区域 正常情况下,从客户端到目标服务器的整个链路中会包含如下区域。 客户端本地网络,即本地局域网和本地网络提供商网络。如上图中的区域A。如果该区域出现异常,并且是客户端本地网络中的节点出现异常,则需要对本地网络进行相应的排查分析。如果是本地网络提供商网络出现异常,则需要向当地运营商反馈问题。 运营商骨干网络。如上图中的区域B。如果该区域出现异常,可以根据异常节点的IP查询其所属的运营商,直接向对应运营商进行反馈,或者通过阿里云技术支持,向运营商进行反馈。 目标服务器本地网络,即目标服务器所属提供商的网络。如上图中的区域C。如果该区域出现异常,需要向目标服务器所属的网络运营商反馈问题。 要点二:链路负载均衡 如上图中的区域D。如果中间链路某些部分启用了链路负载均衡,则mtr只会对首尾节点进行编号和探测统计。中间节点只会显示相应的IP或域名信息。 要点三:结合Avg(平均值)和StDev(标准偏差)综合判断 由于链路抖动或其它因素的影响,节点的Best和Worst值可能相差很大。Avg统计了自链路测试以来所有探测的平均值,所以能更好的反应出相应节点的网络质量。而StDev越高,则说明数据包在相应节点的延时值越不相同,即越离散。所以标准偏差值可用于协助判断Avg是否真实反应了相应节点的网络质量。例如,如果标准偏差很大,说明数据包的延迟是不确定的。可能某些数据包延迟很小,例如25ms,而另一些延迟却很大,例如350ms,但最终得到的平均延迟反而可能是正常的。所以,此时Avg并不能很好的反应出实际的网络质量情况。 综上,建议的分析标准如下。 如果StDev很高,则同步观察相应节点的Best和Worst,来判断相应节点是否存在异常。 如果StDev不高,则通过Avg来判断相应节点是否存在异常。 注:上述StDev高或者不高,并没有具体的时间范围标准。而需要根据同一节点其它列的延迟值大小来进行相对评估。比如,如果Avg为30ms,那么,当StDev为25ms,则认为是很高的偏差。而如果Avg为325ms,则StDev同样为25ms,反而认为是不高的偏差。 要点四:Loss%(丢包率)的判断 任一节点的Loss%(丢包率)如果不为零,则说明这一跳网络可能存在问题。导致相应节点丢包的原因通常有如下两种。 运营商基于安全或性能需求,限制了节点的ICMP发送速率,导致丢包。 节点确实存在异常,导致丢包。 结合异常节点及其后续节点的丢包情况,并参考如下内容,判定丢包原因。 如果随后节点均没有丢包,则通常表示异常节点丢包是由于运营商策略限制所致。可以忽略相关丢包。如上图中的第2跳所示。 如果随后节点也出现丢包,则通常说明异常节点确实存在网络异常,导致丢包。如上图中的第5跳所示。 另外,上述两种情况可能同时发生,即相应节点既存在策略限速,又存在网络异常。对于这种情况,如果异常节点及其后续节点连续出现丢包,而且各节点的丢包率不同,则通常以最后几跳的丢包率为准。如上图所示,在第 5、6、7跳均出现了丢包。所以,最终丢包情况,以第7跳的40%作为参考。 要点五:关于延迟 关于延迟,有如下两种场景。 场景一:延迟跳变 如果在某一跳之后延迟明显陡增,则通常判断该节点存在网络异常。如上图所示,从第5跳之后的后续节点延迟明显陡增,则推断是第5跳节点出现了网络异常。不过,高延迟并不一定完全意味着相应节点存在异常。如上图所示,第5跳之后,虽然后续节点延迟明显陡增,但测试数据最终仍然正常到达了目的主机。所以,延迟大也有可能是在数据回包链路中引发的。所以,需要结合反向链路测试一并分析。 场景二:ICMP限速导致延迟增加 ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如上图所示,第3跳有100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。 常见的链路异常场景 常见的链路异常场景及测试报告如下。 场景一:目标主机网络配置不当 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. ??? 2. ??? 3. 1XX.X.X.X 0.0% 10 521.3 90.1 2.7 521.3 211.3 4. 11X.X.X.X 0.0% 10 2.9 4.7 1.6 10.6 3.9 5. 2X.X.X.X 80.0% 10 3.0 3.0 3.0 3.0 0.0 6. 2X.XX.XX.XX 0.0% 10 1.7 7.2 1.6 34.9 13.6 7. 1XX.1XX.XX.X 0.0% 10 5.2 5.2 5.1 5.2 0.0 8. 2XX.XX.XX.XX 0.0% 10 5.3 5.2 5.1 5.3 0.1 9. 173.194.200.105 100.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在目标地址出现了100%的丢包。从数据上看是数据包没有到达,其实很有可能是目标服务器相关安全策略(比如防火墙、iptables 等)禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置。 场景二:ICMP限速 示例数据如下。 [root@mycentos6 ~]# mtr --no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.X.XX 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 60.0% 10 27.2 25.3 23.1 26.4 2.9 6. 209.85.254.247 0.0% 10 39.1 39.4 39.1 39.7 0.2 7. 64.233.174.46 0.0% 10 39.6 40.4 39.4 46.9 2.3 8. gw-in-f147.1e100.net 0.0% 10 39.6 40.5 39.5 46.7 2.2 在该示例中,在第5跳出现了明显的丢包,但后续节点均未见异常。所以推断是该节点ICMP限速所致。该场景对最终客户端到目标服务器的数据传输不会有影响,所以,分析的时候可以忽略。 场景三:环路 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第5跳之后出现了循环跳转,导致最终无法到达目标服务器。这通常是由于运营商相关节点路由配置异常所致。所以,该场景需要联系相应节点归属运营商处理。 场景四:链路中断 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第4跳之后就无法收到任何反馈。这通常是由于相应节点中断所致。建议结合反向链路测试做进一步确认。该场景需要联系相应节点归属运营商处理。 链路测试步骤 通常情况下,链路测试步骤如下图所示。 相关步骤的详情说明如下。 步骤一:获取本地网络对应的公网IP 在客户端本地网络内访问淘宝IP地址库,获取本地网络对应的公网IP地址。 步骤二:正向链路测试(ping和mtr) 从客户端向目标服务器做如下测试。 从客户端向目标服务器域名或IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据客户端操作系统的不同,使用WinMTR或mtr,设置测试目的地址为目标服务器域名或IP,然后进行链路测试,记录测试结果。 步骤三:反向链路测试(ping和mtr) 进入目标服务器系统内部做如下测试。 从目标服务器向步骤一获取的客户端IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据目标服务器操作系统的不同,使用WinMTR或mtr,设置测试目的地址为客户端的IP地址,然后进行链路测试,记录测试结果。 步骤四:测试结果分析 参阅测试结果的简要分析,对测试结果进行分析。确认异常节点后,访问如下链接或其他可以查询IP归属地的网站,获取该异常节点的归属运营商信息。如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。如果是运营商相关节点出现异常,则需要向运营商反馈问题。查询结果类似如下。 测试完成后的解决方法 当出现ping丢包或ping不通时,首先请参考云服务器ECS网络故障诊断,排查是否为网络故障。 如果确认是因系统中病毒导致使用ping命令测试ECS实例的IP地址间歇性丢包,则可参考使用ping命令测试ECS实例的IP地址间歇性丢包进行处理。 如果是因删除ECS实例的默认安全组规则导致无法ping通ECS实例,可参考删除ECS实例的默认安全组规则导致无法ping通ECS实例进行处理。 如果在Linux系统内核没有禁PING的情况下,是因系统内部防火墙策略设置导致ECS服务器PING不通。可参考Linux系统的ECS中没有禁PING却PING不通的解决方法。

1934890530796658 2020-03-25 23:17:54 0 浏览量 回答数 0

问题

使用SeasLog打造PHP项目中的高性能日志组件(一) 400 请求报错 

kun坤 2020-05-30 16:12:25 0 浏览量 回答数 1

回答

概述 本文主要介绍无法远程登录Linux实例的案例和排查方法。 详细信息 本文主要通过如下2个方面解决无法远程登录Linux实例的问题。 常见报错案例 排查方法 常见报错案例 SSH无法远程登录Linux实例的常见案例如下所示,可根据实际报错信息选择不同的方案进行排查和处理。 PAM安全框架 Linux系统环境配置 SSH服务及参数配置 SSH服务关联目录或文件配置 SSH服务密钥配置 PAM安全框架 Linux系统的PAM安全框架可以加载相关安全模块,对云服务器的账户策略、登录策略等进行访问控制。如果相关配置存在异常,或触发了相关策略,就可能会导致SSH登录失败。根据不同报错信息,可参见如下常见案例进行解决。 SSH登录时出现如下错误:pam_listfile(sshd:auth): Refused user root for service sshd SSH登录时出现如下错误:requirement “uid >= 1000” not met by user “root” SSH登录时出现如下错误:Maximum amount of failed attempts was reached SSH登录时出现如下错误:login: Module is unknown Linux系统环境配置 Linux内的系统环境,比如中毒、账户配置、环境变量配置等,如果出现异常,也可能会导致SSH登录失败。根据不同报错信息,可参见如下常见案例进行解决。 SSH登录时出现如下错误:ssh_exchange_identification: read: Connection reset by peer 中毒导致SSH服务运行异常,出现如下错误:fatal: mm_request_send: write: Broken pipe SSH启动时出现如下错误:main process exited, code=exited SSH连接时出现如下错误:pam_limits(sshd:session):could not sent limit for ‘nofile’ SSH连接时出现如下错误:pam_unix(sshdsession) session closed for user SSH连接时出现如下错误:error Could not get shadow infromation for root SSH服务及参数配置 SSH服务的默认配置文件为/etc/ssh/sshd_config。配置文件中的相关参数配置异常,或启用了相关特性或策略,也可能会导致 SSH登录失败。根据不同报错信息,可参见如下常见案例进行解决。 SSH登录时出现如下错误:Disconnected:No supported authentication methods available SSH登录时出现如下错误:User root not allowed because not listed in SSH登录时出现如下错误:Permission denied, please try again SSH登录时出现如下错误:Too many authentication failures for root SSH启动时出现如下错误:error while loading shared libraries SSH启动时出现如下错误:fatal: Cannot bind any address SSH启动时出现如下错误:Bad configuration options 云服务器ECS Linux SSH启用UseDNS导致连接速度变慢 Linux实例中由于SELinux服务开启导致SSH远程连接异常 SSH服务关联目录或文件配置 SSH服务基于安全性考虑,在运行时,会对相关目录或文件的权限配置、属组等进行检查。过高或过低的权限配置,都可能会引发服务运行异常,进而导致客户端登录失败。根据不同报错信息,可参见如下常见案例进行解决。 SSH登录时出现如下错误:No supported key exchange algorithms SSH启动时出现如下错误:must be owned by root and not group or word-writable SSH服务密钥配置 SSH服务采用非对称加密技术,对所传输的数据进行加密。客户端及服务端会交换和校验相关密钥信息的有效性。根据不同报错信息,可参见如下常见案例进行解决。 SSH登录时出现如下错误:Host key verification failed SSH服务的公私钥异常导致无法SSH登录Linux实例 排查方法 若常见报错案例没有解决问题,可以参考如下流程排查问题。 检查CPU负载、带宽及内存使用情况 客户端排查 中间网络 网络检查 端口检查 安全组检查 示例 提示: 以下操作在CentOS 6.5 64位操作系统中进行过测试,在其他Linux发行版中可能存在差异,具体情况请参阅对应Linux发行版的官方文档。 客户端SSH连接Linux实例是运维操作的主要途径。通过管理终端可以用于临时运维操作,或者在客户端SSH登录异常时,用于问题排查和分析。 下图为SSH登录关联因素示意图。由此可见,通过SSH无法远程登录Linux实例时,可能涉及的关联因素较多。 检查CPU负载、带宽及内存使用情况 确认是否存在CPU负载过高的情况,如果存在,则参考本步骤解决问题,如果不存在,则执行下一步步骤。 提示:您无法主动监控系统内部的程序运行状态,但是可以借助云监控进行查看。 登录云监控控制台,依次选择 主机监控 > 进程监控。 查看应用运行情况,排除CPU负载过高的原因,如何查看CPU负载问题,请参见Linux系统ECS实例CPU使用率较高的排查思路。 提示:在某个时间段CPU负载过高可能导致远程连接失败,建议您查询程序或者实例资源是否不满足现有要求。 无法远程连接可能是公网带宽不足导致的,具体排查方法如下。可通过续费ECS实例,然后重启实例解决。详情参见手动续费或者自动续费。 登录ECS管理控制台。 找到该实例, 单击 管理 进入 实例详情 页面,查看网络监控数据。 检查服务器带宽是否为“1k”或“0k”。如果购买实例时没有购买公网带宽,后来升级了公网带宽,续费的时候没有选择续费带宽,带宽就会变成“1k”。 远程连接输入用户密码登录后,不能正常显示桌面直接退出,也没有错误信息。这种情况可能是服务器内存不足导致的,需要查看一下服务器的内存使用情况。具体操作如下。 使用控制台远程连接功能登录到Linux实例。 查看内存使用情况,具体请参考Linux系统的ECS实例中如何查看物理CPU和内存信息,确认内存不足后,请参考Linux服务器内存消耗过高进行处理。 客户端排查 客户端无法正常登录时,先使用不同的SSH客户端基于相同账户信息进行登录测试。如果能正常登录,则判断是客户端配置问题,需要对客户端配置或软件运行情况做排查分析。关于如何使用客户端SSH登录Linux实例,您可以参考远程连接Linux实例。 步骤一:使用管理终端登录实例 无论何种原因导致无法远程连接实例,请先尝试用阿里云提供的远程连接功能进行连接,确认实例还有响应,没有完全宕机,然后再按原因分类进行故障排查。 登录云服务器管理控制台,单击左侧导航栏中的 实例,然后在目标实例右侧单击 远程连接。 在首次连接或忘记连接密码时,单击 修改远程连接密码,修改远程连接的密码。 然后通过远程连接密码连接实例。 步骤二:检查客户端本地网络是否异常 确认是否存在用户本地无法连接外网的故障。 如果存在,则检查网卡驱动,如果存在异常,则重新安装。使用管理终端登录实例,查看/etc/hosts.deny文件,查看是否存在拦截IP,如果存在则删除此IP配置即可。 如果不存在,则执行下一步步骤。 步骤三:重启实例 在确保登录密码正确的情况下,确认之前是否曾重置过密码。检查重置实例密码后是否未重启实例,如果存在实例密码修改记录,但无重启实例记录,则参考以下操作步骤重启实例。 登录ECS管理控制台,单击左侧导航栏中的 实例。 在页面顶部的选择对应的地域,目标实例右侧单击 更多 > 实例状态 > 重启,再单击 确认 即可。 中间网络 中间网络包括网络检查和端口检查。 网络检查 无法正常远程连接Windows实例时,需要先检查网络是否正常。 用其他网络环境中,不同网段或不同运营商)的电脑连接对比测试,判断是本地网络问题还是服务器端的问题。如果是本地网络问题或运营商问题,请联系本地IT人员或运营商解决。如果是网卡驱动存在异常,则重新安装。排除本地网络故障后进行下一步检查。 在客户端使用ping命令测试与实例的网络连通性。 网络异常时,请参考网络异常时如何抓取数据包进行排查。 当出现ping丢包或ping不通时,请参考使用ping命令丢包或不通时的链路测试方法进行排查。 如果出现间歇性丢包,ECS实例的网络一直处于不稳定状态时,请参考使用ping命令测试ECS实例的IP地址间歇性丢包进行解决。 系统内核没有禁ping的情况下,使用ping命令测试ECS服务器,发现网络不通,请参考Linux系统的ECS中没有禁PING却PING不通的解决方法。 端口检查 网络检查正常后,进一步检查端口是否正常。 使用管理终端登录实例,执行如下命令,编辑SSH配置文件。 vi /etc/ssh/sshd_config 找到“#port 22”所在行,检查默认端口22是否被修改,且前面的“#”是否删除,如果没有删除,可以把前面的“#”删除,然后将22改为其它的端口,再保存退出即可。 注:服务监听能使用的端口范围为0到65535,错误配置监听端口会导致远程桌面服务监听失败。 执行如下命令,重启SSH服务。 /etc/init.d/sshd restart 注:也可执行如下命令,重启SSH服务。 service sshd restart 使用Python自带的Web服务器用于临时创建新的监听端口进行测试。 python -m SimpleHTTPServer [$Port] 如果登录方式改变或者ECS安全组规则中未放行修改后的端口号,则参考如下步骤放行修改后的端口。 注:ECS的安全组规则中默认放行22端口。修改了远程桌面的端口后,需要在安全组规则中放行修改后的端口号。 登录ECS管理控制台。 找到该实例,单击 管理 进入 实例详情 页面,切换到 本实例安全组 标签页,单击 配置规则。 在安全组规则页面,单击 添加安全组规则。 在弹出的页面中,端口范围 输入修改后的远程桌面端口号。授权对象 输入客户端的公网IP地址。比如修改后的远程桌面端口号为2222,则 端口范围 应输入“2222/2222”。填写完成后,单击 确定。 通过上一步获取的端口,参考如下命令,进行端口测试,判断端口是否正常。如果端口测试失败,请参考使用ping命令正常但端口不通时的端口可用性探测说明进行排查。 telnet [$IP] [$Port] 注: [$IP]指Linux实例的IP地址。 [$Port]指Linux实例的SSH端口号。 系统显示类似如下,比如执行telnet 192.168.0.1 22命令,正常情况下,系统会返回服务端中SSH的软件版本号。 安全组检查 检查安全组配置,是否允许远程连接的端口。 参考查询安全组规则,查看安全组规则。如果远程连接端口没有进行配置,则参考Linux实例启用SSH服务后设置对应的安全组策略配置。 确认是否存在无法ping通ECS实例,在排除Iptables和网卡IP配置问题且回滚系统后,仍然无法ping通。可能是ECS实例安全组默认的公网规则被删除,则需要重新配置ECS实例的安全组公网规则,具体操作请参见ECS实例安全组默认的公网规则被删除导致无法ping通。如果不存在,则继续下一步骤检查。 示例 如果根据前述问题场景进行排查和处理后,还是无法正常登录。则建议按照如下步骤逐一排查和分析。 使用不同的客户端SSH及管理终端做对比访问测试,判断是否是个别客户端自身配置或软件运行问题所致。 参阅中间网络问题相关说明,测试网络连通性。 参阅管理终端,登录云服务器,在客户端进行访问测试的同时,执行如下命令,查看相关日志。 tailf /var/log/secure 参考如下命令, 比如ssh -v 192.168.0.1 命令,获取Linux环境中详细的SSH登录交互日志。 ssh -v [$IP] 通过管理终端登录Linux实例,参考如下步骤,检查SSH服务运行状态。 执行如下命令,检查服务运行状态。 service sshd status service sshd restart 正常情况下会返回SSH服务的运行状态及进程PID,系统显示类似如下。 [root@centos ~]# service sshd status openssh-daemon (pid 31350) is running... [root@centos ~]# service sshd restart Stopping sshd: [ OK ] Starting sshd: [ OK ] 执行如下命令,检查服务监听状态。 netstat -ano | grep 0.0.0.0:22 正常情况下会返回相应端口监听信息,系统显示类似如下。 tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN off (0.00/0/0) 通过管理终端登录Linux实例,执行如下命令。如果能正常登录,则推断是系统防火墙或外部安全组策略等配置异常,导致客户端登录失败。 ssh 127.0.0.1 若用阿里云提供的远程连接功能仍无法成功连接实例,请尝试重启实例。重启操作会使实例停止工作,从而中断业务,请谨慎执行。 提示:重启实例前,需给实例创建快照,用于数据备份或者制作镜像。创建快照的方法请参见创建快照。 登录ECS管理控制台,单击左侧导航栏中的 实例。 在页面顶部的选择对应的地域,在目标实例右侧单击 更多 > 实例状态 > 重启,再单击 确认 即可。

1934890530796658 2020-03-26 09:52:57 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考

问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

回答

重试作用: 对于重试是有场景限制的,不是什么场景都适合重试,比如参数校验不合法、写操作等(要考虑写是否幂等)都不适合重试。 远程调用超时、网络突然中断可以重试。在微服务治理框架中,通常都有自己的重试与超时配置,比如dubbo可以设置retries=1,timeout=500调用失败只重试1次,超过500ms调用仍未返回则调用失败。 比如外部 RPC 调用,或者数据入库等操作,如果一次操作失败,可以进行多次重试,提高调用成功的可能性。 优雅的重试机制要具备几点: 无侵入:这个好理解,不改动当前的业务逻辑,对于需要重试的地方,可以很简单的实现 可配置:包括重试次数,重试的间隔时间,是否使用异步方式等 通用性:最好是无改动(或者很小改动)的支持绝大部分的场景,拿过来直接可用 优雅重试共性和原理: 正常和重试优雅解耦,重试断言条件实例或逻辑异常实例是两者沟通的媒介。 约定重试间隔,差异性重试策略,设置重试超时时间,进一步保证重试有效性以及重试流程稳定性。 都使用了命令设计模式,通过委托重试对象完成相应的逻辑操作,同时内部封装实现重试逻辑。 Spring-tryer和guava-tryer工具都是线程安全的重试,能够支持并发业务场景的重试逻辑正确性。 优雅重试适用场景: 功能逻辑中存在不稳定依赖场景,需要使用重试获取预期结果或者尝试重新执行逻辑不立即结束。比如远程接口访问,数据加载访问,数据上传校验等等。 对于异常场景存在需要重试场景,同时希望把正常逻辑和重试逻辑解耦。 对于需要基于数据媒介交互,希望通过重试轮询检测执行逻辑场景也可以考虑重试方案。 优雅重试解决思路: 切面方式 这个思路比较清晰,在需要添加重试的方法上添加一个用于重试的自定义注解,然后在切面中实现重试的逻辑,主要的配置参数则根据注解中的选项来初始化 优点: 真正的无侵入 缺点: 某些方法无法被切面拦截的场景无法覆盖(如spring-aop无法切私有方法,final方法) 直接使用aspecj则有些小复杂;如果用spring-aop,则只能切被spring容器管理的bean 消息总线方式 这个也比较容易理解,在需要重试的方法中,发送一个消息,并将业务逻辑作为回调方法传入;由一个订阅了重试消息的consumer来执行重试的业务逻辑 优点: 重试机制不受任何限制,即在任何地方你都可以使用 利用EventBus框架,可以非常容易把框架搭起来 缺点: 业务侵入,需要在重试的业务处,主动发起一条重试消息 调试理解复杂(消息总线方式的最大优点和缺点,就是过于灵活了,你可能都不知道什么地方处理这个消息,特别是新的童鞋来维护这段代码时) 如果要获取返回结果,不太好处理, 上下文参数不好处理 模板方式 优点: 简单(依赖简单:引入一个类就可以了; 使用简单:实现抽象类,讲业务逻辑填充即可;) 灵活(这个是真正的灵活了,你想怎么干都可以,完全由你控制) 缺点: 强侵入 代码臃肿 把这个单独捞出来,主要是某些时候我就一两个地方要用到重试,简单的实现下就好了,也没有必用用到上面这么重的方式;而且我希望可以针对代码快进行重试 这个的设计还是非常简单的,基本上代码都可以直接贴出来,一目了然: 复制代码 public abstract class RetryTemplate { private static final int DEFAULT_RETRY_TIME = 1; private int retryTime = DEFAULT_RETRY_TIME; private int sleepTime = 0;// 重试的睡眠时间 public int getSleepTime() { return sleepTime; } public RetryTemplate setSleepTime(int sleepTime) { if(sleepTime < 0) { throw new IllegalArgumentException("sleepTime should equal or bigger than 0"); } this.sleepTime = sleepTime; return this; } public int getRetryTime() { return retryTime; } public RetryTemplate setRetryTime(int retryTime) { if (retryTime <= 0) { throw new IllegalArgumentException("retryTime should bigger than 0"); } this.retryTime = retryTime; return this; } /** * 重试的业务执行代码 * 失败时请抛出一个异常 * * todo 确定返回的封装类,根据返回结果的状态来判定是否需要重试 * * @return */ protected abstract Object doBiz() throws Exception; //预留一个doBiz方法由业务方来实现,在其中书写需要重试的业务代码,然后执行即可 public Object execute() throws InterruptedException { for (int i = 0; i < retryTime; i++) { try { return doBiz(); } catch (Exception e) { log.error("业务执行出现异常,e: {}", e); Thread.sleep(sleepTime); } } return null; } public Object submit(ExecutorService executorService) { if (executorService == null) { throw new IllegalArgumentException("please choose executorService!"); } return executorService.submit((Callable) () -> execute()); } } 复制代码 使用示例: 复制代码 public void retryDemo() throws InterruptedException { Object ans = new RetryTemplate() { @Override protected Object doBiz() throws Exception { int temp = (int) (Math.random() * 10); System.out.println(temp); if (temp > 3) { throw new Exception("generate value bigger then 3! need retry"); } return temp; } }.setRetryTime(10).setSleepTime(10).execute(); System.out.println(ans); } 复制代码 spring-retry Spring Retry 为 Spring 应用程序提供了声明性重试支持。 它用于Spring批处理、Spring集成、Apache Hadoop(等等)的Spring。 在分布式系统中,为了保证数据分布式事务的强一致性,在调用RPC接口或者发送MQ时,针对可能会出现网络抖动请求超时情况采取一下重试操作。 用的最多的重试方式就是MQ了,但是如果你的项目中没有引入MQ,就不方便了。 还有一种方式,是开发者自己编写重试机制,但是大多不够优雅。 缺陷 spring-retry 工具虽能优雅实现重试,但是存在两个不友好设计: 一个是重试实体限定为 Throwable 子类,说明重试针对的是可捕捉的功能异常为设计前提的,但是我们希望依赖某个数据对象实体作为重试实体, 但 sping-retry框架必须强制转换为Throwable子类。 另一个是重试根源的断言对象使用的是 doWithRetry 的 Exception 异常实例,不符合正常内部断言的返回设计。 Spring Retry 提倡以注解的方式对方法进行重试,重试逻辑是同步执行的,当抛出相关异常后执行重试, 如果你要以返回值的某个状态来判定是否需要重试,可能只能通过自己判断返回值然后显式抛出异常了。只读操作可以重试,幂等写操作可以重试,但是非幂等写操作不能重试,重试可能导致脏写,或产生重复数据。 @Recover 注解在使用时无法指定方法,如果一个类中多个重试方法,就会很麻烦。 spring-retry 结构 BackOff:补偿值,一般指失败后多久进行重试的延迟值。 Sleeper:暂停应用的工具,通常用来应用补偿值。 RetryState:重试状态,通常包含一个重试的键值。 RetryCallback:封装你需要重试的业务逻辑(上文中的doSth) RecoverCallback:封装了多次重试都失败后你需要执行的业务逻辑(上文中的doSthWhenStillFail) RetryContext:重试语境下的上下文,代表了能被重试动作使用的资源。可用于在多次Retry或者Retry 和Recover之间传递参数或状态(在多次doSth或者doSth与doSthWhenStillFail之间传递参数) RetryOperations: 定义了“重试”的模板(重试的API),要求传入RetryCallback,可选传入RecoveryCallback; RetryTemplate :RetryOperations的具体实现,组合了RetryListener[],BackOffPolicy,RetryPolicy。 RetryListener:用来监控Retry的执行情况,并生成统计信息。 RetryPolicy:重试的策略或条件,可以简单的进行多次重试,可以是指定超时时间进行重试(上文中的someCondition),决定失败能否重试。 BackOffPolicy: 重试的回退策略,在业务逻辑执行发生异常时。如果需要重试,我们可能需要等一段时间(可能服务器过于繁忙,如果一直不间隔重试可能拖垮服务器),当然这段时间可以是0,也可以是固定的,可以是随机的(参见tcp的拥塞控制算法中的回退策略)。回退策略在上文中体现为wait(); RetryPolicy提供了如下策略实现: NeverRetryPolicy:只允许调用RetryCallback一次,不允许重试; AlwaysRetryPolicy:允许无限重试,直到成功,此方式逻辑不当会导致死循环; SimpleRetryPolicy:固定次数重试策略,默认重试最大次数为3次,RetryTemplate默认使用的策略; TimeoutRetryPolicy:超时时间重试策略,默认超时时间为1秒,在指定的超时时间内允许重试; CircuitBreakerRetryPolicy:有熔断功能的重试策略,需设置3个参数openTimeout、resetTimeout和delegate delegate:是真正判断是否重试的策略,当重试失败时,则执行熔断策略;应该配置基于次数的SimpleRetryPolicy或者基于超时的TimeoutRetryPolicy策略,且策略都是全局模式,而非局部模式,所以要注意次数或超时的配置合理性。 openTimeout:openWindow,配置熔断器电路打开的超时时间,当超过openTimeout之后熔断器电路变成半打开状态(主要有一次重试成功,则闭合电路); resetTimeout:timeout,配置重置熔断器重新闭合的超时时间 CompositeRetryPolicy:组合重试策略,有两种组合方式,乐观组合重试策略是指只要有一个策略允许重试即可以,悲观组合重试策略是指只要有一个策略不允许重试即可以,但不管哪种组合方式,组合中的每一个策略都会执行。 BackOffPolicy 提供了如下策略实现: NoBackOffPolicy:无退避算法策略,即当重试时是立即重试; FixedBackOffPolicy:固定时间的退避策略,需设置参数sleeper(指定等待策略,默认是Thread.sleep,即线程休眠)、backOffPeriod(休眠时间,默认1秒); UniformRandomBackOffPolicy:随机时间退避策略,需设置sleeper、minBackOffPeriod、maxBackOffPeriod,该策略在[minBackOffPeriod,maxBackOffPeriod之间取一个随机休眠时间,minBackOffPeriod默认500毫秒,maxBackOffPeriod默认1500毫秒; ExponentialBackOffPolicy:指数退避策略,需设置参数sleeper、initialInterval、maxInterval和multiplier。initialInterval指定初始休眠时间,默认100毫秒,maxInterval指定最大休眠时间,默认30秒,multiplier指定乘数,即下一次休眠时间为当前休眠时间*multiplier; ExponentialRandomBackOffPolicy:随机指数退避策略,引入随机乘数,固定乘数可能会引起很多服务同时重试导致DDos,使用随机休眠时间来避免这种情况。 RetryTemplate主要流程实现: 复制代码 //示例一 public void upload(final Map<String, Object> map) throws Exception { // 构建重试模板实例 RetryTemplate retryTemplate = new RetryTemplate(); // 设置重试策略,主要设置重试次数 SimpleRetryPolicy policy =         new SimpleRetryPolicy(3, Collections.<Class<? extends Throwable>, Boolean> singletonMap(Exception.class, true)); // 设置重试回退操作策略,主要设置重试间隔时间 FixedBackOffPolicy fixedBackOffPolicy = new FixedBackOffPolicy(); fixedBackOffPolicy.setBackOffPeriod(100); retryTemplate.setRetryPolicy(policy); retryTemplate.setBackOffPolicy(fixedBackOffPolicy); // 通过RetryCallback 重试回调实例包装正常逻辑逻辑,第一次执行和重试执行执行的都是这段逻辑 final RetryCallback<Object, Exception> retryCallback = new RetryCallback<Object, Exception>() { //RetryContext 重试操作上下文约定,统一spring-try包装 public Object doWithRetry(RetryContext context) throws Exception { System.out.println("do some thing"); Exception e = uploadToOdps(map); System.out.println(context.getRetryCount()); throw e;//这个点特别注意,重试的根源通过Exception返回 } }; // 通过RecoveryCallback 重试流程正常结束或者达到重试上限后的退出恢复操作实例 final RecoveryCallback recoveryCallback = new RecoveryCallback() { public Object recover(RetryContext context) throws Exception { System.out.println("do recory operation"); return null; } }; try { // 由retryTemplate 执行execute方法开始逻辑执行 retryTemplate.execute(retryCallback, recoveryCallback); } catch (Exception e) { e.printStackTrace(); } } //示例二 protected <T, E extends Throwable> T doExecute(RetryCallback<T, E> retryCallback,RecoveryCallback recoveryCallback,   RetryState state) throws E, ExhaustedRetryException { //重试策略 RetryPolicy retryPolicy = this.retryPolicy; //退避策略 BackOffPolicy backOffPolicy = this.backOffPolicy; //重试上下文,当前重试次数等都记录在上下文中 RetryContext context = open(retryPolicy, state); try { //拦截器模式,执行RetryListener#open boolean running = doOpenInterceptors(retryCallback, context); //判断是否可以重试执行 while (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { try {//执行RetryCallback回调 return retryCallback.doWithRetry(context); } catch (Throwable e) {//异常时,要进行下一次重试准备 //遇到异常后,注册该异常的失败次数 registerThrowable(retryPolicy, state, context, e); //执行RetryListener#onError doOnErrorInterceptors(retryCallback, context, e); //如果可以重试,执行退避算法,比如休眠一小段时间后再重试 if (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { backOffPolicy.backOff(backOffContext); } //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy, context, state)) { throw RetryTemplate. wrapIfNecessary(e); } } //如果是有状态重试,且有GLOBAL_STATE属性,则立即跳出重试终止;       //当抛出的异常是非需要执行回滚操作的异常时,才会执行到此处,CircuitBreakerRetryPolicy会在此跳出循环; if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } } //重试失败后,如果有RecoveryCallback,则执行此回调,否则抛出异常 return handleRetryExhausted(recoveryCallback, context, state); } catch (Throwable e) { throw RetryTemplate. wrapIfNecessary(e); } finally { //清理环境 close(retryPolicy, context, state, lastException == null || exhausted); //执行RetryListener#close,比如统计重试信息 doCloseInterceptors(retryCallback, context, lastException); } } 复制代码 有状态or无状态 无状态重试,是在一个循环中执行完重试策略,即重试上下文保持在一个线程上下文中,在一次调用中进行完整的重试策略判断。如远程调用某个查询方法时是最常见的无状态重试: 复制代码 RetryTemplate template = new RetryTemplate(); //重试策略:次数重试策略 RetryPolicy retryPolicy = new SimpleRetryPolicy(3); template.setRetryPolicy(retryPolicy); //退避策略:指数退避策略 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy(); backOffPolicy.setInitialInterval(100); backOffPolicy.setMaxInterval(3000); backOffPolicy.setMultiplier(2); backOffPolicy.setSleeper(new ThreadWaitSleeper()); template.setBackOffPolicy(backOffPolicy); //当重试失败后,抛出异常 String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { throw new RuntimeException("timeout"); } }); //当重试失败后,执行RecoveryCallback String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }); 复制代码 有状态重试,有两种情况需要使用有状态重试,事务操作需要回滚、熔断器模式。 事务操作需要回滚场景时,当整个操作中抛出的是数据库异常DataAccessException,则不能进行重试需要回滚,而抛出其他异常则可以进行重试,可以通过RetryState实现: 复制代码 //当前状态的名称,当把状态放入缓存时,通过该key查询获取 Object key = "mykey"; //是否每次都重新生成上下文还是从缓存中查询,即全局模式(如熔断器策略时从缓存中查询) boolean isForceRefresh = true; //对DataAccessException进行回滚 BinaryExceptionClassifier rollbackClassifier = new BinaryExceptionClassifier(Collections.<Class<? extends Throwable>>singleton(DataAccessException.class)); RetryState state = new DefaultRetryState(key, isForceRefresh, rollbackClassifier); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new TypeMismatchDataAccessException(""); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); 复制代码 RetryTemplate中在有状态重试时,回滚场景时直接抛出异常处理代码: //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy,context, state)) { throw RetryTemplate. wrapIfNecessary(e); } 熔断器场景。在有状态重试时,且是全局模式,不在当前循环中处理重试,而是全局重试模式(不是线程上下文),如熔断器策略时测试代码如下所示。 复制代码 RetryTemplate template = new RetryTemplate(); CircuitBreakerRetryPolicy retryPolicy = new CircuitBreakerRetryPolicy(new SimpleRetryPolicy(3)); retryPolicy.setOpenTimeout(5000); retryPolicy.setResetTimeout(20000); template.setRetryPolicy(retryPolicy); for (int i = 0; i < 10; i++) { try { Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key, isForceRefresh); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); System.out.println(result); } catch (Exception e) { System.out.println(e); } } 复制代码 为什么说是全局模式呢?我们配置了isForceRefresh为false,则在获取上下文时是根据key “circuit”从缓存中获取,从而拿到同一个上下文。 Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key,isForceRefresh); 如下RetryTemplate代码说明在有状态模式下,不会在循环中进行重试。 if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } 判断熔断器电路是否打开的代码: 复制代码 public boolean isOpen() { long time = System.currentTimeMillis() - this.start; boolean retryable = this.policy.canRetry(this.context); if (!retryable) {//重试失败 //在重置熔断器超时后,熔断器器电路闭合,重置上下文 if (time > this.timeout) { this.context = createDelegateContext(policy, getParent()); this.start = System.currentTimeMillis(); retryable = this.policy.canRetry(this.context); } else if (time < this.openWindow) { //当在熔断器打开状态时,熔断器电路打开,立即熔断 if ((Boolean) getAttribute(CIRCUIT_OPEN) == false) { setAttribute(CIRCUIT_OPEN, true); } this.start = System.currentTimeMillis(); return true; } } else {//重试成功 //在熔断器电路半打开状态时,断路器电路闭合,重置上下文 if (time > this.openWindow) { this.start = System.currentTimeMillis(); this.context = createDelegateContext(policy, getParent()); } } setAttribute(CIRCUIT_OPEN, !retryable); return !retryable; } 复制代码 从如上代码可看出spring-retry的熔断策略相对简单: 当重试失败,且在熔断器打开时间窗口[0,openWindow) 内,立即熔断; 当重试失败,且在指定超时时间后(>timeout),熔断器电路重新闭合; 在熔断器半打开状态[openWindow, timeout] 时,只要重试成功则重置上下文,断路器闭合。 注解介绍 @EnableRetry 表示是否开始重试。 序号 属性 类型 默认值 说明 1 proxyTargetClass boolean false 指示是否要创建基于子类的(CGLIB)代理,而不是创建标准的基于Java接口的代理。当proxyTargetClass属性为true时,使用CGLIB代理。默认使用标准JAVA注解 @Retryable 标注此注解的方法在发生异常时会进行重试 序号 属性 类型 默认值 说明 1 interceptor String ”” 将 interceptor 的 bean 名称应用到 retryable() 2 value class[] {} 可重试的异常类型 3 include class[] {} 和value一样,默认空,当exclude也为空时,所有异常都重试 4 exclude class[] {} 指定异常不重试,默认空,当include也为空时,所有异常都重试 5 label String ”” 统计报告的唯一标签。如果没有提供,调用者可以选择忽略它,或者提供默认值。 6 maxAttempts int 3 尝试的最大次数(包括第一次失败),默认为3次。 7 backoff @Backoff @Backoff() 重试补偿机制,指定用于重试此操作的backoff属性。默认为空 @Backoff 不设置参数时,默认使用FixedBackOffPolicy(指定等待时间),重试等待1000ms 序号 属性 类型 默认值 说明 1 delay long 0 指定延迟后重试 ,如果不设置则默认使用 1000 milliseconds 2 maxDelay long 0 最大重试等待时间 3 multiplier long 0 指定延迟的倍数,比如delay=5000l,multiplier=2时,第一次重试为5秒后,第二次为10秒,第三次为20秒(大于0生效) 4 random boolean false 随机重试等待时间 @Recover 用于恢复处理程序的方法调用的注释。返回类型必须与@retryable方法匹配。 可抛出的第一个参数是可选的(但是没有它的方法只会被调用)。 从失败方法的参数列表按顺序填充后续的参数。 用于@Retryable重试失败后处理方法,此注解注释的方法参数一定要是@Retryable抛出的异常,否则无法识别,可以在该方法中进行日志处理。 说明: 使用了@Retryable的方法不能在本类被调用,不然重试机制不会生效。也就是要标记为@Service,然后在其它类使用@Autowired注入或者@Bean去实例才能生效。 要触发@Recover方法,那么在@Retryable方法上不能有返回值,只能是void才能生效。 使用了@Retryable的方法里面不能使用try...catch包裹,要在发放上抛出异常,不然不会触发。 在重试期间这个方法是同步的,如果使用类似Spring Cloud这种框架的熔断机制时,可以结合重试机制来重试后返回结果。 Spring Retry不只能注入方式去实现,还可以通过API的方式实现,类似熔断处理的机制就基于API方式实现会比较宽松。 转载于:https://www.cnblogs.com/whatarewords/p/10656514.html

养狐狸的猫 2019-12-02 02:11:54 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。

养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:56 0 浏览量 回答数 0

回答

您好,请参考: 主机重启迁移帮助文档 为了提升服务器的运行性能和稳定性,我们需要分批次进行硬件升级。我们将会把重启的具体时间发送给您,如果您想要对重启时间进行修改,请参考如下方式进行操作。如您有疑问或困难,请通过工单联系我们,我们将全力协助您。    下面分别介绍翔云、锋云主机的预约和独享虚拟主机、轻云服务器的迁移时间修改方式。 首先在开始准备迁移之前,我们会通过邮件向您发送需要设置重启时间的主机列表,请根据列表登录阿里云网站进行操作。   一、翔云、锋云主机 1.    通过ID密码登陆阿里云网站,并点击左侧“云虚拟主机”,再点击“锋云/翔云/独享主机” 2.    然后根据通过邮件或者站内信发送给您的列表,找到您需要设置迁移时间的主机,点击“管理”   3.    页面最下方有“重启迁移设置”菜单,点击“设置”,并根据提示设置重启时间 注意:重启时间不能早于当前时间,也不能晚于页面提示的最晚重启时间   设置时间 4.    设置完毕后,请您届时做好迁移重启准备,避免影响您的业务. 注意:如果是Linux服务器,磁盘设备识别名称将在迁移后发生变化。在预约迁移前,您需要修改系统的 /etc/fstab 文件,将 /dev/xvda、/dev/xvdb、/dev/xvdc 等修改为 /dev/vda、/dev/vdb、/dev/vdc 等,避免迁移后实例启动异常或磁盘挂载失败。 二、 独享虚拟主机和轻云服务器 1.      通过ID密码登陆阿里云网站,并点击左侧“云虚拟主机”   2.      然后根据通过邮件或者站内信发送给您的列表,找到您需要设置迁移时间的主机,点击“管理” 3.      登录到控制台后,首页会有需要设置重启时间的提示,可以直接点击相关操作的链接“这里”,或者点击上方的“主机信息” 4.      页面中部有“迁移重启设置”的操作区域,点击“设置重启时间”,然后按照提示设置。 注意:重启时间不能早于当前时间,也不能晚于页面提示的最晚重启时间 设置重启时间 5.      设置完毕后,请您届时做好迁移重启准备,避免影响您的业务。 另外提醒您注意: 在重启迁移完毕后一段时间内,由于正在同步数据,服务器的磁盘IO性能会有所下降并且快照、磁盘功能也将关闭,等数据同步完毕后IO性能和快照、磁盘功能都将自动恢复。请您了解。 迁移常见问题FAQ 1.对服务器的影响主要有哪些? 对服务器的主要影响有: 1)时长:通常来说升级会在15分钟左右完成,期间服务器会重启并且用户无法操作,当天快照可能失败(数据自动备份功能将会没有当天的记录)。对于长时间未重启或升级过内核、驱动但未重启过的,本次重启可能会有文件系统检查(File System Check , fsck)、相关配置改动生效、启动失败等问题,如遇异常时请及时通过工单联系我们。 2) 迁移后的 IP:为了方便您的操作, 本次迁移将保持公网 IP 不变. 3)IO 性能 :迁移后由于在底层还需要追加数据,所以 IO 性能会有所下降,同时快照和磁盘功能也将关闭。一旦数据追加完毕后,IO 性能、快照和磁盘功能都将自动恢复。通常100GB的数据需要4个小时左右。 4 )  软件授权码:硬件升级后部分依赖识别硬件的软件授权码可能会发生变化。 2.预约重启时间后可不可以再修改? 预约后重启时间不可以修改。         3.如何知道迁移进度? 重启迁移成功后会将成功的消息发送给您。 专有网络 VPC-单ECS迁移方案 单ECS迁移方案,即无需通过创建镜像、重新购买等步骤就能把经典网络的ECS实例迁移到专有网络。 在控制台上完成迁移预约后,阿里云会根据您设置的迁移时间进行迁移,迁移完成后,您将收到迁移成功的短信消息提醒。 在使用单ECS迁移方案时,注意: 迁移过程中ECS需要进行重启,请关注对系统的影响。迁移后,不需要进行任何特殊配置,ECS实例的公网IP都不变。 虽然公网IP没有变化,但无法在ECS的操作系统中查看到这个公网IP(称之为VPC类型的ECS的固定公网IP)。您可以将按流量计费的ECS实例的固定公网IP转换为EIP,方便管理,详情参见ECS固定公网IP转换为EIP。如果您的个别应用对ECS操作系统上可见的公网IP有依赖,迁移后会有影响,请谨慎评估。迁移后,所有地域的ECS实例的私网IP都会变化。迁移到的目标VPC的交换机的可用区必须和待迁移的ECS的可用区相同。迁移过程中实例ID及登录信息不变。包年包月购买方式的实例迁移过程中不需要额外付费。从新的计费周期开始,按照同规格专有网络的价格计算。且迁移到VPC后,ECS的使用费用会降低。迁移前如有续费变配未生效订单或未支付订单,迁移后该订单将被取消且不能恢复,您需要重新下单。迁移到VPC后,若ECS有使用其它云服务,需将访问方式调整到VPC访问方式(云产品混访方案)。

微wx笑 2019-12-01 23:47:39 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:56 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:56 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:57 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:57 0 浏览量 回答数 0

问题

SSH 无法远程登录问题的处理思路是什么

boxti 2019-12-01 22:00:30 1833 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站