• 关于

    多状态系统出现问题怎么解决

    的搜索结果

问题

阿里云服务器经常CPU跑满,服务器宕机

yuehui214 2019-12-01 21:18:50 32533 浏览量 回答数 37

回答

Linux下如何进行FTP设置  ECSLinux服务器如何配置网站以及绑定域名  Ubuntu安装vncserver实现图形化访问  阿里云Docker镜像库  ECSlinux中添加ftp用户,并设置相应的权限  CentOS6.5安装vncserver实现图形化访问  LinuxSCP命令复制传输文件的用法  Mysql,phpmyadmin密码忘了怎么  Linux下l2tp客户端xl2tpd的安装配置  使用SFTP方式传输文件  ECSLinux系统盘网站数据更换至数据盘  WDCP的报错处理  Linux中PHP如何安装curl扩展方法  修改Linux服务器的ssh端口  ECSLinux配置vnc文档  运维分享--阿里云linux系统mysql密码修改脚本  20步打造最安全的NginxWeb服务器  SSH配置存在问题,导致登录和传输数据很慢  ECSLinux下如何查看定位当前正在运行的Nginx的配置文件  ECS服务器CentOS系统如何开放端口  查看Linux下默认的DNS  FTP主动被动模式配置混乱导致无法登录  linux环境配置phpmyadmin  ECSLinux系统下VSFTP配置的FTP上传文件报错“553Couldnotcreatefile”  ECSLinuxMysql启动提示Toomanyarguments(firstextrais'start')  运维分享--阿里云linux系统ssh远程连接检查脚本  ECSLinux系统授权mysql外网访问  ECSLinux服务器nginx禁止空主机头配置  ECSLinux服务器通过FTP无法查看到.htaccess文件  ECSLinux服务器下Mysql自动备份脚本的使用方法  ECS-linux授权mysql外网访问  用date命令修改Linux系统的时间为什么无效  运维分享--阿里云linux系统web日志分析脚本  ECSLinux服务器messagebus默认关闭导致安装桌面环境后无法正常使用  ECSNginx+php中php-fpm参数配置  运维分享--阿里云linux系统mysql连接检查脚本  iptables的conntrack表满了导致访问网站很慢  运维分享--阿里云linux系统带宽监测脚本  如何调整目录文件的拥有者和拥有组  yum操作报错处理  ECSLinux配置vsftpd限制FTP账户访问其它目录  vsftp报错:500OOPS:vsftpd:cannotlocateuserspecifiedin'ftp_username':ftp  Linux主机系统目录误操作权限修改为777修复方法  ECSNginx中https的配置说明  运维分享--阿里云linux系统负载状态检查脚本  ECSLinux服务器AMH云主机面板启动、关闭操作  ECSLinux服务器关闭磁盘自检  ECSLinux配置key认证登录后因为相关文件权限错误导致连接失败-Connectionclosedbyforeignhost  ECSLinux系统服务器解决ssh反向代理监听ip错误问题  ECSLinux设置定时任务crontab  ECSGentoo系统中mirrorselect获取内容失败提示Nameorservicenotknown  ECSLinux系统服务器ping域名返回Unknownhost报错  IIS、Nginx或Apache访问日志存在182.92.12.0/24段访问记录  Nginx日志的解释  ECSLinux系统wget下载文件  ECSLinux服务器内部无法解析域名  ECS路由表错误导致无法ping通  ECSLinux主机修改主机名  wordpress插件oss4wpurl无法访问  ECSLinux查看隐藏文件  Linux系统服务器解决vsftp服务使用root登录失败  ECSLinuxPPTP客户端登陆后获取地址错误  Linux系统服务器解决内外双网卡均显示内网IP地址问题  ECSLinux系统NetworkManager导致网络异常  外部PingECSLinux丢包严重  ECSLinux检查Nginx配置文件  ECSLinux系统判断当前运行的Apache所使用的配置文件  Apache访问日志的说明  ECSLinux.htacess文件上传无法显示  linux服务器内无法访问其他站点的检查处理方法  ECSmysql无法启动报错Can'tcreate/writetofile'/tmp/ibfguTtC  ECSLiunx系统服务器执行ls查询命令提示bash:ls:commandnotfound  Linux为何执行命令会执行历史命令  ECSLinux系统如何检查系统上一次重启的时间  ECSLinux下MySQL排查基本步骤  Linux系统如何查看mysql版本号  MySQL中查看慢SQL的日志文件方法  phpMyAdmin修改配置可以上传大文件  openSUSE下开机自动运行脚本命令的方法  给Linux系统添加一个回收站  ECSLinux分区异常无法挂载  ECSLinux上安装Cloudfs启动失败提示找不到库文件libunwind.so.8  ECSLinux清理/tmp目录下的文件原理  Liunx系统服务器通过prefork模块限制apache进程数量  ECSCentOS6.5系统下Apache配置https服务  Noinputfilespecified的解决方法  Apache、Nginx支持跨域访问  Apache环境下配置404错误页方法  ECSLinux通过修改Apache配置301重定向的方法  ECSLinux主机无法互访处理  ECSlinux服务器启用了TRACEMethod.怎么关闭  Apache运行参考的调整优化  ECSApache如何关闭目录访问  ECS服务器隐藏apache版本信息  ECSLinux判断HTTP端口监听状态的方法  ECSLinuxApache限制客户端访问网站的速度  负载均衡+ECS站点虚拟子目录的设置案例  ECS网站访问504错误分析  为何Ubuntu开启UFW后,VPC下的SNAT转发就失效了  ECSDebian自定义镜像启动无法SSH  ECSLinux云服务器如何确认文件系统只读?  ECSLinux创建文件报错Read-onlyfilesystem  恢复ext4文件系统中使用rm命令误删除的文件  ECSLinux删除乱码文件的方法  net.ipv4.tcp_fin_timeout修改导致的TCP链接异常排查  ECSLinux执行sh脚本提示Nosuchfileordirectory  /var/log/message日志报错  通过sshtunnel连接内网ECS和RDS  CentOS7中MySQL服务启动失败的解决思路  ECSLinux系统启动提示“Giverootpasswordformaintenance”  结束云盾客户端进程后如何启用  Ubuntu服务器中配置AWStats  CentOS6非root用户使用sftp服务  ssh避免客户端长久未操作导致连接中断  删除binglog导致mysql无法启动  ECSLinux服务器修改SSH端口号不生效的检查方法  ftp传输失败问题解决方法  ECSLinux下使用extundelete恢复被误删的文件  ECSLinux基于nginx环境通过.htaccess配置rewrite伪静态示例  ECSLinux系统利用openssl生成强密码  ECSCentOS6配置PPTPVPN  Last命令关于reboot记录的含义  Ubuntu修改运行级别的总结  ECSCentOS6系统PPTPVPN脚本  ECSLinux系统如何配置gentoo的源  ECSCentOS系统配置VPN客户端  多域名跳转——不同域名指向不同子目录  Centos配置PPTPVPN后无法打开网页  mysql不能远程连接  ECSLinux系统修改文件或目录权限方法  ECSWDCP破解mysql以及wdcp后台管理密码  ECSLinux系统如何设置SSH白名单  EcsLinux系统一键安装web环境下tomcat添加站点方法  Centos7安装vnc  Setuptools软件包版本太老导致ECSLinux安装AliyunCLI出错  Apache配置二级域名  ECSlinux重启丢失分区表  Linux系统服务器安装使用sar工具获取系统运行状态方式  ECSUbuntu开启sftp连接  linux系统mysql跳过密码登陆操作登陆设置  mysql报错LostconnectiontoMySQLserverat'readinginitialcommunicationpacket'  Ubuntuapt-get安装提errorprocessingpackageinstall-info(--configure)  Nodejs的版本升级和使用  Nodejs连接RDSMySQL数据库  ECS公共镜像Ubuntu,Centos的内核版本查看方法  ECSLinux服务器修改时区  Apache禁止未经许可的域名访问ECS上的网站  ECSLinux如何隐藏文件和文件夹  ECSmysql.sock丢失问题解决方法  ECSLinux云服务器centos将系统时区从UTC时间改为CST  ECSLinux云服务器权限问题说明  ECSLinux系统盘数据转移方法  Linux下忘记mysql的root密码  ECSMySQL编译安装支持innodb引擎  ECSLinuxNAT哈希表满导致服务器丢包  ECSLinux服务器重启后mount出错的解决方法  Centos6.5添加IPv6支持  ECSubuntu系统修改DNS/etc/resolv.conf无法保存  ECSLinux如何增加虚拟内存swap  ECSLinuxtraceroute使用方法  ECSLinux系统磁盘再次挂载报错没有有效的分区表  如何删除yum的缓存信息  ECSLinux服务器yum的查询功能  centos6怎么使用RPMForge软件源仓库  ECSLinux服务器Nginxrewrite示例  ECSLinuxCentOS6ssh连上就断掉并报错“fatal:mm_request_send:write:Brokenpipe”  mysql上传报错#1064-YouhaveanerrorinyourSQLsyntax  EcsLinux中rpm安装文件命令常用选项  ECSLinux系统kjournald进程占用io资源高的解决方法  ECSLinux如果通过i节点删除无法删除的文件  ECSLinux基于zabbix搭建企业级监控平台  ECSLinux系统yum卸载重装  ECSCentOS6.5OpenVPN配置  ECSLinux使用SFTP登陆时报错:Receivedunexpectedend-of-filefromSFTPserver  ECSLinux如何增加数据盘iNode数量  ECSLinux查看目录没有颜色  ECSLinux系统tmp目录的安全设置  ECSLinux下shm设备的安全设定  ECSCentOS多线程下载工具Axel使用说明  ECSLinuxcurl使用证书访问HTTPS站点  Linux系统中vsftp用户无法登陆的相关说明  Nginx配置文件中rewrite指令标志位的说明与使用  ECSLinux中ss命令显示连接状态的使用说明  ECSLinux系统没有程序运行通过top观察发现cpu很空闲  Linux下的文件权限检查和修改  ECSLinux云服务器利用chatter命令锁定系统重要文件  ECSCentos7安装OpenVPN  ECS上搭建反向代理通过内网访问OSS服务  ECSLinux下的script命令记录用户操作行为  Ubuntu下使用slay命令结束某个用户的所有进程  Nginx配置文件中root与alias指令的区别  Nginx配置文件中rewrite指令的使用  ECSLinux如何修改PATH变量  Centos安装桌面后在远程终端管理里面无法使用键盘和鼠标  ECSLinux下Apache忽略网站URL的大小写的方法  ECSLinux服务器利用Nethogs监控每个进程的网络使用情况  ECSapt-get安装软件或更新时提示apt-get的Segmentationfaultsts  ubuntu开机出现memtest86,重启也无法取消的原因  Linux下History命令显示操作时间,用户和登录IP  ECSLinux服务器使用htop监控负载 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:20 0 浏览量 回答数 0

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

转自:思否 话说当下技术圈的朋友,一起聚个会聊个天,如果不会点大数据的知识,感觉都融入不了圈子,为了以后聚会时让你有聊有料,接下来就跟随我的讲述,一起与大数据混个脸熟吧,不过在“撩”大数据之前,还是先揭秘一下研发这些年我们都经历了啥? 缘起:应用系统架构的从 0 到 1 揭秘:研发这些年我们都经历了啥? 大道至简。生活在技术圈里,大家静下来想想,无论一个应用系统多庞大、多复杂,无非也就是由一个漂亮的网站门面 + 一个丑陋的管理模块 + 一个闷头干活的定时任务三大板块组成。 我们负责的应用系统当然也不例外,起初设计的时候三大模块绑在一起(All in one),线上跑一个 Tomcat 轻松就搞定,可谓是像极了一个大泥球。 衍化至繁。由于网站模块、管理平台、定时任务三大模块绑定在一起,开发协作会比较麻烦,时不时会有代码合并冲突出现;线上应用升级时,也会导致其它模块暂时不能使用,例如如果修改了一个定时任务的配置,可能会导致网站、管理平台的服务暂时不能用。面对诸多的不便,就不得不对 All in one 的大泥球系统进行拆解。 随着产品需求的快速迭代,网站 WEB 功能逐渐增多,我们起初设计时雄心勃勃(All in one 的单体架构),以为直接按模块设计叠加实现就好了,谁成想系统越发显得臃肿(想想也是走弯路啦!)。所以不得不改变实现思路,让模块服务下沉,分布式思想若现——让原来网站 WEB 一个系统做的事,变成由子系统分担去完成。 应用架构的演变,服务模块化拆分,随之而来的就是业务日志、业务数据散落在各处。随着业务的推广,业务量逐日增多,沉淀的数据日益庞大,在业务层面、运维层面上的很多问题,逐渐开始暴露。 在业务层面上,面对监管机构的监管,整合提取散落在各地的海量数据稍显困难;海量数据散落,想做个统计分析报表也非常不易。在运维层面上,由于缺少统一的日志归档,想基于日志做快速分析也比较困难;如果想从散落在各模块的日志中,进行调用链路的分析也是相当费劲。 面对上述问题,此时一个硕大的红色问号出现在我们面前,到底该如何解决? 面对结构化的业务数据,不妨先考虑采用国内比较成熟的开源数据库中间件 Sharding-JDBC、MyCat 看是否能够解决业务问题;面对日志数据,可以考虑采用 ELK 等开源组件。如果以上方案或者能尝试的方式都无法帮我们解决,尝试搬出大数据吧。 那到底什么时候需要用大数据呢?大数据到底能帮我们解决什么问题呢?注意,前方高能预警,门外汉“撩”大数据的正确姿势即将开启。 邂逅:一起撬开大数据之门 槽点:门外汉“撩”大数据的正确姿势 与大数据的邂逅,源于两个头痛的问题。第一个问题是海量数据的存储,如何解决?第二个问题是海量数据的计算,如何解决? 面对这两个头痛的问题,不得不提及谷歌的“三驾马车”(分布式文件系统 GFS、MapReduce 和 BigTable),谷歌“三驾马车”的出现,奠定了大数据发展的基石,毫不夸张地说,没有谷歌的“三驾马车”就没有大数据,所以接下来很有必要逐一认识。 大家都知道,谷歌搜索引擎每天要抓取数以亿计的网页,那么抓取的海量数据该怎么存储? 谷歌痛则思变,重磅推出分布式文件系统 GFS。面对谷歌推出的分布式文件系统 GFS 架构,如 PPT 中示意,参与角色着实很简单,主要分为 GFS Master(主服务器)、GFS Chunkserver(块存储服务器)、GFS Client(客户端)。 不过对于首次接触这个的你,可能还是一脸懵 ,大家心莫慌,接下来容我抽象一下。 GFS Master 我们姑且认为是古代的皇上,统筹全局,运筹帷幄。主要负责掌控管理所有文件系统的元数据,包括文件和块的命名空间、从文件到块的映射、每个块所在的节点位置。说白了,就是要维护哪个文件存在哪些文件服务器上的元数据信息,并且定期通过心跳机制与每一个 GFS Chunkserver 通信,向其发送指令并收集其状态。 GFS Chunkserver 可以认为是宰相,因为宰相肚子里面能撑船,能够海纳百川。主要提供数据块的存储服务,以文件的形式存储于 Chunkserver 上。 GFS Client 可以认为是使者,对外提供一套类似传统文件系统的 API 接口,对内主要通过与皇帝通信来获取元数据,然后直接和宰相交互,来进行所有的数据操作。 为了让大家对 GFS 背后的读写流程有更多认识,献上两首歌谣。 到这里,大家应该对分布式文件系统 GFS 不再陌生,以后在饭桌上讨论该话题时,也能与朋友交涉两嗓子啦。 不过这还只是了解了海量数据怎么存储,那如何从海量数据存储中,快速计算出我们想要的结果呢? 面对海量数据的计算,谷歌再次创新,推出了 MapReduce 编程模型及实现。 MapReduce 主要是采取分而治之的思想,通俗地讲,主要是将一个大规模的问题,分成多个小规模的问题,把多个小规模问题解决,然后再合并小规模问题的结果,就能够解决大规模的问题。 也有人说 MapReduce 就像光头强的锯子和锤子,世界上的万事万物都可以先锯几下,然后再锤几下,就能轻松搞定,至于锯子怎么锯,锤子怎么锤,那就是个人的手艺了。 这么解释不免显得枯燥乏味,我们不妨换种方式,走进生活真实感受 MapReduce。 斗地主估计大家都玩过,每次开玩之前,都会统计一副牌的张数到底够不够,最快的步骤莫过于:分几份给大家一起数,最后大家把数累加,算总张数,接着就可以愉快地玩耍啦... ...这不就是分而治之的思想吗?!不得不说架构思想来源于人们的生活! 再举个不太贴切的例子来感受MapReduce 背后的运转流程,估计很多人掰过玉米,每当玉米成熟的季节,地主家就开始忙碌起来。 首先地主将一亩地的玉米分给处于空闲状态的长工来处理;专门负责掰玉米的长工领取任务,开始掰玉米操作(Map 操作),并把掰好的玉米放到在麻袋里(缓冲区),麻袋装不下时,会被装到木桶中(溢写),木桶被划分为蓝色的生玉米木桶、红色的熟玉米木桶(分区),地主通知二当家来“收”属于自己的那部分玉米,二当家收到地主的通知后,就到相应的长工那儿“拿回”属于自己的那部分玉米(Fetch 操作),二当家对收取的玉米进行处理(Reduce 操作),并把处理后的结果放入粮仓。 一个不太贴切的生活体验 + 一张画得不太对的丑图 = 苦涩难懂的技术,也不知道这样解释,你了解了多少?不过如果以后再谈大数据,知道 MapReduce 这个词的存在,那这次的分享就算成功(哈哈)。 MapReduce 解决了海量数据的计算问题,可谓是力作,但谷歌新的业务需求一直在不断出现。众所周知,谷歌要存储爬取的海量网页,由于网页会不断更新,所以要不断地针对同一个 URL 进行爬取,那么就需要能够存储一个 URL 不同时期的多个版本的网页内容。谷歌面临很多诸如此类的业务场景,面对此类头痛的需求,该怎么办? 谷歌重磅打造了一款类似以“URL + contents + time stamp”为 key,以“html 网页内容”为值的存储系统,于是就有了 BigTable 这个键值系统的存在(本文不展开详述)。 至此,两个头痛的问题就算解决了。面对海量数据存储难题,谷歌推出了分布式文件系统 GFS、结构化存储系统 BigTable;面对海量数据的计算难题,谷歌推出了 MapReduce。 不过静下来想想,GFS 也好、MapReduce 也罢,无非都是秉承了大道至简、一人掌权、其它人办事、人多力量大的设计理念。另外画龙画虎难画骨,建议闲暇之余也多些思考:为什么架构要这么设计?架构设计的目标到底是如何体现的? 基于谷歌的“三驾马车”,出现了一大堆开源的轮子,不得不说谷歌的“三驾马车”开启了大数据时代。了解了谷歌的“三驾马车”的设计理念后,再去看这些开源的轮子,应该会比较好上手。 好了,门外汉“撩”大数据就聊到这儿吧,希望通过上文的分享能够了解几个关键词:大道至简、衍化至繁、谷歌三驾马车(GFS、MapReduce、BigTable)、痛则思变、开源轮子。 白头:番外篇 扯淡:不妨换一种态度 本文至此也即将接近尾声,最后是番外篇~ 首先,借用日本剑道学习心诀“守、破、离”,希望我们一起做一个精进的人。 最后,在有限的时间内要多学习,不要停下学习的脚步,在了解和使用已经有的成熟技术之时,更要多思考,开创适合自己工作场景的解决方案。 文章来源:宜信技术学院 & 宜信支付结算团队技术分享第6期-宜信支付结算部支付研发团队高级工程师许赛赛《揭秘:“撩”大数据的正确姿势》 分享者:宜信支付结算部支付研发团队高级工程师许赛赛 原文首发于公号-野指针

茶什i 2020-01-10 15:19:51 0 浏览量 回答数 0

回答

很多人电脑是不是会出现各种蓝屏故障问题啊,出现问题又不知道怎么样解决。 1.故障检查信息 *STOP 0x0000001E(0xC0000005,0xFDE38AF9,0x0000001,0x7E8B0EB4)KMODE_EXCEPTION_NOT_HANDLED * 其中错误的第一部分是停机码(Stop Code)也就是STOP 0x0000001E, 用于识别已发生错误的类型, 错误第二部分是被括号括起来的四个数字集, 表示随机的开发人员定义的参数(这个参数对于普通用户根本无法理解, 只有驱动程序编写者或者操作系统的开发人员才懂). 第三部分是错误名. 信息第一行通常用来识别生产错误的驱动程序或者设备. 2.推荐操作蓝屏第二部分是推荐用户进行的操作信息. 有时, 推荐的操作仅仅是一般性的建议; 有时, 也就是显示一条与当前问题相关的提示. 一般来说, 惟一的建议就是重启. 3.调试端口告诉用户内存转储映像是否写到磁盘商了, 使用内存转储映像可以确定发生问题的性质, 还会告诉用户调试信息是否被传到另一台电脑商, 以及使用了什么端口完成这次通讯. 蓝屏时的处理办法:1.重启有时只是某个程序或驱动程序一时犯错, 重启后有可能就会正常。 2.新硬件首先, 应该检查新硬件是否插牢, 这个被许多人忽视的问题往往会引发许多莫名其妙的故障. 如果确认没有问题, 将其拔下, 然后换个插槽试试, 并安装最新的驱动程序. 同时还应对照微软网站的硬件兼容类别检查一下硬件是否与操作系统兼容. 3.新驱动和新服务如果刚安装完某个硬件的新驱动, 或安装了某个软件, 而它又在系统服务中添加了相应项目, 在重启或使用中出现了蓝屏故障, 请到安全模式来卸载或禁用它们. 4.检查病毒比如冲击波和振荡波等病毒有时会导致Windows蓝屏死机, 因此查杀病毒必不可少. 同时一些木马间谍软件也会引发蓝屏, 所以最好再用相关工具进行扫描检查. 5.检查BIOS和硬件兼容性对于新装的电脑经常出现蓝屏问题, 应该检查并升级BIOS到最新版本, 同时关闭其中的内存相关项, 比如:缓存和映射. 另外, 还应该对照微软的硬件兼容列表检查自己的硬件. 还有就是, 如果主板BIOS无法支持大容量硬盘也会导致蓝屏, 需要对其进行升级. 6.检查系统曰志在开始-->菜单中输入:EventVwr.msc, 回车出现"事件查看器", 注意检查其中的"系统曰志"和"应用程序曰志"中表明"错误"的项. 7.最后一次正确配置 最后一次正确配置界面 一般情况下, 蓝屏都出现于更新了硬件驱动或新加硬件并安装其驱动后, 这时Windows 2K/XP提供的"最后一次正确配置"就是解决蓝屏的快捷方式. 重启系统, 在出现启动菜单时按下F8键就会出现高级启动选项菜单, 接着选择"最后一次正确配置". 常见的蓝屏代码 0X0000000操作完成 0X0000001不正确的函数 0X0000002系统找不到指定的文件 0X0000003系统找不到指定的路径 0X0000004系统无法打开文件 0X0000005拒绝存取 0X0000006无效的代码 0X0000007内存控制模块已损坏 0X0000008内存空间不足,无法处理这个指令 0X0000009内存控制模块位址无效 0X000000A环境不正确 0X000000B尝试载入一个格式错误的程序 0X000000C存取码错误 0X000000D资料错误 0X000000E内存空间不够,无法完成这项操作 0X000000F系统找不到指定的硬盘 0X0000010无法移除目录 0X0000011系统无法将文件移到其他的硬盘 0X0000012没有任何文件 0X0000019找不到指定扇区或磁道 0X000001A指定的磁盘或磁片无法存取 0X000001B磁盘找不到要求的装置 0X000001C打印机没有纸 0X000001D系统无法将资料写入指定的磁盘 0X000001E系统无法读取指定的装置 0X000001F连接到系统的某个装置没有作用 0X0000021文件的一部分被锁定,现在无法存取 0X0000024开启的分享文件数量太多 0X0000026到达文件结尾 0X0000027磁盘已满 0X0000036网络繁忙 0X000003B网络发生意外的错误 0X0000043网络名称找不到 0X0000050文件已经存在 0X0000052无法建立目录或文件 0X0000053 INT24失败 0X000006B因为代用的磁盘尚未插入,所以程序已经停止 0X000006C磁盘正在使用中或被锁定 0X000006F文件名太长 0X0000070硬盘空间不足 0X000007F找不到指定的程序 0X000045B系统正在关机 0X000045C无法中止系统关机,因为没有关机的动作在进行中 0X000046A可用服务器储存空间不足 0X0000475系统 BIOS无法变更系统电源状态 0X000047E指定的程序需要新的windows版本 0X000047F指定的程序不是windwos或ms-dos程序 0X0000480指定的程序已经启动,无法再启动一次 0X0000481指定的程序是为旧版的windows所写的 0X0000482执行此应用程序所需的程序库文件之一被损 0X0000483没有应用程序与此项操作的指定文件建立关联 0X0000484传送指令到应用程序无效 0X00005A2指定的装置名称无效 0X00005AA系统资源不足,无法完成所要求的服务 0X00005AB系统资源不足,无法完成所要求的服务 0X00005AC系统资源不足,无法完成所要求的服务 110 0x006E系统无法开启指定的装置或档案。 111 0x006F档名太长。 112 0x0070磁碟空间不足。 113 0x0071没有可用的内部档案识别字。 114 0x0072目标内部档案识别字不正确。 117 0x0075由应用程式所执行的IOCTL 呼叫不正确。 118 0x0076写入验证参数值不正确。 119 0x0077系统不支援所要求的指令。 120 0x0078此项功能仅在 Win32 模式有效。 121 0x0079 semaphore超过逾时期间。 122 0x007A传到系统呼叫的资料区域太小。 123 0x007B档名、目录名称或储存体标 124 0x007C系统呼叫层次不正确。 125 0x007D磁碟没有设定标 126 0x007E找不到指定的模组。 127 0x007F找不到指定的程序。 128 0x0080没有子行程可供等待。 129 0x0081 %1这个应用程式无法在 Win32 模式下执行。 130 0x0082 Attempt to use a file handle to an open disk partition for an operation other than raw disk I/O. 131 0x0083尝试将档案指标移至档案开头之前。 132 0x0084无法在指定的装置或档案,设定档案指标。 133 0x0085 JOIN 或 SUBST指令无法用於内含事先结合过的磁碟机。 134 0x0086尝试在已经结合的磁碟机,使用JOIN 或 SUBST 指令。 135 0x0087尝试在已经替换的磁碟机,使用 JOIN 或 SUBST 指令。 136 0x0088系统尝试删除未连结过的磁碟机的连结关系。 137 0x0089系统尝试删除未替换过的磁碟机的替换关系。 138 0x008A系统尝试将磁碟机结合到已经结合过之磁碟机的目录。 139 0x008B系统尝试将磁碟机替换成已经替换过之磁碟机的目录。 140 0x008C系统尝试将磁碟机替换成已经替换过之磁碟机的目录.

独步清客 2019-12-02 00:43:56 0 浏览量 回答数 0

问题

请教如何去掉Android4.0中的状态栏 403.10 禁止访问:配置无效 

kun坤 2020-05-27 10:25:35 5 浏览量 回答数 1

问题

阿里云-小程序云

问问小秘 2020-04-07 18:45:54 24 浏览量 回答数 1

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

4核处理器,4G内存,500G硬盘,5兆网速,四个同时连接数服务器瘫痪

abcabc521 2019-12-01 21:00:31 8634 浏览量 回答数 2

问题

SAP上云——助力制造业数字化转型

福利达人 2019-12-01 21:09:17 2793 浏览量 回答数 0

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。

景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

回答

一、故障现象描述 NAS操作系统内核为Linux,自带的存储有16块硬盘,总共分两组,每组做了RAID5,Linux操作系统无法正常启动,在服务启动到cups那里就停止了,按键ctrl+c强制断开也没有响应,查看硬盘状态,都是正常的,没有报警或者警告现象。 二、问题判断思路 通过上面这些现象,首先判断NAS硬件应该没问题,NAS存储盘也应该正常,现在Linux无法启动,应该是Linux系统本身存在问题,因此,首先从Linux系统入手进行排查。 三、问题处理过程 1、第一次处理过程 NAS系统本身就是一个Linux内核装载了一个文件系统管理软件,管理软件可以对系统磁盘、系统服务、文件系统等进行管理和操作,正常情况下,基于Linux内核的NAS系统应该启动到init3或者init5模式下,由于NAS仅用了Linux一个内核模块和几个简单服务,所以判断NAS下的Linux系统肯定是启动到init 3模式下,那么现在无法启动到多用户字符界面下,何不让Linux直接进入单用户(init 1)模式下呢,因为单用户模式下仅仅启用系统所必须的几个服务,而cpus服务是应用程序级别的,肯定不会在“init 1”模式下启动,这样就避开了cups无法启动的问题,所以,下面的工作就是要进入Linux的单用户模式下。 很多的Linux发行版本都可以在启动的引导界面通过相关的设置进入单用户模式下,通过查看NAS的启动过程,基本判断这个Linux系统与RHEL/Centos发行版极为类似,因此,就通过RHEL/Centos进入单用户模式的方法试一试。 RHEL/Centos进入单用户模式很简单,就是在系统启动到引导欢迎界面下,按键e,然后编辑正确的内核引导选项,在最后面加上“single”选项,最后直接按键“b“即可进入单用户了。 接下来,重新启动NAS,然后硬件自检,接着开始启动Linux,一直在等待这个NAS的启动欢迎界面,但是欢迎界面一直没出来,就直接进入内核镜像,加载内核阶段了,没有内核引导界面,如何进入单用户啊,经过简单思考,还是决定在硬件检测完毕后直接按键盘”e“键,奇迹出现了,还真的可以,NAS进入到了内核引导界面,通过简单观察,发行第二个正是要引导的内核选项,于是移动键盘上下键,选择这个内核,然后在按键”e“,进入内核引导编辑界面了,在这行的最后面,输入“single”,然后按回车键,返回上个界面,接着按键“b”开始进行单用户引导,经过一分钟的时间,系统如愿以偿的进入了单用户下的shell命令行。 进入单用户模式后,能做的事情就很多了,首先要做的就是将cups服务在多用户模式下自启动关闭,执行命令如下: chkconfig --levle 35 cups off 执行成功后,重启系统进入多用户模式下,看看系统是否能正常启动。 2、第二次处理过程 将cups服务开机自启动关闭后,重启NAS,发现问题依旧,NAS还是启动到cups服务那里停止了,难道上面的命令没有执行成功吗?明明已经禁止了cups服务启动了,怎么还是启动了呢?于是,继续重启NAS,再次进入单用户模式下,看看问题究竟出在哪里了。 进入单用户后,再次执行chkconfig 命令,依旧可以成功,难道是cups服务有问题,先看看配置文件,执行如下命令: vi /etc/cups/cupsd.conf 在这里发现了一个问题,vi打开cupsd.conf时,提示“write file in swap”,文件明明真实存在,怎么说在虚拟内存中呢,经过思考,只有一种可能,NAS设备的Linux系统分区应该没有正确挂载,导致在进入单用户的时候,所有文件都存储在了虚拟内存中,要验证非常简单,执行“df”命令查看即可,如下图所示: 从这里可以看出,Linux的系统分区并未挂载,通过“fdisk -l”检查下磁盘分区状态,输出如下图所示: 通过输出可知,NAS的系统盘是/dev/sda,仅划分了/dev/sda1和/dev/sda2两个系统分区,而数据磁盘是经过做RAID5完成的,在系统上的设备标识分别是/dev/sdb1和/dev/sdc1,由于单用户默认没有挂载任何NAS磁盘,这里尝试手动挂载NAS的系统盘,执行如下命令: [root@NASserver ~]#mount /dev/sda2 /mnt [root@NASserver ~]#mount /dev/sda1 /opt 这里的/mnt、/opt是随意挂载的目录,也可以挂载到其他空目录下,挂载完成,分别进入这连个目录看看内容有什么,如下图所示: 通过这两个内容的查看,初步判断,/dev/sda2分区应该是Linux的根分区,而/dev/sda1应该是/boot分区。现在分区已经挂载上去了,再次执行df命令看看挂载情况,如下图所示: 到这里为止,发现问题了。/dev/sda2磁盘分区已经没有可用的磁盘空间了,而这个分区刚好是NAS系统的根分区,根分区没有空间了,那么系统启动肯定就出问题了。 下面再把思路转到前面介绍的案例中,由于系统cups服务在启动的时候会写启动日志到根分区,而根分区因为没有空间了,所以也就无法写日志了,由此导致的结果就是cups服务无法启动,这就解释了此案例中NAS系统每次启动到cups服务就停止的原因。 四解决问题 由于NAS系统只有根分区和/boot分区,所以系统产生的相关日志都会存储在根分区中,现在根分区满了,首先可以清理的就是/var目录下的系统相关日志文件,通常可以清理的目录有/var/log,执行如下命令查看/var/log日志目录占据磁盘空间大小: [root@NASserver ~]# du -sh /var/log 50.1G /var/log 通过命令输出发现/var/log目录占据了根分区仅70%的空间,清理这个目录下的日志文件即可释放大部分根分区空间,清理完毕,重启NAS系统,发现系统cups服务能正常启动了,NAS服务也启动正常了。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:02:01 0 浏览量 回答数 0

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

问题

【教程免费下载】Redis开发与运维

知与谁同 2019-12-01 22:07:46 2741 浏览量 回答数 2

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

【精品问答】不懂如何使用ECS?ECS功能百问看这里

问问小秘 2020-01-02 15:48:11 7480 浏览量 回答数 4

问题

数据库百问,教你快速上手数据库

yq传送门 2019-12-01 20:16:46 31116 浏览量 回答数 21

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 38419 浏览量 回答数 12

回答

http://docs.mongoing.com/manual-zh/tutorial/perform-two-phase-commits.html要么操作全都执行,要么都不执行,不能执行一半,改了几条数据了,看哎哟好像不对,那扔着吧。Consistency 在数据库领域的意思跟在分布式系统里的意思不一样,指数据的外部约束有没有满足,比如帐户之间转账,不能最后总和还是负数,或者超过原来的总和了。那文档中的办法是怎么做的呢?简单说,就是在执行操作之前,记下来要做什么,以后可以 redo。然后保证每个操作都是 幂等的 ,就是说重复执行也没事。比如,赋值是幂等的,但是加一个数就不是幂等的。利用 MongoDB 提供的单文档的原子性,使用一些辅助的数据做到幂等,最后把辅助的数据清除掉。如果你的操作本身就是幂等的,那就不需要辅助数据了。如果要 undo,也是可能的,那就要记下如何 undo。但是 ACID 中的 Isolation 是没有的,也就是说事务之间有交叉,别的并发操作可以看到中间不一致的状态,上面说的外部约束只能最终得到保证。比如说,事务 T1 包括 (张三:加100;李四:减100),事务 T2 包括 (张三:加200;李四:减200),如果不加以限制,可能的顺序是:1.T1 (张三:加100)2.T2 (张三:加200)3.T2 (李四:减200)4.T1 (李四:减100)T2 执行的时候可以读取并修改 T1 的中间结果,在转账这个问题上没有大问题,因为加减是 可交换 的操作,先后不影响最终结果。但是如果我们把事务改成 T1 (张三 = 100;李四 = 100)和T2 (张三 = 200;李四 = 200) 这样最终的结果就可能是 (张三 = 200;李四 = 100),有可能就不满足一致性了。但是如果能在应用里保证顺序地执行这两个事务,问题就避免了。大家也了解 Isolation 有几个级别,还有多版本等更复杂的。传统数据库在单机上也会在更强的 Isolation 和性能之间做权衡,提供不同的级别可选。这一点在分布式系统中被称作 Consistency,实现起来的代价就更高了,所以 MongoDB 不支持。不过对大多应用,这并不是太大的问题:1.可能异常情况在逻辑上也是可以接受的,比如微信群发,每个人收到的顺序并不一样。2.可能逻辑上并发就是不可能的,比如一个用户只能修改自己的数据,比如只有一个线程写数据。3.或者把需要的数据放到一个文档里,对单文档,MongoDB 保证原子性,别的操作也不可能看到文档一半被改了。4.或者可以在应用上层发现并解决。比如支付宝转账就自己实现了一套一致性协议,1分钟之内可以保证这一笔数据一致了。对你的要求,如果可以通过修改数据模型,让改动在一个文档里就方便了。最好是看看你具体的需要和应用的假设,分析分析可能出现的异常情况,最后想办法。还有一个办法,贵司可以购买 MongoDB 的支持服务,针对你现在的产品阶段和需求 (开发,维护,咨询,培训),提供不同类型的专业级支持,比再请个程序员 / DevOp / DBA 便宜靠谱多了。

蛮大人123 2019-12-02 01:49:07 0 浏览量 回答数 0

问题

迁云工具FAQ

chenchuan 2019-12-01 21:36:31 659 浏览量 回答数 0

回答

为什么你的代码是一个单体? 除了已经实现了微前端的应用之外,所有前端应用本质上都是单一的应用。原因是如果您正在使用 React 库进行开发,并且如果您有两个团队,则两个团队都应该使用相同的React 库,并且两个团队应该在部署时保持同步,并且在代码合并期间始终会发生冲突。它们没有完全分离,很可能它们维护着相同的仓库并具有相同的构建系统。单体应用的退出被标志为微服务的出现。但是它适用于后端! 什么是微服务? 对于微服务,一般而言最简单的解释是,它是一种开发技术,允许开发人员为平台的不同部分进行独立部署,而不会损害其他部分。独立部署的能力允许他们构建孤立或松散耦合的服务。为了使这个体系结构更稳定,有一些规则要遵循,可以总结如下:每个服务应该只有一个任务,它应该很小。所以负责这项服务的团队应该很小。关于团队和项目的规模,James Lewis 和 Martin Fowler 在互联网上做出的最酷解释之一如下: 在我们与微服务从业者的对话中,我们看到了一系列服务规模。报道的最大规模遵循亚马逊关于Two Pizza Team的概念(即整个团队可以由两个比萨饼供给),意味着不超过十几个人。在规模较小的规模上,我们已经看到了一个由六人组成的团队支持六项服务的设置。 我画了一个简单的草图,为整体和微服务提供了直观的解释: 从上图可以理解,微服务中的每个服务都是一个独立的应用,除了UI。UI仍然是一体的!当一个团队处理所有服务并且公司正在扩展时,前端团队将开始苦苦挣扎并且无法跟上它,这是这种架构的瓶颈。 除了瓶颈之外,这种架构也会导致一些组织问题。假设公司正在发展并将采用需要 跨职能 小团队的敏捷开发方法。在这个常见的例子中,产品所有者自然会开始将故事定义为前端和后端任务,而 跨职能 团队将永远不会成为真正的 跨职能 部门。这将是一个浅薄的泡沫,看起来像一个敏捷的团队,但它将在内部分开。关于管理这种团队的更多信息将是一项非常重要的工作。在每个计划中,如果有足够的前端任务或者sprint中有足够的后端任务,则会有一个问题。为了解决这里描述的所有问题和许多其他问题,几年前出现了微前端的想法并且开始迅速普及。 解决微服务中的瓶颈问题:Micro Frontends 解决方案实际上非常明显,采用了多年来为后端服务工作的相同原则:将前端整体划分为小的UI片段。但UI与服务并不十分相似,它是最终用户与产品之间的接口,应该是一致且无缝的。更重要的是,在单页面应用时代,整个应用在客户端的浏览器上运行。它们不再是简单的HTML文件,相反,它们是复杂的软件,达到了非常复杂的水平。现在我觉得微型前端的定义是必要的: Micro Frontends背后的想法是将网站或Web应用视为独立团队拥有的功能组合。每个团队都有一个独特的业务或任务领域,做他们关注和专注的事情。团队是跨职能的,从数据库到用户界面开发端到端的功能。(micro-frontends.org) 根据我迄今为止的经验,对于许多公司来说,直接采用上面提出的架构真的很难。许多其他人都有巨大的遗留负担,这使他们无法迁移到新的架构。出于这个原因,更柔软的中间解决方案更加灵活,易于采用和安全迁移至关重要。在更详细地概述了体系结构后,我将尝试提供一些体系结构的洞察,该体系结构确认了上述提议并允许更灵活的方式。在深入了解细节之前,我需要建立一些术语。 整体结构和一些术语 让我们假设我们通过业务功能垂直划分整体应用结构。我们最终会得到几个较小的应用,它们与单体应用具有相同的结构。但是如果我们在所有这些小型单体应用之上添加一个特殊应用,用户将与这个新应用进行通信,它将把每个小应用的旧单体UI组合成一个。这个新图层可以命名为拼接图层,因为它从每个微服务中获取生成的UI部件,并为最终用户组合成一个无缝 UI,这将是微前端的最直接实现朗 为了更好地理解,我将每个小型单体应用称为微应用,因为它们都是独立的应用,而不仅仅是微服务,它们都有UI部件,每个都代表端到端的业务功能。 众所周知,今天的前端生态系统功能多样,而且非常复杂。因此,当实现真正的产品时,这种直接的解决方案还不够。 要解决的问题 虽然这篇文章只是一个想法,但我开始使用Reddit讨论这个想法。感谢社区和他们的回复,我可以列出一些需要解决的问题,我将尝试逐一描述。 当我们拥有一个完全独立的独立微应用时,如何创建无缝且一致的UI体验? 好吧,这个问题没有灵丹妙药的答案,但其中一个想法是创建一个共享的UI库,它也是一个独立的微应用。通过这种方式,所有其他微应用将依赖于共享的UI库微应用。在这种情况下,我们刚刚创建了一个共享依赖项, 我们就杀死了独立微应用的想法。 另一个想法是在根级共享CSS自定义变量( CSS custom variables )。此解决方案的优势在于应用之间的全局可配置主题。 或者我们可以简单地在应用团队之间共享一些SASS变量和混合。这种方法的缺点是UI元素的重复实现,并且应该对所有微应用始终检查和验证类似元素的设计的完整性。 我们如何确保一个团队不会覆盖另一个团队编写的CSS? 一种解决方案是通过CSS选择器名称进行CSS定义,这些名称由微应用名称精心选择。通过将该范围任务放在拼接层上将减少开发开销,但会增加拼接层的责任。 另一种解决方案可以是强制每个微应用成为自定义Web组件(custom web component)。这个解决方案的优点是浏览器完成了范围设计,但需要付出代价:使用shadow DOM进行服务器端渲染几乎是不可能的。此外,自定义元素没有100%的浏览器支持,特别是IE。 我们应该如何在微应用之间共享全局信息? 这个问题指出了关于这个主题的最关注的问题之一,但解决方案非常简单:HTML 5具有相当强大的功能,大多数前端开发人员都不知道。例如,自定义事件(custom events) 就是其中之一,它是在微应用中共享信息的解决方案。 或者,任何共享的pub-sub实现或T39可观察的实现都可以实现。如果我们想要一个更复杂的全局状态处理程序,我们可以实现共享的微型Redux,通过这种方式我们可以实现更多的相应式架构。 如果所有微应用都是独立应用,我们如何进行客户端路由? 这个问题取决于设计的每个实现, 所有主要的现代框架都通过使用浏览器历史状态在客户端提供强大的路由机制, 问题在于哪个应用负责路由以及何时。 我目前的实用方法是创建一个共享客户端路由器,它只负责顶级路由,其余路由器属于相应的微应用。假设我们有 /content/:id 路由定义。共享路由器将解析 /content,已解析的路由将传递到ContentMicroApp。ContentMicroApp是一个独立的服务器,它将仅使用 /:id 进行调用。 我们必须是服务器端渲染,但是有可能使用微前端吗? 服务器端呈现是一个棘手的问题。如果你正在考虑iframes缝合微应用然后忘记服务器端渲染。同样,拼接任务的Web组件也不比iframe强大。但是,如果每个微应用能够在服务器端呈现其内容,那么拼接层将仅负责连接服务器端的HTML片段。 与传统环境集成至关重要!但是怎么样? 为了整合遗留系统,我想描述我自己的策略,我称之为“ 渐进式入侵 ”。 首先,我们必须实现拼接层,它应该具有透明代理的功能。然后我们可以通过声明一个通配符路径将遗留系统定义为微应用:LegacyMicroApp 。因此,所有流量都将到达拼接层,并将透明地代理到旧系统,因为我们还没有任何其他微应用。 下一步将是我们的 第一次逐步入侵 :我们将从LegacyMicroApp中删除主要导航并用依赖项替换它。这种依赖关系将是一个使用闪亮的新技术实现的微应用:NavigationMicroApp 。 现在,拼接层将每个路径解析为 Legacy Micro App ,它将依赖关系解析为 Navigation MicroApp ,并通过连接这两个来为它们提供服务。 然后通过主导航遵循相同的模式来为引导下一步。 然后我们将继续从Legacy MicroApp中获取逐步重复以上操作,直到没有任何遗漏。 如何编排客户端,这样我们每次都不需要重新加载页面? 拼接层解决了服务器端的问题,但没有解决客户端问题。在客户端,在将已粘贴的片段作为无缝HTML加载后,我们不需要每次在URL更改时加载所有部分。因此,我们必须有一些异步加载片段的机制。但问题是,这些片段可能有一些依赖关系,这些依赖关系需要在客户端解决。这意味着微前端解决方案应提供加载微应用的机制,以及依赖注入的一些机制。 根据上述问题和可能的解决方案,我可以总结以下主题下的所有内容: 客户端 编排路由隔离微应用应用之间通信微应用UI之间的一致性 服务端 服务端渲染路由依赖管理 灵活、强大而简单的架构 所以,这篇文章还是很值得期待的!微前端架构的基本要素和要求终于显现! 在这些要求和关注的指导下,我开始开发一种名为microfe的解决方案。在这里,我将通过抽象的方式强调其主要组件来描述该项目的架构目标。 它很容易从客户端开始,它有三个独立的主干结构:AppsManager, Loader, Router 和一个额外的MicroAppStore。 AppsManager AppsManager 是客户端微应用编排的核心。AppsManager的主要功能是创建依赖关系树。当解决了微应用的所有依赖关系时,它会实例化微应用。 Loader 客户端微应用编排的另一个重要部分是Loader。加载器的责任是从服务器端获取未解析的微应用。 Router 为了解决客户端路由问题,我将 Router 引入了 microfe。与常见的客户端路由器不同,microf 的功能有限,它不解析页面而是微应用。假设我们有一个URL /content/detail/13 和一个ContentMicroApp。在这种情况下,microfe 将URL解析为 /content/,它将调用ContentMicroApp /detail/13 URL部分。 MicroAppStore 为了解决微应用到微应用客户端的通信,我将MicroAppStore引入了 microfe。它具有与Redux库类似的功能,区别在于:它对异步数据结构更改和reducer 声明更灵活。 服务器端部分在实现上可能稍微复杂一些,但结构更简单。它只包含两个主要部分 StitchingServer 和许多MicroAppServer。 MicroAppServer MicroAppServer 的最小功能可以概括为 init 和 serve。 虽然 MicroAppServer 首先启动它应该做的是使用 微应用声明 调用 SticthingServer 注册端点,该声明定义了 MicroAppServer 的微应用 依赖关系, 类型 和 URL架构。我认为没有必要提及服务功能,因为没有什么特别之处。 StitchingServer StitchingServer 为 MicroAppServers 提供注册端点。当 MicroAppServer 将自己注册到 StichingServer 时,StichingServer 会记录MicroAppServer 的声明。 稍后,StitchingServer 使用声明从请求的URL解析 MicroAppServers。 解析M icroAppServer 及其所有依赖项后,CSS,JS和HTML中的所有相对路径都将以相关的 MicroAppServer 公共URL为前缀。另外一步是为CSS选择器添加一个唯一的 MicroAppServer 标识符,以防止客户端的微应用之间发生冲突。 然后 StitchingServer 的主要职责就是:从所有收集的部分组成并返回一个无缝的HTML页面。 其他实现一览 甚至在2016年被称为微前端之前,许多大公司都试图通过 BigPipe 来解决Facebook等类似问题。如今这个想法正在获得验证。不同规模的公司对该主题感兴趣并投入时间和金钱。例如,Zalando开源了其名为Project Mosaic的解决方案。我可以说,微型和 Project Mosaic.遵循类似的方法,但有一些重要的区别。虽然microfe采用完全分散的路由定义来增强每个微应用的独立性,但Project Mosaic更喜欢每条路径的集中路由定义和布局定义。通过这种方式,Project Mosaic可以实现轻松的A/B测试和动态布局生成。 对于该主题还有一些其他方法,例如使用iframe作为拼接层,这显然不是在服务器端而是在客户端。这是一个非常简单的解决方案,不需要太多的服务器结构和DevOps参与。这项工作只能由前端团队完成,因此可以减轻公司的组织负担,同时降低成本。 已经有一个框架叫做 single-spa。该项目依赖于每个应用的命名约定来解析和加载微应用。容易掌握想法并遵循模式。因此,在您自己的本地环境中尝试该想法可能是一个很好的初步介绍。但是项目的缺点是你必须以特定的方式构建每个微应用,以便他们可以很好地使用框架。 最后的想法 我相信微前端话题会更频繁地讨论。如果该主题能够引起越来越多公司的关注,它将成为大型团队的事实发展方式。在不久的将来,任何前端开发人员都可以在这个架构上掌握一些见解和经验,这真的很有用。 关于本文 译者:@Vincent.W 译文:https://zhuanlan.zhihu.com/p/82965940 作者:@onerzafer 原文:https://hackernoon.com/understanding-micro-frontends-b1c11585a297 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-06 17:57:24 0 浏览量 回答数 0

问题

分布式事务了解吗?你们是如何解决分布式事务问题的?【Java问答学堂】58期

剑曼红尘 2020-07-16 15:11:28 5 浏览量 回答数 1

回答

以前上网很快,最近1周网速突然很慢,我是3个人共用一个路由器的,以前3个人用时也是很快。现在是我看视频很卡,用了优化大师优化,c盘文件及桌面文件都清理了,用360也清理了垃圾文件,用小红伞杀毒也没杀出病毒,就是老样子。现在两个人用一个,也是很慢,到半夜了在搜狐视频或是酷六什么那看电影,只剩我一个人在用,还是卡。 请问高手能帮我诊断下怎么回事,或是怎么设置下改变下状况。另一个人也是发现网速慢了,我们都是一个样子,可能是被盗了吗? 我用360查看网络连接,system id process 的连接很多,显示是没有连接上,状态是等待,都是端口80,目标归属地什么北京联通,大连联通,深圳联通的,有7个左右,我qq也没开啊,想结束也结束不了,只是在迅雷看看里看电影,没有装他的插件。把它关了还是有。向高手请教?插件只有搜狗输入法,迅雷,360,迅雷看看没有其他的 " 网速变慢的原因有很多可能,比如网络本身的问题、网卡硬件问题,有或者是系统问题等等。可以通过其他联网设备确认下是否有网速变慢的情况;如果网络本身没有问题(其他设备可以正常连接),问题就出现电脑本身: 1,、疑难解答 可以先试试更新网卡驱动,若无效,我们可以利用系统自身提供的【疑难解答】功能来寻求解决。直接搜索进入【疑难解答】然后点击右侧的对应项目,选择【运行疑难解答】,按照向导提示进行操作即可,看是否能够解决网络连接问题。 <img src=""https://gss0.baidu.com/-fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f415cd6cda3f8794d3aa4028e22b22cc/a6efce1b9d16fdfac901e83aba8f8c5495ee7bf0.jpg""> <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=1695c9ff00f41bd5da06e0f261eaadf3/f2deb48f8c5494ee9b9421cd23f5e0fe98257eab.jpg""> 2、网络重置 上述均不能解决的话,最后可通过进行网络重置来彻底解决。路径:【开始】—【设置】—【网络和Internet】—【状态】,在右侧列表中找到【网络重置】并点击,按提示完成操作即可。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=e6034daa9c58d109c4b6a1b4e168e087/11385343fbf2b211a844ab9ac48065380dd78eff.jpg""> 另外,在有限的硬件条件下,想让现有的网速能够快一些,具体可以参考以下步骤: 步骤1. Win+R组合键后输入gpedit.msc进入组策略编辑器,依次进入“计算机配置-Windows设置”后,再右侧找到“基于策略的Qos”的这个选项。 <img src=""https://gss0.baidu.com/-Po3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=c08ee009a564034f0f98ca009ff35509/a71ea8d3fd1f41341c7f2baa2b1f95cad0c85e9d.jpg""> 步骤2. 在“基于策略的Qos”上点击鼠标右键,选择“高级QoS设置”,在入站TCP流量选项卡中,勾选”制定入站TCP吞吐量级别“,选择最后那个”级别3“。 <img src=""https://gss0.baidu.com/9fo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=f340223fb8fd5266a77e34129b28bb13/e1fe9925bc315c604623453b83b1cb13485477ab.jpg""> 注意的:如果在更改完设置后发现上网时系统出现假死、卡顿等问题,可以把上面的“制定入站TCP吞吐量级别“设置调整到“级别2”,减少数据处理对系统硬件的压力(内存小于4GB,则建议使用默认最小吞吐量)。 “高级QoS设置“是什么呢? 通过高级服务质量 (QoS) 设置,您可以管理带宽使用以及计算机处理应用程序和服务设置的 DSCP 标记(而不是组策略设置的标记)的方式。高级 QoS 设置仅可在计算机级别应用,而 QoS 策略在计算机级别和用户级别均可应用。 若要更改吞吐量级别,选中“指定入站 TCP 吞吐量级别”复选框,然后根据下表选择吞吐量级别。吞吐量级别可以等于或小于最大值,具体取决于网络条件。 <img src=""https://gss0.baidu.com/9vo3dSag_xI4khGko9WTAnF6hhy/zhidao/wh%3D600%2C800/sign=eea0cfe33bfae6cd0ce1a3673f83231c/ca1349540923dd542fc589bcdf09b3de9d8248ab.jpg"">" 一、网络自身问题 您想要连接的目标网站所在的服务器带宽不足或负载过大。处理办法很简单,请换个时间段再上或者换个目标网站。 二、网线问题导致网速变慢 我们知道,双绞线是由四对线按严格的规定紧密地绞和在一起的,用来减少串扰和背景噪音的影响。同时,在T568A标准和T568B标准中仅使用了双绞线的 1、2和3、6四条线,其中,1、2用于发送,3、6用于接收,而且1、2必须来自一个绕对,3、6必须来自一个绕对。只有这样,才能最大限度地避免串扰,保证数据传输。本人在实践中发现不按正确标准(T586A、T586B)制作的网线,存在很大的隐患。表现为:一种情况是刚开始使用时网速就很慢;另一种情况则是开始网速正常,但过了一段时间后,网速变慢。后一种情况在台式电脑上表现非常明显,但用笔记本电脑检查时网速却表现为正常。对于这一问题本人经多年实践发现,因不按正确标准制作的网线引起的网速变慢还同时与网卡的质量有关。一般台式计算机的网卡的性能不如笔记本电脑的,因此,在用交换法排除故障时,使用笔记本电脑检测网速正常并不能排除网线不按标准制作这一问题的存在。我们现在要求一律按T586A、T586B标准来压制网线,在检测故障时不能一律用笔记本电脑来代替台式电脑。 三、网络中存在回路导致网速变慢 当网络涉及的节点数不是很多、结构不是很复杂时,这种现象一般很少发生。但在一些比较复杂的网络中,经常有多余的备用线路,如无意间连上时会构成回路。比如网线从网络中心接到计算机一室,再从计算机一室接到计算机二室。同时从网络中心又有一条备用线路直接连到计算机二室,若这几条线同时接通,则构成回路,数据包会不断发送和校验数据,从而影响整体网速。这种情况查找比较困难。为避免这种情况发生,要求我们在铺设网线时一定养成良好的习惯:网线打上明显的标签,有备用线路的地方要做好记载。当怀疑有此类故障发生时,一般采用分区分段逐步排除的方法。 四、网络设备硬件故障引起的广播风暴而导致网速变慢 作为发现未知设备的主要手段,广播在网络中起着非常重要的作用。然而,随着网络中计算机数量的增多,广播包的数量会急剧增加。当广播包的数量达到30%时,网络的传输效率将会明显下降。当网卡或网络设备损坏后,会不停地发送广播包,从而导致广播风暴,使网络通信陷于瘫痪。因此,当网络设备硬件有故障时也会引起网速变慢。当怀疑有此类故障时,首先可采用置换法替换集线器或交换机来排除集线设备故障。如果这些设备没有故障,关掉集线器或交换机的电源后,DOS下用 “Ping”命令对所涉及计算机逐一测试,找到有故障网卡的计算机,更换新的网卡即可恢复网速正常。网卡、集线器以及交换机是最容易出现故障引起网速变慢的设备。 五、网络中某个端口形成了瓶颈导致网速变慢 实际上,路由器广域网端口和局域网端口、交换机端口、集线器端口和服务器网卡等都可能成为网络瓶颈。当网速变慢时,我们可在网络使用高峰时段,利用网管软件查看路由器、交换机、服务器端口的数据流量;也可用 Netstat命令统计各个端口的数据流量。据此确认网络数据流通瓶颈的位置,设法增加其带宽。具体方法很多,如更换服务器网卡为100M或1000M、安装多个网卡、划分多个VLAN、改变路由器配置来增加带宽等,都可以有效地缓解网络瓶颈,可以最大限度地提高数据传输速度。 六、蠕虫病毒的影响导致网速变慢 通过E-mail散发的蠕虫病毒对网络速度的影响越来越严重,危害性极大。这种病毒导致被感染的用户只要一上网就不停地往外发邮件,病毒选择用户个人电脑中的随机文档附加在用户机子的通讯簿的随机地址上进行邮件发送。成百上千的这种垃圾邮件有的排着队往外发送,有的又成批成批地被退回来堆在服务器上。造成个别骨干互联网出现明显拥塞,网速明显变慢,使局域网近于瘫痪。因此,我们必须及时升级所用杀毒软件;计算机也要及时升级、安装系统补丁程序,同时卸载不必要的服务、关闭不必要的端口,以提高系统的安全性和可靠性。 七、防火墙的过多使用 防火墙的过多使用也可导致网速变慢,处理办法不必多说,卸载下不必要的防火墙只保留一个功能强大的足以。 八、系统资源不足 您可能加载了太多的运用程序在后台运行,请合理的加载软件或删除无用的程序及文件,将资源空出,以达到提高网速的目的。 您好,如您的宽带出现故障,可关注“中国联通”微信公众号,点击“客户服务>宽带报障>常见故障指引”,查看对应故障的处理方式。 如仍无法解决,可通过以下方式自助报障: 【方式一】关注“中国联通”微信公众号,点击“客户服务>宽带报障>在线报障”; 【方式二】登录中国联通手机营业厅APP,点击“服务>宽带>宽带办理服务>宽带报障”。 1...用360安全卫士查一下启动项,可能是垃圾插件太多了。现在P2P插件很吸血的。优化一下。 2...把3台电脑恢复系统,还有问题就是线路的问题了。 你把路由器 关掉重启 或者 重装 网卡驱动 试试吧。 最好还是重装。 重装还不好使 就是 宽带问题。

保持可爱mmm 2019-12-02 02:14:41 0 浏览量 回答数 0

问题

分布式系统 CAP 定理 P 代表什么含义【Java问答学堂】55期

剑曼红尘 2020-07-10 14:49:59 12 浏览量 回答数 1

问题

【精品回答】移动推送

montos 2020-04-09 09:57:11 14 浏览量 回答数 1

回答

Kotlin的简介 Kotlin是由JetBrains公司(IDEA开发者)所开发的编程语言,其名称来自于开发团队附近的科特林岛。 多平台开发 JVM :Android; Server-Side Javascript:前端 Native(beta) :开发原生应用 windows、macos、linux Swift与Kotlin非常像 http://nilhcem.com/swift-is-like-kotlin/ kotlin发展历程 image.png java发展历程 image.png JVM语言的原理 image.png JVM规范与java规范是相互独立的 只要生成的编译文件匹配JVM字节码规范,任何语言都可以由JVM编译运行. Kotlin也是一种JVM语言,完全兼容java,可以与java相互调用;Kotlin语言的设计受到Java、C#、JavaScript、Scala、Groovy等语言的启发 kotlin的特性 下面不会罗列kotlin中具体的语法,会介绍我认为比较重要的特性,以及特性背后的东西。 类型推断 空类型设计 函数式编程 类型推断 image.png 类型推断是指编程语言中在编译期自动推导出值的数据类型。推断类型的能力让很多编程任务变得容易,让程序员可以忽略类型标注的同时仍然允许类型检查。 在开发环境中,我们往往写出表达式,然后可以用快捷键来生成变量声明,往往都是很准的,这说明了编译器其实是可以很准确的推断出来类型的。编程语言所具备的类型推断能力可以把类型声明的任务由开发者转到了编译器. java中声明变量的方式是类型写在最前面,后面跟着变量名,这就迫使开发者在声明变量时就要先思考变量的类型要定义成什么,而在一些情况下比如使用集合、泛型类型的变量,定义类型就会变得比较繁琐。 Kotlin中声明变量,类型可以省略,或者放到变量名后面,这可以降低类型的权重,从必选变为可选,降低开发者思维负担。java10中也引入了类型推断。 Javascript中声明变量也是用关键字var,但是还是有本质区别的,Kotlin中的类型推断并不是变成动态类型、弱类型,类型仍然是在编译期就已经决定了的,Kotlin仍然是静态类型、强类型的编程语言。javascript由于是弱类型语言,同一个变量可以不经过强制类型转换就被赋不同数据类型的值, 编程语言的一个趋势就是抽象程度越来越高,编译器做更多的事情。 空类型设计 空类型的由来 image.png 托尼·霍尔(Tony Hoare),图灵奖得主 托尼·霍尔是ALGOL语言的设计者,该语言在编程语言发展历史上非常重要,对其他编程语言产生重大影响,大多数近代编程语言(包括C语言)皆使用类似ALGOL的语法。他在一次大会上讨论了null应用的设计: “我把 null 引用称为自己的十亿美元错误。它的发明是在1965 年,那时我用一个面向对象语言( ALGOL W )设计了第一个全面的引用类型系统。我加入了null引用设计,仅仅是因为实现起来非常容易。它导致了数不清的错误、漏洞和系统崩溃,可能在之后 40 年中造成了十亿美元的损失。” null引用存在的问题 以java为例,看null引用的设计到底存在哪些问题 空指针问题NPE 编译时不能对空指针做出检查,运行时访问null对象就会出现错误,这个就是工程中常见的空指针异常。 null本身没有语义,会存在歧义 值未被初始化 值不存在 也许表示一种状态 逻辑上有漏洞 Java中,null可以赋值给任何引用,比如赋值给String类型变量,String a = null,但是null并不是String类型: a instanceof String 返回的是false,这个其实是有些矛盾的。所以当持有一个String类型的变量,就存在两种情况,null或者真正的String. 解决NPE的方式 防御式代码 在访问对象前判空,但会有冗余代码;会规避问题,而隐藏真正的问题 抛出异常给调用方处理 方法中传参传入的空值、无效值,抛出受检查异常给上层调用方 增加注解 Android中可以增加@NonNull注解,编译时做额外检查 空状态对象设计模式 空状态对象是一个实现接口但是不做任何业务逻辑的对象,可以取代判空检查;这样的空状态对象也可以在数据不可用的时候提供默认的行为 java8 Optional类 java8中引入了Optional类,来解决广泛存在的null引用问题.官方javadoc文档介绍 A container object which may or may not contain a non-null value. If a value is present, isPresent() will return true and get() will return the value. Additional methods that depend on the presence or absence of a contained value are provided, such as orElse() (return a default value if value not present) and ifPresent() (execute a block of code if the value is present). 来看一下是如何实现的。 举一个访问对象读取熟悉的例子 java 8 之前 : image.png java 8: image.png 总结: 1.用Optional还是会比较繁琐,这个也说明了设计一个替代null的方案还是比较难的。 optional的耗时大约是普通判空的数十倍,主要是涉及泛型、使用时多创键了一个对象的创建;数据比较大时,会造成性能损失。 java8 引入Optional的意义在于提示调用者,用特殊类型包装的变量可能为空,在使用取出时需要判断 Kotlin的空类型设计 Kotlin中引入了可空类型和不可空类型的区分,可以区分一个引用可以容纳null,还是不能容纳null。 String vs String? String 类型表示变量不能为空,String?则表示变量可以为空 String?含义是String or null.这两种是不同的类型. 比如: var a:String = “abc” //ok var a:String = null //不允许 var b :String? = null //ok a=b // 不允许 String?类型的值不能给String类型的值赋值 这样就将类型分成了可空类型和不可能类型,每一个类型都有这样的处理;Kotlin中访问非空类型变量永远不会出现空指针异常。 同样上面的例子,采用Kotlin去写,就会简洁很多 image.png 编程范式-函数式编程 编程范式是什么? 编程范式是程序员看待程序和写程序的观点 主要的类型 非结构化编程 结构化编程 面向对象编程 命令式编程 函数式编程 这些类型并不是彼此互斥的,而是按照不同的维度做的划分,一种编程语言可能都支持多个编程范式 非结构化编程 第一代的高级语言往往是非结构化编程 比如 BASIC语言 每一行的代码前面都有一个数字作为行号,通常使用GOTO的跳跃指令来实现判断和循环. 看一下下面这段代码是做什么的: image.png 实际上做的是:程序在屏幕上显示数字 1 到 10 及其对应的平方 采用这种方式写程序,大量的使用goto实现逻辑的跳转,代码一长,可读性和维护性就比较差了,形成“面条式代码” 结构化编程 采用顺序、分支、循环结构来表达,禁用或者少用GOTO; 并用子程序来组织代码,采用自顶向下的方式来写程序 代表语言是C语言 实现同样的逻辑: image.png 可见采用结构化编程,代码的逻辑会更清晰。 面向对象编程 思想: 将计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。 特性: 封装性、继承性、多态性。 命令式编程 把计算机程序视为一系列的命令集合 主要思想是关注计算机执行的步骤,即一步一步告诉计算机先做什么再做什么。 “先做这,再做那”,强调“怎么做” 实现: 用变量来储存数据,用语句来执行指令,改变变量状态。 基本所有的常见的编程语言都具有此范式 函数式编程 声明式语法,描述要什么,而不是怎么做 类似于SQL语句 语言: kotlin swift python javascript scala 函数是第一等公民 可以赋值给变量,可作为参数传入另一个函数,也可作为函数的返回值 纯函数 y=f(x) 只要输入相同,返回值不变 没有副作用:不修改函数的外部状态 举个栗子 公司部门要进行outing,去哪里是个问题,要考虑多个因素,比如花费、距离、天数等等,有多个备选地点进行选择。 定义一个数据类: image.png 要进行筛选了,分别用sql,kotlin,java来实现 找出花费低于2000元的outing地点信息 SQL image.png Kotlin image.png java 7 image.png 可见kotin的写法还是比较接近于sql的思想的,声明式的写法,而不管具体如何实现;其中的:place->place.money<2000 就是函数,可以作为参数传递给fliter这个高阶函数;而且这个函数没有副作用,不改变外部状态。 再来一个复杂一点的: 找出花费低于5000元,时间不多于4天,按照距离排序的outing地点名称 SQL image.png Kotlin: image.png java 7 image.png 由此可见用kotlin的函数式写法,会更简洁,逻辑也更清晰,这段代码的目标一目了然,这种清晰在于实现了业务逻辑与控制逻辑的分离,业务逻辑就是由函数实现的,比如place->place.money<500,而控制逻辑是由filter,sorterBy等高阶函数实现的。 而java的传统写法是基于对数据的操作,避免不了遍历的操作,业务逻辑与控制逻辑交织在了一起,这段代码的目的就不是那么容易清晰看到的了。 总结 kotlin是实用的现代编程语言,吸收了众多编程语言的优点,支持类型推断、空类型安全、函数式编程、DSL等特性,非常值得学习和使用。

问问小秘 2020-04-30 16:33:40 0 浏览量 回答数 0

问题

ZooKeeper介绍、分析、理解

小柒2012 2019-12-01 21:21:22 11496 浏览量 回答数 2

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站