• 关于

    短信息服务什么意思

    的搜索结果

问题

短信服务【问答合集】

马铭芳 2019-12-01 20:19:57 1801 浏览量 回答数 4

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

说到区块链,我们必然会谈及它的共识机制。不了解区块链的共识机制,就无法理解区块链的真正意义。那么,今日份的区块链的共识机制了解一下? 共识机制是什么? 什么是共识?直取它的字面意思,就是"共同的认识". 人与人是不同的,这种不同不仅体现在身材、长相、能力,更体现在文化、观点、想法、利益诉求等等方面。 共识,简而言之,就是一个群体的成员在某一方面达成的一致意见。 我们了解到,信任是社会运转中的一大痛点,银行有自己的信用体系,过去的金融体系服务于只服务于极少的企业家,因为建立信用体系耗资巨大。后来支付宝有了芝麻信用,信用已经关系到生活的很多方面,信用卡额度、花呗额度,芝麻信用高出国还可以免签。我们正享受着信用给我们带来的便捷。 区块链本质是去中心化,去中心化的核心是共识机制,区块链上的共识机制主要解决由谁来构造区块,以及如何维护区块链统一的问题。 区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质: 1)一致性:所有诚实节点保存的区块链的前缀部分完全相同。 2)有效性:由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。 区块链的自信任主要体现于分布于区块链中的用户无须信任交易的另一方,也无须信任一个中心化的机构,只需要信任区块链协议下的软件系统即可实现交易。 共识机制是什么?PoW 、PoS 、DPOW都是什么意思? 共识机制的必要性? 分布式系统中,多个主机通过异步通信方式组成网络集群。在这样的一个异步系统中,需要主机之间进行状态复制,以保证每个主机达成一致的状态共识。错误信息可能出现在异步系统内并不断传播,因此需要在默认不可靠的异步网络中定义容错协议,以确保各主机达成安全可靠的状态共识,这就是共识机制诞生的必要性。 这种自信任的前提是区块链的共识机制(consensus),即在一个互不信任的市场中,要想使各节点达成一致的充分必要条件是每个节点出于对自身利益最大化的考虑,都会自发、诚实地遵守协议中预先设定的规则,判断每一笔记录的真实性,最终将判断为真的记录记入区块链之中。attachments-2018-08-9yY7VRHa5b738e3d96021.jpg 换句话说,如果各节点具有各自独立的利益并互相竞争,则这些节点几乎不可能合谋欺骗你,而当节点们在网络中拥有公共信誉时,这一点体现得尤为明显。区块链技术正是运用一套基于共识的数学算法,在机器之间建立"信任"网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。 当今区块链的几种共识机制介绍 区块链上的共识机制有多种,但任何一种都不是完美无缺,或者说适用于所有应用场景的。 PoW 工作量证明 整个系统中每个节点为整个系统提供计算能力(简称算力),通过一个竞争机制,让计算工作完成最出色的节点获得系统的奖励,即完成新生成货币的分配,简单理解就是多劳多得,bitcoin、LTC等货币型区块链就应用POW机制。 优点 完全去中心化节点自由进出,算法简单,容易实现破坏系统花费的成本巨大,只要网络破坏者的算力不超过网络总算力的50%,网络的交易状态就能达成一致 缺点 浪费能源,这是最大的缺点区块的确认时间难以缩短,如bitcoin每秒只能做7笔交易,不适合商业应用新的区块链必须找到一种不同的散列算法,否则就会面临bitcoin的算力攻击对节点的性能网络环境要求高容易产生分叉,需要等待多个确认无法达成最终一致性 PoS 权益证明 也称股权证明,类似于你把财产存在银行,这种模式会根据你持有加密货币的数量和时间,分配给你相应的利息。 优点 对节点性能要求低,达成共识时间短 缺点 没有最终一致性,需要检查点机制来弥补最终性 DPOW 委托股权证明 DPOW是 PoS 的进化方案,在常规 PoW和 PoS 中,任何一个新加入的区块,都需要被整个网络所有节点做确认,非常影响效率。 DPoS则类似于现代董事会的投票机制,通过选举代表来进行投票和决策。被选举出的n个记账节点来做新区块的创建、验证、签名和相互监督,这样就极大地减少了区块创建和确认所需要消耗的时间和算力成本。 优点 大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证 缺点 牺牲了去中心化的概念,不适合公有链 PBFT 实用拜占庭容错 实用拜占庭容错机制是一种采用"许可投票、少数服从多数"来选举领导者并进行记账的共识机制,该共识机制允许拜占庭容错,允许强监督节点参与,具备权限分级能力,性能更高,耗能更低,而且每轮记账都会由全网节点共同选举领导者,允许33%的节点作恶,容错率为33%.实用拜占庭容错特别适合联盟链的应用场景。 优点 会背离中心化,加密货币的存在及奖励机制会产生马太效应,让社区中的穷者更穷,富者更富共识效率高,可实现高频交易 缺点 当系统只剩下33%的节点运行时,系统会停止运行 dBFT 授权拜占庭容错 这种机制是用权益来选出记账人,然后记账人之间通过拜占庭容错算法达成共识。授权拜占庭容错机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。 优点 专业化的记账人可以容忍任何类型的错误记账由多人协同完成,每一个区块都有最终性,不会分叉算法的可靠性有严格的数学证明 缺点 当三分之一或以上记账人停止工作后,系统将无法提供服务当三分之一或以上记账人联合作恶,可能会使系统出现分叉 Pool 验证池 基于传统的分布式一致性技术,加上数据验证机制。 优点 不需要加密货币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。 缺点 去中心化程度不如bitcoin,更适合多方参与的多中心商业模式。 Paxos 这是一种传统的分布式一致性算法,是一种基于选举领导者的共识机制。领导者节点拥有绝对权限,并允许强监督节点参与,其性能高,资源消耗低。所有节点一般有线下准入机制,但选举过程中不允许有作恶节点,不具备容错性。 Paxos算法中将节点分为三种类型: proposer:提出一个提案,等待大家批准为结案。往往是客户端担任该角色 acceptor:负责对提案进行投票。往往是服务端担任该角色 learner:被告知结案结果,并与之统一,不参与投票过程。可能为客户端或服务端 Paxos 能保证在超过50%的正常节点存在时,系统能达成共识。 瑞波共识机制 瑞波共识算法使一组节点能够基于特殊节点列表形成共识,初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由该俱乐部51%的会员投票通过。共识遵循这些核心成员的"51%权利",外部人员则没有影响力。由于该俱乐部由中心化开始,它将一直是中心化的,而如果它开始腐化,股东们什么也做不了。与bitcoin及Peercoin一样,瑞波系统将股东们与其投票权隔开,因此,它比其他系统更中心化。 Peercoin Peercoin(点点币,PPC),混合了POW工作量证明及POS权益证明方式,其中POW主要用于发行货币,未来预计随着挖矿难度上升,产量降低,系统安全主要由POS维护。 在区块链网络中,由于应用场景的不同,所设计的目标各异,不同的区块链系统采用了不同的共识算法。每种共识算法都不是完美的,都有其优点和局限性。 区块链解决了在不可信信道上传输可信信息、价值转移的问题,而共识机制解决了区块链如何分布式场景下达成一致性的问题。 虽然区块链目前还处于发展的早期,行业发展还面临着一些阻碍,但社会已经足够多地认识到区块链的价值,区块链发展的脚步绝不会停滞不前,行业发展也定会找到突破阻碍的方法。

问问小秘 2019-12-02 03:07:12 0 浏览量 回答数 0

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

问题

10+年程序员总结的20+条经验教训

雅蕾 2019-12-01 21:56:26 7714 浏览量 回答数 0

回答

http协议本身就是请求-响应, 不可能反向。所谓的服务器push其实核心依然是依靠浏览器主动发起请求,有两种方式,一种是js轮询请求,一种是长连接。 长连接指发送请求后,服务器不是立即响应而是等到有推送数据时在响应,如果中间超时,浏览器还要再发送请求过去。 ######回复 @Anger_Coder : 长连接是必须有线程的,否则无法同时处理多个长连接请求。发起方一定是用户端!不太明白你问的是什么意思?######没错,那可以理解为http虽然是tcp socket,但是短连接,无状态信息是吧,而且js轮询请求 是做在client端的;那么有没有可能,服务器端做无差别的消息发送,client端 做校验,那么无论动态模板还是静态页,都是没有常驻内存的,也就是类似于php那种脚本语言,没有线程、进程;那么长连接的建立 是当客户端发起连接请求开始的;那么对用户状态 如何 监控呢?######js定时执行 ######你好,用过js定时 用的是setInterval,但这个的前提是 客户端打开了浏览器,并且浏览器能执行js代码,发起者 还是客户端######可行的,反向ajax就是这么做的,只不过会使服务器的压力增大######回复 @Anger_Coder : 我也只是知道有这个东西,具体也没用过,哈哈######谢谢,我先了解下反向Ajax,不懂的话 在请教你######反向Ajax?即服务器Push。###### 这个就像osc的动弹嘛。osc用的是setTimeout来做的吧 dwr也可以,都可以看看 ######这叫服务器推送,可以百度一下: HTML5 Server-Sent Events和HTML5 WebSockets,不过这要求使用支持HTML5的浏览器,IE8及以下只能用客户端拉取了,就是长连接Long-polling。######好的,谢谢,我会了解相关的东东滴:)######XMPP?######可参考Html5的WebSocket技术######这个可以做,在服务器端和客户端之间保持一个连接,然后服务器端有跟新内容就像客户端写入,没有跟新的内容也不关闭连接。但是这样非常消耗性能,如此的话就只能采用折中的方法,每个连接保持一段时间,过了这段时间关闭,有新的请求过来的时候重新创建一个连接,如此循环######恩,了解,我先实现一个demo..感谢######用blazds向前段的swf文件推送数据,前端的swf文件你设置成不可见就可以了,然后将获取到的数据再传送给js调用,这样就不用考虑长链接或者websocket之类不同浏览器的特性了######swf在这个项目中 不适用了T_T

kun坤 2020-05-29 12:11:27 0 浏览量 回答数 0

回答

BRD文档(商业需求文档) 定义:BRD 是英文”Business Requirement Document“的缩写,根据英文直译过来就是”商业需求文档“的意思,指的就是基于商业目标或价值所描述的产品需求内容文档(报告),其核心的用途就是用于产品在投入研发之前,由企业高层作为决策评估的重要依据。一般来说全新的产品、未来发展有潜力的产品提供BRD! 真相君:市场前景无限大;用户需求未满足;同类竞品没做到;好机会啊,老板 MRD(市场需求文档) 定义:MRD 是英文”Market Requirements Document“的缩写,根据英文直译过来就是”市场需求文档“的意思,主要是描述什么样的功能和特点的产品(包含产品版本)可以在市场上取得成功。一般新功能的实现,上线新的产品提供MRD! 真相君:老板,市场真的很大,产品路线图我都规划好了,我们按照产品路线发展,肯定能成。 PRD(产品需求文档) 定义:PRD 是英文”Product Requirement Document“的缩写,根据英文直译过来就是”产品需求文档“的意思, PRD文档是产品项目由“概念化”阶段进入到“图纸化”阶段的最主要的一个文档,其作用就是“对MRD中的内容进行指标化和技术化”,这个文档的质量好坏直接影响产品能否顺利的实施完成。一般产品的功能改善、产品的细节说明提供PRD文档! 真相君:确保文档可读性;名词不要有歧义;从概念到图纸化;设计开发全靠它。 用户场景 用户场景是什么?是人物、时间、地点、欲望、手段五要素所组成的特定关系。在xx时间(when),xx地点(where),特定类型的用户(who)萌发了某种欲望(desire),会想通过某种手段(method)来满足欲望。 真相君:产品原型很简单;洞察用户才最难;带入场景去分析;用户心理全了然 MVP 简单的说法就是用最小的成本开发出可表达项目创意、可用且能用于表达核心理念的原型产品,功能极简而且能用于快速验证想法的最小化产品。 真相君:糟了,老板明天要验收;别慌,他不懂技术;咱先拿个半成品忽悠他。 灰度发布 定义:灰度发布(又名金丝雀发布)是指让一部分用户继续用产品特性A,一部分用户开始用产品特性B,如果用户对B没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到B上面来。灰度发布可以保证整体系统的稳定,在初始灰度的时候就可以发现、调整问题,以保证其影响度。经常与A/B测试一起使用,用于测试选择多种方案。 真相君:不知新版发布会不会挨骂?;找群白鼠测一下;如果反馈还不错;那就逐步推出它。 用户研究 定义:用户研究是指通过对用户的任务操作特性、知觉特征、认知心理特征的研究,使用户的实际需求成为产品设计的导向,使您的产品更符合用户的习惯、经验和期待。 在互联网领域内,用户研究主要应用于两个方面: 对于新产品来说,用户研究一般用来明确用户需求点,帮助设计师选定产品的设计方向; 对于已经发布的产品来说,用户研究一般用于发现产品问题,帮助设计师优化产品体验。 真相君:用户研究不简单;定性定量都精通;还得数据来建模;产品决策要靠它。 用户画像 定义:用户画像就是你的粉丝群体属性的数据,比如性别、学历、职业、收入水平、手机型号、兴趣爱好等等。是根据用户在互联网留下的种种数据,主动或被动地收集,最后加工成一系列的标签。 真相君:平时上网别乱点;行为历史有记录;根据数据贴标签;再想撕掉难上天 A / B测试 定义:AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本,收集各群组的用户体验数据和业务数据,最后分析、评估出最好版本,正式采用。 真相君:不知道功能上线后效果好不好,先找一部分用户测试看看,好了再全面推广。 UCD 定义:(User Centered Design)是一种设计思维、模式,指以用户为中心的设计。是在设计过程中以用户体验为设计决策的中心,强调用户优先的设计模式。 真相君:先不要考虑盈利,先让用户用的爽再说。 智能推送 定义:将用户“个性”和“商品、服务、内容”属性进行精准的匹配,达到用户所见即所需所想的目的,缩短了信息触达用户的路径,减少用户流失,促进用户快速转化。 真相君:你想看什么,就给你推送什么。 AIOT 定义:智联网(AIOT,是AI + IOT物联网的结合) 2018年开始崛起,核心是能够运用大量传感设备,综合语音、视觉、动作、温度等数据,实现IOT设备的全自然化的人机交互。 真相君:物联网喊了好多年;体验提升太有限;如今终于有突破;人机交互成关键。 AM敏捷开发 定义:以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。在敏捷开发中,软件项目在构建初期被切分成多个子项目,各个子项目的成果都经过测试,具备可视、可集成和可运行使用的特征。换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。 真相君:一点点来,不要想一口吃个胖子。 PLC 定义:产品生命周期(Product Life Cycle),简称PLC,是产品的市场寿命,即一种新产品从开始进入市场到被市场淘汰的整个过程。这个过程其实就是经历了一个从“启动、成长、成熟一直到衰退”的阶段。 真相君:一个产品四阶段;阶段策略各不同;快速验证和开发;尽力延长成熟期。 可用性测试 定义:让一群具有代表性的用户对产品进行典型操作,同时观察员和开发人员在一旁观察,聆听,做记录。 真相君:观察用户使用产品。 商业闭环 定义:商业闭环是围绕着顾客一系列关联性消费需求,逐一提供相应的产品予以满足的商业模式。主要在商业体系中营造循环圈,各个环节都可以相互依靠,既可以作为个体支撑点也可以协同合作。 真相君:产品分步走;逻辑真是乱;怎么讲清楚;就得靠闭环! 互联网上半场/下半场 定义: 互联网上半场即消费互联网时代,注重的是入口和流量,线上打造; 而下半场即产业互联网时代,注重的是服务和价值,线上线下充分融合。 真相君:上半场玩的是流量,现在流量已经被占完,再看产业和互联;线上线下共融合;下半场来临! CRUD 创建(Create)、检索(Retrieve)、更新(Update)、删除(Delete),有时候也简称“增删改查”这是面向对象设计中最常用的4个基本方法。说来这是数据库里的必备的知识,但作为互联网公司的产品经理,这也是经常会提起的功能点。 真相君:就是后台功能操作分为:增删改查和搜索。 用户任务的闭环 定义:指的是一系列帮助用户完成任务的环节,这些环节可以应对任务可能出现的各种情况。 真相君:就是用户做一件事情要能做完。 KPI 定义:KPI绩效考核,又称“关键业绩指标”考核法,是企业绩效考核的方法之一。这种方法的优点是标准比较鲜明,易于做出评估。它的缺点是对简单的工作制定标准难度较大,缺乏一定的定量性。 真相君:就是给你分配的任务。 蓝海与红海 定义:所谓蓝海,指的是未知的市场空间,即尚未有人涉足,或是只有极少人涉足并且还没有做出太大成绩的市场。这样的市场,如果成功进入,则会是一段绝佳的时期,因为这段时间内你处于绝对的垄断地位,直到你的竞争对手赶上来。做好核心业务,做足差异化,能够帮助你将你的蓝海时段尽可能地延长,保证你的利益。 所谓红海,指的是已经发展的比较成熟,竞争非常激烈的市场。通常红海里的新人很难在短时间内做出成就,除非你在某一方面比你的竞争对手优势更大,或者你让投资人和初期用户看到了你巨大的发展潜力,又或者你在另一片红海中有着极佳的口碑,现在跨界进入这个行业。 真相君:蓝海就是竞争没那么激烈,红海就是竞争很激烈,刺刀见红。 进入壁垒 定义:进入壁垒值得是进入某一市场的难度,这一高度取决于自身的技术、成本、对特定资源的占有情况,以及对手的发展程度。 真相君:就是进入的门槛到底。 商业价值 定义:商业价值指的是一款产品如何创造价值。 真相君:就是如何赚钱。 墨菲定律 定义:事情如果有变坏的可能,不管这种可能性有多小,它总会发生。 真相君:越怕出事,越会出事。 放到互联网行业通常就是这样: 凡是输入框,都会遭遇灌水、SPAM、脚本注入 凡是积分,都会被刷 凡是推到网站首页的内容,都会出现色情、政治 凡是用户间沟通的渠道,都会被广告机器人利用 而对于项目管理而言,又可能是这样: 一项工作如果只有一个人负责,这个人肯定会休假或者离职 认为没有技术难点的地方,都会成为技术难点或性能瓶颈 羊群效应 定义:头羊往哪里走,后面的羊就跟着往哪里走。 真相君:说白了,其实就是从众心理。 破窗理论 定义:如果有人打坏了一幢建筑物的窗户玻璃,而这扇窗户又得不到及时的维修,别人就可能受到某些示范性的纵容去打烂更多的窗户。 真相君:环境中的不良现象如果被放任存在,会诱使人们仿效,甚至变本加厉。 二八定律 定义:也叫巴莱多定律,19世纪末20世纪初意大利的经济学家巴莱多认为,在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的。社会约80%的财富集中在20%的人手里,而80%的人只拥有20%的社会财富。80%的回报来源于20%的有效付出。这种统计的不平衡性在社会、经济及生活中无处不在,这就是二八法则。 真相君:一个人的时间和精力都是非常有限的,要想真正做好每一件事情几乎是不可能的,要学会抓住主要矛盾,合理分配我们的时间和精力。要想面面俱到还不如重点突破,把80%的资源花在能出关键效益的20%的方面,这20%的方面又能带动其余80%的发展。 马太效应 定义:指强者愈强,弱者愈弱的现象。《圣经—马太福音》中有一句名言:凡有的,还要加给他,让他有余;没有的,连他所有的,也要夺过来。社会学家从中引申出马太效应这一概念,用以描述社会生活领域中普遍存在的两极分化现象。 真相君:好的愈好,坏的愈坏,多的愈多,少的愈少。

剑曼红尘 2020-04-09 14:21:15 0 浏览量 回答数 0

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。

景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

问题

DIYRubyCPU分析——PartI

sunny夏筱 2019-12-01 21:55:37 7137 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

【javascript学习全家桶】934道javascript热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:22 6202 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站