• 关于

    检索库可以做什么

    的搜索结果

回答

考试内容一、基础知识1.计算机系统的组成和应用领域。2.计算机软件的基础知识。3.计算机网络的基础知识和应用知识。4.信息安全的基本概念。二、数据结构与算法1.数据结构、算法的基本概念。2.线性表的定义、存储和运算。3.树形结构的定义、存储和运算。4.排序的基本概念和排序方法。5.检索的基本概念和检索算法。三、操作系统1.操作系统的基本概念、主要功能和分类。2.进程、线程、进程间的通信的基本概念。3.存储管理、文件管理、设备管理的主要技术。4.典型操作系统的应用。四、数据库系统的基本原理1.数据库的基本概念,数据库系统的组成。2.数据模型概念和主要的数据模型。3.关系数据模型的基本概念,关系操作和关系代数。4.结构化查询语言SQL。5.事务管理、并发控制、故障恢复的基本概念。五、数据库设计和数据库应用1.关系数据库的规范化理论。2.数据库设计的目标、内容和方法。3.数据库应用开发工具。4.数据库技术发展。六、上机操作1.掌握计算机基本操作。2.掌握C语言程序设计基本技术、编程和调试。3.掌握与考试内容相关的知识的上机应用。其实三级数据库广度挺大,没什么深度,就算有几项知识不熟悉也没关系,但像C语言这样的基础知识应该打好一点,市场上的同类书都差不多,没什么特别的,你如果有时间可以买一本回来仔细看,我觉得只要真正仔细看了,肯定能过的(我以前就是没仔细看书,结果考的时候发现很多题目似曾相识,好后悔啊……),时间不是很多的话建议多做以前的题目,重复的几率很高,而且你想,总共就那么些个知识,又不能出太深,出不了什么新题的,考过的都知道,大差不离。
沉默术士 2019-12-02 01:23:55 0 浏览量 回答数 0

回答

必须是C语言 C++的也勉强。 其它的就不行了 比如java是不被接受的 1、既然会C++了,基本等于掌握了C。 C++已经包含了C的。可以说C++只是在C的基础上增加了对象的概念! 如果果求不用C++,只要使用C++面向对象的编程思想就可以了(也就是C了,什么cin,cout都换成C常用的输入输出就可以了)。 2、计算机专业有:计算机系统结构,计算机软件与理论,计算机应用技术,计算机科学与技术,(专业学位)计算机技术,模式识别与智能系统。 方向是由导师决定的,导师研究什么就学什么。像什么数据挖掘,信息安全,图形图像处理,经济信息处理与仿真,数据库技术及其应用,计算机网络,多媒体信息处理,企业信息化,软件工程,计算智能,信息检索与自然语言处理等很多,在报名的时候可以看到。 还有就是计算机专业研究生毕业,别人不会问是计算机什么方向的,只会在乎做了什么项目,有什么样的经验。在毕业证上也只有专业名称(如计算机应用技术)没有什么方向。
liujae 2019-12-02 01:22:24 0 浏览量 回答数 0

问题

在PyMySQL中,游标起什么作用?

我搜索了web,特别是Stack Overflow站点,但是我找不到任何关于游标在PyMySQL中所起作用的简单解释。为什么需要它?它的功能是什么?我可以有多个游标吗?我可以将它作为参数传递给类或函数吗? 看教程...
kun坤 2019-12-27 17:55:25 4 浏览量 回答数 1

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

VB6 / Microsoft Access / DAO到VB.NET/SQL Server ...

我可以在VB6 / Access中使DAO记录集做任何事情-添加数据,清除数据,移动数据,在早上整理好衣服并将其带到学校。但是我什至不知道从.NET哪里开始。 我从数据库检索数据没有任何问题&#x...
心有灵_夕 2019-12-28 23:29:47 1 浏览量 回答数 1

问题

SQL 与 NoSQL 的对比

NoSQL 是一个用于描述高扩展高性能的非关系数据库的术语。NoSQL 数据库提供的 schemafree 数据模型使应用无需预先定义表结构,更适应业务的多元化发展,且其对超大数据规模和高并发的支持让 NoSQL...
云栖大讲堂 2019-12-01 20:54:13 1382 浏览量 回答数 0

回答

ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。举个例子:获取一篇文章,传统的方式先要执行一个sql检索数据select * from post where id = 1然后输出标题和内容使用echo $post['title']; echo $post['content'];上面的代码遇到面向对象强迫症者,他们会纠结死的。所以他们想出了这个东西,在ORM里获取一篇文章可以这样:$post = postTable::getInstance()->find(1);#会再内部执行select * from post where id = 1然后输出:echo $post->getTitle(); echo $post->getContent();高级点的应用,文章和分类是一对多关系、文章和标签是多对多关系$cate = $post->getCategory(); //获取文章分类 echo $cate->getName(); //获取分类名 $tags = $post->getTags(); //获取一个文章的所有标签是不是一个sql都没写就获取到我们需要的所有数据了?使用ORM可以完全不写sql而实现应用,这些ORM都替我们做了。除此之外,orm还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库。
落地花开啦 2019-12-02 02:48:34 0 浏览量 回答数 0

问题

OpenSearch有什么特性?

OpenSearch有以下一些主要功能。 [backcolor=transparent]支持文档索引结构定制,以及自由修改OpenSearch将搜索引擎复杂的索引结构概念简单化、可视化和自助定制化。开发者可以通过控制台...
轩墨 2019-12-01 20:55:21 981 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    
石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

问题

Git 改变了分布式 Web 开发规则:报错

版本控制系统是大部分开发项目的核心组件,无论是开发应用程序、网站还是操作系统。大部分项目都涉及多个开发人员,往往位于不同的位置。分布式版本控制系统并不是新事物,但是 Git 版本控制系统为开发人员之...
kun坤 2020-06-08 11:09:24 3 浏览量 回答数 1

回答

useTimezone是较旧的解决方法。MySQL团队最近才重写了setTimestamp / getTimestamp代码,但是只有在您设置连接参数useLegacyDatetimeCode = false且使用的是最新版本的mysql JDBC连接器时,才能启用它。因此,例如: String url = "jdbc:mysql://localhost/mydb?useLegacyDatetimeCode=false 如果下载mysql-connector源代码并查看setTimestamp,很容易看到发生了什么: 如果使用旧日期时间代码= false,则调用newSetTimestampInternal(...)。然后,如果传递给newSetTimestampInternal的Calendar为NULL,则将日期对象格式化为数据库的时区: this.tsdf = new SimpleDateFormat("''yyyy-MM-dd HH:mm:ss", Locale.US); this.tsdf.setTimeZone(this.connection.getServerTimezoneTZ()); timestampString = this.tsdf.format(x); 日历为空非常重要-因此请确保您使用的是: setTimestamp(int,Timestamp). ...不是setTimestamp(int,Timestamp,Calendar)。 现在应该很清楚这是如何工作的。如果您使用java.util.Calendar在美国/洛杉矶(或您想要的任何时区)构造日期:2011年1月5日3:00 AM,并调用setTimestamp(1,myDate),那么它将使用您的日期,请使用SimpleDateFormat在数据库时区中对其进行格式化。因此,如果您的数据库位于America / New_York,它将构造要插入的字符串'2011-01-05 6:00:00'(因为NY比LA提前3小时)。 要检索日期,请使用getTimestamp(int)(不带日历)。它将再次使用数据库时区来建立日期。 注意:Web服务器时区现在完全不相关! 如果未将useLegacyDatetimecode设置为false,则使用Web服务器时区进行格式设置-增加很多混乱。 注意: MySQL可能抱怨服务器时区模棱两可。例如,如果您的数据库设置为使用EST,则Java中可能有几个可能的EST时区,因此您可以通过确切地告诉它mysql-connector的数据库时区是什么来为mysql-connector澄清这一点: String url = "jdbc:mysql://localhost/mydb?useLegacyDatetimeCode=false&serverTimezone=America/New_York"; 如果抱怨,您只需要这样做。来源:stack overflow
保持可爱mmm 2020-05-17 12:02:22 0 浏览量 回答数 0

回答

useTimezone是较旧的解决方法。MySQL团队最近才重写了setTimestamp / getTimestamp代码,但是只有在您设置连接参数useLegacyDatetimeCode = false且使用的是最新版本的mysql JDBC连接器时,才能启用它。因此,例如: String url = "jdbc:mysql://localhost/mydb?useLegacyDatetimeCode=false 如果下载mysql-connector源代码并查看setTimestamp,很容易看到发生了什么: 如果使用旧日期时间代码= false,则调用newSetTimestampInternal(...)。然后,如果传递给newSetTimestampInternal的Calendar为NULL,则将日期对象格式化为数据库的时区: this.tsdf = new SimpleDateFormat("''yyyy-MM-dd HH:mm:ss", Locale.US); this.tsdf.setTimeZone(this.connection.getServerTimezoneTZ()); timestampString = this.tsdf.format(x); 日历为空非常重要-因此请确保您使用的是: setTimestamp(int,Timestamp). ...不是setTimestamp(int,Timestamp,Calendar)。 现在应该很清楚这是如何工作的。如果您使用java.util.Calendar在美国/洛杉矶(或您想要的任何时区)构造日期:2011年1月5日3:00 AM,并调用setTimestamp(1,myDate),那么它将使用您的日期,请使用SimpleDateFormat在数据库时区中对其进行格式化。因此,如果您的数据库位于America / New_York,它将构造要插入的字符串'2011-01-05 6:00:00'(因为NY比LA提前3小时)。 要检索日期,请使用getTimestamp(int)(不带日历)。它将再次使用数据库时区来建立日期。 注意:Web服务器时区现在完全不相关! 如果未将useLegacyDatetimecode设置为false,则使用Web服务器时区进行格式设置-增加很多混乱。 注意: MySQL可能抱怨服务器时区模棱两可。例如,如果您的数据库设置为使用EST,则Java中可能有几个可能的EST时区,因此您可以通过确切地告诉它mysql-connector的数据库时区是什么来为mysql-connector澄清这一点: String url = "jdbc:mysql://localhost/mydb?useLegacyDatetimeCode=false&serverTimezone=America/New_York"; 如果抱怨,您只需要这样做。来源:stack overflow
保持可爱mmm 2020-05-17 12:02:19 0 浏览量 回答数 0

问题

达达O2O后台架构演进实践:从0到4000高并发请求背后的努力:报错

1、引言 达达创立于2014年5月,业务覆盖全国37个城市,拥有130万注册众包配送员,日均配送百万单,是全国领先的最后三公里物流配送平台。 达达的业务模式与滴滴以及Uber很相似...
kun坤 2020-06-09 15:20:48 4 浏览量 回答数 1

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现
剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

问题

性能测试:软件测试的重中之重

       性能测试在软件的质量保证中起着重要的作用,它包括的测试内容丰富多样。中国软件评测中心将性能测试概括为三个方面:应用在客户端性能的测试、应用在网络上性能的测试和应用在服务器端性能的测试。通常情况下&#...
云效平台 2019-12-01 21:45:09 5839 浏览量 回答数 1

问题

价值888元的wordpress性能优化方案 全面提升wordpress打开速度

[attachment=145867] 接触wordpress也些年头了,wordpress建站非常好,性能好、主题多,但是唯一诟病的就是wordpress打开速度慢,造...
元芳啊 2019-12-01 21:46:14 42553 浏览量 回答数 14

回答

数据挖掘和机器学习的区别和联系,周志华有一篇很好的论述《机器学习和 数据挖掘》可以帮助大家理解。 数据挖掘受到很多学科领域的影响,其中数据库、机器学习、统计学无疑影响 最大。简言之,对数据挖掘而言,数据库提供数据管理技术,机器学习和统计学 提供数据分析技术。 由于统计学往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的 很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能 再进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖 掘发挥影响,而机器学习和数据库则是数据挖掘的两大支撑技术。 从数据分析的角度来看,绝大多数数据挖掘技术都来自机器学习领域,但机器 学习研究往往并不把海量数据作为处理对象,因此,数据挖掘要对算法进行改造, 使得算法性能和空间占用达到实用的地步。同时,数据挖掘还有自身独特的内容, 即关联分析。 而模式识别和机器学习的关系是什么呢,传统的模式识别的方法一般分为两种: 统计方法和句法方法。句法分析一般是不可学习的,而统计分析则是发展了不少机 器学习的方法。也就是说,机器学习同样是给模式识别提供了数据分析技术。 至于,数据挖掘和模式识别,那么从其概念上来区分吧,数据挖掘重在发现知识, 模式识别重在认识事物。 机器学习的目的是建模隐藏的数据结构,然后做识别、预测、分类等。因此,机器 学习是方法,模式识别是目的。 总结一下吧。只要跟决策有关系的都能叫 AI(人工智能),所以说 PR(模式识别)、 DM(数据挖掘)、IR(信息检索) 属于 AI 的具 体应用应该没有问题。 研究的东西则 不太一样, ML(机器学习) 强调自我完善的过程。 Anyway,这些学科都是相通的。
珍宝珠 2019-12-02 03:22:18 0 浏览量 回答数 0

回答

同步两个SQLServer数据库 如何同步两个sqlserver数据库的内容?程序代码可以有版本管理cvs进行同步管理,可是数据库同步就非常麻烦,只能自己改了一个后再去改另一个,如果忘记了更改另一个经常造成两个数据库的结构或内容上不一致.各位有什么好的方法吗? 一、分发与复制 用强制订阅实现数据库同步操作. 大量和批量的数据可以用数据库的同步机制处理: // 说明: 为方便操作,所有操作均在发布服务器(分发服务器)上操作,并使用推模式 在客户机器使用强制订阅方式。 二、测试通过 1:环境 服务器环境: 机器名称: zehuadb 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 客户端 机器名称:zlp 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 2:建用户帐号 在服务器端建立域用户帐号 我的电脑管理->本地用户和组->用户->建立 username:zlp userpwd:zlp 3:重新启动服务器mssqlserver 我的电脑->控制面版->管理工具->服务->mssqlserver 服务 (更改为:域用户帐号,我们新建的zlp用户 .\zlp,密码:zlp) 4:安装分发服务器 a:配置分发服务器 工具->复制->配置发布、订阅服务器和分发->下一步->下一步(所有的均采用默认配置) b:配置发布服务器 工具->复制->创建和管理发布->选择要发布的数据库(sz)->下一步->快照发布->下一步->选择要发布的内容->下一步->下一步->下一步->完成 c:强制配置订阅服务器(推模式,拉模式与此雷同) 工具->复制->配置发布、订阅服务器和分发->订阅服务器->新建->sql server数据库->输入客户端服务器名称(zlp)->使用sql server 身份验证(sa,空密码)->确定->应用->确定 d:初始化订阅 复制监视器->发布服务器(zehuadb)->双击订阅->强制新建->下一步->选择启用的订阅服务器->zlp->下一步->下一步->下一步->下一步->完成 5:测试配置是否成功 复制监视器->发布衿?zehuadb)->双击sz:sz->点状态->点立即运行代理程序 查看: 复制监视器->发布服务器(zehuadb)->sz:sz->选择zlp:sz(类型强制)->鼠标右键->启动同步处理 如果没有错误标志(红色叉),恭喜您配置成功 6:测试数据 在服务器执行: 选择一个表,执行如下sql: insert into wq_newsgroup_s select '测试成功',5 复制监视器->发布服务器(zehuadb)->sz:sz->快照->启动代理程序 ->zlp:sz(强制)->启动同步处理 去查看同步的 wq_newsgroup_s 是否插入了一条新的记录 测试完毕,通过。 7:修改数据库的同步时间,一般选择夜晚执行数据库同步处理 (具体操作略) :d /* 注意说明: 服务器一端不能以(local)进行数据的发布与分发,需要先删除注册,然后新建注册本地计算机名称 卸载方式:工具->复制->禁止发布->是在"zehuadb"上静止发布,卸载所有的数据库同步配置服务器 注意:发布服务器、分发服务器中的sqlserveragent服务必须启动 采用推模式: "d:\microsoft sql server\mssql\repldata\unc" 目录文件可以不设置共享 拉模式:则需要共享~! */ 少量数据库同步可以采用触发器实现,同步单表即可。 三、配置过程中可能出现的问题 在sql server 2000里设置和使用数据库复制之前,应先检查相关的几台sql server服务器下面几点是否满足: 1、mssqlserver和sqlserveragent服务是否是以域用户身份启动并运行的(.\administrator用户也是可以的) 如果登录用的是本地系统帐户local,将不具备网络功能,会产生以下错误: 进程未能连接到distributor '@server name' (如果您的服务器已经用了sql server全文检索服务, 请不要修改mssqlserver和sqlserveragent服务的local启动。 会照成全文检索服务不能用。请换另外一台机器来做sql server 2000里复制中的分发服务器。) 修改服务启动的登录用户,需要重新启动mssqlserver和sqlserveragent服务才能生效。 2、检查相关的几台sql server服务器是否改过名称(需要srvid=0的本地机器上srvname和datasource一样) 在查询分析器里执行: use master select srvid,srvname,datasource from sysservers 如果没有srvid=0或者srvid=0(也就是本机器)但srvname和datasource不一样, 需要按如下方法修改: use master go -- 设置两个变量 declare @serverproperty_servername varchar(100), @servername varchar(100) -- 取得windows nt 服务器和与指定的 sql server 实例关联的实例信息 select @serverproperty_servername = convert(varchar(100), serverproperty('servername')) -- 返回运行 microsoft sql server 的本地服务器名称 select @servername = convert(varchar(100), @@servername) -- 显示获取的这两个参数 select @serverproperty_servername,@servername --如果@serverproperty_servername和@servername不同(因为你改过计算机名字),再运行下面的 --删除错误的服务器名 exec sp_dropserver @server=@servername --添加正确的服务器名 exec sp_addserver @server=@serverproperty_servername, @local='local' 修改这项参数,需要重新启动mssqlserver和sqlserveragent服务才能生效。 这样一来就不会在创建复制的过程中出现18482、18483错误了。 3、检查sql server企业管理器里面相关的几台sql server注册名是否和上面第二点里介绍的srvname一样 不能用ip地址的注册名。 (我们可以删掉ip地址的注册,新建以sql server管理员级别的用户注册的服务器名) 这样一来就不会在创建复制的过程中出现14010、20084、18456、18482、18483错误了。 4、检查相关的几台sql server服务器网络是否能够正常访问 如果ping主机ip地址可以,但ping主机名不通的时候,需要在 winnt\system32\drivers\etc\hosts (win2000) windows\system32\drivers\etc\hosts (win2003) 文件里写入数据库服务器ip地址和主机名的对应关系。 例如: 127.0.0.1 localhost 192.168.0.35 oracledb oracledb 192.168.0.65 fengyu02 fengyu02 202.84.10.193 bj_db bj_db 或者在sql server客户端网络实用工具里建立别名,例如: 5、系统需要的扩展存储过程是否存在(如果不存在,需要恢复): sp_addextendedproc 'xp_regenumvalues',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletevalue',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletekey',@dllname ='xpstar.dll' go sp_addextendedproc xp_cmdshell ,@dllname ='xplog70.dll' 接下来就可以用sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发]的图形界面来配置数据库复制了。 下面是按顺序列出配置复制的步骤: 1、建立发布和分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器]->[使"@servername"成为它自己的分发服务器,sql server将创建分发数据库和日志] ->[制定快照文件夹]-> [自定义配置] -> [否,使用下列的默认配置] -> [完成] 上述步骤完成后, 会在当前"@servername" sql server数据库里建立了一个distribion库和 一个distributor_admin管理员级别的用户(我们可以任意修改密码)。 服务器上新增加了四个作业: [ 代理程序历史记录清除: distribution ] [ 分发清除: distribution ] [ 复制代理程序检查 ] [ 重新初始化存在数据验证失败的订阅 ] sql server企业管理器里多了一个复制监视器, 当前的这台机器就可以发布、分发、订阅了。 我们再次在sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发] 我们可以在 [发布服务器和分发服务器的属性] 窗口-> [发布服务器] -> [新增] -> [确定] -> [发布数据库] -> [事务]/[合并] -> [确定] -> [订阅服务器] -> [新增] -> [确定] 把网络上的其它sql server服务器添加成为发布或者订阅服务器. 新增一台发布服务器的选项: 我这里新建立的jin001发布服务器是用管理员级别的数据库用户test连接的, 到发布服务器的管理链接要输入密码的可选框, 默认的是选中的, 在新建的jin001发布服务器上建立和分发服务器fengyu/fengyu的链接的时需要输入distributor_admin用户的密码。到发布服务器的管理链接要输入密码的可选框,也可以不选,也就是不需要密码来建立发布到分发服务器的链接(这当然欠缺安全,在测试环境下可以使用)。 2、新建立的网络上另一台发布服务器(例如jin001)选择分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器] -> 使用下列服务器(选定的服务器必须已配置为分发服务器) -> 选定服务器 -> [下一步] -> [输入分发服务器(例如fengyu/fengyu)的distributor_admin用户的密码两次] -> [下一步] -> [自定义配置] -> [否,使用下列的默认配置] -> [下一步] -> [完成] -> [确定] 建立一个数据库复制发布的过程: [复制] -> [发布内容] -> 右键选择 -> [新建发布] -> [下一步] -> [选择发布数据库] -> [选中一个待发布的数据库] -> [下一步] -> [选择发布类型] -> [事务发布]/[合并发布] -> [下一步] -> [指定订阅服务器的类型] -> [运行sql server 2000的服务器] -> [下一步] -> [指定项目] -> [在事务发布中只可以发布带主键的表] -> [选中一个有主键的待发布的表] ->[在合并发布中会给表增加唯一性索引和 rowguidcol 属性的唯一标识符字段[rowguid],默认值是newid()] (添加新列将: 导致不带列列表的 insert 语句失败,增加表的大小,增加生成第一个快照所要求的时间) ->[选中一个待发布的表] -> [下一步] -> [选择发布名称和描述] -> -> [下一步] -> [自定义发布的属性] -> [否,根据指定方式创建发布] -> [下一步] -> [完成] -> [关闭] 发布属性里有很多有用的选项:设定订阅到期(例如24小时) 设定发布表的项目属性: 常规窗口可以指定发布目的表的名称,可以跟原来的表名称不一样。 下图是命令和快照窗口的栏目 ( sql server 数据库复制技术实际上是用insert,update,delete操作在订阅服务器上重做发布服务器上的事务操作 看文档资料需要把发布数据库设成完全恢复模式,事务才不会丢失 但我自己在测试中发现发布数据库是简单恢复模式下,每10秒生成一些大事务,10分钟后再收缩数据库日志, 这期间发布和订阅服务器上的作业都暂停,暂停恢复后并没有丢失任何事务更改 ) 发布表可以做数据筛选,例如只选择表里面的部分列: 例如只选择表里某些符合条件的记录, 我们可以手工编写筛选的sql语句: 发布表的订阅选项,并可以建立强制订阅: 成功建立了发布以后,发布服务器上新增加了一个作业: [ 失效订阅清除 ] 分发服务器上新增加了两个作业: [ jin001-dack-dack-5 ] 类型[ repl快照 ] [ jin001-dack-3 ] 类型[ repl日志读取器 ] 上面蓝色字的名称会根据发布服务器名,发布名及第几次发布而使用不同的编号 repl快照作业是sql server复制的前提条件,它会先把发布的表结构,数据,索引,约束等生成到发布服务器的os目录下文件 (当有订阅的时候才会生成, 当订阅请求初始化或者按照某个时间表调度生成) repl日志读取器在事务复制的时候是一直处于运行状态。(在合并复制的时候可以根据调度的时间表来运行) 建立一个数据库复制订阅的过程: [复制] -> [订阅] -> 右键选择 -> [新建请求订阅] -> [下一步] -> [查找发布] -> [查看已注册服务器所做的发布] -> [下一步] -> [选择发布] -> [选中已经建立发布服务器上的数据库发布名] -> [下一步] -> [指定同步代理程序登录] -> [当代理程序连接到代理服务器时:使用sql server身份验证] (输入发布服务器上distributor_admin用户名和密码) -> [下一步] -> [选择目的数据库] -> [选择在其中创建订阅的数据库名]/[也可以新建一个库名] -> [下一步] -> [允许匿名订阅] -> [是,生成匿名订阅] -> [下一步] -> [初始化订阅] -> [是,初始化架构和数据] -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] (订阅服务器要能访问发布服务器的repldata文件夹,如果有问题,可以手工设置网络共享及共享权限) -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] -> [下一步] -> [设置分发代理程序调度] -> [使用下列调度] -> [更改] -> [例如每五分钟调度一次] -> [下一步] -> [启动要求的服务] -> [该订阅要求在发布服务器上运行sqlserveragent服务] -> [下一步] -> [完成] -> [确定] 成功建立了订阅后,订阅服务器上新增加了一个类别是[repl-分发]作业(合并复制的时候类别是[repl-合并]) 它会按照我们给的时间调度表运行数据库同步复制的作业。 3、sql server复制配置好后, 可能出现异常情况的实验日志: 1.发布服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制没有多大影响 中断期间,分发和订阅都接收到没有复制的事务信息 2.分发服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制有一些影响 中断期间,发布服务器的事务排队堆积起来 (如果设置了较长时间才删除过期订阅的选项, 繁忙发布数据库的事务日志可能会较快速膨胀), 订阅服务器会因为访问不到发布服务器,反复重试 我们可以设置重试次数和重试的时间间隔(最大的重试次数是9999, 如果每分钟重试一次,可以支持约6.9天不出错) 分发服务器sql server服务启动,网络接通以后,发布服务器上的堆积作业将按时间顺序作用到订阅机器上: 会需要一个比较长的时间(实际上是生成所有事务的insert,update,delete语句,在订阅服务器上去执行) 我们在普通的pc机上实验的58个事务100228个命令执行花了7分28秒. 3.订阅服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制影响比较大,可能需要重新初试化 我们实验环境(订阅服务器)从18:46分意外停机以, 第二天8:40分重启动后, 已经设好的复制在8:40分以后又开始正常运行了, 发布服务器上的堆积作业将按时间顺序作用到订阅机器上, 但复制管理器里出现快照的错误提示, 快照可能需要重新初试化,复制可能需要重新启动.(我们实验环境的机器并没有进行快照初试化,复制仍然是成功运行的) 4、删除已经建好的发布和定阅可以直接用delete删除按钮 我们最好总是按先删定阅,再删发布,最后禁用发布的顺序来操作。 如果要彻底删去sql server上面的复制设置, 可以这样操作: [复制] -> 右键选择 [禁用发布] -> [欢迎使用禁用发布和分发向导] -> [下一步] -> [禁用发布] -> [要在"@servername"上禁用发布] -> [下一步] -> [完成禁用发布和分发向导] -> [完成] 我们也可以用t-sql命令来完成复制中发布及订阅的创建和删除, 选中已经设好的发布和订阅, 按属标右键可以[生成sql脚本]。(这里就不详细讲了, 后面推荐的网站内有比较详细的内容) 当你试图删除或者变更一个table时,出现以下错误 server: msg 3724, level 16, state 2, line 1 cannot drop the table 'object_name' because it is being used for replication. 比较典型的情况是该table曾经用于复制,但是后来又删除了复制。 处理办法: select * from sysobjects where replinfo >'0' sp_configure 'allow updates', 1 go reconfigure with override go begin transaction update sysobjects set replinfo = '0' where replinfo >'0' commit transaction go rollback transaction go sp_configure 'allow updates', 0 go reconfigure with override go 答案来源于网络
养狐狸的猫 2019-12-02 02:18:58 0 浏览量 回答数 0

回答

同步两个SQLServer数据库 如何同步两个sqlserver数据库的内容?程序代码可以有版本管理cvs进行同步管理,可是数据库同步就非常麻烦,只能自己改了一个后再去改另一个,如果忘记了更改另一个经常造成两个数据库的结构或内容上不一致.各位有什么好的方法吗? 一、分发与复制 用强制订阅实现数据库同步操作. 大量和批量的数据可以用数据库的同步机制处理: // 说明: 为方便操作,所有操作均在发布服务器(分发服务器)上操作,并使用推模式 在客户机器使用强制订阅方式。 二、测试通过 1:环境 服务器环境: 机器名称: zehuadb 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 客户端 机器名称:zlp 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 2:建用户帐号 在服务器端建立域用户帐号 我的电脑管理->本地用户和组->用户->建立 username:zlp userpwd:zlp 3:重新启动服务器mssqlserver 我的电脑->控制面版->管理工具->服务->mssqlserver 服务 (更改为:域用户帐号,我们新建的zlp用户 .\zlp,密码:zlp) 4:安装分发服务器 a:配置分发服务器 工具->复制->配置发布、订阅服务器和分发->下一步->下一步(所有的均采用默认配置) b:配置发布服务器 工具->复制->创建和管理发布->选择要发布的数据库(sz)->下一步->快照发布->下一步->选择要发布的内容->下一步->下一步->下一步->完成 c:强制配置订阅服务器(推模式,拉模式与此雷同) 工具->复制->配置发布、订阅服务器和分发->订阅服务器->新建->sql server数据库->输入客户端服务器名称(zlp)->使用sql server 身份验证(sa,空密码)->确定->应用->确定 d:初始化订阅 复制监视器->发布服务器(zehuadb)->双击订阅->强制新建->下一步->选择启用的订阅服务器->zlp->下一步->下一步->下一步->下一步->完成 5:测试配置是否成功 复制监视器->发布衿?zehuadb)->双击sz:sz->点状态->点立即运行代理程序 查看: 复制监视器->发布服务器(zehuadb)->sz:sz->选择zlp:sz(类型强制)->鼠标右键->启动同步处理 如果没有错误标志(红色叉),恭喜您配置成功 6:测试数据 在服务器执行: 选择一个表,执行如下sql:        insert into wq_newsgroup_s select '测试成功',5 复制监视器->发布服务器(zehuadb)->sz:sz->快照->启动代理程序 ->zlp:sz(强制)->启动同步处理 去查看同步的 wq_newsgroup_s 是否插入了一条新的记录 测试完毕,通过。 7:修改数据库的同步时间,一般选择夜晚执行数据库同步处理 (具体操作略) :d /* 注意说明: 服务器一端不能以(local)进行数据的发布与分发,需要先删除注册,然后新建注册本地计算机名称 卸载方式:工具->复制->禁止发布->是在"zehuadb"上静止发布,卸载所有的数据库同步配置服务器 注意:发布服务器、分发服务器中的sqlserveragent服务必须启动 采用推模式: "d:\microsoft sql server\mssql\repldata\unc" 目录文件可以不设置共享 拉模式:则需要共享~! */ 少量数据库同步可以采用触发器实现,同步单表即可。 三、配置过程中可能出现的问题 在sql server 2000里设置和使用数据库复制之前,应先检查相关的几台sql server服务器下面几点是否满足: 1、mssqlserver和sqlserveragent服务是否是以域用户身份启动并运行的(.\administrator用户也是可以的) 如果登录用的是本地系统帐户local,将不具备网络功能,会产生以下错误: 进程未能连接到distributor '@server name' (如果您的服务器已经用了sql server全文检索服务, 请不要修改mssqlserver和sqlserveragent服务的local启动。 会照成全文检索服务不能用。请换另外一台机器来做sql server 2000里复制中的分发服务器。) 修改服务启动的登录用户,需要重新启动mssqlserver和sqlserveragent服务才能生效。 2、检查相关的几台sql server服务器是否改过名称(需要srvid=0的本地机器上srvname和datasource一样) 在查询分析器里执行: use master select srvid,srvname,datasource from sysservers 如果没有srvid=0或者srvid=0(也就是本机器)但srvname和datasource不一样, 需要按如下方法修改: use master go -- 设置两个变量 declare @serverproperty_servername  varchar(100), @servername    varchar(100) -- 取得windows nt 服务器和与指定的 sql server 实例关联的实例信息 select @serverproperty_servername = convert(varchar(100), serverproperty('servername')) -- 返回运行 microsoft sql server 的本地服务器名称 select @servername = convert(varchar(100), @@servername) -- 显示获取的这两个参数 select @serverproperty_servername,@servername --如果@serverproperty_servername和@servername不同(因为你改过计算机名字),再运行下面的 --删除错误的服务器名 exec sp_dropserver @server=@servername --添加正确的服务器名 exec sp_addserver @server=@serverproperty_servername, @local='local' 修改这项参数,需要重新启动mssqlserver和sqlserveragent服务才能生效。 这样一来就不会在创建复制的过程中出现18482、18483错误了。 3、检查sql server企业管理器里面相关的几台sql server注册名是否和上面第二点里介绍的srvname一样 不能用ip地址的注册名。 (我们可以删掉ip地址的注册,新建以sql server管理员级别的用户注册的服务器名) 这样一来就不会在创建复制的过程中出现14010、20084、18456、18482、18483错误了。 4、检查相关的几台sql server服务器网络是否能够正常访问 如果ping主机ip地址可以,但ping主机名不通的时候,需要在 winnt\system32\drivers\etc\hosts   (win2000) windows\system32\drivers\etc\hosts (win2003) 文件里写入数据库服务器ip地址和主机名的对应关系。 例如: 127.0.0.1       localhost 192.168.0.35    oracledb    oracledb 192.168.0.65    fengyu02    fengyu02 202.84.10.193   bj_db       bj_db 或者在sql server客户端网络实用工具里建立别名,例如: 5、系统需要的扩展存储过程是否存在(如果不存在,需要恢复): sp_addextendedproc 'xp_regenumvalues',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletevalue',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletekey',@dllname ='xpstar.dll' go sp_addextendedproc xp_cmdshell ,@dllname ='xplog70.dll'  接下来就可以用sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发]的图形界面来配置数据库复制了。 下面是按顺序列出配置复制的步骤: 1、建立发布和分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器]->[使"@servername"成为它自己的分发服务器,sql server将创建分发数据库和日志] ->[制定快照文件夹]-> [自定义配置] -> [否,使用下列的默认配置] -> [完成] 上述步骤完成后, 会在当前"@servername" sql server数据库里建立了一个distribion库和 一个distributor_admin管理员级别的用户(我们可以任意修改密码)。 服务器上新增加了四个作业: [ 代理程序历史记录清除: distribution ] [ 分发清除: distribution ] [ 复制代理程序检查 ] [ 重新初始化存在数据验证失败的订阅 ] sql server企业管理器里多了一个复制监视器, 当前的这台机器就可以发布、分发、订阅了。 我们再次在sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发] 我们可以在 [发布服务器和分发服务器的属性] 窗口-> [发布服务器] -> [新增]   -> [确定] -> [发布数据库] -> [事务]/[合并] -> [确定]  -> [订阅服务器] -> [新增]  -> [确定] 把网络上的其它sql server服务器添加成为发布或者订阅服务器. 新增一台发布服务器的选项: 我这里新建立的jin001发布服务器是用管理员级别的数据库用户test连接的, 到发布服务器的管理链接要输入密码的可选框, 默认的是选中的, 在新建的jin001发布服务器上建立和分发服务器fengyu/fengyu的链接的时需要输入distributor_admin用户的密码。到发布服务器的管理链接要输入密码的可选框,也可以不选,也就是不需要密码来建立发布到分发服务器的链接(这当然欠缺安全,在测试环境下可以使用)。 2、新建立的网络上另一台发布服务器(例如jin001)选择分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器] -> 使用下列服务器(选定的服务器必须已配置为分发服务器) -> [选定服务器](例如fengyu/fengyu) -> [下一步] -> [输入分发服务器(例如fengyu/fengyu)的distributor_admin用户的密码两次] -> [下一步] -> [自定义配置] -> [否,使用下列的默认配置] -> [下一步] -> [完成] -> [确定] 建立一个数据库复制发布的过程: [复制] -> [发布内容] -> 右键选择 -> [新建发布] -> [下一步] -> [选择发布数据库] -> [选中一个待发布的数据库] -> [下一步] -> [选择发布类型] -> [事务发布]/[合并发布] -> [下一步] -> [指定订阅服务器的类型] -> [运行sql server 2000的服务器] -> [下一步] -> [指定项目] -> [在事务发布中只可以发布带主键的表] -> [选中一个有主键的待发布的表] ->[在合并发布中会给表增加唯一性索引和 rowguidcol 属性的唯一标识符字段[rowguid],默认值是newid()] (添加新列将: 导致不带列列表的 insert 语句失败,增加表的大小,增加生成第一个快照所要求的时间) ->[选中一个待发布的表] -> [下一步] -> [选择发布名称和描述] -> -> [下一步] -> [自定义发布的属性] -> [否,根据指定方式创建发布] -> [下一步] -> [完成] -> [关闭] 发布属性里有很多有用的选项:设定订阅到期(例如24小时) 设定发布表的项目属性: 常规窗口可以指定发布目的表的名称,可以跟原来的表名称不一样。 下图是命令和快照窗口的栏目 ( sql server 数据库复制技术实际上是用insert,update,delete操作在订阅服务器上重做发布服务器上的事务操作 看文档资料需要把发布数据库设成完全恢复模式,事务才不会丢失 但我自己在测试中发现发布数据库是简单恢复模式下,每10秒生成一些大事务,10分钟后再收缩数据库日志, 这期间发布和订阅服务器上的作业都暂停,暂停恢复后并没有丢失任何事务更改 ) 发布表可以做数据筛选,例如只选择表里面的部分列: 例如只选择表里某些符合条件的记录, 我们可以手工编写筛选的sql语句: 发布表的订阅选项,并可以建立强制订阅: 成功建立了发布以后,发布服务器上新增加了一个作业: [ 失效订阅清除 ] 分发服务器上新增加了两个作业: [ jin001-dack-dack-5 ] 类型[ repl快照 ] [ jin001-dack-3 ]      类型[ repl日志读取器 ] 上面蓝色字的名称会根据发布服务器名,发布名及第几次发布而使用不同的编号 repl快照作业是sql server复制的前提条件,它会先把发布的表结构,数据,索引,约束等生成到发布服务器的os目录下文件 (当有订阅的时候才会生成, 当订阅请求初始化或者按照某个时间表调度生成) repl日志读取器在事务复制的时候是一直处于运行状态。(在合并复制的时候可以根据调度的时间表来运行) 建立一个数据库复制订阅的过程: [复制] -> [订阅] -> 右键选择 -> [新建请求订阅] -> [下一步] -> [查找发布] -> [查看已注册服务器所做的发布] -> [下一步] -> [选择发布] -> [选中已经建立发布服务器上的数据库发布名] -> [下一步] -> [指定同步代理程序登录] -> [当代理程序连接到代理服务器时:使用sql server身份验证] (输入发布服务器上distributor_admin用户名和密码) -> [下一步] -> [选择目的数据库] -> [选择在其中创建订阅的数据库名]/[也可以新建一个库名] -> [下一步] -> [允许匿名订阅] -> [是,生成匿名订阅] -> [下一步] -> [初始化订阅] -> [是,初始化架构和数据] -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] (订阅服务器要能访问发布服务器的repldata文件夹,如果有问题,可以手工设置网络共享及共享权限) -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] -> [下一步] -> [设置分发代理程序调度] -> [使用下列调度] -> [更改] -> [例如每五分钟调度一次] -> [下一步] -> [启动要求的服务] -> [该订阅要求在发布服务器上运行sqlserveragent服务] -> [下一步] -> [完成] -> [确定] 成功建立了订阅后,订阅服务器上新增加了一个类别是[repl-分发]作业(合并复制的时候类别是[repl-合并]) 它会按照我们给的时间调度表运行数据库同步复制的作业。 3、sql server复制配置好后, 可能出现异常情况的实验日志: 1.发布服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制没有多大影响 中断期间,分发和订阅都接收到没有复制的事务信息 2.分发服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制有一些影响 中断期间,发布服务器的事务排队堆积起来 (如果设置了较长时间才删除过期订阅的选项, 繁忙发布数据库的事务日志可能会较快速膨胀), 订阅服务器会因为访问不到发布服务器,反复重试 我们可以设置重试次数和重试的时间间隔(最大的重试次数是9999, 如果每分钟重试一次,可以支持约6.9天不出错) 分发服务器sql server服务启动,网络接通以后,发布服务器上的堆积作业将按时间顺序作用到订阅机器上: 会需要一个比较长的时间(实际上是生成所有事务的insert,update,delete语句,在订阅服务器上去执行) 我们在普通的pc机上实验的58个事务100228个命令执行花了7分28秒. 3.订阅服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制影响比较大,可能需要重新初试化 我们实验环境(订阅服务器)从18:46分意外停机以, 第二天8:40分重启动后, 已经设好的复制在8:40分以后又开始正常运行了, 发布服务器上的堆积作业将按时间顺序作用到订阅机器上, 但复制管理器里出现快照的错误提示, 快照可能需要重新初试化,复制可能需要重新启动.(我们实验环境的机器并没有进行快照初试化,复制仍然是成功运行的) 4、删除已经建好的发布和定阅可以直接用delete删除按钮 我们最好总是按先删定阅,再删发布,最后禁用发布的顺序来操作。 如果要彻底删去sql server上面的复制设置, 可以这样操作: [复制] -> 右键选择 [禁用发布] -> [欢迎使用禁用发布和分发向导] -> [下一步] -> [禁用发布] -> [要在"@servername"上禁用发布] -> [下一步] -> [完成禁用发布和分发向导] -> [完成] 我们也可以用t-sql命令来完成复制中发布及订阅的创建和删除, 选中已经设好的发布和订阅, 按属标右键可以[生成sql脚本]。(这里就不详细讲了, 后面推荐的网站内有比较详细的内容) 当你试图删除或者变更一个table时,出现以下错误 server: msg 3724, level 16, state 2, line 1 cannot drop the table 'object_name' because it is being used for replication. 比较典型的情况是该table曾经用于复制,但是后来又删除了复制。 处理办法: select * from sysobjects where replinfo >'0' sp_configure 'allow updates', 1 go reconfigure with override go begin transaction update sysobjects set replinfo = '0' where replinfo >'0' commit transaction go rollback transaction go sp_configure 'allow updates', 0 go reconfigure with override go 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:02:42 0 浏览量 回答数 0

问题

如何选择拆分键

拆分键即分库/分表字段,是在水平拆分过程中用于生成拆分规则的数据表字段。DRDS 根据拆分键的值将数据表水平拆分到每个 RDS 实例上的物理分库中。 数据表拆分的首要原则,就是要尽可能找到数据表中的数据在业务逻...
猫饭先生 2019-12-01 21:20:53 1364 浏览量 回答数 0

回答

技术小白一枚,说说自己的看法,见笑。 服务器有一个临时表,保存用户对应的重置密码申请,有唯一标识(用户名或邮箱)。根据唯一标识查询对应用户名中是否有30分钟内,未使用的重置密码申请验证码(在发送时,随机生成,保存临时表并发送邮件)。然后在确认验证码的时候,去后台验证一下就OK了。 ######您好,谢谢您的回答,但是还是有点不解需要您指点,就是说怎么判断是30分钟内呢?数据库表怎么创建呢?而且还会让他过期以后可以删除呢?本人只创建过那种简单的表,没有创建过能够过期删除的表,望不吝赐教!######回复 @张贵成 :您好,谢谢您的回答,但是还是有点不解需要您指点,就是说怎么判断是30分钟内呢?数据库表怎么创建呢?而且还会让他过期以后可以删除呢?本人只创建过那种简单的表,没有创建过能够过期删除的表,望不吝赐教!######回复 @leo108 : 我的临时表指的是一个普通表,只不过里面的数据都是临时的,过期以后可以删除的内种。里面只需要缓存一下可用的验证码便可!######就是普通表,不要加“临时”######字段大致有主键,验证码,对应的账号(或唯一的邮箱),生成时间(每次判断当前时间是否超过30分钟,超过自动删除本记录)。然后再加一个后台任务定时(或是每天)清除垃圾数据,这样就OK了哇。还有什么木有说到的咩?######使用的数据库是Mysql数据库。###### 两个字段 生成的验证码 和 生成的时间,如果验证就匹配。 如果正常登陆就删除这两个字段。 ######回复 @双人鱼XKQ : 如果是字段就为空,如果是一个数据,就删除。######如果验证就匹配。 如果正常登陆就删除这两个字段。 这两句话有点不懂,望详细解释一下,谢谢!###### 放在数据库里,在数据库里弄 ######回复 @双人鱼XKQ : 邮箱、验证码、失效时间放在数据库里,用户输入后再从数据库里比对啊######回复 @hanzhankang : 小白一个,望耐心指点,感激不尽!定虚心求教。说个详细的思路,谢谢!###### @双人鱼XKQ 需要啥字段设计啊,这个很简单啊######我知道是放在数据库里面弄,具体的是在数据库里面怎么弄?######邮箱,验证码,生成时间。来验证是,用当前时间和生成时间对比,看时间是否超过30分钟,验证码对不对,对就更改验证信息为通过,并且删除验证的数据。大概简单的就这样。还有可以用k v缓存,就不需要用数据库######放在缓存中就好了,设置缓存时间 ,就可以了。 ###### 那种用验证码可以,用一次性url也可以的。 不知道一次性url+验证码会不会更好点? ######点击找回密码,后台生成随机字符串,以邮箱为key,随机字符串为value存到memcache,memcache失效时间设置为30分钟,此时异步发送邮件,邮件地址中包含邮箱和随机字符串。当访问邮箱中的url时,我们去校验是否匹配,如果匹配,则可以跳转到修改密码页面。###### 引用来自“张贵成”的评论 技术小白一枚,说说自己的看法,见笑。 服务器有一个临时表,保存用户对应的重置密码申请,有唯一标识(用户名或邮箱)。根据唯一标识查询对应用户名中是否有30分钟内,未使用的重置密码申请验证码(在发送时,随机生成,保存临时表并发送邮件)。然后在确认验证码的时候,去后台验证一下就OK了。 这个简单呀,临时表里面有个字段就是生成时间,然后用户界面输入验证码点击提交的时候,根据当前时间与临时表内的生成时间做对比,如果超过30分钟,给予提示,未超过30分钟,通过验证。至于过期删除,这个只能人为触发,例如每隔半小时去检索一下临时表的生成时间+30分钟<当前时间的,如果有则删除。表内的字段我能想到的大致有几个:主键、用户ID、验证码、生成时间、状态(用于标注该条记录是否已使用,如果是设计的用完一次直接删除的话,就不用这个字段了)、还有一些其他的,例如邮箱、申请人IP这些不重要的。
kun坤 2020-06-08 11:31:13 0 浏览量 回答数 0

回答

最好一个表,要不然,会员和其他表的关联会出问题,比如会员买东西,会员发表评论,你总不能把评论表也搞成两个,购买记录也搞成两个表吧?后患无穷######搞个字段用来区分会员类型不就OK了?######一个表   用一个字段区分  线下,线上    你线上也需要注册的? 也就是说你的表的会员都有  帐号,密码字段    你在加个 初始密码是否使用 的字段就完了 至于你说的初始密码的逻辑 //登录 if(线下){ if(!初始密码是否使用){ 初始密码是否使用 = true; } } ...执行登录 ######回复 @ZhangKevin2 : 判断不只是js判断,服务端也要判断 js是可以绕过的,除了问题就大条了######那我就登录的时候 判断 写个正则,凡是DOWN_开头的 帐户名ID都是线下的,否则就执行普通线上注册的用户登录? 然后线上普通注册的 在注册的时候我在写个JS 限制不能以DOWN_开头注册就行了? 那线下的帐户名和初始密码 是用EXCEL直接导入数据库会员表里?###### 引用来自“NikoG”的答案 搞个字段用来区分会员类型不就OK了? 是啊,这个不就解决了吗?然后在付款的时候判断一下不就得了吗?反正那些行为线下会员优惠点的话,直接判断一下不就得了吗? ######楼主考虑的复杂了吧,你这个情况就如上面提到的,用一个字段识别一下即可。另外,你最后说的VIP和普通会员,与你现在的情况其实是一个性质的。 就和论坛中有不同的用户组一样,不同的组不同的权限,而且也强烈建议你使用权限来区分各用户组所能进行的操作,这样也有利于你日后的扩展。给你一个参考的基础库结构: ID:int(索引) UserID:nvarchar(用户名) Password:nvarchar(密码) Int:int(boolean,是否完成初始化) Group:int(用户组)(另建用户组表,定义各组的权限) Rebate:int(折扣,也可在用户组中定义折扣率,此处的折扣率可用做针对单个用户的私有权限) ######回复 @psaux : 当然CHAR了,MD5之后固定的位数######password直接用char吧,事先确定了使用的hash加密方式和位数。######因为就一个线下和线上 2种情况,所以我觉得没必要搞个用户组来单独搞权限操作######如果线上会员和线下会员区别很大,建议分开表。只是要区分线上线下而已,可以只用一个字段识别。线下会员首次登录需要改密码使用登录次数字段+判断初始密码是否未更改来实现######回复 @ZhangKevin2 : 使用SQL的Left Join就可以。会员类型(线上线下)放置详细表######THANS,登录次数字段还没用过。。 其实还有一点很麻烦,一般会员,如果想登录块点都是分2个会员表,一个是 帐号和密码会员表用户登录,与之相关联的是会员详细信息表,比如会员的个人资料等等。 如此 如果结合线上线下的话 更纠结。。###### 显然分成两个表比较好 而且分成两个系统开发测试也快。 ###### 显然一个表,会员是一个对象,线上线下只是这个对象的属性。你的需求和苏宁电器的会员很类似,苏宁7000多万会员也分线下pos端申请和线上易购网申请,我们用的是一个表,这里存在一个线上线下同步问题,如果会员量小不用考虑都指向一个表就行。另外我们会根据地理区域分库,也就是水平分割,否则检索太慢。首次登陆改密码这个很多会员都有这样的需求,也可以用属性来区别。另外我说的会员一个表是逻辑上的一个表,由于会员有很多属性,都放一个表会影响性能,可以根据业务类型进行垂直切割。 ###### 引用来自“风飞雪”的答案 显然一个表,会员是一个对象,线上线下只是这个对象的属性。你的需求和苏宁电器的会员很类似,苏宁7000多万会员也分线下pos端申请和线上易购网申请,我们用的是一个表,这里存在一个线上线下同步问题,如果会员量小不用考虑都指向一个表就行。另外我们会根据地理区域分库,也就是水平分割,否则检索太慢。首次登陆改密码这个很多会员都有这样的需求,也可以用属性来区别。另外我说的会员一个表是逻辑上的一个表,由于会员有很多属性,都放一个表会影响性能,可以根据业务类型进行垂直切割。 求详细点。。。  之前做的都是普通会员和VIP会员,ECSHOP二次开发等等,这次虽然项目不大也不难,但我还是想尽力做完善点,关键是我们公司策划烂到家了 天天改需求,线上线下会员肯定会有区别,但以后有多大区别还不晓得。 最烦的是有区别又有联系,如果分2个表 以后还要联表。 有些业务处理也麻烦。但如果放在一个表里,2种会员字段数也不一样,线上可能就5个,线下可能还要身份证什么的因为是发卡一对一发展现实中的会员,而且线下会员安全性要求更高 ###### 引用来自“ZhangKevin2”的答案 引用来自“风飞雪”的答案 显然一个表,会员是一个对象,线上线下只是这个对象的属性。你的需求和苏宁电器的会员很类似,苏宁7000多万会员也分线下pos端申请和线上易购网申请,我们用的是一个表,这里存在一个线上线下同步问题,如果会员量小不用考虑都指向一个表就行。另外我们会根据地理区域分库,也就是水平分割,否则检索太慢。首次登陆改密码这个很多会员都有这样的需求,也可以用属性来区别。另外我说的会员一个表是逻辑上的一个表,由于会员有很多属性,都放一个表会影响性能,可以根据业务类型进行垂直切割。 求详细点。。。  之前做的都是普通会员和VIP会员,ECSHOP二次开发等等,这次虽然项目不大也不难,但我还是想尽力做完善点,关键是我们公司策划烂到家了 天天改需求,线上线下会员肯定会有区别,但以后有多大区别还不晓得。 最烦的是有区别又有联系,如果分2个表 以后还要联表。 有些业务处理也麻烦。但如果放在一个表里,2种会员字段数也不一样,线上可能就5个,线下可能还要身份证什么的因为是发卡一对一发展现实中的会员,而且线下会员安全性要求更高 建议一个,如果按你的思路以后如果手机可以注册,为了区别手机注册的还要建个会员表?如果会员系统提供接口给别的系统用,你还要根据会员号去不同的表里查找?显然这样会给系统开发带来不必要的麻烦,这些一个字段就可以解决。现在存储设备如此便宜,为了减少系统复杂而浪费些空间非常值得。不同注册方法的会员字段不同,没有值得让它空着好了,不要太完美了。我们很多表都冗余了浮点和字符的字段,因为需求总是不断变化,时不时的要增加字段,这种冗余字段的方法带来了很多方便。设计系统和表结构首先一个原则就是尽可能的简单,然后再考虑性能最后考虑空间问题。如果会员有上百万建议切割表,将不常用的字段放在另一张表中。 一些拙见,不足之处还望不吝赐教。
kun坤 2020-06-08 16:18:16 0 浏览量 回答数 0

问题

阿里云的产品都是干嘛的

首先给大家推荐一个好链接,大家看了就知道:https://dwz.cn/dR4mHFaw 最近正好对这些产品做过总结,我来介绍一下阿里云主要的产品及功能: ECS (Elastic C...
游客bnlxddh3fwntw 2020-04-24 21:38:46 320 浏览量 回答数 1

回答

简介 如果您听说过 Node,或者阅读过一些文章,宣称 Node 是多么多么的棒,那么您可能会想:“Node 究竟是什么东西?”尽管不是针对所有人的,但 Node 可能是某些人的正确选择。 为试图解释什么是 Node.js,本文探究了它能解决的问题,它如何工作,如何运行一个简单应用程序,最后,Node 何时是和何时不是一个好的解决方案。本文不涉及如何编写一个复杂的 Node 应用程序,也不是一份全面的 Node 教程。阅读本文应该有助于您决定是否应该学习 Node,以便将其用于您的业务。 Node 旨在解决什么问题? Node 公开宣称的目标是 “旨在提供一种简单的构建可伸缩网络程序的方法”。当前的服务器程序有什么问题?我们来做个数学题。在 Java™ 和 PHP 这类语言中,每个连接都会生成一个新线程,每个新线程可能需要 2 MB 配套内存。在一个拥有 8 GB RAM 的系统上,理论上最大的并发连接数量是 4,000 个用户。随着您的客户端基础的增长,您希望您的 web 应用程序支持更多用户,这样,您必须添加更多服务器。当然,这会增加业务成本,尤其是服务器成本、运输成本和人工成本。除这些成本上升外,还有一个技术问题:用户可能针对每个请求使用不同的服务器,因此,任何共享资源都必须在所有服务器之间共享。例如,在 Java 中,静态变量和缓存需要在每个服务器上的 JVMs 之间共享。这就是整个 web 应用程序架构中的瓶颈:一个服务器能够处理的并发连接的最大数量。 Node 解决这个问题的方法是:更改连接连接到服务器的方式。每个连接都创建一个进程,该进程不需要配套内存块,而不是为每个连接生成一个新的 OS 线程(并向其分配一些配套内存)。Node 声称它绝不会死锁,因为它根本不允许使用锁,它不会直接阻塞 I/O 调用。Node 还宣称,运行它的服务器能支持数万个并发连接。事实上,Node 通过将整个系统中的瓶颈从最大连接数量更改到单个系统的流量来改变服务器面貌。 现在您有了一个能处理数万条并发连接的程序,那么您能通过 Node 实际构建什么呢?如果您有一个 web 应用程序需要处理这么多连接,那将是一件很 “恐怖” 的事!那是一种 “如果您有这个问题,那么它根本不是问题” 的问题。在回答上面的问题之前,我们先看看 Node 如何工作以及它被设计的如何运行。 Node 肯定不是什么 没错,Node 是一个服务器程序。但是,它肯定不 像 Apache 或 Tomcat。那些服务器是独立服务器产品,可以立即安装并部署应用程序。通过这些产品,您可以在一分钟内启动并运行一个服务器。Node 肯定不是这种产品。Apache 能添加一个 PHP 模块来允许开发人员创建动态 web 页,使用 Tomcat 的程序员能部署 JSPs 来创建动态 web 页。Node 肯定不是这种类型。 在 Node 的早期阶段(当前是 version 0.4.6),它还不是一个 “运行就绪” 的服务器程序,您还不能安装它,向其中放置文件,拥有一个功能齐全的 web 服务器。即使是要实现 web 服务器在安装完成后启动并运行这个基本功能,也还需要做大量工作。 Node 如何工作 Node 本身运行 V8 JavaScript。等等,服务器上的 JavaScript?没错,您没有看错。服务器端 JavaScript 是一个相对较新的概念,这个概念是大约两年前在 developerWorks 上讨论 Aptana Jaxer 产品时提到的(参见 参考资料)。尽管 Jaxer 一直没有真正流行,但这个理念本身并不是遥不可及的 — 为何不能在服务器上使用客户机上使用的编程语言? 什么使 V8?V8 JavaScript 引擎是 Google 用于他们的 Chrome 浏览器的底层 JavaScript 引擎。很少有人考虑 JavaScript 在客户机上实际做了些什么?实际上,JavaScript 引擎负责解释并执行代码。使用 V8,Google 创建了一个以 C++ 编写的超快解释器,该解释器拥有另一个独特特征;您可以下载该引擎并将其嵌入任何 应用程序。它不仅限于在一个浏览器中运行。因此,Node 实际上使用 Google 编写的 V8 JavaScript 引擎并将其重建为在服务器上使用。太完美了!既然已经有一个不错的解决方案可用,为何还要创建一种新语言呢? 事件驱动编程 许多程序员接受的教育使他们认为,面向对象编程是完美的编程设计,而对其他编程方法不屑一顾。Node 使用一个所谓的事件驱动编程模型。 清单 1. 客户端上使用 jQuery 的事件驱动编程 复制代码 代码如下: // jQuery code on the client-side showing how Event-Driven programming works // When a button is pressed, an Event occurs - deal with it // directly right here in an anonymous function, where all the // necessary variables are present and can be referenced directly $("#myButton").click(function(){ if ($("#myTextField").val() != $(this).val()) alert("Field must match button text"); }); 实际上,服务器端和客户端没有任何区别。没错,这没有按钮点击操作,也没有向文本字段键入的操作,但在一个更高的层面上,事件正在 发生。一个连接被建立 — 事件!数据通过连接接收 — 事件!数据通过连接停止 — 事件! 为什么这种设置类型对 Node 很理想?JavaScript 是一种很棒的事件驱动编程语言,因为它允许匿名函数和闭包,更重要的是,任何写过代码的人都熟悉它的语法。事件发生时调用的回调函数可以在捕获事件处编写。这样,代码容易编写和维护,没有复杂的面向对象框架,没有接口,没有在上面架构任何内容的潜能。只需监听事件,编写一个回调函数,然后,事件驱动编程将照管好一切! 示例 Node 应用程序 最后,我们来看一些代码!让我们将讨论过的所有内容综合起来,创建我们的第一个 Node 应用程序。由于我们已经知道,Node 对于处理高流量应用程序很理想,我们就来创建一个非常简单的 web 应用程序 — 一个为实现最大速度而构建的应用程序。下面是 “老板” 交代的关于我们的样例应用程序的具体要求:创建一个随机数字生成器 RESTful API。这个应用程序应该接受一个输入:一个名为 “number” 的参数。然后,应用程序返回一个介于 0 和该参数之间的随机数字,并将生成的数字返回调用者。由于 “老板” 希望它成为一个广泛流行的应用程序,因此它应该能处理 50,000 个并发用户。我们来看看代码: 清单 2. Node 随机数字生成器 复制代码 代码如下: // these modules need to be imported in order to use them. // Node has several modules. They are like any #include // or import statement in other languages var http = require("http"); var url = require("url"); // The most important line in any Node file. This function // does the actual process of creating the server. Technically, // Node tells the underlying operating system that whenever a // connection is made, this particular callback function should be // executed. Since we're creating a web service with REST API, // we want an HTTP server, which requires the http variable // we created in the lines above. // Finally, you can see that the callback method receives a 'request' // and 'response' object automatically. This should be familiar // to any PHP or Java programmer. http.createServer(function(request, response) { // The response needs to handle all the headers, and the return codes // These types of things are handled automatically in server programs // like Apache and Tomcat, but Node requires everything to be done yourself response.writeHead(200, {"Content-Type": "text/plain"}); // Here is some unique-looking code. This is how Node retrives // parameters passed in from client requests. The url module // handles all these functions. The parse function // deconstructs the URL, and places the query key-values in the // query object. We can find the value for the "number" key // by referencing it directly - the beauty of JavaScript. var params = url.parse(request.url, true).query; var input = params.number; // These are the generic JavaScript methods that will create // our random number that gets passed back to the caller var numInput = new Number(input); var numOutput = new Number(Math.random() * numInput).toFixed(0); // Write the random number to response response.write(numOutput); // Node requires us to explicitly end this connection. This is because // Node allows you to keep a connection open and pass data back and forth, // though that advanced topic isn't discussed in this article. response.end(); // When we create the server, we have to explicitly connect the HTTP server to // a port. Standard HTTP port is 80, so we'll connect it to that one. }).listen(80); // Output a String to the console once the server starts up, letting us know everything // starts up correctly console.log("Random Number Generator Running..."); 将上面的代码放到一个名为 “random.js” 的文件中。现在,要启动这个应用程序并运行它(进而创建 HTTP 服务器并监听端口 80 上的连接),只需在您的命令提示中输入以下命令:% node random.js。下面是服务器已经启动并运行时它看起来的样子: 复制代码 代码如下: root@ubuntu:/home/moila/ws/mike# node random.js Random Number Generator Running... 访问应用程序 应用程序已经启动并运行。Node 正在监听任何连接,我们来测试一下。由于我们创建了一个简单的 RESTful API,我们可以使用我们的 web 浏览器来访问这个应用程序。键入以下地址(确保您完成了上面的步骤):localhost/?number=27。 您的浏览器窗口将更改到一个介于 0 到 27 之间的随机数字。单击浏览器上的 “重新载入” 按钮,将得到另一个随机数字。就是这样,这就是您的第一个 Node 应用程序! Node 对什么有好处? 到此为止,应该能够回答 “Node 是什么” 这个问题了,但您可能还不清楚什么时候应该使用它。这是一个需要提出的重要问题,因为 Node 对有一些东西有好处,但相反,对另一些东西而言,目前 Node 可能不是一个好的解决方案。您需要小心决定何时使用 Node,因为在错误的情况下使用它可能会导致一个多余编码的 LOT。 它对什么有好处? 正如您此前所看到的,Node 非常适合以下情况:您预计可能有很高的流量,而在响应客户端之前服务器端逻辑和处理所需不一定是巨大的。Node 表现出众的典型示例包括: 1.RESTful API 提供 RESTful API 的 web 服务接收几个参数,解析它们,组合一个响应,并返回一个响应(通常是较少的文本)给用户。这是适合 Node 的理想情况,因为您可以构建它来处理数万条连接。它还不需要大量逻辑;它只是从一个数据库查找一些值并组合一个响应。由于响应是少量文本,入站请求时少量文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的 API 需求。 2.Twitter 队列 想像一下像 Twitter 这样的公司,它必须接收 tweets 并将其写入一个数据库。实际上,每秒几乎有数千条 tweets 达到,数据库不可能及时处理高峰时段需要的写入数量。Node 成为这个问题的解决方案的重要一环。如您所见,Node 能处理数万条入站 tweets。它能迅速轻松地将它们写入一个内存排队机制(例如 memcached),另一个单独进程可以从那里将它们写入数据库。Node 在这里的角色是迅速收集 tweet 并将这个信息传递给另一个负责写入的进程。想象一下另一种设计 — 一个常规 PHP 服务器自己试图处理对数据库的写入 — 每个 tweet 将在写入数据库时导致一个短暂的延迟,这是因为数据库调用正在阻塞通道。由于数据库延迟,一台这样设计的机器每秒可能只能处理 2000 条入站 tweets。每秒 100 万条 tweets 需要 500 个服务器。相反,Node 能处理每个连接而不会阻塞通道,从而能捕获尽可能多的 tweets。一个能处理 50,000 条 tweets 的 Node 机器只需要 20 个服务器。 3.映像文件服务器 一个拥有大型分布式网站的公司(比如 Facebook 或 Flickr)可能会决定将所有机器只用于服务映像。Node 将是这个问题的一个不错的解决方案,因为该公司能使用它编写一个简单的文件检索器,然后处理数万条连接。Node 将查找映像文件,返回文件或一个 404 错误,然后什么也不用做。这种设置将允许这类分布式网站减少它们服务映像、.js 和 .css 文件等静态文件所需的服务器数量。 它对什么有坏处? 当然,在某些情况下,Node 并非理想选择。下面是 Node 不擅长的领域: 1.动态创建的页 目前,Node 没有提供一种默认方法来创建动态页。例如,使用 JavaServer Pages (JSP) 技术时,可以创建一个在这样的 JSP 代码段中包含循环的 index.jsp 页。Node 不支持这类动态的、HTML 驱动的页面。同样,Node 不太适合作为 Apache 和 Tomcat 这样的网页服务器。因此,如果您想在 Node 中提供这样一个服务器端解决方案,必须自己编写整个解决方案。PHP 程序员不想在每次部署 web 应用程序时都编写一个针对 Apache 的 PHP 转换器,当目前为止,这正是 Node 要求您做的。 2. 关系数据库重型应用程序 Node 的目的是快速、异步和非阻塞。数据库并不一定分享这些目标。它们是同步和阻塞的,因为读写时对数据库的调用在结果生成之前将一直阻塞通道。因此,一个每个请求都需要大量数据库调用、大量读取、大量写入的 web 应用程序非常不适合 Node,这是因为关系数据库本身就能抵销 Node 的众多优势。(新的 NoSQL 数据库更适合 Node,不过那完全是另一个主题了。) 结束语 问题是 “什么是 Node.js?” 应该已经得到解答。阅读本文之后,您应该能通过几个清晰简洁的句子回答这个问题。如果这样,那么您已经走到了许多编码员和程序员的前面。我和许多人都谈论过 Node,但它们对 Node 究竟是什么一直很迷惑。可以理解,他们具有的是 Apache 的思维方式 — 服务器是一个应用程序,将 HTML 文件放入其中,一切就会正常运转。而 Node 是目的驱动的。它是一个软件程序,使用 JavaScript 来允许程序员轻松快速地创建快速、可伸缩的 web 服务器。Apache 是运行就绪的,而 Node 是编码就绪的。 Node 完成了它提供高度可伸缩服务器的目标。它并不分配一个 “每个连接一个线程” 模型,而是使用一个 “每个连接一个流程” 模型,只创建每个连接需要的内存。它使用 Google 的一个非常快速的 JavaScript 引擎:V8 引擎。它使用一个事件驱动设计来保持代码最小且易于阅读。所有这些因素促成了 Node 的理想目标 — 编写一个高度可伸缩的解决方案变得比较容易。 与理解 Node 是 什么同样重要的是,理解它不是 什么。Node 并不是 Apache 的一个替代品,后者旨在使 PHP web 应用程序更容易伸缩。事实确实如此。在 Node 的这个初始阶段,大量程序员使用它的可能性不大,但在它能发挥作用的场景中,它的表现非常好。 将来应该期望从 Node 得到什么呢?这也许是本文引出的最重要的问题。既然您知道了它现在的作用,您应该会想知道它下一步将做什么。在接下来的一年中,我期待着 Node 提供与现有的第三方支持库更好地集成。现在,许多第三方程序员已经研发了用于 Node 的插件,包括添加文件服务器支持和 MySQL 支持。希望 Node 开始将它们集成到其核心功能中。最后,我还希望 Node 支持某种动态页面模块,这样,您就可以在 HTML 文件中执行在 PHP 和 JSP(也许是一个 NSP,一个 Node 服务器页)中所做的操作。最后,希望有一天会出现一个 “部署就绪” 的 Node 服务器,可以下载和安装,只需将您的 HTML 文件放到其中,就像使用 Apache 或 Tomcat 那样。Node 现在还处于初始阶段,但它发展得很快,可能不久就会出现在您的视野中。 答案来源于网络
养狐狸的猫 2019-12-02 02:17:03 0 浏览量 回答数 0

问题

SSH面试题

1.什么是struts2?struts的工作原理? struts2:1)经典的  mvc (Model  View  Controller) 框架                          ...
琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

回答

场景 我用的数据库是mysql5.6,下面简单的介绍下场景 课程表: 数据100条 学生表: 数据70000条 学生成绩表SC 数据70w条 查询目的:查找语文考100分的考生 查询语句: select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 ) 执行时间:30248.271s 晕,为什么这么慢,先来查看下查询计划: 发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。 先给sc表的c_id和score建个索引 CREATE index sc_c_id_index on SC(c_id); CREATE index sc_score_index on SC(score); 再次执行上述查询语句,时间为: 1.054s 快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要。很多时候都忘记建索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。 但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划: 补充:这里有朋友问怎么查看优化后的语句,方法如下: 在命令窗口执行 有type=all 按照我之前的想法,该sql的执行的顺序应该是先执行子查询 耗时:0.001s 得到如下结果: 然后再执行 耗时:0.001s 这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次。 那么改用连接查询呢? 这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index 执行时间是:0.057s 效率有所提高,看看执行计划: 这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引 在执行连接查询 时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划: 优化后的查询语句为: 貌似是先做的连接查询,再进行的where条件过滤 回到前面的执行计划: 这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序: 正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where过滤是明智方案 现在为了排除mysql的查询优化,我自己写一条优化后的sql 即先执行sc表的过滤,再进行表连接,执行时间为:0.054s 和之前没有建s_id索引的时间差不多,查看执行计划: 先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引 再执行查询: 执行时间为:0.001s,这个时间相当靠谱,快了50倍 执行计划: 我们会看到,先提取sc,再连表,都用到了索引。 那么再来执行下sql 执行时间0.001s 执行计划: 这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。 最近又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了 调整内容为SC表的数据增长到300W,学生分数更为离散。 先回顾下: show index from SC 执行sql 执行时间:0.061s,这个时间稍微慢了点 执行计划: 这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425。 而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率将会更高。 从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大。 因此根据具体业务情况建立多列的联合索引是必要的,那么我们来试试吧。推荐阅读:37 个 MySQL 数据库小技巧! 执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的 执行计划: 该语句的优化暂时告一段落 总结: mysql嵌套子查询效率确实比较低 可以将其优化成连接查询 连接表时,可以先用where条件对表进行过滤,然后做表连接(虽然mysql会对连表语句做优化) 建立合适的索引,必要时建立多列联合索引 学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要 索引优化 上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引。推荐阅读:MySQL数据库开发的 36 条军规! 后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。 单列索引 查询语句如下: 索引: 分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s 执行计划: 发现type=index_merge 这是mysql对多个单列索引的优化,对结果集采用intersect并集操作 多列索引 我们可以在这3个列上建立多列索引,将表copy一份以便做测试 查询语句: 执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多 执行计划: 最左前缀 多列索引还有最左前缀的特性,执行一下语句: 都会使用到索引,即索引的第一个字段sex要出现在where条件中 索引覆盖 就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可,如: 执行时间:0.003s ,要比取所有字段快的多 排序 时间:0.139s 在排序字段上建立索引会提高排序的效率 create index user_name_index on user_test(user_name) 最后附上一些sql调优的总结,以后有时间再深入研究: 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等 建立单列索引 根据需要建立多列联合索引 当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低 如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。 根据业务场景建立覆盖索引只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率 多表连接的字段上需要建立索引,这样可以极大提高表连接的效率 where条件字段上需要建立索引 排序字段上需要建立索引 分组字段上需要建立索引 Where条件上不要使用运算函数,以免索引失效
茶什i 2020-01-13 10:57:49 0 浏览量 回答数 0

回答

每5秒钟内就有1万条数据插入,该不会是一个长事务吧? 还是每次写一条就提交呢? ######@苗威 : 嗯嗯,我这次也就是准备用这个方法解决,谢谢你啦,嘿嘿######@李密 : 一次写一批,与一般的处理方法不一样,可以纵向分表,分库######@李密 : 1万左右的数据,就不用存硬盘了,用内存,java缓存组件也行,memcached也行,Mysql Memory引擎 也行,使用过的删掉,新的添上去。######@李密 : 这个就算作是一种“分区表”的应用啦。对每个运营商指定对应的表,然后在应用层做映射。 1W/5sec的插入加上高并发读取算不小的负荷,不知道使用pgsql(配合分区表)是否能解决性能问题。######@李密 : 能解决问题的方法就是好方法###### 这张表因为要和游戏通信,包含很多必须的字段,字段总数有16个,目前服务器200台,以后估计至少500台,那时候插入和查询数量就更恐怖了,所以我越来越担心以后这个项目问题会卡在这个表上 (昨天(22:10) by 李密) 可以通过把字段分表方式避免单表过大。不过以你远期规模使用现在这种数据库结构肯定会崩溃。如果可行(楼主有权设计修改表结构),建议楼主考虑重新设计数据库表甚至更换数据库(有钱换oracle,免费换pgsql)。 另外,并发读写巨大,磁盘性能很重要,要么用SCSI/SAS阵列要么直接上SSD(但SSD的寿命也许需要考虑)。   已经运营两个月了,表内目前数据1000多万。 一年就6千万,如果不做分区表(以时间划分)那么迟早崩溃 java项目+mysql都在这一台服务器上 楼上还有朋友说读写分离,现在连数据库都不是独立服务器,估计再跑几个月就会葛屁的   关于pgsql和mysql比较的一些帖子 http://www.oschina.net/question/126398_23854 http://www.oschina.net/question/96003_13994 http://www.oschina.net/question/129318_19029    ###### redis和Mysql Memory引擎 都行,10W条数据没问题###### @苗威 : 嗯嗯,谢谢你这么耐心帮我,嘿嘿,以后多向你请教###### @李密: 客气,我也只有些理论基础,分表可以水平分,和垂直分,水平分是各个运营商分,垂直分是把所有的邀请码分成若干张表,比如用最后一个字符分,邀请码如果是字符串最好能换成int存,压缩会加快很多查找速度######抽空我研究下,目前想临时采用分表把这个问题解决下,给每个运营商动态分配一个礼品表,运营商两年内也不会超过200个,表的数量也不会有太多,先分表。威哥,你觉得这样设计有重大缺陷不?因为之前我还没这样做过######是 innodb 还是 myisam 呢 ######薯哥哥,是innodb表######锁表应该是在innodB下发生的吧..myisam直接坏表了 ######是innodb######这种情况充分说明内存缓存设计的重要性 ######天啊..大并发居然用innodB..   我测试过innodB的写入性能是非常低的,cpu效率不高..插入爆慢.. 建议读写分离..写可以innodB,读还是myisam吧..###### @gamespoerleveling : 没用的,读库同样存在数据更新问题。在从innodb写库同步到myisam读库时如果读库正好是访问高峰,那么就会遇到楼主现在同样的锁表情况。 总而言之,在大数据量大并发下mysql就是个坑爹的杯具~###### @mark35 : 我是说的读写分离...读myisam的表###### @hulei : 坏不坏表不好说, 但表锁的代价肯定比行锁高!######myisam是表锁啊,这种程度的数据输入myisam必坏表啊。######在myisam上大并发读写将会更悲摧的~###### 引用来自“红薯”的答案 每5秒钟内就有1万条数据插入,该不会是一个长事务吧? 还是每次写一条就提交呢? 每次写一条就提交,但特别频繁,我之前ORACLE也碰到过这种情况。 ######那paulwong最后是怎么解决呢?可以分享下吗?######所有clinet直连 mysql server ?应该有数据库中间层吧###### 这样的业务逻辑就感觉有问题,以前在唯晶的时候,也做过类似的 为什么要每分钟过来1w,3w的记录?直接生成个百万条记录分给他们去用就行了, 就只有检索和更新了###### @陈俊贤 : 楼主这种应用采用读写分离意义不大并且还可能产生问题:通常情况下查询都会是有效查询,查询到记录就会产生关联写(改写激活码使用状态)。读写分离后数据肯定不是实时同步,那么当记录修改后(激活码已使用)在同步到读库这段时间中读库的该条记录查询结果都是老状态(激活码未使用),事务就不能保证一致了!###### @mark35 : 读写分离只是执行缓刑,不改这个逻辑,死刑是早晚的事###### @陈俊贤 : 读写分离不能根本解决问题的。或者说大家觉得读写分离是银弹那多半是因为mysql本来实在低能,用上读写分离就有效提高性能。但实际上即使使用读写分离也同样存在节点更新问题(写库同步到读库)。###### @李密 : 那就读写分离,照你说的话以后多半会崩掉###### @mark35 : 目前卡的类别已经达到500种以上,所以以后生成量更恐怖了。。。
黄二刀 2020-05-27 20:08:00 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络
养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

各位亲爱的云友,               非常感谢大家踊跃参加DBA专家门诊一期:索引与sql优化,很多云友都提出了自己的问题,门诊主任医师玄惭对大家提的问题一一作了解答。现已整...
xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT