• 关于

    基本控制系统是啥

    的搜索结果

回答

首先,需要明确一点,如果操作系统被安装在D盘,就会发现少有软件会自动识别系统路径并出现D盘的默认安装位置,然而还是有些软件会显示C盘,这和软件安装包有关。所以,C盘并不是绝对的,但一定是很多软件开发商的默契所在,那些可以自动识别系统分区并默认了安装位置为系统盘所在的软件便是在尊重Windows系统的设计。也有像腾讯产品这样自动检测安装目录并创建次目录的软件,但这样人性化设计的安装步骤只存在一小部分。Windows系统中: Program Files和Program Files(x86)是用来存放程序本体的, ProgramData和%user%/appdata是用来存放程序数据的。当你的程序本体出现问题,你只需要重新安装程序,你的用户数据依然会保存。当你要还原程序设置,你只需要从ProgramData或者%user%/appdata中删掉程序的配置文件,就能够把程序还原到初始设置。程序在安装过程中向对应的注册表位置写入软件信息和卸载程序的路径,这样就可以通过控制面板统一的管理程序。所以,绿色软件还是要慎用, 这种脱离了系统管控的东西还是少用为妙。那软件装在C盘好吗?先说说为什么很多用户会在软件安装在C盘和D盘之间选择后者。原因之一:在N年前,硬盘容量还不像现在这样海量,20G就可被称为大容量硬盘的年代,计算机的C盘作为系统盘,在安装完操作系统后基本就没多大空间了,所以当时人们的习惯是将软件安装在非系统盘,以免因为系统盘剩下的空间过小导致虚拟内存不足(那年代物理内存容量也不像现在这么恐怖的,256M跑xp的也有,运行大型软件,例如游戏啥的,虚拟内存还是很必要的。)原因之二:有人说过了,操作系统并非不坏金身,总有挂了的时候,而windows不像类unix环境那样,挂了你自己还可以鼓捣鼓捣,说不定就起来了,windows挂了之后当时大多数人,包括所谓的“高手”们,采用的均是简单粗暴但最有效的方式,格了系统盘重装。 这时备份你的个人文件就是个问题,当时并没有太多的简单易用的系统维护环境可选。(基本都是DOS,一则这东西界面不是那么友好,二则系统被你用崩溃了肯定不是一两天的事儿,在没有文件管理器的情况下把少则数百多则上千的文件从系统盘复制到别的盘符并非易事)。如今呢,咱赶上好时候了,硬件配置大幅提升,使得系统盘空间不够用的情况越来越少了,可以为C盘分担更多的空间,以便在C盘安装软件。并且有了很多较为易用的系统维护环境,基本都是基于PE,用光盘或U盘或网络启动,而不少主板厂商由于BIOS容量激增也开发出了一些基于BIOS的系统维护环境,功能也相当强大。所以,这件事可以遗忘了,不用再强逼自己把软件安装在其他分区中。
独步清客 2019-12-02 00:44:06 0 浏览量 回答数 0

回答

Re云服务器ECS这真是体验最差的一次云服务器了. 前面的问题不理解。。 一开始没选镜像,创建完可以先停止,再更换系统盘,这样就可以选镜像了。 ------------------------- 回6楼imt的帖子 不买外网的话貌似只能通过ECS控制台的网页版VNC进行连接。。。。基本上可以说不买带宽是没啥用的。。
qist 2019-12-02 01:37:35 0 浏览量 回答数 0

问题

阿里云主机重置图文教程及注意事项

       啥是重置?该操作用于初始化您的云服务器的系统,若服务器上面已经有数据一定要注意备份。重置操作是基于系统盘和数据盘。先登录管理控制台将主机停止,停止后会重启按钮会变为重置按钮࿰...
yyd521 2019-12-01 21:25:50 13141 浏览量 回答数 6

回答

代表你的基础已经很好了,嵌入式学习相关的基础知识主要是这些: 一是程序设计的基础,例如:基本的编程语言基础,至少对数据类型、程序的结构及流程控制等最基本的内容要相当清楚,所以建议恶补一下C语言,推荐谭浩强的C语言程序设计,好好看一下,呵呵。另外有不少同学都问到数据结构的基础,我一直认为数据结构和算法的学习是帮助形成程序设计逻辑思维的很好训练方式,对于程序员的长期专业素养的提高一定有好处,所以建议即使已经在嵌入式行业中工作之后也应该多补充一些相关的知识。许多在学校没有学过数据结构的同学往往认为这部分非常枯燥、难学。而实际上如果你能明白研究计算机存储和数据组织方式的意义,就一定能够充分体会到数据结构的价值和魅力。一旦兴趣有了,一切就会迎刃而解,呵呵。 二是操作系统工作原理,这部分往往是非计算机专业的同学在学校时没有接触过的。而由于嵌入式软件设计相关的多任务环境、模块间的同步与通信协同、驱动设计等往往都需要有对操作系统工作机制的了解和掌握作为基础,因此建议没有系统学习过的同学,找一本相关的操作系统工作原理书籍认真看一下(不用特厚、特专业、特内核的,先以普及知识为主,呵呵。)。 三是基本的硬件基础,由于嵌入式Linux开发往往是ARM+Linux路线,所以为了能够在后续学习过程中很好地掌握主流嵌入式微处理器的结构与原理(例如:ARM9),就需要对硬件工作原理有初步的了解和掌握,建议看一下诸如计算机组成原理、体系结构等相关的专业书籍。 要深入学习你可以尝试以下路线: (1) C语言是所有编程语言中的强者,单片机、DSP、类似ARM的种种芯片的编程都可以用C语言搞定),因此必须非常熟练的掌握。 推荐书籍:《The C Programming Language》 这本经典的教材是老外写的,也有中译版本。 (2) 操作系统原理,是必需的,如果你是计算机专业毕业那也就无所谓了,如果是非计算机专业的就必须找一本比较浅显的计算机原理书籍看一看,把啥叫“进程”“线程”“系统调度”等等基本问题搞清楚。 (3)Linux操作系统就是用C语言编写的,所以你也应该先学习下Linux方面的编程,只有你会应用了,才能近一步去了解其内核的精髓。 推荐书籍:《UNIX环境高级编程》(第2版) (4) 了解ARM的架构,原理,以及其汇编指令,我们在嵌入式开发中,一般很少去写汇编,但是最起码的要求是能够看懂arm汇编。 (5) 系统移植的时候,就需要你从最下层的bootloader开始,然后内核移植,文件系统移植等。而移植这部分对硬件的依赖是非常大的,其配置步骤也相对复杂,也没有太多详细资料。 (6) 驱动开发 linux驱动程序设计既是个极富有挑战性的领域,又是一个博大精深的内容。 linux驱动程序设计本质是属于linux内核编程范畴的,因而是对linux内核和内核编程是有要求的。在学习前你要想了解linux内核的组成,因为每一部分要详细研究的话足够可以扩展成一本厚书。 以上只不过是大概的框架,在实际的开发中还会涉及很多东西,比如:交叉编译、makefile、shell脚本等等,所以说学习嵌入式的周期较长,门槛较高,自学的话更是需要较强的学习能力和专业功底。只要能坚持下来一定会取得成功。 华清远见的嵌入式专业教材比较专业,也很出名,高校图书馆以及外面书店都有卖,你可以去网上搜一下,买本看看,华清远见的网站和技术论坛上面也有很多嵌入式学习资料和视频可以下载,而且更新的速度也很快,LZ没事可以去转转,相信对你会有帮助。 另外,虚机团上产品团购,超级便宜-------------------------推荐使用:Linux 高级程序设计(第二版)杨宗德 邓玉春编著 这本书不仅讲述linux常使用的函数,同时对整体的系统结构分析都比较好,例如内存管理,多进程等等
琴瑟 2019-12-02 01:19:56 0 浏览量 回答数 0

回答

rbac######嗯嗯, 用的这个方法控制的控制器. 但HTML里面的按钮只能一个一个IF######可以在按扭这里不判断,让它们都能点。但是点完以后的连接会提示他“没有权限”######回复 @LAJS : +1######这就是坑爹货啊,别人裤子都脱了,你又告诉别人不能XX######这个体验太差啦..######可以用2楼办法。如果要隐藏(菜单、按钮)入口,可以参考phpcms的做法用menu表保存对应信息 ######谢谢,我去看看phpcms###### 每个按钮if一下啊。 要么,就把输出按钮交给php控制,这样就能让权限决定输出什么了。可是麻烦啊,这样还不如if一下啊。。 ######嗯嗯,现在就是每个IF下, 不知道还有什么更简单的方法么###### 通过URL控制权限是最低级的,如果是严谨的系统,最好每个需要权限控制的块都有代码参与。 至于你觉得用if啥的麻烦,可以封装成一个函数嘛。返回true才显示。 ######回复 @乌龟壳 : 明白你的意思了.谢谢 : )######回复 @风弥 : 这是业务,业务上需要控制到多细,代码就要写到多细。和技术无关。######回复 @乌龟壳 : 嗯嗯,谢谢讲解.在厚颜问下,我能在哪里学习到这块知识吗?######回复 @风弥 : 所谓细粒度的API就是说每个操作比如增加下级,编辑文章,乃至改分类,改标题,网页都通过ajax调用你用PHP写的某个API(如:/article/class/edit/)等,那样针对URL的控制才有用,不然还是在页面上每个需要控制的地方用if那些控制吧。话说封装下就一行代码的事。######回复 @风弥 : 不管怎么实现,针对URL的权限控制基本只能控制到页面级,除非你整个网页是由细粒度的API控制的,否则一个页面干多个事情,需要考虑多个权限的话,光看URL怎么控制得了。######想要做到按钮级的,所有页面的按钮布局就需要一样了。######那只能IF了...######你这只是控制按钮而已,我还搞过需要要控制数据库字段的~~比如,销售部门可以看到的字段和后勤部又不一样,某地区的客户和另一地区看到的又不一样,总之就是一个烦。你无论怎么控制始终都是要判断的。只是看你的if是封装好了还是直接写页面里。所谓的权限还不是要先设定好再判断。 ######还好没你的那个麻烦. 哈哈哈哈, 为什么看到你说的.. 瞬间心情好了呢.... 原谅我不厚道的笑了 哈哈哈哈
kun坤 2020-06-05 14:30:11 0 浏览量 回答数 0

问题

如何设计一个高并发系统?【Java问答学堂】45期

面试题 如何设计一个高并发系统? 面试官心理分析 说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥࿰...
剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

问题

介绍阿里云命令行工具

随着深入的使用阿里云的服务器, 特别是ecs实例越来越多了, 感觉从控制台直接维护会觉得比较麻烦, 本来想尝试直接用SDK写一套管理系统的. 最近发现官网开始推命令行工具, 尝试着用了一下. 公测地址: (大家也可以直接去官网推广的看看: ...
恐龙让梨 2019-12-01 22:04:01 9682 浏览量 回答数 0

问题

介绍阿里云命令行工具

随着深入的使用阿里云的服务器, 特别是ecs实例越来越多了, 感觉从控制台直接维护会觉得比较麻烦, 本来想尝试直接用SDK写一套管理系统的. 最近发现官网开始推命令行工具, 尝试着用了一下. 公测地址: (大家也可以直接去官网推广的看看:...
恐龙让梨 2019-12-01 22:03:27 9697 浏览量 回答数 6

问题

给新人们介绍一款工具超级好用

阿里云命令行工具 (aliyun command line interface) 随着深入的使用阿里云的服务器, 特别是ecs实例越来越多了, 感觉从控制台直接维护会觉得比较麻烦, 本来想尝试直接用SDK写一套管理系统的. 最近发现...
恐龙让梨 2019-12-01 22:04:08 7714 浏览量 回答数 2

问题

厦门求职,应届毕业生求个java方向或者安卓的岗位~~? 400 报错

厦门求职,应届毕业生求个java方向或者安卓的岗位~~? 400 报错     男,本科,软件工程专业,之前在一家小公司实习过三个月,本来...
爱吃鱼的程序员 2020-06-02 17:06:34 0 浏览量 回答数 1

回答

可以这样回答:emmm 怎么说呢。 数据库就是用来存储数据的仓库,就像我们生活中存放物品的容器一样,但是容器也有通用和专用之分,比如塑料袋就是通用容器,因为塑料袋可以装各种东西:即可以装糖果,也可以装铅笔。但我们也可以选择一种更合适的存储方式:用糖果盒来装糖果,用笔筒来装铅笔。糖果盒和笔筒就是专用容器。数据和物品一样,也可以采用通用或者专用的存储方式,各有利弊,SQL就是通用数据库,NoSQL就是专用数据库,这就是他俩的区别。 集合论与关系代数 可是为什么SQL可以做到通用呢?世界上的数据结构千千万,为啥SQL可以满足各种需求而且半个世纪都不过时? 虽然说唯一不变的就是变化,计算机行业一直在发生裂变,但是有些基本的东西是永远不变的,或者说变化很慢:当今世上最流行的编程语言JavaScript仍然遵守着60年前Lisp语言的标准,现代操作系统Windows,OSX,Linux都来自于共同祖先Unix。 数据库的发展也是一样,无论形式怎样变化,其本质都是围绕集合论与关系代数来设计的。基本理论决定一切,在软件行业只要掌握了基础数学理论,就掌握了一切变化的规律,这就是SQL永不过时的秘密。 一切都是线性表 软件学家认识到,整个计算机行业都是建立在对数据的一维利用上:无论是内存,外存还是网络,存储和传输的都是一维数据。一维数据也就是线性表,所有复杂的数据结构都建立在线性表之上,任何二维,三维的数据结构也是由线性表组成的。线性表俗称列表,从“人类本质是复读机”理论上看,世间万物都是由列表(集合)组成的。 在宇宙间,一个技术文明等级的重要标志,是它能够控制和使用的微观维度。对于基本粒子的一维使用,从我们那些长毛裸·体的祖先在山洞中生起篝火时就开始了,对化学反应的控制,就是在一维层次上操控微观粒子。当然,这种控制也是从低级到高级,从篝火到后来的蒸汽机,再到后来的发电机;现在,人类对微观粒子一维控制的水平已达到了顶峰,有了计算机和纳米材料。但这一切,都局限于对微观维度的一维控制,在宇宙间一个更高级的文明看来,篝火和计算机、纳米材料等等是没有本质区别的,同属于一个层次。 ------《三体I:地球往事》 科幻小说《三体》刘慈欣 基于这个理论(或者说世界观),集合论被拿来研究数据库了,比如我们数学课本上的集合要求集合的元素具有互异性和无序性:因为要互异,我们有了数据库的唯一性主键;因为要无序,数据库的排序就交给索引来做了。 集合论是数学本身的一个分支,数据库科学出现后,为了研究集合与集合之间的关系,衍生出了一门新的分支:关系代数。 关系代数研究的是二维线性表之间可以发生的各种操作,也就是表格语言,最基本的操作包括矩阵学中的水平分割和垂直分割:分别对应选择和投影。SQL(结构化查询语言)就是关系代数的一个实现,所以SQL数据库也叫关系数据库,关系代数和sql的对应关系如下图: 尽管SQL的语法一直饱受吐槽:凌乱而易引歧义,还不是很优雅。但由于SQL的数学基础很稳固,SQL才能够一直流行到现在。但并不是说NoSQL的基础不稳固,相反NoSQL是对具体结构做具体分析,NoSQL的数学基础往往更简单,更牢固。 表格与图表的统一 无论是表格还是各种统计图在数据上都是统一的,都是二维列表(也可以叫列表的列表),一个表格可以无损地转化成一个柱状图,折线图,雷达图,饼图。。。所以表格可以看成是一种特殊的图表。著名的前端框架ag-grid就是在这个理论上诞生的: 关系代数,SQL,NoSQL,线性表,统计图,表格,ag-grid这些研究的都是集合,都是列表,都是最本质,永恒不变的东西,所以才有那么多学者投入到这个永不过时的领域。 就这样啦~ mua! (完)
茶什i 2019-12-30 11:37:02 0 浏览量 回答数 0

回答

回 2楼(服务器之家) 的帖子 首先封端口这个问题,云盾可没封端口,云盾只是检测是否有危险的端口暴露,至于怎么做这得是自己的事情。 过滤流量、WAF,这只是针对http一种应用的防御措施。对于其他应用基本没做什么防御,这些工作还是落到操作系统防火墙上。 现在这样的设置,只要用户不乱来,安全性不大,但是这还不是国外云计算的那种防御水平。 ------------------------- 回 2楼(服务器之家) 的帖子 希望的是阿里云在云主机外,能够再有一层系统级的防御。这样就算用户操作不当,甚至操作系统防火墙被关闭,也不会有什么问题。 ------------------------- 回 7楼(小夜博客) 的帖子 你知道吗? 我最恨不懂装懂的人。 不懂没什么关系,虚心学习就可以了,可是有些人非得打肿脸充胖子,何必呢? 如果你说的话还沾一点边我就不说什么了,可是你居然连我在说什么都完全搞不懂,南辕北辙,还装模作样地给我提意见。你能提什么意见?提不出来就不要提,免得暴露你自己的水平。 你在论坛上还算常客了。但是你的言论,大多是屁话。好好学习吧,小朋友。 ------------------------- 回 10楼(服务器之家) 的帖子 呵呵,服务器之家,我也只能对你呵呵了。 你这一大段文字想表明什么? 首先,我没有否认现在的设置在安全性上有多大问题。你仔细看看我回复你的,如果用户不乱来,安全性上是没有多大问题的。 其次,你们反复地强调http防御,对于这个我不想做任何深入的讨论,因为这个本就不是我要讨论的范围。也就是说,我并不是说阿里云在http防御上差,所以需要另外加上防火墙。 我再重复下我要表达的意思,请注意。我想说的是,现在由于并没有一层防御对主机做了隔离,可是在阿里云的客户中,很多中小型站长,对技术并不怎么懂。一旦防火墙配置有问题,甚至关闭了防火墙,这就很有问题。而云盾只是检测端口,检测到开发端口后,发送的邮件,很多人是忽略掉了的,根本没有去在意这一回事儿,这就会导致风险。 我所希望的是能有一层防火墙,需要什么端口,用户得去自己主动打开,而不是自己在操作系统中配置。在操作系统中配置防火墙,对很多人来说,还是一件复杂的事情,可是在控制台进行类似的操作就会显得相对简单和明了。这样,就算用户把操作系统的防火墙关闭了,也没有多大的安全问题。 现在明白我的意思了没? 不要动不动发一大段不相干的文字。你是要表面你很牛逼么?你很牛逼连我的意思都看不懂? 用SLB我就不知道你服务器地址了?除了http就不能有其他应用了? 我这个帖子的目的,在于提醒大家重视防火墙的配置。你这样唧唧歪歪个啥?
南极的风 2019-12-02 02:52:33 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。
封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

Re:Re【第一期】周四上午10点ECS产品经理分享与答疑! 1,就是希望自己做好的环境镜像,能够跨域使用,而不是每个域都分别做自定义镜像.@竹雾:这个是一个比较重要的功能,我们正在加紧研发,预计12月。 2,还有内网服务器希望可以随时升级到外网服务器,或者从外网服务器降级到内网服务器..@竹雾:如果是包年包月实例已经可以从内网升级到外网,以及反过来操作。 3,报表希望做的更精细一些.例如我哪个SLB用了多少流量所以扣了多少余额一类的...@竹雾,谢谢您的建议,我们会做持续改进,同时也希望多多反馈。 4,因为我用SLB+ECS内网服务器,所以每次更新程序,就需要开一个按量计算的外网服务器来控制,这样很不方便而且费钱,但是如果开一个1M的外网服务器又觉得不舒服,因为不是很频繁的维护程序,所以希望有一个工具或者一个功能,能让阿里云控制台直接控制内网服务器,例如VNC管理终端就非常不错,唯一可惜的是,没办法直接从控制台上传或者下载文件,还是要很麻烦的用外网服务器控制内网服务器.@竹雾,对于上传下载文件,还是需要外网的方式访问,不过未来会以更好的方式,比如弹性IP的方式,您只需要购买一个公网IP地址已经相应的带宽,这个IP可以在不同时间绑定到不同的实例上,进行操作,不需要的时候IP可以和实例解绑。 5,自动快照现在免费的,这个功能虽然实用,但是平时不碰到问题却没啥存在感,希望增加自动删除早期快照的功能,例如我现在最多只能60个,但是满了,它不会自动删除以前的,会提示快照满了.@竹雾,你说的是自动快照吗?现在系统是会自动删除自动快照的(就是那些以auto_开头的快照),比如您的策略是保留前3天,那么4天前的自动快照会被删除的。 6,希望增加一键迁移,就是自动把北京的服务器迁移到杭州区域,换IP没关系,因为现在买错区域,测试后发现不能如意,但是还有30天过期,那样就白费了,可惜了。。@竹雾:在第1个问题的回答中,除了镜像,我们同时也做快照的复制,但是时间会稍微晚一点。这样跨地域迁移,就可以通过镜像和快照来完成。 我乱讲一下,因为我现在还不是很懂,一边学习一边实践中... @竹雾,非常感谢您的建议,期待和您做更多的交流....... ------------------------- 引用第4楼zhedianshi于2014-09-23 16:36发表的  : 能和产品经理直接线上交流的机会赞啊,有两个问题 1、磁盘原地扩容和支持卸载; 2、不同节点无缝迁移(例如把杭州ecs上的数据一键迁移到北京ecs上) @竹雾,第一个功能已经在开发通道上了,预计在12月底,第二个暂时没有一键迁移的功能,而是通过跨地域复制镜像和快照的方式完成数据转移,然后通过镜像和快照进行重新创建。 ------------------------- Re:Re【第一期】周四上午10k点ECS产品经理分享与答疑! 引用第3楼董哥于2014-09-23 14:46发表的 Re【第一期】周四上午10点ECS产品经理分享与答疑! : 跨结点和跨帐号的镜像是否可以实现,另外现在快照 只能创建机器时使用,能不能后期格式化后,直接通过快照再创数据盘呢 @竹雾,跨地域的镜像复制,可以实现,预计12月推出。跨帐号的镜像分享会在晚些时候推出,已经规划。 关于快照,建议您使用独立云磁盘,通过快照单独创建独立云磁盘后,挂载到实例上。 ------------------------- Re:Re【第一期】周四上午10点ECS产品经理分享与答疑! 引用第8楼kbyyd24于2014-09-23 17:47发表的 Re【第一期】周四上午10点ECS产品经理分享与答疑! : 好机会啊!!! 我老师让我把ECS和OSS结合使用,完全不会啊!! 老师的意思是用ECS来控制OSS存储,同时在ECS上生成OSS的上传下载日志 我刚把OSS基本弄会TT 求解救 @竹雾,不是非常明白您的场景,我猜您是要用ECS做一个前端应用,然后存储到OSS上吗?可以使用OSS API嵌到您的前端应用上来进行上传下载,同时记录这些日志到ECS上。也欢迎其他同学集思广益一下。 ------------------------- Re:Re【第一期】周四上午10点ECS产品经理分享与答疑! 引用第10楼蓝色之鹰于2014-09-23 21:18发表的 Re【第一期】周四上午10点ECS产品经理分享与答疑! : 镜像系统,重新选择操作系统。这个可以实现么? @竹雾,您是说原来您的系统是Linux,现在想换Windows吗?这个可以的,在控制台中选择更换系统盘(当然需要先停止实例)就可以了。 ------------------------- Re:Re【第一期】周四上午10点ECS产品经理分享与答疑! 引用第7楼眼缭乱花于2014-09-23 17:05发表的 Re【第一期】周四上午10点ECS产品经理分享与答疑! : 磁盘原地扩容,必须的,说是10月底,或者11月初,能不能提前呢?   @竹雾,我们的攻城狮正在紧锣密鼓的开发中,我们尽量争取早日完成,推出给大家使用。 ------------------------- Re:回23楼ECS产品PD的帖子 引用第30楼董哥于2014-09-25 10:05发表的 回23楼ECS产品PD的帖子 : 独立云磁盘,必须要同一个可用区才可以,如果不是同一个可用区,但是同一个结点这个问题,应该就没有办法通过这个问题解决了吧 @竹雾,可以的,快照和镜像是整个地域有效的,独立云磁盘不能跨可用区,但是快照和镜像可以跨可用区的。 ------------------------- Re:Re【第一期】周四上午10点ECS产品经理分享与答疑! 引用第33楼silan于2014-09-25 15:16发表的 Re【第一期】周四上午10点ECS产品经理分享与答疑! : 好,杭州的这边的VPC方案,到底什么时候能推出/试用? @竹雾,我们正在加紧部署。
ECS-产品PD 2019-12-02 00:30:44 0 浏览量 回答数 0

问题

【产品经理访谈】干货分享:ECS存储、镜像、磁盘的分享与答疑

大家好,9月25日阿里云论坛举办了《产品经理访谈》第一期——“ECS产品经理 存储、镜像、磁盘分享答疑” 。在活动中,我们邀请了云服务器ECS高级产品专家竹雾来为大家解答各种疑问。小番茄已整理好这些干货ÿ...
xiaofanqie 2019-12-01 21:06:42 23915 浏览量 回答数 17

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

面试题 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数...
剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

回答

互联网时代,大家提倡敏捷迭代,总嫌传统方式太重,流程复杂,影响效率,什 么都希望短平快,在扁平化的组织中,经常是需求火速分发到一线研发,然后就靠个 人折腾去了,其实技术架构评审这同样是一个非常重要的环节。架构评审或技术方案 评审的价值在于集众人的力量大家一起来分析看看方案里是否有坑,方案上线后是否会遇到不可逾越的重大技术问题,提前尽可能把一些事情先考虑到提出质疑其实对项 目的健康发展有很大的好处。 基于架构评审,我们的目标核心是要满足以下几点: 1. 设计把关,确保方案合格,各方面都考虑到了,避免缺陷和遗漏,不求方案 多牛,至少不犯错。 2. 保证架构设计合理和基本一致,符合整体原则。 3. 维持对系统架构的全局认知,避免黑盒效应。 4. 通过评审发掘创新亮点,推广最佳实践。 5. 架构设计既要保证架构设计的合理性和可扩展性,又要避免过度设计。架构设计 不仅仅是考虑功能实现,还有很多非功能需求,以及持续运维所需要的工作,需要工 程实践经验,进行平衡和取舍。 架构评审需要以下几点: 1. 技术选型:为什么选用 A 组件不选用 B、C 组件,A 是开源的,开源协议是 啥?基于什么语言开发的,出了问题我们自身是否能够维护?性能方面有没 有压测过?这些所有问题作为技术选型我们都需要考虑清楚,才能做最终决定。 2. 高性能:产品对应的 TPS、QPS 和 RT 是多少?设计上会做到的 TPS、 QPS 和 RT 是多少?而实际上我们整体随着数据量的增大系统性能会不会出 现明显问题?随着业务量、数据量的上升,我们的系统的性能如何去进一步 提高?系统哪个环节会是最大的瓶颈?是否有抗突发性能压力的能力,大概 可以满足多少的 TPS 和 QPS,怎么去做来实现高性能,这些问题都需要我 们去思考。 3. 高可用:是否有单点的组件,非单点的组件如何做故障转移?是否考虑过多活 的方案?是否有数据丢失的可能性?数据丢失如何恢复?出现系统宕机情况, 对业务会造成哪些影响?有无其他补救方案?这些问题需要想清楚,有相应 的解决方案。 4. 可扩展性:A 和 B 的业务策略相差无几,后面会不会继续衍生出 C 的业务策 略,随着业务的发展哪些环节可以做扩展,如何做扩展?架构设计上需要考 虑到业务的可扩展性。 5. 可伸缩性:每个环节的服务是不是无状态的?是否都是可以快速横向扩展的? 扩容需要怎么做手动还是自动?扩展后是否可以提高响应速度?这所有的问 题都需要我们去思考清楚,并有对应的解决方案。 6. 弹性处理:消息重复消费、接口重复调用对应的服务是否保证幂等?是否考虑 了服务降级?哪些业务支持降级?支持自动降级还是手工降级?是否考虑了 服务的超时熔断、异常熔断、限流熔断?触发熔断后对客户的影响?服务是 否做了隔离,单一服务故障是否影响全局?这些问题统统需要我们想清楚对 应的解决方案,才会进一步保证架构设计的合理性。 7. 兼容性:上下游依赖是否梳理过,影响范围多大?怎么进行新老系统替换?新 老系统能否来回切换?数据存储是否兼容老的数据处理?如果对你的上下游 系统有影响,是否通知到上下游业务方?上下游依赖方进行升级的方案成本 如何最小化?这些问题需要有完美的解决方案,稍有不慎会导致故障。 8. 安全性:是否彻底避免 SQL 注入和 XSS ?是否有数据泄露的可能性?是否 做了风控策略?接口服务是否有防刷保护机制?数据、功能权限是否做了控制?小二后台系统是否做了日志审计?数据传输是否加密验签?应用代码中 是否有明文的 AK/SK、密码?这些安全细节问题需要我们统统考虑清楚,安 全问题任何时候都不能轻视。 9. 可测性:测试环境和线上的差异多大?是否可以在线上做压测?线上压测怎 么隔离测试数据?是否有测试白名单功能?是否支持部署多套隔离的测试环 境?测试黑盒白盒工作量的比例是怎么样的?新的方案是否非常方便测试, 在一定程度也需要考量。 10. 可运维性:系统是否有初始化或预热的环节?数据是否指数级别递增?业务 数据是否需要定期归档处理?随着时间的推移如果压力保持不变的话系统需 要怎么来巡检和维护?业务运维方面的设计也需要充分考虑到。 11. 监控与报警:对外部依赖的接口是否添加了监控与报警?应用层面系统内部 是否有暴露了一些指标作监控和报警?系统层面使用的中间件和存储是否有 监控报警?只有充分考虑到各个环节的监控、报警,任何问题会第一时间通 知到研发,阻止故障进一步扩散。 其实不同阶段的项目有不同的目标,我们不会在项目起步的时候做 99.99% 的 可用性支持百万 QPS 的架构,高效完成项目的业务目标也是架构考虑的因素之一。 而且随着项目的发展,随着公司中间件和容器的标准化,很多架构的工作被标准化替 代,业务代码需要考虑架构方面伸缩性运维性等等的需求越来越少,慢慢的这些工作 都能由架构和运维团队来接。一开始的时候我们可以花一点时间来考虑这些问题,但 是不是所有的问题都需要有最终的方案。
Lee_tianbai 2020-12-30 18:33:39 0 浏览量 回答数 0

问题

轻量应用服务器的介绍和开通流程详解

前言 我是2015年加入的阿里云开发者论坛当版主的,到2017年遇到比较多的问题就是很多新手用户并不会操作 ECS 了,很多对云计算产品不理解的用户甚至还会误解为什么会有一个买了却不能开箱即用的产品&#x...
妙正灰 2019-12-01 21:34:35 2533 浏览量 回答数 1

问题

Java技术1000问(3)【精品问答】

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的Java语言概述、数据类型和运算符、面向对象等维度内容。 我们会以每天至少50条的速度,增...
问问小秘 2020-06-02 14:27:10 11463 浏览量 回答数 3

回答

你的测试用例其实并不严谨。 T1, 因为它没有修改数据,所以,只要有基本的MVCC(多版本并发控制)的功能,就可以满足“可重复读”了,无论T2,T3,T4有没有修改数据,根本无需锁定表。 - 比如oracle,这时默认情况下,T1是从undo中读取"旧"数据。 再考虑数据库可能采用行锁,其实你要测试事务隔离级别的步骤应该是这样: 1. T1 T2 关闭autocommit; 2.T1 - select (开事务) 3.T2 - update t1看得到的记录(随便一条),注意不要commit 4.T1 - update T2中事务影响到的那条记录(此时,T1的事务就被挂起了) 5.T2 - 提交 - (这时,T1也解锁了) 要做这样的测试,其实用单纯的数据库客户端开两个SESSION还直观一些,无论是用mysql或postgresql或oracle都能完成这个测试。 确认用例正常后,再考虑多线程(JDBC),然后再考虑Spring的JDBCTemplate. 这样一步步做过去,出问题时,才容易找到原因,否则纠缠太多,不利于学习中的知识点各个击破。 ######回复 @ganqing : 我认为乐观锁不算是数据库管理系统提供的功能。任何程序都可以自己实现。你的理解也没啥大问题吧: 隔离级别是一个定义,锁是实现的手段,对这个手段的优化,提高性能,就是数据库厂商要做的事了。如通过快照实现“可重复读”的目的就是为了提高并发性。######回复 @szf : 是不是我对于隔离级别的理解有问题?######我这么做主要是为了测试下,因为我之前理解的repeatable-read实现一般是是两种方式:一个是使用共享锁,就是T2必须等待T1完成后才能操作。二是使用类似hibernate乐观锁形式的版本检查,这样T1最后提交时发现版本有问题,报异常,操作不成功。但是目前mysql的repeatable-read实现不是上面的两种方式。######回复 @ganqing : 在测试用例的2. T1 - select * from t1 for update; 3. T2 - update t1 就会锁定了。 -- 这是你要的效果? 设计成这样的应用系统那就有够烂的 -- 实话实说哈,不要介意~######回复 @ganqing : 数据库开发者一般优化的方向是提高性能和并发的同时,保证事务完整性。 你提这样的要求的理由是什么? 你希望的操作流程是怎样的呢?###### T1和T2的连接会话中,autocommit必须是0才行。 如果autocommit=1(默认),那么T1 select后, 这个事务就结束了。 这时,即使select后,也要commit,否则锁表。 还有,这个测试跟spring无关啊 ######明白你的意思了,不过spring在创建数据库连接时已经setAutoCommit=false,T1的所有操作都是在一个事务里面,只在最后提交。######因为是使用spring进行事务管理的,在配置里面将事务的隔离级别设置成了 REPEATABLE_READ,所以和spring有关吧。还有你说的autoCommit设置成0,是在哪里啊,mysql配置?
kun坤 2020-06-08 11:18:36 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

面试官心理分析 这个问题是肯定要问的,说白了,就是看你有没有实际干过 es,因为啥?其实 es 性能并没有你想象中那么好的。很多时候数据量大了,特别是有几亿条数据的时候,可能你会懵逼的发现,跑个搜索怎么一下 5~10s,坑爹了。第一次搜索的时候,是 5~10s,后面反而就快了,可能就几百毫秒。 你就很懵,每个用户第一次访问都会比较慢,比较卡么?所以你要是没玩儿过 es,或者就是自己玩玩儿 demo,被问到这个问题容易懵逼,显示出你对 es 确实玩儿的不怎么样? 面试题剖析 说实话,es 性能优化是没有什么银弹的,啥意思呢?就是不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。 性能优化的杀手锏——filesystem cache 你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 里面去。 es 的搜索引擎严重依赖于底层的 filesystem cache,你如果给 filesystem cache 更多的内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。 性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。 这里有个真实的案例。某个公司 es 节点有 3 台机器,每台机器看起来内存很多,64G,总内存就是 64 * 3 = 192G。每台机器给 es jvm heap 是 32G,那么剩下来留给 filesystem cache 的就是每台机器才 32G,总共集群里给 filesystem cache 的就是 32 * 3 = 96G 内存。而此时,整个磁盘上索引数据文件,在 3 台机器上一共占用了 1T 的磁盘容量,es 数据量是 1T,那么每台机器的数据量是 300G。这样性能好吗? filesystem cache 的内存才 100G,十分之一的数据可以放内存,其他的都在磁盘,然后你执行搜索操作,大部分操作都是走磁盘,性能肯定差。 归根结底,你要让 es 性能要好,最佳的情况下,就是你的机器的内存,至少可以容纳你的总数据量的一半。 根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要用来搜索的那些索引,如果内存留给 filesystem cache 的是 100G,那么你就将索引数据控制在 100G 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。 比如说你现在有一行数据。id,name,age .... 30 个字段。但是你现在搜索,只需要根据 id,name,age 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 90% 的数据是不用来搜索的,结果硬是占据了 es 机器上的 filesystem cache 的空间,单条数据的数据量越大,就会导致 filesystem cahce 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的少数几个字段就可以了,比如说就写入 es id,name,age 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 es + hbase 这么一个架构。 hbase 的特点是适用于海量数据的在线存储,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 hbase 里去查询每个 doc id 对应的完整的数据,给查出来,再返回给前端。 写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。 数据预热 假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 filesystem cache 一倍,比如说你写入一台机器 60G 数据,结果 filesystem cache 就 30G,还是有 30G 数据留在了磁盘上。 其实可以做数据预热。 举个例子,拿微博来说,你可以把一些大V,平时看的人很多的数据,你自己提前后台搞个系统,每隔一会儿,自己的后台系统去搜索一下热数据,刷到 filesystem cache 里去,后面用户实际上来看这个热数据的时候,他们就是直接从内存里搜索了,很快。 或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 filesystem cache 里去。 对于那些你觉得比较热的、经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里面去。这样下次别人访问的时候,性能一定会好很多。 冷热分离 es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在 filesystem os cache 里,别让冷数据给冲刷掉。 你看,假设你有 6 台机器,2 个索引,一个放冷数据,一个放热数据,每个索引 3 个 shard。3 台机器放热数据 index,另外 3 台机器放冷数据 index。然后这样的话,你大量的时间是在访问热数据 index,热数据可能就占总数据量的 10%,此时数据量很少,几乎全都保留在 filesystem cache 里面了,就可以确保热数据的访问性能是很高的。但是对于冷数据而言,是在别的 index 里的,跟热数据 index 不在相同的机器上,大家互相之间都没什么联系了。如果有人访问冷数据,可能大量数据是在磁盘上的,此时性能差点,就 10% 的人去访问冷数据,90% 的人在访问热数据,也无所谓了。 document 模型设计 对于 MySQL,我们经常有一些复杂的关联查询。在 es 里该怎么玩儿,es 里面的复杂的关联查询尽量别用,一旦用了性能一般都不太好。 最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。 document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。 分页性能优化 es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。 分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据,最后到协调节点合并成 10 条数据吧?你必须得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。 我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒才能查出来一页数据了。 有什么解决方案吗? 不允许深度分页(默认深度分页性能很差) 跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差。 类似于 app 里的推荐商品不断下拉出来一页一页的 类似于微博中,下拉刷微博,刷出来一页一页的,你可以用 scroll api,关于如何使用,自行上网搜索。 scroll 会一次性给你生成所有数据的一个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动,获取下一页下一页这样子,性能会比上面说的那种分页性能要高很多很多,基本上都是毫秒级的。 但是,唯一的一点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场景。也就是说,你不能先进入第 10 页,然后去第 120 页,然后又回到第 58 页,不能随意乱跳页。所以现在很多产品,都是不允许你随意翻页的,app,也有一些网站,做的就是你只能往下拉,一页一页的翻。 初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。 除了用 scroll api,你也可以用 search_after 来做,search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页页往后翻。初始化时,需要使用一个唯一值的字段作为 sort 字段。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?
剑曼红尘 2020-04-28 14:17:05 0 浏览量 回答数 0

问题

【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?

面试官心理分析 这个问题是肯定要问的,说白了,就是看你有没有实际干过 es,因为啥?其实 es 性能并没有你想象中那么好的。很多时候数据量大了,特别是有几亿条数据的时候...
剑曼红尘 2020-04-28 14:16:56 0 浏览量 回答数 1

回答

Redis里的数据不立刻更新,等redis里数据自然过期。然后去DB里取,顺带重新set redis。这种用法被称作“Cache Aside”。好处是代码比较简单,坏处是会有一段时间DB和Redis里的数据不一致。这个不一致的时间取决于redis里数据设定的有效期,比如10min。但如果Redis里数据没设置有效期,这招就不灵了。2. 更新DB时总是不直接触碰DB,而是通过代码。而代码做的显式更新DB,然后马上del掉redis里的数据。在下次取数据时,模式就恢复到了上一条说的方式。这也算是一种Cache Aside的变体。这要做的好处是,数据的一致性会比较好,一般正常情况下,数据不一致的时间会在1s以下,对于绝大部分的场景是足够了。但是有极少几率,由于更新时序,下Redis数据会和DB不一致(这个有文章解释,这里不展开)。Cache Aside,就是“Cache”在DB访问的主流程上帮个忙1和2的做法常规上被称为“Cache“。而且因为1有更新不及时的问题,2有极端情况下数据会不一致的问题,所以常规Cache代码会把1+2组合起来,要求Redis里的数据必须有过期时间,并且不能太长,这样即便是不一致也能混过去。同时如果是主动对数据进行更新,Cache的数据更新也会比较及时。并且2并不一定总是行得通。比如OLTP的服务在前面是Cache+DB的模式,而数据是由后台管理系统来更新的,总是不会触碰OLTP服务,更不会动Cache。这时将Redis看作是存储也算是一种方案。就是:3. Redis里的数据总是不过期,但是有个背景更新任务(“定时执行的代码” 或者 “被队列驱动的代码)读取db,把最新的数据塞给Redis。这种做法将Redis看作是“存储”。访问者不知道背后的实际数据源,只知道Redis是唯一可以取的数据的地方。当实际数据源更新时,背景更新任务来将数据更新到Redis。这时还是会存在Redis和实际数据源不一致的问题。如果是定时任务,最长的不一致时长就是更新任务的执行间隔;如果是用类似于队列的方式来更新,那么不一致时间取决于队列产生和消费的延迟。常用的队列(或等价物)有Redis(怎么还是Redis),Kafka,AMQ,RMQ,binglog,log文件,阿里的canal等。Cache当作“存储”来用,访问者只看得到Cache这种做法还有一种变体Write Through,写入时直接写DB,DB把数据更新Cache,而读取时读Cache。Write Through + Cache当存储以上方式无论如何都会有一段时间Redis和DB会不一致。实践上,这个不一致时间短则几十ms,长可以到几十分钟。这种程度的一致性对于很多业务场景都已经足够了。很多时候,用户无法区分自己读取的是Redis还是DB,只能读取到其中的一个。这时数据看起来直觉上是没问题的就可以接受了。只要不出现,用户先看见了数据是A,然后看到数据是B,之后一刷新,又看到A的尴尬场景就行了。(这也可以部份解释为啥用经常使用共享式的Cache而不是本地Cache方案)。但对于有些业务,比如协作文档编辑,电商秒杀的扣库存,银行转账等,以上的做法就不够用了。解决办法也有两大类。第一种是不要用Redis,只用DB。或者更直接点说是“只要一个单点的数据源”。这样肯定就没有一致性问题,代价就是CAP中因为CP被满足,因此A被牺牲掉。这就是为啥银行一系统升级就要停服务的原因。当然实际上也有CAP兼顾,但是C要的强一点,A就得弱一点,但不至于完全牺牲掉的做法。这里不展开。另外一种保证一致性的做法就是用某种分布式协议一致性来做,大致可以归结到SAGA或者TCC - 这两种需要业务代码的大量配合。通过业务代码来补偿一致性。2PC, 3PC - 现实当中有XA协议。比如Ehcache是支持XA协议的。但是性能表现不佳,运维也麻烦,我比较少见到实际这么干的。基于Paxos或者Raft的分布式锁,然后对Redis和DB进行双写,但是除非客户端和服务器么次都去访问分布式锁,也会有一点点不一致的问题。这实际上相当于将多个地方的一致性控制交给了分布式锁的集中维护。这些做法实施复杂度和运维复杂度太高,以至于对于像Redis + DB这种场景基本上没人这么干。本质上大家用Redis一般也就是想做个Cache而已。这些方案通常被用到比如多数据中心数据一致性维护的系统中。综上,除了单点DB存储之外的方案,其一致性面临的窘境是要么,接受“最终一致”,但到底多久之后一致,不一致时表现怎么样,有很多种做法。分布式一致性有各种各样的模型,比如线性一致性、顺序一致性等。他们都是在“不一致”和“强一致”之间提供某种折衷。这些折衷大量应用于我们常见的诸多业务之中、如社交、IM、电商不触及钱的地方等要么,要求必须强一致。那么在分布式条件下就要牺牲A。比如访问一个Cache,Cache知道自己的数据不是最新的,就要和DB去Sync,Sync的过程中DB的数据还不能改。期间访问者要不收到一个错误“数据不同步,不能访问”,要不就卡在那里等着同步完成。个人以为,这还不如干脆就不要Cache,在维护强一致的同时,用其他方式来优化访问性能。最最后提醒下,本文有很多不严谨的地方,包括对Cache的形式总结其实只有典型的几种,实际可能的要多得多;再比如对一致性的介绍也非常粗浅,原因是为了让初学者有一点点概念,能看得进去(就这样,已经很长了,评论区里也有人表示接受不了)。对于分布式和其一致性的完整知识的学习需要耗费大量的精力,Good Luck & Best Wishes。 来源:云原生后端社区
保持可爱mmm 2020-04-22 10:23:06 0 浏览量 回答数 0

回答

看透了就知道,从虎口里夺食,简直就是找死。######回复 @徐同乐 : 不高超算项目领导怎么赚钱??这就是虎口夺食######怎么能说从虎口夺食呢,计算是自愿的,你开着电脑还是开着电脑,像公司上班的,反正用的不是自己家的电,无非把CPU的计算资源出租了而已,总比挖比特比现实吧?挖比特币说的在好听,不还是帮国外组织破解密码么?######ls的一句 "看透了就知道" 也是很吊. 那怎么保密么? 科研的机密数据都到用户的电脑了 你这个有点像以前哪本书介绍的p2p网络. ######所谓科研数据只是一个比方,毕竟现在X86的程序开发还是比那些超算的专用程序好写吧,企业也可以利用这个平台啊,现在那些大公司,比如QQ 360我就不信他不利用里电脑干点啥。毕竟免费的计算资源,不用白不用!######这个想法(以及很多你闻所未闻的方案)已经被很多人考虑过了,远早于 bitcoin 出现。而且有小规模的实验。 从经济性来说,这个方案很难有足够的经济动力。也就是说,如果给你的报酬超过你的电费比如 10%,那么其成本会远高于直接建超算了。 比如超算可以建在电费和气温都特别低的地方。现在的 bitcoin 矿场很多建在冰岛,常年低温,地热发电。 国内的找 2 角电费的地方,当地电富裕,电这东西存不下又输不出来,所以特便宜。 再有,民用电子设备往往不是为 24x7 持续工作设计的,长时间工作会导致损坏,坏一张显卡你挖一年都不够成本。 所以主流还是靠玩家的个人兴趣,在中国再加上办公室的免费电。我跑 SETI @Home 可能超过十年了,各种其它分布式计算也零星跑过。 不求回报,单纯因为个人爱好科学而已。 PS: bitcoin 的密码学运算基本是随机的,不能帮 FBI 破解密码。######@kchr 不过吧GFW的计算资源用在科学计算上我觉得更有意义哈哈!######回复 @徐同乐 : 那你可以动手开发这个系统,然后说服别人来用了。######回复 @kchr : yao######回复 @徐同乐 : 一天 7 厘钱,你要吗?######不管是科学计算 还是类似SETI @Home 这样的项目当他的研究成果改变世界的时候,而你参与其中,那么你就是那个改变世界的人,不是么?######比特币这类货币很重要的一个目的就是摆脱各国央行,这样做了不还是央行(zf)控制了吗######不得不说,想法很好。但是。。。你把zf想的太高大上了。等什么时候zf网站都从asp换到。net再说把。###### 实际上很早就有分布式计算项目,而且是全球的。是公益的。http://www.equn.com/wiki/%E6%96%B0%E6%89%8B%E6%8C%87%E5%8D%97:%E4%BB%80%E4%B9%88%E6%98%AF%E5%88%86%E5%B8%83%E5%BC%8F%E8%AE%A1%E7%AE%97 其实大型运算主要不能用一般的分布式,因为计算是串行运算,只有并行才能分布式。 ######我知道这个######几年前见过一个寻找最大素数的网格系统,每个人都可以参与,如果你的客服端成功找到了下一个最大素数就能获得一笔奖金。不知现在还有木有######很好的想法。问题你不是人民而是公民……………………我同学笑话我的话###### Seti@Home
kun坤 2020-06-08 18:00:15 0 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p
kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

问题

#职场 8期 程序员的付费课程怎么赚钱

适合程序员创造的资产·付费课程 投入:★★★★ 前期要准备,后期要剪辑,录音还可能要购买硬件产出:★★★★★ 用户愿意为好的课程花钱持久性:★★★ 技术类课程大概半年需...
游客ih62co2qqq5ww 2020-05-06 14:34:31 12 浏览量 回答数 1

问题

ES 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?【Java问答学堂】28期

面试官心理分析 这个问题是肯定要问的,说白了,就是看你有没有实际干过 es,因为啥?其实 es 性能并没有你想象中那么好的。很多时候数据量大了,特别是有几亿条数据的时候...
剑曼红尘 2020-05-28 09:45:28 15 浏览量 回答数 1

问题

运维最恨4件事:开发同学能帮忙做点啥?

DevOps 这个词表明,开发和运维需要通力合作。然而在现实生活中,双方都会有不同的工作职责,同时看待问题的视角也不尽相同。大多数情况下,都是运维一方得到不公正待遇。为了让开发人员能更...
sunny夏筱 2019-12-01 21:37:39 6779 浏览量 回答数 8

问题

SSH面试题

1.什么是struts2?struts的工作原理? struts2:1)经典的  mvc (Model  View  Controller) 框架                          ...
琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT