• 关于

    响应时间可接受性故障原因

    的搜索结果

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

回答

触摸屏的工作原理  为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏(触摸屏的工作原理)由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。   按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。 五线电阻触摸屏的工作原理   在触摸屏的四个端点RT,RB,LT,LB四个顶点,均加入一个均匀电场,使其下层(氧化铟)ITO GLASS上布满一个均匀电压,上层为收接讯号装置,当笔或手指按压外表上任一点时,在手指按压处, 控制器侦测到电阻产生变化,进而改变坐标。   由于靠压力感应,所以对于触控媒介没有限制手、铅笔,信用卡等,即使戴上手套亦可操作。   触摸屏技术都是依靠控制器来工作的,甚至有的触摸屏本身就是一套控制器,各自的定位原理和各自所用的控制器决定了触摸屏的反应速度、可靠性、稳定性和寿命。   触摸屏的种类 红外线式触摸屏   红外线触摸屏原理很简单,只是在显示器上加上光点距架框,无需在屏幕表面加上涂层或接驳控制器。光点距架框的四边排列了红外线发射管及接收管,在屏幕表面形成一个红外线网。用户以手指触摸屏幕某一点,便会挡住经过该位置的横竖两条红外线, 计算机便可即时算出触摸点位置。红外触摸屏不受电流、电压和静电干扰,适宜某些恶劣的环境条件。其主要优点是价格低廉、安装方便、不需要卡或其它任何控制器,可以用在各档次的计算机上。不过,由于只是在普通屏幕增加了框架,在使用过程中架框四周的红外线发射管及接收管很容易损坏,且分辨率较低。 电容式触摸屏   电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。   电容式触摸屏在触摸屏四边均镀上狭长的电极,在导电体内形成一个低电压交流电场。用户触摸屏幕时,由于人体电场,手指与导体 层间会形成一个耦合电容,四边电极发出的电流会流向触点,而电流强弱与手指到电极的距离成正比,位于触摸屏幕后的控制器便会计算电流的比例及强弱,准确算出触摸点的位置。电容触摸屏的双玻璃不但能保护导体及感应器,更有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。 电阻技术触摸屏   触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D转换,并将得到的电压值与5V相比,即可得触摸点的Y轴坐标,同理得出X轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。   电阻式触摸屏的OTI涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。 表面声波触摸屏   表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于其它触摸屏技术是没有任何贴膜和覆盖层。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。   发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标,控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。三轴一旦确定,控制器就把它们传给主机。   表面声波触摸屏不受温度、湿度等环境因素影响,分辨率极高,有极好的防刮性,寿命长(5000万次无故障);透光率高(92%),能保持清晰透亮的图像质量;没有漂移,最适合公共场所使用。但表面感应系统的感应转换器在长时间运作下,会因声能所产生的压力而受到损坏。一般羊毛或皮革手套都会接收部分声波,对感应的准确度也受一定的影响。屏幕表面或接触屏幕的手指如沾有水渍、油渍、污物或尘埃,也会影响其性能,甚至令系统停止运作。 检测与定位  触摸屏是由多层的复合薄膜构成,透明性能的好坏直接影响到触摸屏的视觉效果。衡量触摸屏透明性能不仅要从它的视觉效果来衡量,还应该包括透明度、色彩失真度、反光性和清晰度这四个特性。   绝对坐标系统。我们传统的鼠标是一种相对定位系统,只和前一次鼠标的位置坐标有关。而触摸屏则是一种绝对坐标系统,要选哪就直接点哪,与相对定位系统有着本质的区别。绝对坐标系统的特点是每一次定位坐标与上一次定位坐标没有关系,每次触摸的数据通过校准转为屏幕上的坐标,不管在什么情况下,触摸屏这套坐标在同一点的输出数据是稳定的。不过由于技术原理的原因,并不能保证同一点触摸每一次采样数据相同的,不能保证绝对坐标定位,点不准,这就是触摸屏最怕的问题:漂移。对于性能质量好的触摸屏来说,漂移的情况出现的并不是很严重。 透明性能  Magic Touch五线电阻触摸屏的A面是导电玻璃而不是导电涂层,导电玻璃的工艺使其寿命得到极大的提高,并且可以提高透光率。   各种触摸屏技术都是依靠传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠性、稳定性和寿命。

寒凝雪 2019-12-02 01:16:44 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站