• 关于

    内容传递网络是什么

    的搜索结果

问题

消息服务的超大消息传输是什么?

问题背景 阿里云消息服务MNS的队列的消息大小最大限制是64K,这个限制基本能够满足在正常情况下消息作为控制流信息交换通道的需求。但是,在某些特殊场景下,消息数据比较大时,就只...
轩墨 2019-12-01 22:08:27 1044 浏览量 回答数 0

回答

升级Access应用程序并不是什么灵丹妙药。可能某些事情会更快,但是某些类型的操作将是真正的狗。这意味着必须通过在服务器端移动数据检索逻辑(视图,存储过程,传递查询)来彻底测试大型应用程序并解决性能瓶颈。 但是,这并不是一个真正的答案。 我认为没有任何自动答案可以解决这个问题。确实,我会说这是人员问题,而不是编程问题。有人必须调查网络并确定所有Access数据库的所有权,然后采访用户以了解正在使用的内容和未使用的内容。然后,应该评估每个应用程序是否应该折叠到企业范围的数据存储/应用程序中,或者将其最初实现为几个用户的小型应用程序是更好的方法。 那不是您想听到的答案,但这恰恰是正确的答案,因为这是人员/管理问题,而不是编程任务。
心有灵_夕 2019-12-26 22:10:14 0 浏览量 回答数 0

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!
auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

回答

首先,并非大神,其次,下面是我的理解首先说明一点,这种做法应该比较好的诠释编程的基本思想、逻辑或者叫做规范。再次,关于复用。再次,方便记忆或者协作开发。如果你硬是使用字典去做,这应该也是完全正确的,但是你无形中让其他人无法很快的搞懂这些代码所传递的含义。关于M不论是正统的MVC 或者是热门的MVVM 其中的M是很重要的一环,对于这种既定的模式而言,Model对于整个程序来说,是有存在的意义,你可以根据他的名字或者是内容对其寓意化,最起码,你自己很快的就可以知道这个玩意是啥。个人感觉,MODEL更像一种规则关于复用想想下面场景你浏览一个列表,这个列表中是所有的用户,当你关注一部分用户后,将这些用户加入到你关注的列表中,同时展示出来。如果是上面的场景,你如果使用网络加载的情况下,你如何处理? 写两次的字典解析嘛?++ 现在要针对上面的场景做本地缓存,那又该怎么做。如果是保存再本地的数据库,当你拿出来的时候,又是一阵凌乱。这个时候是该想想怎么的当时去复用这些数据了把。----MODEL关于协作。其实这一点和复用有管理,如果项目比较大,那么大家如何共用一套规则来制定数据的解析?总结最开始的编程应该是没有任何规则的,开发久了,大家久渐渐的知道什么简单了。以上是我的拙见。
a123456678 2019-12-02 03:15:31 0 浏览量 回答数 0

回答

字符串在Java中是不可变的,因为String对象缓存在String池中。由于缓存的字符串在多个客户之间共享,因此始终存在风险,其中一个客户的操作会影响所有其他客户。例如,如果一段代码将String“Test”的值更改为“TEST”,则所有其他客户也将看到该值。由于String对象的缓存性能是很重要的一方面,因此通过使String类不可变来避免这种风险。 同时,String是final的,因此没有人可以通过扩展和覆盖行为来破坏String类的不变性、缓存、散列值的计算等。String类不可变的另一个原因可能是由于HashMap。 由于把字符串作为HashMap键很受欢迎。对于键值来说,重要的是它们是不可变的,以便用它们检索存储在HashMap中的值对象。由于HashMap的工作原理是散列,因此需要具有相同的值才能正常运行。如果在插入后修改了String的内容,可变的String将在插入和检索时生成两个不同的哈希码,可能会丢失Map中的值对象。 如果你是印度板球迷,你可能能够与我的下一句话联系起来。字符串是Java的VVSLaxman,即非常特殊的类。我还没有看到一个没有使用String编写的Java程序。这就是为什么对String的充分理解对于Java开发人员来说非常重要。 String作为数据类型,传输对象和中间人角色的重要性和流行性也使这个问题在Java面试中很常见。 为什么String在Java中是不可变的是Java中最常被问到的字符串访问问题之一,它首先讨论了什么是String,Java中的String如何与C和C++中的String不同,然后转向在Java中什么是不可变对象,不可变对象有什么好处,为什么要使用它们以及应该使用哪些场景。这个问题有时也会问:“为什么String在Java中是final的”。在类似的说明中,如果你正在准备Java面试,我建议你看看Java编程面试公开书,这是高级和中级Java程序员的优秀资源。它包含来自所有重要Java主题的问题,包括多线程,集合,GC,JVM内部以及Spring和Hibernate框架等。 正如我所说,这个问题可能有很多可能的答案,而String类的唯一设计者可以放心地回答它。我在JoshuaBloch的EffectiveJava书中期待一些线索,但他也没有提到它。我认为以下几点解释了为什么String类在Java中是不可变的或final的: 1)想象字符串池没有使字符串不可变,它根本不可能,因为在字符串池的情况下,一个字符串对象/文字,例如“Test”已被许多参考变量引用,因此如果其中任何一个更改了值,其他参数将自动受到影响,即假设 现在字符串B调用"Test".toUpperCase(),将同一个对象改为“TEST”,所以A也是“TEST”,这不是期望的结果。 下图显示了如何在堆内存和字符串池中创建字符串。 2)字符串已被广泛用作许多Java类的参数,例如,为了打开网络连接,你可以将主机名和端口号作为字符串传递,你可以将数据库URL作为字符串传递,以打开数据库连接,你可以通过将文件名作为参数传递给FileI/O类来打开Java中的任何文件。如果String不是不可变的,这将导致严重的安全威胁,我的意思是有人可以访问他有权授权的任何文件,然后可以故意或意外地更改文件名并获得对该文件的访问权限。由于不变性,你无需担心这种威胁。这个原因也说明了,为什么String在Java中是最终的,通过使java.lang.Stringfinal,Java设计者确保没有人覆盖String类的任何行为。 3)由于String是不可变的,它可以安全地共享许多线程,这对于多线程编程非常重要.并且避免了Java中的同步问题,不变性也使得String实例在Java中是线程安全的,这意味着你不需要从外部同步String操作。关于String的另一个要点是由截取字符串SubString引起的内存泄漏,这不是与线程相关的问题,但也是需要注意的。 4)为什么String在Java中是不可变的另一个原因是允许String缓存其哈希码,Java中的不可变String缓存其哈希码,并且不会在每次调用String的hashcode方法时重新计算,这使得它在Java中的HashMap中使用的HashMap键非常快。简而言之,因为String是不可变的,所以没有人可以在创建后更改其内容,这保证了String的hashCode在多次调用时是相同的。 5)String不可变的绝对最重要的原因是它被类加载机制使用,因此具有深刻和基本的安全考虑。如果String是可变的,加载“java.io.Writer”的请求可能已被更改为加载“mil.vogoon.DiskErasingWriter”.安全性和字符串池是使字符串不可变的主要原因。顺便说一句,上面的理由很好回答另一个Java面试问题:“为什么String在Java中是最终的”。要想是不可变的,你必须是最终的,这样你的子类不会破坏不变性。你怎么看?
珍宝珠 2020-02-07 16:52:57 0 浏览量 回答数 0

问题

【精品问答】python百大常见问题与答案详解

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术常见问题内容,包含最基础的如何学python实践中遇到的技术问题。下面我逐个码字整理的python入门必会的小知识࿰...
祖安文状元 2020-02-24 17:56:41 363 浏览量 回答数 1

问题

云服务器ECS三张网卡是什么

一台云服务器ECS实例一般搭载了三张网卡,其默认名称分别为(Windows/Linux): 本地回环网卡(loopback/lo):用于服务器...
boxti 2019-12-01 21:51:06 1901 浏览量 回答数 0

问题

荆门开诊断证明-scc

(微)电〗【186-6605-3854〗号【精品问答】Java技术1000问(1) 问问小秘 2019-11-15 11:24:15 9099 为了方便Java开发者快速找到相关技术问题和答案,开发...
游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

回答

木心的《从前慢》里说: 记得早先少年时 大家诚诚恳恳 说一句 是一句 …… 从前的日色变得慢 车,马,邮件都慢 一生只够爱一个人 从前的锁也好看 钥匙精美有样子 你锁了 人家就懂了 木心怀念着过去那个通过邮件传递信息的简单时代。 当下的网络时代虽然瞬息万变,但传递信息也是一样的“说一句,是一句”,“你 锁了,人家就懂了”。 小程序经常需要往服务器传递数据或者从服务器拉取信息。 当用户通过小程序加载服务器传来的信息时,整个网络过程如下: 1. 用户通过小程序向服务器发出 GET 请求, 2. 服务器发送一个响应,响应信息包含一个数据文件。 上面的流程也许过于简化,其实用户与服务器之间不可能面对面直接通话,因为它 们相隔不是很近,甚至服务器是在浏览器的千里之外,而客户端浏览器不可能直通 服务器。 每一次的网络请求,小程序传递给服务器的信息,中间经过多重的信息转达。同理 服务器回应小程序的响应也是同样的路径。 通俗点说,就是传纸条的原理。写字条的同学需要把字条递给旁边第一个同学,然 后第二个同学递给第三个同学,以此类推,一直传递到最后的信息接收者。 让我们看看,在传递字条的过程中,如果信息发出者想要给信息最末尾的接受者告 白,会发生什么呢? 在HTTP 状态下,传递者都可以打开字条,查看里面的内容。而且发送信息者无法知道传输路径,一旦发生信息窃取,甚至不知道是谁窃取的。 还是就是当信息落入心怀不轨的人手中,或者篡改信息内容,其后果不可设想。比如,把“你喜欢我吗?”篡改成“你不喜欢我吗?”。 为了避免这些情况发生,HTTP 安全版本应运而生,即HTTPS。通过HTTPS,传送的每次信息都被加上一个锁。 该锁配套的公钥和密钥仅小程序和服务器知道,其他传递者无法获取。因此,无论客户端发送的信息经过多个路由器,他人都无法读取信息内容。客户端发送初始信息到服务器时,在信息内容中包含服务器的名称(在名为“服务器名称指示”的字段中)。而服务器运行商可以在同一台计算机上运行多个站点, 因此运行商可以跟踪到客户端的访问轨迹。虽然初始的信息已设置了加密,但是初始请求是仍未加密的。这就是通过小程序my.request 安全传递告白信息的故事。本节将介绍如何使用my.request API 实现网络请求,并介绍一些使用注意事项。版本要求:基础库1.11.0 或更高版本;支付宝客户端10.1.32 或更高版本,若版本较低,建议做兼容处理。 my.request 目前只支持HTTPS 协议的请求。 使用说明:  请预先在 支付宝小程序管理中心 > 小程序详情 > 设置 > 开发设置 > 服务器域名白名单 中配置域名白名单。小程序在以下 API 调用时只能与白名单中的域名进行通讯:HTTP 请 求(my.request)、上传文件(my.uploadFile)、下载文件(my.downloadFile)和 WebSocket(my.connectSocket)。  添加服务器域名白名单后,需要重新打包上传生成体验版,服务器域名才会生效。  在 IDE 上进行调试时,请使用真机预览调试。  支付宝客户端已不再维护 my.httpRequest,建议使用 my.request。另外,钉钉客户端尚 不支持 my.request。若在钉钉客户端开发小程序,则需要使用 my.httpRequest。 扫码体验 重要:  小程序开发过程中,可在开发工具内 详情 > 域名信息 > 忽略 httpRequest 域名合法性 检查 中选择是否忽略域名合法性检查,如果选择忽略,则在模拟器、预览以及真机调试场 景不会校验域名合法性,但小程序上线前必须确保通讯域名在白名单内,否则在正式版本无 法调用。  my.request 的请求头默认值为 {'content-type': 'application/json'},而不是{'contenttype': 'application/x-www-form-urlencoded'}。此外,请求头对象里面的 key 和 value 必须是 String 类型。 示例代码 my.request({ url: 'https://httpbin.org/post', method: 'POST', data: { from: '支付宝', production: 'AlipayJSAPI', }, dataType: 'json', success: function(res) { my.alert({content: 'success'}); }, fail: function(res) { my.alert({content: 'fail'}); }, complete: function(res) { my.hideLoading(); my.alert({content: 'complete'}); } }); // dataType 为 base64 示例 my.request({ url: 'https://gw.alipayobjects.com/mdn/miniapp_de/afts/img/A*G1kWSJbe2zEAAAAA AAAAAABjARQnAQ', method: 'GET', dataType: 'base64', success: (resp) => { console.log('resp data length', resp.data.length); console.log('resp data', resp.data); // 返回格式类似于: ... }, fail: (err) => { console.log('error', err); }, }) 入参 Object 类型,属性如下: 属性 类型 必填 描述 url String 是 目标服务器 URL。 headers Object 否 设置请求的 HTTP 头对象,默认 {'content-type': 'application/json'},该对象里面 的 key 和 value 必须是 String 类型。 method String 否 默认 GET,目前支持 GET/POST/PUT/DELETE。 data Object 否 详见 data 参数说明。 timeout Number 否 超时时间,单位 ms,默认 30000。 dataType String 否 期望返回的数据格式,默认 JSON,支持 JSON、text、 base64、arraybuffer (10.1.70 版本开始支持) 。 success Function 否 调用成功的回调函数。 fail Function 否 调用失败的回调函数。 complete Function 否 调用结束的回调函数(调用成功、 失败都会执行)。 data 参数说明 传给服务器的数据最终会是 String 类型,如果 data 不是 String 类型,会被 转换成 String 。转换规则如下:  若方法为 GET,会将数据转换成 query string: encodeURIComponent(k)=encodeURIComponent(v)&encodeURIComponent(k)=enc odeURIComponent(v)...  若方法为 POST 且 headers['content-type'] 为 application/json ,会对数据进行 JSON 序列化  若方法为 POST 且 headers['content-type'] 为 application/x-www-formurlencoded ,会将数据转换成 query string: encodeURIComponent(k)=encodeURIComponent(v)&encodeURIComponent(k)=enc odeURIComponent(v)... success 回调函数 入参为 Object 类型,属性如下: 属性 类型 描述 data String 响应数据,格式取决于请求时的 dataType 参数, 如果 dataType 值为 base64 时,返回的是符合 data URI scheme 规范的内容字符串。 status Number 响应码。 headers Object 响应头。 返回值 RequestTask 网络请求任务对象。调用 my.request 后返回的请求对象。 RequestTask.abort() 中断请求任务。 示例代码 const task = my.request({url: 'https://httpbin.org/post'}) task.abort(); “抱歉,不是我的菜”:小程序扫码点餐化解尴 尬 月上柳梢头,人约黄昏后。 周五到了,小心翼翼约她出来吃晚饭,她欣然应约。 餐厅位于徐汇区闹中取静的华山路,法式梧桐的点缀让餐厅更显典雅,也更富有异 国情调。踏入餐厅,灯光是橘色的,餐具是蓝的,桌椅也是蓝的,让人恍惚之间有 到了爱琴海边的错觉,唯美的装修风格、充满欧洲风味的精致美食,处处洋溢着地 中海风情,真浪漫啊。 她翩翩而至,裙裾飞扬。 见到她我脸红了。我紧张地问她要吃些什么,又手忙脚乱地叫来服务员点完了菜, 脸上冒出了小汗珠。 窗外的小雨滴滴答答,窗内的我们显得格外安静。 我鼓起勇气,打破沉默,小声问道:“你……你对我印象如何?” “抱歉,不是我的菜……” 此刻,我如同五雷轰顶,只觉天旋地转,眼前华光溢彩的餐厅瞬间变得黯淡了。 “你是不是点错菜了?还是上错菜了呢?”她指着桌上的法式田螺和奶油蘑菇汤, 瞪大了眼睛问我。旁边站着满脸疑惑的上菜员。 如何化解点错菜的尴尬呢?这时就需要使用支付宝小程序扫码点餐的功能了。 为了让用户减少输入,我们可以把复杂的信息编码成一个二维码,利用 my.scan API 调起支付宝扫一扫,用户扫码之后,my.scan 的 success 回调会收到这个 二维码所对应的字符串信息。 例如餐厅点餐的小程序,我们给餐厅中每个餐桌编号 1-100 号,把这个数字编码 到二维码中,扫码获得编号之后,就可以知道是哪一桌点的菜,大大提高点餐体验 和效率。 //page.js Page({ // 点击“扫码订餐”的按钮,触发 tapScan 回调 tapScan: function() { // 调用 my.login 获取微信登录凭证 my.scanCode({ success: function(res) { var num = res.result // 获取到的 num 就是餐桌的编号 } }) } }) 还有很多场景可以结合支付宝 App 扫码能力做到很好的体验,例如通过扫商品 上的一维码做一个商品展示的小程序;通过扫共享单车上的二维码去开启单车。我 们可以多思考如何利用这个扫码能力去替代一些繁琐的输入操作,让我们的小程序 变得更加便捷。 示例代码 // API-DEMO page/API/scan-code/scan-code.json { "defaultTitle": "Scan" <!-- API-DEMO page/API/scan-code/scan-code.axml--> <view class="page"> <view class="page-section"> <form onSubmit="scanCode"> <view> <button type="primary" onTap="scan">扫码</button> </view> </form> </view> </view> // API-DEMO page/API/scan-code/scan-code.js Page({ scan() { my.scan({ type: 'qr', success: (res) => { my.alert({ title: res.code }); }, }); } }) 入参 Object 类型,属性如下: 内容来源:https://developer.aliyun.com/article/756818?spm=a2c6h.12873581.0.dArticle756818.26162b70Su1GZy&groupCode=tech_library
KaFei 2020-04-27 15:46:55 0 浏览量 回答数 0

回答

Django代码注意 1、模板标签里面 extend和include是冲突的,有了extend,include无法生效,原因:是底层渲染独立机制设计导致。 2、#coding:utf-8 这句只有放在代码文件第一行才能生效,放在注释字符串后面可能会失效。 3、由于前端发展而导致的Post请求Rest化和Django原生的技术设施层简化还有事务封装前移,由此产生的结果是业务层完全可以放在views里面。同事Restful化的好处就是可以把跨业务模块调用放在前端,保证了后端模块之间的正切 4、有用户自生成富文本内容的页面上最好不要放置带XSRF的POST表单,前者可能会窃取后者的Token信息。 5、在template里面的==这一类比较逻辑运算符号两边必须有空格,否则影响模板解析 6、form.is_valid内部逻辑中的Clean_data处理中抛出的异常不会向外传递,只会变成form.is_valid()返回false. 7、Django的业务层和View层怎么切分这个问题,一个简单的方法就是给业务层传递什么层级的参数,个人觉得传递验证过的form比较合适。 8、多级if else的两个简化技巧:1是直接用except处理;2是该半路return的直接return掉,这样做虽然不符合过程编程函数设计原则,但是代码相对简洁了很多。 9、Ubuntu生产环境下不能Print Unicode中文,否则会导致error. 10、因为DJango的500机制和事务机制,所以Django的View层对异常处理代码的依赖比较弱。 11、model form定义:没有在前端页面出现的字段,一定要exclude掉或者Null了,不过Null会影响默认值,所以最好的方法是Exclude掉,否则即便blank掉,也会导致form存储时出错。因为表单中字段不出现会把默认值覆盖成Null。 比exclude更方便的定义方式是定义fields元信息,这样model添加不用的字段不用跑来重新更新form定义 12、数据库存时区性数据的格式化显示一定要放在template里面用date之类的过滤器操作,如果用datetime的striftime直接格式化,会导致时区性数据丢失,出来的时间成了格林威治时间值了,如果在代码中strifttime处理,可以先用django.utils.timezone.localtime方法处理一下,这样出来的时间才是正常的 13、Django调试中的一个问题:众所周知,runserver启动,改动代码,服务会重启,但是改动自定义标签代码,服务是不会重启的。 14、form验证的errors在比较旧的版本里面是没有文本信息,前一段时间看文档,发现新版本有对errors有所加强,比较好用的比如as_json()和as_text(),两个方法,我在比较旧的版本中是自己写个函数对errors对象做解析生成反馈文本信息。 15、ManyToMany字段的through不能add or remove,为了扩展性的考虑,建议默认都加上through,可以为中间关系表加个date_added字段,顺便都加上unique_together约束,不过用through是有缺陷的:写操作略麻烦。那么如果你没加through,准备改成加through的,应该怎样最小改动的操作哪,应该是先把这个ManyToMany字段删除掉,并且migrate生效,然后再加一个有through的ManyToMany字段,当然了后台的数据还的备份重生效一次。这应该算是目前Django Migration特性的一个缺陷。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:02:13 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

回答

经验谈不上,去年刚毕业的时候在一家小公司实习,刚好网站换代,而且人手不够,所以我就参与到了产品的交互设计中,这里我就讲下我的一点心得和体会吧。因为经验几乎为零,所以首先我决定参考同类产品中的优秀者,设计的正确与否很大一部分源自丰富的经验,如果经验不够怎么办,那就从学习那些有经验的设计人员开发出来的优秀产品入手吧。因为我做的是网络教育这个行业的产品,所以我花了大概一周的时间,每晚5个,总共观摩了大概2,30个左右的同类产品,为什么每晚只有5个呢,是因为我不仅仅是单纯地浏览网站,而是每一个都要注册登陆,真正地体验,只有这样你才能真切地体会到产品,而且在这个过程你能把握到不少优秀交互逻辑,这些都是只浏览网站拿不到的。此外在这个过程中,我觉得横向比较很重要的,为什么我在网站A用得不爽,而在B则爱不释手呢,仔细分析里面的原因。好了,还是具体讲讲我的一些心得吧: 1.功能明确我觉得在产品初期,一定要保持整个产品的清晰度,各个功能点要明确清楚,不要叠加逻辑,让用户像走迷宫一样在里面转,我觉得就应该把用户当做一个“笨蛋”,他可以不费周折地就畅游在你的产品内。在《代码大全》里面有句话是-优秀的代码是它自己最好的文档。当你考虑要添加一个注释时,问问自己,“如何能改进这段代码,以让它不需要注释?”,那么在设计产品时,我们也可以问问自己“如何能明确这个功能,让用户不要用户导航帮助之类的文档就能明白”。这里说下我喜欢的 segmentfault 里的一个小问题,老用户应该知道 segmentfault 有个文章的栏目,这个栏目其实和博客是有功能叠加的,所以我认为这也是功能未明确的一种表现。2.页面一定要有测重点比如场景是在一个用户观看网课的页面,结果你把页面内的一些其他功能做得“异常精彩”,用户就会走神,甚至直接点开去到其他页面了,所以每个页面都要有侧重点,可以适当传递一下其他信息,但是不能喧宾夺主。要让用户专注当前页面的重点内容上。3.交互文本要设计恰当分析用户的详细特征,设计合理恰当的交互文本,比如我当时面向的是初高中学生,所以我在设计交互文本时会添加一些“同学们”之类的用词,这会让用户用起来很有亲切感,交互文本不要过于专业化和生硬。比如当时有个场景时,有个标签记录学生观看视频课程播放的次数,当鼠标放置到数字上是,会有个 tooltip 显示出来,我写的是“亲爱的xxx同学,你已经观看该课程xxx次了,加油哦!”,我觉得这比内容被设计成“该课程已观看xxx次”要亲切不少。4.帮助文档虽然前面说设计产品的目的是为了让用户不需要帮助文档,但是不得不说帮助文档是极其重要的,而且它呈现形式也应该是多样的,直接弄个 Q&A 的专栏,然后让用户自己浏览无疑是糟糕的,我当时考虑了两点,第一点是归纳了当时旧网站经常容易让用户混淆的地方,然后清晰地给出用户帮助指示,第二点是新网站新增的功能在用户登陆的时候就直接通过消息和其他方式告知用户。此外,通过在线客服和社区提问的形式提供用户帮助也是应该考虑的选择。以上都是我的一些个人看法,因为经验实在有限,希望能对题主有帮助。BTW,写了这么多,突然想到题主想要的会不会是偏于页面样式的交互设计呢。。。
a123456678 2019-12-02 02:21:33 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

问题

Nginx性能为什么如此吊

Nginx性能为什么如此吊,Nginx性能为什么如此吊,Nginx性能为什么如此吊 (重要的事情说三遍)的性能为什么如此吊!!!         最近几年,web架构拥抱解耦的...
小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

【教程免费下载】 多核与GPU编程: 工具、方法及实践

前言        多核架构出现在21世纪的第一个10年里,给并行计算带来了勃勃生机。新平台需要新方法来进行软件开发,其中一个新方法就是把工具和工作站网络时代的惯例同新兴软件平台(如CUDA...
玄学酱 2019-12-01 22:08:04 2007 浏览量 回答数 1

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

Netty实现原理浅析 1、总体结构 2、网络模型 3、 buffer 4、Ch?400报错

Netty实现原理浅析 1、总体结构 2、网络模型 3、 buffer 4、Channel 5、ChannelEvent 6、ChannelPipeline 7、codec framework 8、小结? 400 报错 Netty是JBo...
爱吃鱼的程序员 2020-06-04 11:53:36 3 浏览量 回答数 1

问题

谈话:服务器技术指南

当你用手机点开一个APP,是不是每次用APP都感觉很爽的样子啊?事实上应用程序就是所谓的前端,他负责给用户带来友好的体验。但是这个并不是应用程序的全部功能。 作者:子龙     ...
dd防护专家 2019-12-01 21:34:55 1480 浏览量 回答数 1

问题

Swarm 集群 应用管理 创建应用

背景信息 使用限制 swarm 集群只支持 compose V1 和 compose V2 版本的编排模板;因此,在使用编排模板创建应用时,请选择 compose V1 或 compose V...
青蛙跳 2019-12-01 21:34:59 781 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。
hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

轻松定制跨终端的视频点播服务-新年活动:回复评论送实验体验券!

前段时间的朋友圈被《奔跑吧,兄弟》、《欢乐颂》、《琅琊榜》等各种刷屏。现在使用点播技术的视频网站越来越火。本文将介绍如何通过阿里云定制跨终端的视频点播服务。          首先,普及下视频点播的起源ÿ...
仟与仟寻 2019-12-01 21:54:08 2787 浏览量 回答数 1

问题

Java技术1000问(3)【精品问答】

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的Java语言概述、数据类型和运算符、面向对象等维度内容。 我们会以每天至少50条的速度,增...
问问小秘 2020-06-02 14:27:10 11463 浏览量 回答数 3

问题

【教程免费下载】Ceph分布式存储实战

前言 随着信息化浪潮的到来,全球各行各业逐步借助信息技术深入发展。据悉,企业及互联网数据以每年50%的速率在增长。据权威调查机构Gartner预测,到2020年,全球数据量将达到35...
知与谁同 2019-12-01 22:07:42 2859 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考
问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!
牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。
养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

回答

简介 如果您听说过 Node,或者阅读过一些文章,宣称 Node 是多么多么的棒,那么您可能会想:“Node 究竟是什么东西?”尽管不是针对所有人的,但 Node 可能是某些人的正确选择。 为试图解释什么是 Node.js,本文探究了它能解决的问题,它如何工作,如何运行一个简单应用程序,最后,Node 何时是和何时不是一个好的解决方案。本文不涉及如何编写一个复杂的 Node 应用程序,也不是一份全面的 Node 教程。阅读本文应该有助于您决定是否应该学习 Node,以便将其用于您的业务。 Node 旨在解决什么问题? Node 公开宣称的目标是 “旨在提供一种简单的构建可伸缩网络程序的方法”。当前的服务器程序有什么问题?我们来做个数学题。在 Java™ 和 PHP 这类语言中,每个连接都会生成一个新线程,每个新线程可能需要 2 MB 配套内存。在一个拥有 8 GB RAM 的系统上,理论上最大的并发连接数量是 4,000 个用户。随着您的客户端基础的增长,您希望您的 web 应用程序支持更多用户,这样,您必须添加更多服务器。当然,这会增加业务成本,尤其是服务器成本、运输成本和人工成本。除这些成本上升外,还有一个技术问题:用户可能针对每个请求使用不同的服务器,因此,任何共享资源都必须在所有服务器之间共享。例如,在 Java 中,静态变量和缓存需要在每个服务器上的 JVMs 之间共享。这就是整个 web 应用程序架构中的瓶颈:一个服务器能够处理的并发连接的最大数量。 Node 解决这个问题的方法是:更改连接连接到服务器的方式。每个连接都创建一个进程,该进程不需要配套内存块,而不是为每个连接生成一个新的 OS 线程(并向其分配一些配套内存)。Node 声称它绝不会死锁,因为它根本不允许使用锁,它不会直接阻塞 I/O 调用。Node 还宣称,运行它的服务器能支持数万个并发连接。事实上,Node 通过将整个系统中的瓶颈从最大连接数量更改到单个系统的流量来改变服务器面貌。 现在您有了一个能处理数万条并发连接的程序,那么您能通过 Node 实际构建什么呢?如果您有一个 web 应用程序需要处理这么多连接,那将是一件很 “恐怖” 的事!那是一种 “如果您有这个问题,那么它根本不是问题” 的问题。在回答上面的问题之前,我们先看看 Node 如何工作以及它被设计的如何运行。 Node 肯定不是什么 没错,Node 是一个服务器程序。但是,它肯定不 像 Apache 或 Tomcat。那些服务器是独立服务器产品,可以立即安装并部署应用程序。通过这些产品,您可以在一分钟内启动并运行一个服务器。Node 肯定不是这种产品。Apache 能添加一个 PHP 模块来允许开发人员创建动态 web 页,使用 Tomcat 的程序员能部署 JSPs 来创建动态 web 页。Node 肯定不是这种类型。 在 Node 的早期阶段(当前是 version 0.4.6),它还不是一个 “运行就绪” 的服务器程序,您还不能安装它,向其中放置文件,拥有一个功能齐全的 web 服务器。即使是要实现 web 服务器在安装完成后启动并运行这个基本功能,也还需要做大量工作。 Node 如何工作 Node 本身运行 V8 JavaScript。等等,服务器上的 JavaScript?没错,您没有看错。服务器端 JavaScript 是一个相对较新的概念,这个概念是大约两年前在 developerWorks 上讨论 Aptana Jaxer 产品时提到的(参见 参考资料)。尽管 Jaxer 一直没有真正流行,但这个理念本身并不是遥不可及的 — 为何不能在服务器上使用客户机上使用的编程语言? 什么使 V8?V8 JavaScript 引擎是 Google 用于他们的 Chrome 浏览器的底层 JavaScript 引擎。很少有人考虑 JavaScript 在客户机上实际做了些什么?实际上,JavaScript 引擎负责解释并执行代码。使用 V8,Google 创建了一个以 C++ 编写的超快解释器,该解释器拥有另一个独特特征;您可以下载该引擎并将其嵌入任何 应用程序。它不仅限于在一个浏览器中运行。因此,Node 实际上使用 Google 编写的 V8 JavaScript 引擎并将其重建为在服务器上使用。太完美了!既然已经有一个不错的解决方案可用,为何还要创建一种新语言呢? 事件驱动编程 许多程序员接受的教育使他们认为,面向对象编程是完美的编程设计,而对其他编程方法不屑一顾。Node 使用一个所谓的事件驱动编程模型。 清单 1. 客户端上使用 jQuery 的事件驱动编程 复制代码 代码如下: // jQuery code on the client-side showing how Event-Driven programming works // When a button is pressed, an Event occurs - deal with it // directly right here in an anonymous function, where all the // necessary variables are present and can be referenced directly $("#myButton").click(function(){ if ($("#myTextField").val() != $(this).val()) alert("Field must match button text"); }); 实际上,服务器端和客户端没有任何区别。没错,这没有按钮点击操作,也没有向文本字段键入的操作,但在一个更高的层面上,事件正在 发生。一个连接被建立 — 事件!数据通过连接接收 — 事件!数据通过连接停止 — 事件! 为什么这种设置类型对 Node 很理想?JavaScript 是一种很棒的事件驱动编程语言,因为它允许匿名函数和闭包,更重要的是,任何写过代码的人都熟悉它的语法。事件发生时调用的回调函数可以在捕获事件处编写。这样,代码容易编写和维护,没有复杂的面向对象框架,没有接口,没有在上面架构任何内容的潜能。只需监听事件,编写一个回调函数,然后,事件驱动编程将照管好一切! 示例 Node 应用程序 最后,我们来看一些代码!让我们将讨论过的所有内容综合起来,创建我们的第一个 Node 应用程序。由于我们已经知道,Node 对于处理高流量应用程序很理想,我们就来创建一个非常简单的 web 应用程序 — 一个为实现最大速度而构建的应用程序。下面是 “老板” 交代的关于我们的样例应用程序的具体要求:创建一个随机数字生成器 RESTful API。这个应用程序应该接受一个输入:一个名为 “number” 的参数。然后,应用程序返回一个介于 0 和该参数之间的随机数字,并将生成的数字返回调用者。由于 “老板” 希望它成为一个广泛流行的应用程序,因此它应该能处理 50,000 个并发用户。我们来看看代码: 清单 2. Node 随机数字生成器 复制代码 代码如下: // these modules need to be imported in order to use them. // Node has several modules. They are like any #include // or import statement in other languages var http = require("http"); var url = require("url"); // The most important line in any Node file. This function // does the actual process of creating the server. Technically, // Node tells the underlying operating system that whenever a // connection is made, this particular callback function should be // executed. Since we're creating a web service with REST API, // we want an HTTP server, which requires the http variable // we created in the lines above. // Finally, you can see that the callback method receives a 'request' // and 'response' object automatically. This should be familiar // to any PHP or Java programmer. http.createServer(function(request, response) { // The response needs to handle all the headers, and the return codes // These types of things are handled automatically in server programs // like Apache and Tomcat, but Node requires everything to be done yourself response.writeHead(200, {"Content-Type": "text/plain"}); // Here is some unique-looking code. This is how Node retrives // parameters passed in from client requests. The url module // handles all these functions. The parse function // deconstructs the URL, and places the query key-values in the // query object. We can find the value for the "number" key // by referencing it directly - the beauty of JavaScript. var params = url.parse(request.url, true).query; var input = params.number; // These are the generic JavaScript methods that will create // our random number that gets passed back to the caller var numInput = new Number(input); var numOutput = new Number(Math.random() * numInput).toFixed(0); // Write the random number to response response.write(numOutput); // Node requires us to explicitly end this connection. This is because // Node allows you to keep a connection open and pass data back and forth, // though that advanced topic isn't discussed in this article. response.end(); // When we create the server, we have to explicitly connect the HTTP server to // a port. Standard HTTP port is 80, so we'll connect it to that one. }).listen(80); // Output a String to the console once the server starts up, letting us know everything // starts up correctly console.log("Random Number Generator Running..."); 将上面的代码放到一个名为 “random.js” 的文件中。现在,要启动这个应用程序并运行它(进而创建 HTTP 服务器并监听端口 80 上的连接),只需在您的命令提示中输入以下命令:% node random.js。下面是服务器已经启动并运行时它看起来的样子: 复制代码 代码如下: root@ubuntu:/home/moila/ws/mike# node random.js Random Number Generator Running... 访问应用程序 应用程序已经启动并运行。Node 正在监听任何连接,我们来测试一下。由于我们创建了一个简单的 RESTful API,我们可以使用我们的 web 浏览器来访问这个应用程序。键入以下地址(确保您完成了上面的步骤):localhost/?number=27。 您的浏览器窗口将更改到一个介于 0 到 27 之间的随机数字。单击浏览器上的 “重新载入” 按钮,将得到另一个随机数字。就是这样,这就是您的第一个 Node 应用程序! Node 对什么有好处? 到此为止,应该能够回答 “Node 是什么” 这个问题了,但您可能还不清楚什么时候应该使用它。这是一个需要提出的重要问题,因为 Node 对有一些东西有好处,但相反,对另一些东西而言,目前 Node 可能不是一个好的解决方案。您需要小心决定何时使用 Node,因为在错误的情况下使用它可能会导致一个多余编码的 LOT。 它对什么有好处? 正如您此前所看到的,Node 非常适合以下情况:您预计可能有很高的流量,而在响应客户端之前服务器端逻辑和处理所需不一定是巨大的。Node 表现出众的典型示例包括: 1.RESTful API 提供 RESTful API 的 web 服务接收几个参数,解析它们,组合一个响应,并返回一个响应(通常是较少的文本)给用户。这是适合 Node 的理想情况,因为您可以构建它来处理数万条连接。它还不需要大量逻辑;它只是从一个数据库查找一些值并组合一个响应。由于响应是少量文本,入站请求时少量文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的 API 需求。 2.Twitter 队列 想像一下像 Twitter 这样的公司,它必须接收 tweets 并将其写入一个数据库。实际上,每秒几乎有数千条 tweets 达到,数据库不可能及时处理高峰时段需要的写入数量。Node 成为这个问题的解决方案的重要一环。如您所见,Node 能处理数万条入站 tweets。它能迅速轻松地将它们写入一个内存排队机制(例如 memcached),另一个单独进程可以从那里将它们写入数据库。Node 在这里的角色是迅速收集 tweet 并将这个信息传递给另一个负责写入的进程。想象一下另一种设计 — 一个常规 PHP 服务器自己试图处理对数据库的写入 — 每个 tweet 将在写入数据库时导致一个短暂的延迟,这是因为数据库调用正在阻塞通道。由于数据库延迟,一台这样设计的机器每秒可能只能处理 2000 条入站 tweets。每秒 100 万条 tweets 需要 500 个服务器。相反,Node 能处理每个连接而不会阻塞通道,从而能捕获尽可能多的 tweets。一个能处理 50,000 条 tweets 的 Node 机器只需要 20 个服务器。 3.映像文件服务器 一个拥有大型分布式网站的公司(比如 Facebook 或 Flickr)可能会决定将所有机器只用于服务映像。Node 将是这个问题的一个不错的解决方案,因为该公司能使用它编写一个简单的文件检索器,然后处理数万条连接。Node 将查找映像文件,返回文件或一个 404 错误,然后什么也不用做。这种设置将允许这类分布式网站减少它们服务映像、.js 和 .css 文件等静态文件所需的服务器数量。 它对什么有坏处? 当然,在某些情况下,Node 并非理想选择。下面是 Node 不擅长的领域: 1.动态创建的页 目前,Node 没有提供一种默认方法来创建动态页。例如,使用 JavaServer Pages (JSP) 技术时,可以创建一个在这样的 JSP 代码段中包含循环的 index.jsp 页。Node 不支持这类动态的、HTML 驱动的页面。同样,Node 不太适合作为 Apache 和 Tomcat 这样的网页服务器。因此,如果您想在 Node 中提供这样一个服务器端解决方案,必须自己编写整个解决方案。PHP 程序员不想在每次部署 web 应用程序时都编写一个针对 Apache 的 PHP 转换器,当目前为止,这正是 Node 要求您做的。 2. 关系数据库重型应用程序 Node 的目的是快速、异步和非阻塞。数据库并不一定分享这些目标。它们是同步和阻塞的,因为读写时对数据库的调用在结果生成之前将一直阻塞通道。因此,一个每个请求都需要大量数据库调用、大量读取、大量写入的 web 应用程序非常不适合 Node,这是因为关系数据库本身就能抵销 Node 的众多优势。(新的 NoSQL 数据库更适合 Node,不过那完全是另一个主题了。) 结束语 问题是 “什么是 Node.js?” 应该已经得到解答。阅读本文之后,您应该能通过几个清晰简洁的句子回答这个问题。如果这样,那么您已经走到了许多编码员和程序员的前面。我和许多人都谈论过 Node,但它们对 Node 究竟是什么一直很迷惑。可以理解,他们具有的是 Apache 的思维方式 — 服务器是一个应用程序,将 HTML 文件放入其中,一切就会正常运转。而 Node 是目的驱动的。它是一个软件程序,使用 JavaScript 来允许程序员轻松快速地创建快速、可伸缩的 web 服务器。Apache 是运行就绪的,而 Node 是编码就绪的。 Node 完成了它提供高度可伸缩服务器的目标。它并不分配一个 “每个连接一个线程” 模型,而是使用一个 “每个连接一个流程” 模型,只创建每个连接需要的内存。它使用 Google 的一个非常快速的 JavaScript 引擎:V8 引擎。它使用一个事件驱动设计来保持代码最小且易于阅读。所有这些因素促成了 Node 的理想目标 — 编写一个高度可伸缩的解决方案变得比较容易。 与理解 Node 是 什么同样重要的是,理解它不是 什么。Node 并不是 Apache 的一个替代品,后者旨在使 PHP web 应用程序更容易伸缩。事实确实如此。在 Node 的这个初始阶段,大量程序员使用它的可能性不大,但在它能发挥作用的场景中,它的表现非常好。 将来应该期望从 Node 得到什么呢?这也许是本文引出的最重要的问题。既然您知道了它现在的作用,您应该会想知道它下一步将做什么。在接下来的一年中,我期待着 Node 提供与现有的第三方支持库更好地集成。现在,许多第三方程序员已经研发了用于 Node 的插件,包括添加文件服务器支持和 MySQL 支持。希望 Node 开始将它们集成到其核心功能中。最后,我还希望 Node 支持某种动态页面模块,这样,您就可以在 HTML 文件中执行在 PHP 和 JSP(也许是一个 NSP,一个 Node 服务器页)中所做的操作。最后,希望有一天会出现一个 “部署就绪” 的 Node 服务器,可以下载和安装,只需将您的 HTML 文件放到其中,就像使用 Apache 或 Tomcat 那样。Node 现在还处于初始阶段,但它发展得很快,可能不久就会出现在您的视野中。 答案来源于网络
养狐狸的猫 2019-12-02 02:17:03 0 浏览量 回答数 0

问题

企业运营对DevOps的「傲慢与偏见」

摘要:出于各种原因,并非所有人都信任 DevOps 。有些人觉得 DevOps 只不过给开发者改善产品提供了一个途径而已,还有的人觉得 DevOps 是一堆悦耳的空头支票,甚至有人认为...
忆远0711 2019-12-01 21:32:29 9823 浏览量 回答数 0

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello
玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

1、Requests简介 Requests 是使用 Apache2 Licensed 许可证的 HTTP 库。用 Python 编写,真正的为人类着想。 python 标准库中的 urllib2 模块提供了你所需要的大多数 HTTP 功能,但是它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。 总之,大家以后对urllib2库敬而远之就行了。来拥抱Requests吧。 Requests的官方文档:cn.python-requests.org/zh_CN/latest/ 通过下面方法安装requests [python] view plain copy pip install requests 2、Requests如何发送HTTP请求 非常简单,先导入requests, [python] view plain copy import requests 然后,按照下面的方法发送http的各种请求: [python] view plain copy r = requests.get('githubcom/timeline.json') r = requests.post("httpbin.org/post") r = requests.put("httpbin.org/put") r = requests.delete("httpbin.org/delete") r = requests.head("httpbin.org/get") r = requests.options("httpbin.org/get") 3、为URL传递参数 如果http请求需要带URL参数(注意是URL参数不是body参数),那么需要将参数附带到payload字典里头,按照下面的方法发送请求: [python] view plain copy import requests payload = {'key1': 'value1', 'key2': 'value2'} r = requests.get("httpbin.org/get",params=payload) print r.url 通过print(r.url)能看到URL已被正确编码: [python] view plain copy httpbin.org/get?key2=value2&key1=value1 注意字典里值为 None 的键都不会被添加到 URL 的查询字符串里。 4、unicode响应内容 [python] view plain copy import requests r = requests.get('githubcom/timeline.json') r.text 响应结果是: {"message":"Hello there, wayfaring stranger. If you're reading this then you probably didn't see our blog post a couple of years back announcing that this API would Go away: Git.io/17AROg Fear not, you should be able to get what you need from the shiny new Events API instead.","documentation_url":"developer.githubcom/v3/activity/events/#list-public-events"} Requests会自动解码来自服务器的内容。大多数unicode字符集都能被无缝地解码。请求发出后,Requests会基于HTTP头部对响应的编码作出有根据的推测。当你访问r.text之时,Requests会使用其推测的文本编码。你可以找出Requests使用了什么编码,并且能够使用r.encoding 属性来改变它 >>> r.encoding 'utf-8' 5、二进制响应内容 如果请求返回的是二进制的图片,你可以使用r.content访问请求响应体。 [python] view plain copy import requests from PIL import Image from StringIO import StringIO r = requests.get('cn.python-requests.org/zh_CN/latest/_static/requests-sidebar.png') i = Image.open(StringIO(r.content)) i.show() 6、JSON响应内容 Requests中也有一个内置的JSON解码器,助你处理JSON数据: [python] view plain copy import requests r = requests.get('githubcom/timeline.json') print r.json() r.json将返回的json格式字符串解码成python字典。r.text返回的utf-8的文本。 7、定制请求头 如果你想为请求添加HTTP头部,只要简单地传递一个 dict 给headers 参数就可以了。 [python] view plain copy import requests import json payload = {'some': 'data'} headers = {'content-type': 'application/json'} r = requests.get('githubcom/timeline.json', data=json.dumps(payload), headers=headers) print r.json() 注意,这里的payload是放到body里面的,所以params参数要使用json数据。 8、POST请求 就像上面‘定制请求头’中的例子,将payload序列化为json格式数据,传递给data参数。 9、POST提交文件 先制作一个text文件,名为‘report.txt’,内容是‘this is a file’。Requests使得上传多部分编码文件变得很简单: [python] view plain copy import requests url = 'httpbin.org/post' files = {'file': open('report.txt', 'rb')} r = requests.post(url, files=files) print r.text 返回结果是: [python] view plain copy C:\Python27\python.exe C:/Users/Administrator/PycharmProjects/flaskexample/postfile.py { "args": {}, "data": "", "files": { "file": "this is a file" }, "form": {}, "headers": { "Accept": "/", "Accept-Encoding": "gzip, deflate", "Content-Length": "160", "Content-Type": "multipart/form-data; boundary=a3b41a6300214ffdb55ddbc23dfc0d91", "Host": "httpbin.org", "User-Agent": "python-requests/2.7.0 CPython/2.7.9 Windows/2012Server" }, "json": null, "origin": "202.108.92.226", "url": "httpbin.org/post" } Process finished with exit code 0 10、POST提交表单 传递一个字典给 data 参数就可以了。数据字典在发出请求时会自动编码为表单形式: [python] view plain copy >>> payload = {'key1': 'value1', 'key2': 'value2'} >>> r = requests.post("httpbin.org/post", data=payload) 查看响应内容: >>> print r.text { "args": {}, "data": "", "files": {}, "form": { "key1": "value1", "key2": "value2" }, "headers": { "Accept": "/", "Accept-Encoding": "gzip, deflate", "Content-Length": "23", "Content-Type": "application/x-www-form-urlencoded", "Host": "httpbin.org", "User-Agent": "python-requests/2.6.0 CPython/2.7.10 Windows/7" }, "json": null, "origin": "124.251.251.2", "url": "httpbin.org/post" } 11、响应状态码 使用r.status_code返回响应的状态码。 [python] view plain copy import requests r = requests.get('httpbin.org/get') print r.status_code 为方便引用,Requests还附带了一个内置的状态码查询对象: [python] view plain copy print r.status_code == requests.codes.ok 12、失败请求抛出异常 如果发送了一个失败请求(非200响应),我们可以通过 Response.raise_for_status()来抛出异常: [python] view plain copy import requests bad_r = requests.get('httpbin.org/status/404') print bad_r.status_code bad_r.raise_for_status() 返回结果是: [python] view plain copy C:\Python27\python.exe C:/Users/Administrator/PycharmProjects/flaskexample/postfile.py 404 Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/flaskexample/postfile.py", line 5, in bad_r.raise_for_status() File "C:\Python27\lib\site-packages\requests\models.py", line 851, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 404 Client Error: NOT FOUND Process finished with exit code 1 如果返回码是200,则不会抛出异常,即: [python] view plain copy import requests bad_r = requests.get('httpbin.org/get') print bad_r.status_code bad_r.raise_for_status() 的返回结果是: [python] view plain copy C:\Python27\python.exe C:/Users/Administrator/PycharmProjects/flaskexample/postfile.py 200 Process finished with exit code 0 13、响应头 我们可以查看以一个Python字典形式展示的服务器响应头: 读取全部头部: [python] view plain copy r.headers 返回: { 'content-encoding': 'gzip', 'transfer-encoding': 'chunked', 'connection': 'close', 'server': 'nginx/1.0.4', 'x-runtime': '148ms', 'etag': '"e1ca502697e5c9317743dc078f67693f"', 'content-type': 'application/json' } 读取某一个头部字段: [python] view plain copy r.headers['Content-Type'] r.headers.get('content-type') 14、Cookies 得到响应中包含的一些Cookie: [python] view plain copy >>> url = 'examplecom/some/cookie/setting/url' >>> r = requests.get(url) >>> r.cookies['example_cookie_name'] 'example_cookie_value' 要想发送你的cookies到服务器,可以使用 cookies 参数: [python] view plain copy >>> url = 'httpbin.org/cookies' >>> cookies = dict(cookies_are='working') >>> r = requests.get(url, cookies=cookies) >>> r.text 返回结果: u'{\n "cookies": {\n "cookies_are": "working"\n }\n}\n' 15、重定向与请求历史 默认情况下,除了 HEAD, Requests会自动处理所有重定向。 可以使用响应对象的 history 方法来追踪重定向。 [python] view plain copy >>> r = requests.get('githubcom') >>> r.url 'githubcom/' >>> r.status_code 200 >>> r.history [] 如果你使用的是GET, OPTIONS, POST, PUT, PATCH 或者 DELETE,,那么你可以通过 allow_redirects 参数禁用重定向处理: [python] view plain copy >>> r = requests.get('githubcom', allow_redirects=False) >>> r.status_code 301 >>> r.history [] 如果你使用的是HEAD,你也可以启用重定向: [python] view plain copy >>> r = requests.head('githubcom', allow_redirects=True) >>> r.url 'githubcom/' >>> r.history [] 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:03:05 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板