• 关于

    字符字段会出现哪些问题

    的搜索结果

问题

【精品问答】Python实战100例 - 附源码

珍宝珠 2019-12-01 22:01:18 7689 浏览量 回答数 8

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

OpenSearch的搜索处理是什么?

轩墨 2019-12-01 20:57:06 1661 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

问题

【精品问答】带你进入数据库领域

谙忆 2020-04-07 20:45:48 12 浏览量 回答数 1

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20201202)

亢海鹏 2020-05-29 15:10:00 27621 浏览量 回答数 35

回答

在Java中,常量池的概念想必很多人都听说过。这也是面试中比较常考的题目之一。在Java有关的面试题中,一般习惯通过String的有关问题来考察面试者对于常量池的知识的理解,几道简单的String面试题难倒了无数的开发者。所以说,常量池是Java体系中一个非常重要的概念。 谈到常量池,在Java体系中,共用三种常量池。分别是字符串常量池、Class常量池和运行时常量池。 本文先来介绍一下到底什么是Class常量池。 什么是Class文件 在Java代码的编译与反编译那些事儿中我们介绍过Java的编译和反编译的概念。我们知道,计算机只认识0和1,所以程序员写的代码都需要经过编译成0和1构成的二进制格式才能够让计算机运行。 我们在《深入分析Java的编译原理》中提到过,为了让Java语言具有良好的跨平台能力,Java独具匠心的提供了一种可以在所有平台上都能使用的一种中间代码——字节码(ByteCode)。 有了字节码,无论是哪种平台(如Windows、Linux等),只要安装了虚拟机,都可以直接运行字节码。 同样,有了字节码,也解除了Java虚拟机和Java语言之间的耦合。这话可能很多人不理解,Java虚拟机不就是运行Java语言的么?这种解耦指的是什么? 其实,目前Java虚拟机已经可以支持很多除Java语言以外的语言了,如Groovy、JRuby、Jython、Scala等。之所以可以支持,就是因为这些语言也可以被编译成字节码。而虚拟机并不关心字节码是有哪种语言编译而来的。 Java语言中负责编译出字节码的编译器是一个命令是javac。 javac是收录于JDK中的Java语言编译器。该工具可以将后缀名为.java的源文件编译为后缀名为.class的可以运行于Java虚拟机的字节码。 如,我们有以下简单的HelloWorld.java代码: public class HelloWorld { public static void main(String[] args) { String s = "Hollis"; } } 通过javac命令生成class文件: javac HelloWorld.java 生成HelloWorld.class文件:  如何使用16进制打开class文件:使用 vim test.class ,然后在交互模式下,输入:%!xxd 即可。 可以看到,上面的文件就是Class文件,Class文件中包含了Java虚拟机指令集和符号表以及若干其他辅助信息。 要想能够读懂上面的字节码,需要了解Class类文件的结构,由于这不是本文的重点,这里就不展开说明了。 读者可以看到,HelloWorld.class文件中的前八个字母是cafe babe,这就是Class文件的魔数(Java中的”魔数”) 我们需要知道的是,在Class文件的4个字节的魔数后面的分别是4个字节的Class文件的版本号(第5、6个字节是次版本号,第7、8个字节是主版本号,我生成的Class文件的版本号是52,这时Java 8对应的版本。也就是说,这个版本的字节码,在JDK 1.8以下的版本中无法运行)在版本号后面的,就是Class常量池入口了。 Class常量池 Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池(constant pool table),用于存放编译器生成的各种字面量(Literal)和符号引用(Symbolic References)。 由于不同的Class文件中包含的常量的个数是不固定的,所以在Class文件的常量池入口处会设置两个字节的常量池容量计数器,记录了常量池中常量的个数。  当然,还有一种比较简单的查看Class文件中常量池的方法,那就是通过javap命令。对于以上的HelloWorld.class,可以通过 javap -v HelloWorld.class 查看常量池内容如下:  从上图中可以看到,反编译后的class文件常量池中共有16个常量。而Class文件中常量计数器的数值是0011,将该16进制数字转换成10进制的结果是17。 原因是与Java的语言习惯不同,常量池计数器是从0开始而不是从1开始的,常量池的个数是10进制的17,这就代表了其中有16个常量,索引值范围为1-16。 常量池中有什么 介绍完了什么是Class常量池以及如何查看常量池,那么接下来我们就要深入分析一下,Class常量池中都有哪些内容。 常量池中主要存放两大类常量:字面量(literal)和符号引用(symbolic references)。 字面量 前面说过,运行时常量池中主要保存的是字面量和符号引用,那么到底什么字面量? 在计算机科学中,字面量(literal)是用于表达源代码中一个固定值的表示法(notation)。几乎所有计算机编程语言都具有对基本值的字面量表示,诸如:整数、浮点数以及字符串;而有很多也对布尔类型和字符类型的值也支持字面量表示;还有一些甚至对枚举类型的元素以及像数组、记录和对象等复合类型的值也支持字面量表示法。 以上是关于计算机科学中关于字面量的解释,并不是很容易理解。说简单点,字面量就是指由字母、数字等构成的字符串或者数值。 字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=123这里的a为左值,123为右值。在这个例子中123就是字面量。 int a = 123; String s = "hollis"; 上面的代码事例中,123和hollis都是字面量。 本文开头的HelloWorld代码中,Hollis就是一个字面量。 符号引用 常量池中,除了字面量以外,还有符号引用,那么到底什么是符号引用呢。 符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量: * 类和接口的全限定名 * 字段的名称和描述符 * 方法的名称和描述符 这也就可以印证前面的常量池中还包含一些com/hollis/HelloWorld、main、([Ljava/lang/String;)V等常量的原因了。 Class常量池有什么用 前面介绍了这么多,关于Class常量池是什么,怎么查看Class常量池以及Class常量池中保存了哪些东西。有一个关键的问题没有讲,那就是Class常量池到底有什么用。 首先,可以明确的是,Class常量池是Class文件中的资源仓库,其中保存了各种常量。而这些常量都是开发者定义出来,需要在程序的运行期使用的。 在《深入理解Java虚拟》中有这样的表述: Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态连接的内容,在虚拟机类加载过程时再进行详细讲解。 前面这段话,看起来很绕,不是很容易理解。其实他的意思就是: Class是用来保存常量的一个媒介场所,并且是一个中间场所。在JVM真的运行时,需要把常量池中的常量加载到内存中。 至于到底哪个阶段会做这件事情,以及Class常量池中的常量会以何种方式被加载到具体什么地方,会在本系列文章的后续内容中继续阐述。欢迎关注我的博客(http://www.hollischuang.com) 和公众号(Hollis),即可第一时间获得最新内容。 另外,关于常量池中常量的存储形式,以及数据类型的表示方法本文中并未涉及,并不是说这部分知识点不重要,只是Class字节码的分析本就枯燥,作者不想在一篇文章中给读者灌输太多的理论上的内容。感兴趣的读者可以自行Google学习,如果真的有必要,我也可以单独写一篇文章再深入介绍。 参考资料 《深入理解java虚拟机》 《Java虚拟机原理图解》 1.2.2、Class文件中的常量池详解(上)

montos 2020-06-02 10:12:18 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

基础语言百问-Python

薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

问题

2018MySQL技术问答集锦,希望能给喜欢MySQL的同学一些帮助

技术小能手 2019-12-01 19:31:11 1856 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 发送访问OSS的请求 您可以直接使用OSS提供的RESTful API接口访问或者使用对API接口进行完整封装的SDK开发包。而每一次向OSS的请求根据当前Bucket权限和操作不同要求用户进行身份验证或者直接匿名访问。对OSS的资源访问的分类如下: 按访问者的角色可分为拥有者访问和第三方用户访问。这里的拥有者指的是Bucket的Owner,也称为开发者。第三方用户是指访问Bucket里资源的用户。 按访问者的身份信息可分为匿名访问和带签名访问。对于OSS来说,如果请求中没有携带任何和身份相关的信息即为匿名访问。带签名访问指的是按照OSS API文档中规定的在请求头部或者在请求URL中携带签名的相关信息。 AccessKey 类型 目前访问 OSS 使用的 AK(AccessKey)有三种类型,具体如下: 阿里云账号AccessKey 阿里云账号AK特指Bucket拥有者的AK,每个阿里云账号提供的AccessKey对拥有的资源有完全的权限。每个阿里云账号能够同时拥有不超过5个active或者inactive的AK对(AccessKeyId和AccessKeySecret)。 用户可以登录AccessKey管理控制台,申请新增或删除AK对。 每个AK对都有active/inactive两种状态。 Active 表明用户的 AK 处于激活状态,可以在身份验证的时候使用。 Inactive 表明用户的 AK 处于非激活状态,不能在身份验证的时候使用。 说明 请避免直接使用阿里云账户的 AccessKey。 RAM子账号AccessKey RAM (Resource Access Management) 是阿里云提供的资源访问控制服务。RAM账号AK指的是通过RAM被授权的AK。这组AK只能按照RAM定义的规则去访问Bucket里的资源。通过RAM,您可以集中管理您的用户(比如员工、系统或应用程序),以及控制用户可以访问您名下哪些资源的权限。比如能够限制您的用户只拥有对某一个Bucket的读权限。子账号是从属于主账号的,并且这些账号下不能拥有实际的任何资源,所有资源都属于主账号。 STS账号AccessKey STS(Security Token Service)是阿里云提供的临时访问凭证服务。STS账号AK指的是通过STS颁发的AK。这组AK只能按照STS定义的规则去访问Bucket里的资源。 身份验证具体实现 目前主要有三种身份验证方式: AK验证 RAM验证 STS验证 当用户以个人身份向OSS发送请求时,其身份验证的实现如下: 用户将发送的请求按照OSS指定的格式生成签名字符串。 用户使用AccessKeySecret对签名字符串进行加密产生验证码。 OSS收到请求以后,通过AccessKeyId找到对应的AccessKeySecret,以同样的方法提取签名字符串和验证码。 如果计算出来的验证码和提供的一样即认为该请求是有效的。 否则,OSS将拒绝处理这次请求,并返回HTTP 403错误。 对于用户来说可以直接使用OSS提供的SDK,配合不同类型的AccessKey即可实现不同的身份验证。 权限控制 针对存放在Bucket的Object的访问,OSS提供了多种权限控制,主要有: Bucket级别权限 Object级别权限 账号级别权限(RAM) 临时账号权限(STS) Bucket级别权限 Bucket权限类型 OSS提供ACL(Access Control List)权限控制方法,OSS ACL提供Bucket级别的权限访问控制,Bucket目前有三种访问权限:public-read-write,public-read和private,它们的含义如下: 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 任何人(包括匿名访问)都可以对该Bucket中的Object进行读/写/删除操作;所有这些操作产生的费用由该Bucket的Owner承担,请慎用该权限。 public-read 公共读,私有写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行写/删除操作;任何人(包括匿名访问)可以对Object进行读操作。 private 私有读写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行读/写/删除操作;其他人在未经授权的情况下无法访问该Bucket内的Object。 Bucket权限设定和读取方法 功能使用参考: API:Put BucketACL SDK:Java SDK-设置Bucket ACL 控制台:创建Bucket权限设置 API:Get BucketACL SDK:Java SDK-获取Bucket ACL Object级别权限 Object权限类型 OSS ACL也提供Object级别的权限访问控制。目前Object有四种访问权限:private, public-read, public-read-write, default。Put Object ACL操作通过Put请求中的“x-oss-object-acl”头来设置,这个操作只有Bucket Owner有权限执行。 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 该ACL表明某个Object是公共读写资源,即所有用户拥有对该Object的读写权限。 public-read 公共读,私有写 该ACL表明某个Object是公共读资源,即非Object Owner只有该Object的读权限,而Object Owner拥有该Object的读写权限。 private 私有读写 该ACL表明某个Object是私有资源,即只有该Object的Owner拥有该Object的读写权限,其他的用户没有权限操作该Object。 default 默认权限 该ACL表明某个Object是遵循Bucket读写权限的资源,即Bucket是什么权限,Object就是什么权限。 说明 如果没有设置Object的权限,即Object的ACL为default,Object的权限和Bucket权限一致。 如果设置了Object的权限,Object的权限大于Bucket权限。举个例子,如果设置了Object的权限是public-read,无论Bucket是什么权限,该Object都可以被身份验证访问和匿名访问。 Object权限设定和读取方法 功能使用参考: API:Put Object ACL SDK:Java SDK-ObjectACL 中设定Object ACL API:Get Object ACL SDK:Java SDK-ObjectACL 中读取Object ACL 账号级别权限(RAM) 使用场景 如果您购买了云资源,您的组织里有多个用户需要使用这些云资源,这些用户只能共享使用您的云账号AccessKey。这里有两个问题: 您的密钥由多人共享,泄露的风险很高。 您无法控制特定用户能访问哪些资源(比如Bucket)的权限。 解决方法:在您的阿里云账号下面,通过RAM可以创建具有自己AccessKey的子用户。您的阿里云账号被称为主账号,创建出来的账号被称为子账号,使用子账号的AccessKey只能使用主账号授权的操作和资源。 具体实现 有关RAM详情,请参考RAM用户手册。 对于授权中需要的Policy的配置方式可以参考本章最后一节:RAM和STS授权策略(Policy)配置。 临时账号权限(STS) 使用场景 对于您本地身份系统所管理的用户,比如您的App的用户、您的企业本地账号、第三方App,也有直接访问OSS资源的可能,将这部分用户称为联盟用户。此外,用户还可以是您创建的能访问您的阿里云资源的应用程序。 对于这部分联盟用户,通过阿里云STS (Security Token Service) 服务为阿里云账号(或RAM用户)提供短期访问权限管理。您不需要透露云账号(或RAM用户)的长期密钥(如登录密码、AccessKey),只需要生成一个短期访问凭证给联盟用户使用即可。这个凭证的访问权限及有效期限都可以由您自定义。您不需要关心权限撤销问题,访问凭证过期后会自动失效。 用户通过STS生成的凭证包括安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)。使用AccessKey方法与您在使用阿里云账户或RAM用户AccessKey发送请求时的方法相同。此外还需要注意的是在每个向OSS发送的请求中必须携带安全令牌。 具体实现 STS安全令牌、角色管理和使用相关内容详情,请参考RAM用户指南中的角色管理。关键是调用STS服务接口AssumeRole来获取有效访问凭证即可,也可以直接使用STS SDK来调用该方法。 RAM和STS应用场景实践 对于不同的应用场景,涉及到的访问身份验证方式可能存在差异。下面以几种典型的应用场景来说明访问身份验证中几种使用方式。 以一个移动App举例。假设您是一个移动App开发者,打算使用阿里云OSS服务来保存App的终端用户数据,并且要保证每个App用户之间的数据隔离,防止一个App用户获取到其它App用户的数据。 方式一:使用AppServer来做数据中转和数据隔离如上图所示,您需要开发一个AppServer。只有AppServer能访问云服务,ClientApp的每次读写数据都需要通过AppServer,AppServer来保证不同用户数据的隔离访问。 对于该种使用方式,使用阿里云账号或者RAM账号提供的密钥来进行签名验证访问。建议您尽量不要直接使用阿里云账号(主账号)的密钥访问OSS,避免出现安全问题。 方式二:使用STS让用户直接访问OSS STS方案描述如下图所示:方案的详细描述如下: App用户登录。App用户和云账号无关,它是App的终端用户,AppServer支持App用户登录。对于每个有效的App用户来说,需要AppServer能定义出每个App用户的最小访问权限。 AppServer请求STS服务获取一个安全令牌(SecurityToken)。在调用STS之前,AppServer需要确定App用户的最小访问权限(用Policy语法描述)以及授权的过期时间。然后通过扮演角色(AssumeRole)来获取一个代表角色身份的安全令牌。 STS返回给AppServer一个有效的访问凭证,包括一个安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)以及过期时间。 AppServer将访问凭证返回给ClientApp。ClientApp可以缓存这个凭证。当凭证失效时,ClientApp需要向AppServer申请新的有效访问凭证。比如,访问凭证有效期为1小时,那么ClientApp可以每30分钟向AppServer请求更新访问凭证。 ClientApp使用本地缓存的访问凭证去请求Aliyun Service API。云服务会感知STS访问凭证,并会依赖STS服务来验证访问凭证,正确响应用户请求。 RAM和STS授权策略(Policy)配置 对于RAM或者STS授权中使用Policy,详细规则如下。 示例 先看下面的一个Policy示例: { "Version": "1", "Statement": [ { "Action": [ "oss:GetBucketAcl", "oss:ListObjects" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket" ], "Effect": "Allow", "Condition": { "StringEquals": { "acs:UserAgent": "java-sdk", "oss:Prefix": "foo" }, "IpAddress": { "acs:SourceIp": "192.168.0.1" } } }, { "Action": [ "oss:PutObject", "oss:GetObject", "oss:DeleteObject" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket/file*" ], "Effect": "Allow", "Condition": { "IpAddress": { "acs:SourceIp": "192.168.0.1" } } } ] } 这是一个授权的Policy,用户用这样的一个Policy通过RAM或STS服务向其他用户授权。Policy当中有一个Statement(一条Policy当中可以有多条Statement)。Statement里面规定了相应的Action、Resource、Effect和Condition。 这条Policy把用户自己名下的mybucket和mybucket/file*这些资源授权给相应的用户,并且支持GetBucketAcl、GetBucket、PutObject、GetObject和DeleteObject这几种操作。Condition中的条件表示UserAgent为java-sdk,源IP为192.168.0.1的时候鉴权才能通过,被授权的用户才能访问相关的资源。Prefix这个Condition是在GetBucket(ListObjects)的时候起作用的,关于这个字段的解释详见OSS的API文档。 配置细则 Version Version定义了Policy的版本,本文档中sw2q的配置方式,设置为1。 Statement 通过Statement描述授权语义,其中可以根据业务场景包含多条语义,每条包含对Action、Effect、Resource和Condition的描述。每次请求系统会逐条依次匹配检查,所有匹配成功的Statement会根据Effect的设置不同分为通过(Allow)、禁止(Deny),其中禁止(Deny)的优先。如果匹配成功的都为通过,该条请求即鉴权通过。如果匹配成功有一条禁止,或者没有任何条目匹配成功,该条请求被禁止访问。 Action Action分为三大类:Service级别操作,对应的是GetService操作,用来列出所有属于该用户的Bucket列表。 Bucket级别操作,对应类似于oss:PutBucketAcl、oss:GetBucketLocation之类的操作,操作的对象是Bucket,它们的名称和相应的接口名称一一对应。 Object级别操作,分为oss:GetObject、oss:PutObject、oss:DeleteObject和oss:AbortMultipartUpload,操作对象是Object。 如想授权某一类的Object的操作,可以选择这几种的一种或几种。另外,所有的Action前面都必须加上oss:,如上面例子所示。Action是一个列表,可以有多个Action。具体的Action和API接口的对应关系如下: Service级别 API Action GetService(ListBuckets) oss:ListBuckets Bucket级别 API Action PutBucket oss:PutBucket GetBucket(ListObjects) oss:ListObjects PutBucketAcl oss:PutBucketAcl DeleteBucket oss:DeleteBucket GetBucketLocation oss:GetBucketLocation GetBucketAcl oss:GetBucketAcl GetBucketLogging oss:GetBucketLogging PutBucketLogging oss:PutBucketLogging DeleteBucketLogging oss:DeleteBucketLogging GetBucketWebsite oss:GetBucketWebsite PutBucketWebsite oss:PutBucketWebsite DeleteBucketWebsite oss:DeleteBucketWebsite GetBucketReferer oss:GetBucketReferer PutBucketReferer oss:PutBucketReferer GetBucketLifecycle oss:GetBucketLifecycle PutBucketLifecycle oss:PutBucketLifecycle DeleteBucketLifecycle oss:DeleteBucketLifecycle ListMultipartUploads oss:ListMultipartUploads PutBucketCors oss:PutBucketCors GetBucketCors oss:GetBucketCors DeleteBucketCors oss:DeleteBucketCors PutBucketReplication oss:PutBucketReplication GetBucketReplication oss:GetBucketReplication DeleteBucketReplication oss:DeleteBucketReplication GetBucketReplicationLocation oss:GetBucketReplicationLocation GetBucketReplicationProgress oss:GetBucketReplicationProgress Object级别 API Action GetObject oss:GetObject HeadObject oss:GetObject PutObject oss:PutObject PostObject oss:PutObject InitiateMultipartUpload oss:PutObject UploadPart oss:PutObject CompleteMultipart oss:PutObject DeleteObject oss:DeleteObject DeleteMultipartObjects oss:DeleteObject AbortMultipartUpload oss:AbortMultipartUpload ListParts oss:ListParts CopyObject oss:GetObject,oss:PutObject UploadPartCopy oss:GetObject,oss:PutObject AppendObject oss:PutObject GetObjectAcl oss:GetObjectAcl PutObjectAcl oss:PutObjectAcl Resource Resource指代的是OSS上面的某个具体的资源或者某些资源(支持*通配),resource的规则是acs:oss:{region}:{bucket_owner}:{bucket_name}/{object_name}。对于所有Bucket级别的操作来说不需要最后的斜杠和{object_name},即acs:oss:{region}:{bucket_owner}:{bucket_name}。Resource也是一个列表,可以有多个Resource。其中的region字段暂时不做支持,设置为*。 Effect Effect代表本条的Statement的授权的结果,分为Allow和Deny,分别指代通过和禁止。多条Statement同时匹配成功时,禁止(Deny)的优先级更高。 例如,期望禁止用户对某一目录进行删除,但对于其他文件有全部权限: { "Version": "1", "Statement": [ { "Effect": "Allow", "Action": [ "oss:*" ], "Resource": [ "acs:oss:*:*:bucketname" ] }, { "Effect": "Deny", "Action": [ "oss:DeleteObject" ], "Resource": [ "acs:oss:*:*:bucketname/index/*", ] } ] } Condition Condition代表Policy授权的一些条件,上面的示例里面可以设置对于acs:UserAgent的检查、acs:SourceIp的检查、还有oss:Prefix这项用来在GetBucket的时候对资源进行限制。 OSS支持的Condition如下: condition 功能 合法取值 acs:SourceIp 指定ip网段 普通的ip,支持*通配 acs:UserAgent 指定http useragent头 字符串 acs:CurrentTime 指定合法的访问时间 ISO8601格式 acs:SecureTransport 是否是https协议 “true”或者”false” oss:Prefix 用作ListObjects时的prefix 合法的object name 更多示例 针对具体场景更多的授权策略配置示例,可以参考教程示例:控制存储空间和文件夹的访问权限和OSS授权常见问题。 Policy在线图形化便捷配置工具,请单击这里。 最佳实践 RAM和STS使用指南

2019-12-01 23:12:47 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 发送访问OSS的请求 您可以直接使用OSS提供的RESTful API接口访问或者使用对API接口进行完整封装的SDK开发包。而每一次向OSS的请求根据当前Bucket权限和操作不同要求用户进行身份验证或者直接匿名访问。对OSS的资源访问的分类如下: 按访问者的角色可分为拥有者访问和第三方用户访问。这里的拥有者指的是Bucket的Owner,也称为开发者。第三方用户是指访问Bucket里资源的用户。 按访问者的身份信息可分为匿名访问和带签名访问。对于OSS来说,如果请求中没有携带任何和身份相关的信息即为匿名访问。带签名访问指的是按照OSS API文档中规定的在请求头部或者在请求URL中携带签名的相关信息。 AccessKey 类型 目前访问 OSS 使用的 AK(AccessKey)有三种类型,具体如下: 阿里云账号AccessKey 阿里云账号AK特指Bucket拥有者的AK,每个阿里云账号提供的AccessKey对拥有的资源有完全的权限。每个阿里云账号能够同时拥有不超过5个active或者inactive的AK对(AccessKeyId和AccessKeySecret)。 用户可以登录AccessKey管理控制台,申请新增或删除AK对。 每个AK对都有active/inactive两种状态。 Active 表明用户的 AK 处于激活状态,可以在身份验证的时候使用。 Inactive 表明用户的 AK 处于非激活状态,不能在身份验证的时候使用。 说明 请避免直接使用阿里云账户的 AccessKey。 RAM子账号AccessKey RAM (Resource Access Management) 是阿里云提供的资源访问控制服务。RAM账号AK指的是通过RAM被授权的AK。这组AK只能按照RAM定义的规则去访问Bucket里的资源。通过RAM,您可以集中管理您的用户(比如员工、系统或应用程序),以及控制用户可以访问您名下哪些资源的权限。比如能够限制您的用户只拥有对某一个Bucket的读权限。子账号是从属于主账号的,并且这些账号下不能拥有实际的任何资源,所有资源都属于主账号。 STS账号AccessKey STS(Security Token Service)是阿里云提供的临时访问凭证服务。STS账号AK指的是通过STS颁发的AK。这组AK只能按照STS定义的规则去访问Bucket里的资源。 身份验证具体实现 目前主要有三种身份验证方式: AK验证 RAM验证 STS验证 当用户以个人身份向OSS发送请求时,其身份验证的实现如下: 用户将发送的请求按照OSS指定的格式生成签名字符串。 用户使用AccessKeySecret对签名字符串进行加密产生验证码。 OSS收到请求以后,通过AccessKeyId找到对应的AccessKeySecret,以同样的方法提取签名字符串和验证码。 如果计算出来的验证码和提供的一样即认为该请求是有效的。 否则,OSS将拒绝处理这次请求,并返回HTTP 403错误。 对于用户来说可以直接使用OSS提供的SDK,配合不同类型的AccessKey即可实现不同的身份验证。 权限控制 针对存放在Bucket的Object的访问,OSS提供了多种权限控制,主要有: Bucket级别权限 Object级别权限 账号级别权限(RAM) 临时账号权限(STS) Bucket级别权限 Bucket权限类型 OSS提供ACL(Access Control List)权限控制方法,OSS ACL提供Bucket级别的权限访问控制,Bucket目前有三种访问权限:public-read-write,public-read和private,它们的含义如下: 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 任何人(包括匿名访问)都可以对该Bucket中的Object进行读/写/删除操作;所有这些操作产生的费用由该Bucket的Owner承担,请慎用该权限。 public-read 公共读,私有写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行写/删除操作;任何人(包括匿名访问)可以对Object进行读操作。 private 私有读写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行读/写/删除操作;其他人在未经授权的情况下无法访问该Bucket内的Object。 Bucket权限设定和读取方法 功能使用参考: API:Put BucketACL SDK:Java SDK-设置Bucket ACL 控制台:创建Bucket权限设置 API:Get BucketACL SDK:Java SDK-获取Bucket ACL Object级别权限 Object权限类型 OSS ACL也提供Object级别的权限访问控制。目前Object有四种访问权限:private, public-read, public-read-write, default。Put Object ACL操作通过Put请求中的“x-oss-object-acl”头来设置,这个操作只有Bucket Owner有权限执行。 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 该ACL表明某个Object是公共读写资源,即所有用户拥有对该Object的读写权限。 public-read 公共读,私有写 该ACL表明某个Object是公共读资源,即非Object Owner只有该Object的读权限,而Object Owner拥有该Object的读写权限。 private 私有读写 该ACL表明某个Object是私有资源,即只有该Object的Owner拥有该Object的读写权限,其他的用户没有权限操作该Object。 default 默认权限 该ACL表明某个Object是遵循Bucket读写权限的资源,即Bucket是什么权限,Object就是什么权限。 说明 如果没有设置Object的权限,即Object的ACL为default,Object的权限和Bucket权限一致。 如果设置了Object的权限,Object的权限大于Bucket权限。举个例子,如果设置了Object的权限是public-read,无论Bucket是什么权限,该Object都可以被身份验证访问和匿名访问。 Object权限设定和读取方法 功能使用参考: API:Put Object ACL SDK:Java SDK-ObjectACL 中设定Object ACL API:Get Object ACL SDK:Java SDK-ObjectACL 中读取Object ACL 账号级别权限(RAM) 使用场景 如果您购买了云资源,您的组织里有多个用户需要使用这些云资源,这些用户只能共享使用您的云账号AccessKey。这里有两个问题: 您的密钥由多人共享,泄露的风险很高。 您无法控制特定用户能访问哪些资源(比如Bucket)的权限。 解决方法:在您的阿里云账号下面,通过RAM可以创建具有自己AccessKey的子用户。您的阿里云账号被称为主账号,创建出来的账号被称为子账号,使用子账号的AccessKey只能使用主账号授权的操作和资源。 具体实现 有关RAM详情,请参考RAM用户手册。 对于授权中需要的Policy的配置方式可以参考本章最后一节:RAM和STS授权策略(Policy)配置。 临时账号权限(STS) 使用场景 对于您本地身份系统所管理的用户,比如您的App的用户、您的企业本地账号、第三方App,也有直接访问OSS资源的可能,将这部分用户称为联盟用户。此外,用户还可以是您创建的能访问您的阿里云资源的应用程序。 对于这部分联盟用户,通过阿里云STS (Security Token Service) 服务为阿里云账号(或RAM用户)提供短期访问权限管理。您不需要透露云账号(或RAM用户)的长期密钥(如登录密码、AccessKey),只需要生成一个短期访问凭证给联盟用户使用即可。这个凭证的访问权限及有效期限都可以由您自定义。您不需要关心权限撤销问题,访问凭证过期后会自动失效。 用户通过STS生成的凭证包括安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)。使用AccessKey方法与您在使用阿里云账户或RAM用户AccessKey发送请求时的方法相同。此外还需要注意的是在每个向OSS发送的请求中必须携带安全令牌。 具体实现 STS安全令牌、角色管理和使用相关内容详情,请参考RAM用户指南中的角色管理。关键是调用STS服务接口AssumeRole来获取有效访问凭证即可,也可以直接使用STS SDK来调用该方法。 RAM和STS应用场景实践 对于不同的应用场景,涉及到的访问身份验证方式可能存在差异。下面以几种典型的应用场景来说明访问身份验证中几种使用方式。 以一个移动App举例。假设您是一个移动App开发者,打算使用阿里云OSS服务来保存App的终端用户数据,并且要保证每个App用户之间的数据隔离,防止一个App用户获取到其它App用户的数据。 方式一:使用AppServer来做数据中转和数据隔离如上图所示,您需要开发一个AppServer。只有AppServer能访问云服务,ClientApp的每次读写数据都需要通过AppServer,AppServer来保证不同用户数据的隔离访问。 对于该种使用方式,使用阿里云账号或者RAM账号提供的密钥来进行签名验证访问。建议您尽量不要直接使用阿里云账号(主账号)的密钥访问OSS,避免出现安全问题。 方式二:使用STS让用户直接访问OSS STS方案描述如下图所示:方案的详细描述如下: App用户登录。App用户和云账号无关,它是App的终端用户,AppServer支持App用户登录。对于每个有效的App用户来说,需要AppServer能定义出每个App用户的最小访问权限。 AppServer请求STS服务获取一个安全令牌(SecurityToken)。在调用STS之前,AppServer需要确定App用户的最小访问权限(用Policy语法描述)以及授权的过期时间。然后通过扮演角色(AssumeRole)来获取一个代表角色身份的安全令牌。 STS返回给AppServer一个有效的访问凭证,包括一个安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)以及过期时间。 AppServer将访问凭证返回给ClientApp。ClientApp可以缓存这个凭证。当凭证失效时,ClientApp需要向AppServer申请新的有效访问凭证。比如,访问凭证有效期为1小时,那么ClientApp可以每30分钟向AppServer请求更新访问凭证。 ClientApp使用本地缓存的访问凭证去请求Aliyun Service API。云服务会感知STS访问凭证,并会依赖STS服务来验证访问凭证,正确响应用户请求。 RAM和STS授权策略(Policy)配置 对于RAM或者STS授权中使用Policy,详细规则如下。 示例 先看下面的一个Policy示例: { "Version": "1", "Statement": [ { "Action": [ "oss:GetBucketAcl", "oss:ListObjects" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket" ], "Effect": "Allow", "Condition": { "StringEquals": { "acs:UserAgent": "java-sdk", "oss:Prefix": "foo" }, "IpAddress": { "acs:SourceIp": "192.168.0.1" } } }, { "Action": [ "oss:PutObject", "oss:GetObject", "oss:DeleteObject" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket/file*" ], "Effect": "Allow", "Condition": { "IpAddress": { "acs:SourceIp": "192.168.0.1" } } } ] } 这是一个授权的Policy,用户用这样的一个Policy通过RAM或STS服务向其他用户授权。Policy当中有一个Statement(一条Policy当中可以有多条Statement)。Statement里面规定了相应的Action、Resource、Effect和Condition。 这条Policy把用户自己名下的mybucket和mybucket/file*这些资源授权给相应的用户,并且支持GetBucketAcl、GetBucket、PutObject、GetObject和DeleteObject这几种操作。Condition中的条件表示UserAgent为java-sdk,源IP为192.168.0.1的时候鉴权才能通过,被授权的用户才能访问相关的资源。Prefix这个Condition是在GetBucket(ListObjects)的时候起作用的,关于这个字段的解释详见OSS的API文档。 配置细则 Version Version定义了Policy的版本,本文档中sw2q的配置方式,设置为1。 Statement 通过Statement描述授权语义,其中可以根据业务场景包含多条语义,每条包含对Action、Effect、Resource和Condition的描述。每次请求系统会逐条依次匹配检查,所有匹配成功的Statement会根据Effect的设置不同分为通过(Allow)、禁止(Deny),其中禁止(Deny)的优先。如果匹配成功的都为通过,该条请求即鉴权通过。如果匹配成功有一条禁止,或者没有任何条目匹配成功,该条请求被禁止访问。 Action Action分为三大类:Service级别操作,对应的是GetService操作,用来列出所有属于该用户的Bucket列表。 Bucket级别操作,对应类似于oss:PutBucketAcl、oss:GetBucketLocation之类的操作,操作的对象是Bucket,它们的名称和相应的接口名称一一对应。 Object级别操作,分为oss:GetObject、oss:PutObject、oss:DeleteObject和oss:AbortMultipartUpload,操作对象是Object。 如想授权某一类的Object的操作,可以选择这几种的一种或几种。另外,所有的Action前面都必须加上oss:,如上面例子所示。Action是一个列表,可以有多个Action。具体的Action和API接口的对应关系如下: Service级别 API Action GetService(ListBuckets) oss:ListBuckets Bucket级别 API Action PutBucket oss:PutBucket GetBucket(ListObjects) oss:ListObjects PutBucketAcl oss:PutBucketAcl DeleteBucket oss:DeleteBucket GetBucketLocation oss:GetBucketLocation GetBucketAcl oss:GetBucketAcl GetBucketLogging oss:GetBucketLogging PutBucketLogging oss:PutBucketLogging DeleteBucketLogging oss:DeleteBucketLogging GetBucketWebsite oss:GetBucketWebsite PutBucketWebsite oss:PutBucketWebsite DeleteBucketWebsite oss:DeleteBucketWebsite GetBucketReferer oss:GetBucketReferer PutBucketReferer oss:PutBucketReferer GetBucketLifecycle oss:GetBucketLifecycle PutBucketLifecycle oss:PutBucketLifecycle DeleteBucketLifecycle oss:DeleteBucketLifecycle ListMultipartUploads oss:ListMultipartUploads PutBucketCors oss:PutBucketCors GetBucketCors oss:GetBucketCors DeleteBucketCors oss:DeleteBucketCors PutBucketReplication oss:PutBucketReplication GetBucketReplication oss:GetBucketReplication DeleteBucketReplication oss:DeleteBucketReplication GetBucketReplicationLocation oss:GetBucketReplicationLocation GetBucketReplicationProgress oss:GetBucketReplicationProgress Object级别 API Action GetObject oss:GetObject HeadObject oss:GetObject PutObject oss:PutObject PostObject oss:PutObject InitiateMultipartUpload oss:PutObject UploadPart oss:PutObject CompleteMultipart oss:PutObject DeleteObject oss:DeleteObject DeleteMultipartObjects oss:DeleteObject AbortMultipartUpload oss:AbortMultipartUpload ListParts oss:ListParts CopyObject oss:GetObject,oss:PutObject UploadPartCopy oss:GetObject,oss:PutObject AppendObject oss:PutObject GetObjectAcl oss:GetObjectAcl PutObjectAcl oss:PutObjectAcl Resource Resource指代的是OSS上面的某个具体的资源或者某些资源(支持*通配),resource的规则是acs:oss:{region}:{bucket_owner}:{bucket_name}/{object_name}。对于所有Bucket级别的操作来说不需要最后的斜杠和{object_name},即acs:oss:{region}:{bucket_owner}:{bucket_name}。Resource也是一个列表,可以有多个Resource。其中的region字段暂时不做支持,设置为*。 Effect Effect代表本条的Statement的授权的结果,分为Allow和Deny,分别指代通过和禁止。多条Statement同时匹配成功时,禁止(Deny)的优先级更高。 例如,期望禁止用户对某一目录进行删除,但对于其他文件有全部权限: { "Version": "1", "Statement": [ { "Effect": "Allow", "Action": [ "oss:*" ], "Resource": [ "acs:oss:*:*:bucketname" ] }, { "Effect": "Deny", "Action": [ "oss:DeleteObject" ], "Resource": [ "acs:oss:*:*:bucketname/index/*", ] } ] } Condition Condition代表Policy授权的一些条件,上面的示例里面可以设置对于acs:UserAgent的检查、acs:SourceIp的检查、还有oss:Prefix这项用来在GetBucket的时候对资源进行限制。 OSS支持的Condition如下: condition 功能 合法取值 acs:SourceIp 指定ip网段 普通的ip,支持*通配 acs:UserAgent 指定http useragent头 字符串 acs:CurrentTime 指定合法的访问时间 ISO8601格式 acs:SecureTransport 是否是https协议 “true”或者”false” oss:Prefix 用作ListObjects时的prefix 合法的object name 更多示例 针对具体场景更多的授权策略配置示例,可以参考教程示例:控制存储空间和文件夹的访问权限和OSS授权常见问题。 Policy在线图形化便捷配置工具,请单击这里。 最佳实践 RAM和STS使用指南

2019-12-01 23:12:47 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 发送访问OSS的请求 您可以直接使用OSS提供的RESTful API接口访问或者使用对API接口进行完整封装的SDK开发包。而每一次向OSS的请求根据当前Bucket权限和操作不同要求用户进行身份验证或者直接匿名访问。对OSS的资源访问的分类如下: 按访问者的角色可分为拥有者访问和第三方用户访问。这里的拥有者指的是Bucket的Owner,也称为开发者。第三方用户是指访问Bucket里资源的用户。 按访问者的身份信息可分为匿名访问和带签名访问。对于OSS来说,如果请求中没有携带任何和身份相关的信息即为匿名访问。带签名访问指的是按照OSS API文档中规定的在请求头部或者在请求URL中携带签名的相关信息。 AccessKey 类型 目前访问 OSS 使用的 AK(AccessKey)有三种类型,具体如下: 阿里云账号AccessKey 阿里云账号AK特指Bucket拥有者的AK,每个阿里云账号提供的AccessKey对拥有的资源有完全的权限。每个阿里云账号能够同时拥有不超过5个active或者inactive的AK对(AccessKeyId和AccessKeySecret)。 用户可以登录AccessKey管理控制台,申请新增或删除AK对。 每个AK对都有active/inactive两种状态。 Active 表明用户的 AK 处于激活状态,可以在身份验证的时候使用。 Inactive 表明用户的 AK 处于非激活状态,不能在身份验证的时候使用。 说明 请避免直接使用阿里云账户的 AccessKey。 RAM子账号AccessKey RAM (Resource Access Management) 是阿里云提供的资源访问控制服务。RAM账号AK指的是通过RAM被授权的AK。这组AK只能按照RAM定义的规则去访问Bucket里的资源。通过RAM,您可以集中管理您的用户(比如员工、系统或应用程序),以及控制用户可以访问您名下哪些资源的权限。比如能够限制您的用户只拥有对某一个Bucket的读权限。子账号是从属于主账号的,并且这些账号下不能拥有实际的任何资源,所有资源都属于主账号。 STS账号AccessKey STS(Security Token Service)是阿里云提供的临时访问凭证服务。STS账号AK指的是通过STS颁发的AK。这组AK只能按照STS定义的规则去访问Bucket里的资源。 身份验证具体实现 目前主要有三种身份验证方式: AK验证 RAM验证 STS验证 当用户以个人身份向OSS发送请求时,其身份验证的实现如下: 用户将发送的请求按照OSS指定的格式生成签名字符串。 用户使用AccessKeySecret对签名字符串进行加密产生验证码。 OSS收到请求以后,通过AccessKeyId找到对应的AccessKeySecret,以同样的方法提取签名字符串和验证码。 如果计算出来的验证码和提供的一样即认为该请求是有效的。 否则,OSS将拒绝处理这次请求,并返回HTTP 403错误。 对于用户来说可以直接使用OSS提供的SDK,配合不同类型的AccessKey即可实现不同的身份验证。 权限控制 针对存放在Bucket的Object的访问,OSS提供了多种权限控制,主要有: Bucket级别权限 Object级别权限 账号级别权限(RAM) 临时账号权限(STS) Bucket级别权限 Bucket权限类型 OSS提供ACL(Access Control List)权限控制方法,OSS ACL提供Bucket级别的权限访问控制,Bucket目前有三种访问权限:public-read-write,public-read和private,它们的含义如下: 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 任何人(包括匿名访问)都可以对该Bucket中的Object进行读/写/删除操作;所有这些操作产生的费用由该Bucket的Owner承担,请慎用该权限。 public-read 公共读,私有写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行写/删除操作;任何人(包括匿名访问)可以对Object进行读操作。 private 私有读写 只有该Bucket的Owner或者授权对象可以对存放在其中的Object进行读/写/删除操作;其他人在未经授权的情况下无法访问该Bucket内的Object。 Bucket权限设定和读取方法 功能使用参考: API:Put BucketACL SDK:Java SDK-设置Bucket ACL 控制台:创建Bucket权限设置 API:Get BucketACL SDK:Java SDK-获取Bucket ACL Object级别权限 Object权限类型 OSS ACL也提供Object级别的权限访问控制。目前Object有四种访问权限:private, public-read, public-read-write, default。Put Object ACL操作通过Put请求中的“x-oss-object-acl”头来设置,这个操作只有Bucket Owner有权限执行。 权限值 中文名称 权限对访问者的限制 public-read-write 公共读写 该ACL表明某个Object是公共读写资源,即所有用户拥有对该Object的读写权限。 public-read 公共读,私有写 该ACL表明某个Object是公共读资源,即非Object Owner只有该Object的读权限,而Object Owner拥有该Object的读写权限。 private 私有读写 该ACL表明某个Object是私有资源,即只有该Object的Owner拥有该Object的读写权限,其他的用户没有权限操作该Object。 default 默认权限 该ACL表明某个Object是遵循Bucket读写权限的资源,即Bucket是什么权限,Object就是什么权限。 说明 如果没有设置Object的权限,即Object的ACL为default,Object的权限和Bucket权限一致。 如果设置了Object的权限,Object的权限大于Bucket权限。举个例子,如果设置了Object的权限是public-read,无论Bucket是什么权限,该Object都可以被身份验证访问和匿名访问。 Object权限设定和读取方法 功能使用参考: API:Put Object ACL SDK:Java SDK-ObjectACL 中设定Object ACL API:Get Object ACL SDK:Java SDK-ObjectACL 中读取Object ACL 账号级别权限(RAM) 使用场景 如果您购买了云资源,您的组织里有多个用户需要使用这些云资源,这些用户只能共享使用您的云账号AccessKey。这里有两个问题: 您的密钥由多人共享,泄露的风险很高。 您无法控制特定用户能访问哪些资源(比如Bucket)的权限。 解决方法:在您的阿里云账号下面,通过RAM可以创建具有自己AccessKey的子用户。您的阿里云账号被称为主账号,创建出来的账号被称为子账号,使用子账号的AccessKey只能使用主账号授权的操作和资源。 具体实现 有关RAM详情,请参考RAM用户手册。 对于授权中需要的Policy的配置方式可以参考本章最后一节:RAM和STS授权策略(Policy)配置。 临时账号权限(STS) 使用场景 对于您本地身份系统所管理的用户,比如您的App的用户、您的企业本地账号、第三方App,也有直接访问OSS资源的可能,将这部分用户称为联盟用户。此外,用户还可以是您创建的能访问您的阿里云资源的应用程序。 对于这部分联盟用户,通过阿里云STS (Security Token Service) 服务为阿里云账号(或RAM用户)提供短期访问权限管理。您不需要透露云账号(或RAM用户)的长期密钥(如登录密码、AccessKey),只需要生成一个短期访问凭证给联盟用户使用即可。这个凭证的访问权限及有效期限都可以由您自定义。您不需要关心权限撤销问题,访问凭证过期后会自动失效。 用户通过STS生成的凭证包括安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)。使用AccessKey方法与您在使用阿里云账户或RAM用户AccessKey发送请求时的方法相同。此外还需要注意的是在每个向OSS发送的请求中必须携带安全令牌。 具体实现 STS安全令牌、角色管理和使用相关内容详情,请参考RAM用户指南中的角色管理。关键是调用STS服务接口AssumeRole来获取有效访问凭证即可,也可以直接使用STS SDK来调用该方法。 RAM和STS应用场景实践 对于不同的应用场景,涉及到的访问身份验证方式可能存在差异。下面以几种典型的应用场景来说明访问身份验证中几种使用方式。 以一个移动App举例。假设您是一个移动App开发者,打算使用阿里云OSS服务来保存App的终端用户数据,并且要保证每个App用户之间的数据隔离,防止一个App用户获取到其它App用户的数据。 方式一:使用AppServer来做数据中转和数据隔离如上图所示,您需要开发一个AppServer。只有AppServer能访问云服务,ClientApp的每次读写数据都需要通过AppServer,AppServer来保证不同用户数据的隔离访问。 对于该种使用方式,使用阿里云账号或者RAM账号提供的密钥来进行签名验证访问。建议您尽量不要直接使用阿里云账号(主账号)的密钥访问OSS,避免出现安全问题。 方式二:使用STS让用户直接访问OSS STS方案描述如下图所示:方案的详细描述如下: App用户登录。App用户和云账号无关,它是App的终端用户,AppServer支持App用户登录。对于每个有效的App用户来说,需要AppServer能定义出每个App用户的最小访问权限。 AppServer请求STS服务获取一个安全令牌(SecurityToken)。在调用STS之前,AppServer需要确定App用户的最小访问权限(用Policy语法描述)以及授权的过期时间。然后通过扮演角色(AssumeRole)来获取一个代表角色身份的安全令牌。 STS返回给AppServer一个有效的访问凭证,包括一个安全令牌(SecurityToken)、临时访问密钥(AccessKeyId, AccessKeySecret)以及过期时间。 AppServer将访问凭证返回给ClientApp。ClientApp可以缓存这个凭证。当凭证失效时,ClientApp需要向AppServer申请新的有效访问凭证。比如,访问凭证有效期为1小时,那么ClientApp可以每30分钟向AppServer请求更新访问凭证。 ClientApp使用本地缓存的访问凭证去请求Aliyun Service API。云服务会感知STS访问凭证,并会依赖STS服务来验证访问凭证,正确响应用户请求。 RAM和STS授权策略(Policy)配置 对于RAM或者STS授权中使用Policy,详细规则如下。 示例 先看下面的一个Policy示例: { "Version": "1", "Statement": [ { "Action": [ "oss:GetBucketAcl", "oss:ListObjects" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket" ], "Effect": "Allow", "Condition": { "StringEquals": { "acs:UserAgent": "java-sdk", "oss:Prefix": "foo" }, "IpAddress": { "acs:SourceIp": "192.168.0.1" } } }, { "Action": [ "oss:PutObject", "oss:GetObject", "oss:DeleteObject" ], "Resource": [ "acs:oss:*:1775305056529849:mybucket/file*" ], "Effect": "Allow", "Condition": { "IpAddress": { "acs:SourceIp": "192.168.0.1" } } } ] } 这是一个授权的Policy,用户用这样的一个Policy通过RAM或STS服务向其他用户授权。Policy当中有一个Statement(一条Policy当中可以有多条Statement)。Statement里面规定了相应的Action、Resource、Effect和Condition。 这条Policy把用户自己名下的mybucket和mybucket/file*这些资源授权给相应的用户,并且支持GetBucketAcl、GetBucket、PutObject、GetObject和DeleteObject这几种操作。Condition中的条件表示UserAgent为java-sdk,源IP为192.168.0.1的时候鉴权才能通过,被授权的用户才能访问相关的资源。Prefix这个Condition是在GetBucket(ListObjects)的时候起作用的,关于这个字段的解释详见OSS的API文档。 配置细则 Version Version定义了Policy的版本,本文档中sw2q的配置方式,设置为1。 Statement 通过Statement描述授权语义,其中可以根据业务场景包含多条语义,每条包含对Action、Effect、Resource和Condition的描述。每次请求系统会逐条依次匹配检查,所有匹配成功的Statement会根据Effect的设置不同分为通过(Allow)、禁止(Deny),其中禁止(Deny)的优先。如果匹配成功的都为通过,该条请求即鉴权通过。如果匹配成功有一条禁止,或者没有任何条目匹配成功,该条请求被禁止访问。 Action Action分为三大类:Service级别操作,对应的是GetService操作,用来列出所有属于该用户的Bucket列表。 Bucket级别操作,对应类似于oss:PutBucketAcl、oss:GetBucketLocation之类的操作,操作的对象是Bucket,它们的名称和相应的接口名称一一对应。 Object级别操作,分为oss:GetObject、oss:PutObject、oss:DeleteObject和oss:AbortMultipartUpload,操作对象是Object。 如想授权某一类的Object的操作,可以选择这几种的一种或几种。另外,所有的Action前面都必须加上oss:,如上面例子所示。Action是一个列表,可以有多个Action。具体的Action和API接口的对应关系如下: Service级别 API Action GetService(ListBuckets) oss:ListBuckets Bucket级别 API Action PutBucket oss:PutBucket GetBucket(ListObjects) oss:ListObjects PutBucketAcl oss:PutBucketAcl DeleteBucket oss:DeleteBucket GetBucketLocation oss:GetBucketLocation GetBucketAcl oss:GetBucketAcl GetBucketLogging oss:GetBucketLogging PutBucketLogging oss:PutBucketLogging DeleteBucketLogging oss:DeleteBucketLogging GetBucketWebsite oss:GetBucketWebsite PutBucketWebsite oss:PutBucketWebsite DeleteBucketWebsite oss:DeleteBucketWebsite GetBucketReferer oss:GetBucketReferer PutBucketReferer oss:PutBucketReferer GetBucketLifecycle oss:GetBucketLifecycle PutBucketLifecycle oss:PutBucketLifecycle DeleteBucketLifecycle oss:DeleteBucketLifecycle ListMultipartUploads oss:ListMultipartUploads PutBucketCors oss:PutBucketCors GetBucketCors oss:GetBucketCors DeleteBucketCors oss:DeleteBucketCors PutBucketReplication oss:PutBucketReplication GetBucketReplication oss:GetBucketReplication DeleteBucketReplication oss:DeleteBucketReplication GetBucketReplicationLocation oss:GetBucketReplicationLocation GetBucketReplicationProgress oss:GetBucketReplicationProgress Object级别 API Action GetObject oss:GetObject HeadObject oss:GetObject PutObject oss:PutObject PostObject oss:PutObject InitiateMultipartUpload oss:PutObject UploadPart oss:PutObject CompleteMultipart oss:PutObject DeleteObject oss:DeleteObject DeleteMultipartObjects oss:DeleteObject AbortMultipartUpload oss:AbortMultipartUpload ListParts oss:ListParts CopyObject oss:GetObject,oss:PutObject UploadPartCopy oss:GetObject,oss:PutObject AppendObject oss:PutObject GetObjectAcl oss:GetObjectAcl PutObjectAcl oss:PutObjectAcl Resource Resource指代的是OSS上面的某个具体的资源或者某些资源(支持*通配),resource的规则是acs:oss:{region}:{bucket_owner}:{bucket_name}/{object_name}。对于所有Bucket级别的操作来说不需要最后的斜杠和{object_name},即acs:oss:{region}:{bucket_owner}:{bucket_name}。Resource也是一个列表,可以有多个Resource。其中的region字段暂时不做支持,设置为*。 Effect Effect代表本条的Statement的授权的结果,分为Allow和Deny,分别指代通过和禁止。多条Statement同时匹配成功时,禁止(Deny)的优先级更高。 例如,期望禁止用户对某一目录进行删除,但对于其他文件有全部权限: { "Version": "1", "Statement": [ { "Effect": "Allow", "Action": [ "oss:*" ], "Resource": [ "acs:oss:*:*:bucketname" ] }, { "Effect": "Deny", "Action": [ "oss:DeleteObject" ], "Resource": [ "acs:oss:*:*:bucketname/index/*", ] } ] } Condition Condition代表Policy授权的一些条件,上面的示例里面可以设置对于acs:UserAgent的检查、acs:SourceIp的检查、还有oss:Prefix这项用来在GetBucket的时候对资源进行限制。 OSS支持的Condition如下: condition 功能 合法取值 acs:SourceIp 指定ip网段 普通的ip,支持*通配 acs:UserAgent 指定http useragent头 字符串 acs:CurrentTime 指定合法的访问时间 ISO8601格式 acs:SecureTransport 是否是https协议 “true”或者”false” oss:Prefix 用作ListObjects时的prefix 合法的object name 更多示例 针对具体场景更多的授权策略配置示例,可以参考教程示例:控制存储空间和文件夹的访问权限和OSS授权常见问题。 Policy在线图形化便捷配置工具,请单击这里。 最佳实践 RAM和STS使用指南

2019-12-01 23:12:47 0 浏览量 回答数 0

回答

SpringBoot整合ES 创建SpringBoot项目,导入 ES 6.2.1 的 RestClient 依赖和 ES 依赖。在项目中直接引用 es-starter 的话会报容器初始化异常错误,导致项目无法启动。如果有读者解决了这个问题,欢迎留言交流 org.elasticsearch.client elasticsearch-rest-high-level-client ${elasticsearch.version} org.elasticsearch elasticsearch ${elasticsearch.version} 为容器定义 RestClient 对象 /** * 在Spring容器中定义 RestClient 对象 * @Author: keats_coder * @Date: 2019/8/9 * @Version 1.0 * */ @Configuration public class ESConfig { @Value("${yunshangxue.elasticsearch.hostlist}") private String hostlist; // 127.0.0.1:9200 @Bean // 高版本客户端 public RestHighLevelClient restHighLevelClient() { // 解析 hostlist 配置信息。假如以后有多个,则需要用 , 分开 String[] split = hostlist.split(","); // 创建 HttpHost 数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } // 创建RestHighLevelClient客户端 return new RestHighLevelClient(RestClient.builder(httpHostArray)); } // 项目主要使用 RestHighLevelClient,对于低级的客户端暂时不用 @Bean public RestClient restClient() { // 解析hostlist配置信息 String[] split = hostlist.split(","); // 创建HttpHost数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } return RestClient.builder(httpHostArray).build(); } } 在 yml 文件中配置 eshost yunshangxue: elasticsearch: hostlist: ${eshostlist:127.0.0.1:9200} 调用相关 API 执行操作 创建操作索引的对象 构建操作索引的请求 调用对象的相关API发送请求 获取响应消息 /** * 删除索引库 */ @Test public void testDelIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 删除索引的请求 DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("ysx_course"); // 删除索引 DeleteIndexResponse response = indices.delete(deleteIndexRequest); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } 创建索引, 步骤和删除类似,需要注意的是删除的时候需要指定 ES 库分片的数量和副本的数量,并且在创建索引的时候可以将映射一起指定了。代码如下 public void testAddIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 创建索引的请求 CreateIndexRequest request = new CreateIndexRequest("ysx_course"); request.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0")); // 创建映射 request.mapping("doc", "{\n" + " \"properties\": {\n" + " \"description\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + " \"name\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + "\"pic\":{ \n" + "\"type\":\"text\", \n" + "\"index\":false \n" + "}, \n" + " \"price\": {\n" + " \"type\": \"float\"\n" + " },\n" + " \"studymodel\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"timestamp\": {\n" + " \"type\": \"date\",\n" + " \"format\": \"yyyy-MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis\"\n" + " }\n" + " }\n" + " }", XContentType.JSON); // 执行创建操作 CreateIndexResponse response = indices.create(request); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } Java API操作ES 准备数据环境 创建索引:ysx_course 创建映射: PUT http://localhost:9200/ysx_course/doc/_mapping { "properties": { "description": { // 课程描述 "type": "text", // String text 类型 "analyzer": "ik_max_word", // 存入的分词模式:细粒度 "search_analyzer": "ik_smart" // 查询的分词模式:粗粒度 }, "name": { // 课程名称 "type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_smart" }, "pic":{ // 图片地址 "type":"text", "index":false // 地址不用来搜索,因此不为它构建索引 }, "price": { // 价格 "type": "scaled_float", // 有比例浮点 "scaling_factor": 100 // 比例因子 100 }, "studymodel": { "type": "keyword" // 不分词,全关键字匹配 }, "timestamp": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" } } } 加入原始数据: POST http://localhost:9200/ysx_course/doc/1 { "name": "Bootstrap开发", "description": "Bootstrap是由Twitter推出的一个前台页面开发框架,是一个非常流行的开发框架,此框架集成了多种页面效果。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。", "studymodel": "201002", "price":38.6, "timestamp":"2018-04-25 19:11:35", "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } DSL搜索 DSL(Domain Specific Language)是ES提出的基于json的搜索方式,在搜索时传入特定的json格式的数据来完成不 同的搜索需求。DSL比URI搜索方式功能强大,在项目中建议使用DSL方式来完成搜索。 查询全部 原本我们想要查询全部的话,需要使用 GET 请求发送 _search 命令,如今使用 DSL 方式搜索,可以使用 POST 请求,并在请求体中设置 JSON 字符串来构建查询条件 POST http://localhost:9200/ysx_course/doc/_search 请求体 JSON { "query": { "match_all": {} // 查询全部 }, "_source" : ["name","studymodel"] // 查询结果包括 课程名 + 学习模式两个映射 } 具体的测试方法如下:过程比较繁琐,好在条理还比较清晰 // 搜索全部记录 @Test public void testSearchAll() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for(SearchHit hit:searchHits){ // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } } 坑:red> 执行过程中遇到的问题:不能对这个值进行初始化,导致 Spring 容器无法初始化 Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'yunshangxue.elasticsearch.hostlist' in value "${yunshangxue.elasticsearch.hostlist}" 通过检查 target 目录发现,生成的 target 文件包中没有将 yml 配置文件带过来... 仔细对比发现,我的项目竟然变成了一个不是 Maven 的项目。重新使用 IDEA 导入 Mavaen 工程之后便能正常运行了 分页查询 我们来 look 一下 ES 的分页查询参数: { // from 起始索引 // size 每页显示的条数 "from" : 0, "size" : 1, "query": { "match_all": {} }, "_source" : ["name","studymodel"] } 1565524349684 通过查询结果可以发现,我们设置了分页参数之后, hits.total 仍然是 3,表示它找到了 3 条数据,而按照分页规则,它只会返回一条数据,因此 hits.hits 里面只有一条数据。这也符合我们的业务规则,在查询前端页面显示总共的条数和当前的数据。 由此,我们就可以通过 Java API 来构建查询条件了:对上面查询全部的代码进行如下改造: // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); int page = 2; // 页码 int size = 1; // 每页显示的条数 int index = (page - 1) * size; searchSourceBuilder.from(index); searchSourceBuilder.size(1); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); 精确查询 TermQuery Term Query为精确查询,在搜索时会整体匹配关键字,不再将关键字分词 例如: { "query": { "term": { // 查询的方式为 term 精确查询 "name": "spring" // 查询的字段为 name 关键字是 spring } }, "_source": [ "name", "studymodel" ] } 此时查询的结果是: "hits": [ { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 0.9331132, "_source": { "studymodel": "201001", "name": "spring开发基础" } } ] 查询到了上面这条数据,因为 spring开发基础 分完词后是 spring 开发 基础 ,而查询关键字是 spring 不分词,这样当然可以匹配到这条记录,但是当我们修改关键字为 spring开发,按照往常的查询方法,也是可以查询到的。但是 term 不一样,它不会对关键字分词。结果可想而知是查询不到的 JavaAPI如下: // 搜索方式 // termQuery 精确查询 searchSourceBuilder.query(QueryBuilders.termQuery("studymodel", "201002")); 根据 ID 查询: 根据 ID 精确查询和根据其他条件精确查询是一样的,不同的是 id 字段前面有一个下划线注意写上 searchSourceBuilder.query(QueryBuilders.termQuery("_id", "1")); 但是,当一次查询多个 ID 时,相应的 API 也应该改变,使用 termsQuery 而不是 termQuery。多了一个 s 全文检索 MatchQuery MatchQuery 即全文检索,会对关键字进行分词后匹配词条。 query:搜索的关键字,对于英文关键字如果有多个单词则中间要用半角逗号分隔,而对于中文关键字中间可以用 逗号分隔也可以不用 operator:设置查询的结果取交集还是并集,并集用 or, 交集用 and { "query": { "match": { "description": { "query": "spring开发", "operator": "or" } } } } 有时,我们需要设定一个量化的表达方式,例如查询 spring开发基础,这三个词条。我们需求是至少匹配两个词条,这时 operator 属性就不能满足要求了,ES 还提供了另外一个属性:minimum_should_match 用一个百分数来设定应该有多少个词条满足要求。例如查询: “spring开发框架”会被分为三个词:spring、开发、框架 设置"minimum_should_match": "80%"表示,三个词在文档的匹配占比为80%,即3*0.8=2.4,向下取整得2,表 示至少有两个词在文档中要匹配成功。 JavaAPI 通过 matchQuery.minimumShouldMatch 的方式来设置条件 // matchQuery全文检索 searchSourceBuilder.query(QueryBuilders.matchQuery("description", "Spring开发框架").minimumShouldMatch("70%")); 多字段联合搜索 MultiQuery 上面的 MatchQuery 有一个短板,假如用户输入了某关键字,我们在查找的时候并不知道他输入的是 name 还是 description,这时我们用什么都不合适,而 MultiQuery 的出现解决了这个问题,他可以通过 fields 属性来设置多个域联合查找:具体用法如下 { "query": { "multi_match": { "query": "Spring开发", "minimum_should_match": "70%", "fields": ["name", "description"] } } } JavaAPI searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").minimumShouldMatch("70%")); 提升 boost 在多域联合查询的时候,可以通过 boost 来设置某个域在计算得分时候的比重,比重越高的域当他符合条件时计算的得分越高,相应的该记录也更靠前。通过在 fields 中给相应的字段用 ^权重倍数来实现 "fields": ["name^10", "description"] 上面的代码表示给 name 字段提升十倍权重,查询到的结果: { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 13.802518, // 可以清楚的发现,得分竟然是 13 了 "_source": { "name": "spring开发基础", "description": "spring 在java领域非常流行,java程序员都在用。", "studymodel": "201001", "price": 88.6, "timestamp": "2018-02-24 19:11:35", "pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } }, 而在 Java 中,仍然可以通过链式编程来实现 searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10)); // 设置 name 10倍权重 布尔查询 BoolQuery 如果我们既要对一些字段进行分词查询,同时要对另一些字段进行精确查询,就需要使用布尔查询来实现了。布尔查询对应于Lucene的BooleanQuery查询,实现将多个查询组合起来,有三个可选的参数: must:文档必须匹配must所包括的查询条件,相当于 “AND” should:文档应该匹配should所包括的查询条件其中的一个或多个,相当于 "OR" must_not:文档不能匹配must_not所包括的该查询条件,相当于“NOT” { "query": { "bool": { // 布尔查询 "must": [ // 查询条件 must 表示数组中的查询方式所规定的条件都必须满足 { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } }, { "term": { "studymodel": "201001" } } ] } } } JavaAPI // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10); // 然后构造精确匹配查询条件 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("studymodel", "201002"); // 组合两个条件,组合方式为 must 全满足 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); boolQueryBuilder.must(termQueryBuilder); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); 过滤器 定义过滤器查询,是在原本查询结果的基础上对数据进行筛选,因此省略了重新计算的分的步骤,效率更高。并且方便缓存。推荐尽量使用过虑器去实现查询或者过虑器和查询共同使用,过滤器在布尔查询中使用,下边是在搜索结果的基础上进行过滤: { "query": { "bool": { "must": [ { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } } ], "filter": [ { // 过滤条件:studymodel 必须是 201001 "term": {"studymodel": "201001"} }, { // 过滤条件:价格 >=60 <=100 "range": {"price": {"gte": 60,"lte": 100}} } ] } } } 注意:range和term一次只能对一个Field设置范围过虑。 JavaAPI // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.termQuery("studymodel", "201001")); boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); 排序 我们可以在查询的结果上进行二次排序,支持对 keyword、date、float 等类型添加排序,text类型的字段不允许排序。排序使用的 JSON 格式如下: { "query": { "bool": { "filter": [ { "range": { "price": { "gte": 0, "lte": 100 } } } ] } }, "sort": [ // 注意这里排序是写在 query key 的外面的。这就表示它的API也不是布尔查询提供 { "studymodel": "desc" // 对 studymodel(keyword)降序 }, { "price": "asc" // 对 price(double)升序 } ] } 由上面的 JSON 数据可以发现,排序所属的 API 是和 query 评级的,因此在调用 API 时也应该选择对应的 SearchSourceBuilder 对象 // 排序查询 @Test public void testSort() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 设置排序规则 searchSourceBuilder.sort("studymodel", SortOrder.DESC); // 第一排序规则 searchSourceBuilder.sort("price", SortOrder.ASC); // 第二排序规则 // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } 高亮显示 高亮显示可以将搜索结果一个或多个字突出显示,以便向用户展示匹配关键字的位置。 高亮三要素:高亮关键字、高亮前缀、高亮后缀 { "query": { "bool": { "must": [ { "multi_match": { "query": "开发框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ], "type": "best_fields" } } ] } }, "sort": [ { "price": "asc" } ], "highlight": { "pre_tags": [ "" ], "post_tags": [ "" ], "fields": { "name": {}, "description": {} } } } 查询结果的数据如下: 1565585272091 Java 代码如下,注意到上面的 JSON 数据, highlight 和 sort 和 query 依然是同级的,所以也需要用 SearchSourceBuilder 对象来设置到搜索条件中 // 高亮查询 @Test public void testHighLight() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // *********************** // 高亮查询 HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.preTags("<em>"); // 高亮前缀 highlightBuilder.postTags("</em>"); // 高亮后缀 highlightBuilder.fields().add(new HighlightBuilder.Field("name")); // 高亮字段 // 添加高亮查询条件到搜索源 searchSourceBuilder.highlighter(highlightBuilder); // *********************** // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } 根据查询结果的数据结构来获取高亮的数据,替换原有的数据: private void soutData(SearchHit[] searchHits) throws ParseException { SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for (SearchHit hit : searchHits) { // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 获取高亮查询的内容。如果存在,则替换原来的name Map<String, HighlightField> highlightFields = hit.getHighlightFields(); if( highlightFields != null ){ HighlightField nameField = highlightFields.get("name"); if(nameField!=null){ Text[] fragments = nameField.getFragments(); StringBuffer stringBuffer = new StringBuffer(); for (Text str : fragments) { stringBuffer.append(str.string()); } name = stringBuffer.toString(); } } // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(id); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } }

剑曼红尘 2020-04-15 19:21:40 0 浏览量 回答数 0

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

问题

【精品回答】移动推送

montos 2020-04-09 09:57:11 14 浏览量 回答数 1

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板