• 关于

    计算机系统工程工作原理

    的搜索结果

回答

计算机科学与技术专业课程 课程简介 1.数字逻辑电路: “数字逻辑”是计算机专业本科生的一门主要课程,具有自身的理论体系和很强的实践性。它是计算机组成原理的主要先导课程之一,是计算机应用专业关于计算机系统结构方面的主干课程之一。 课程的主要目的是使学生了解和掌握从对数字系统提出要求开始,一直到用集成电路实现所需逻辑功能为止的整个过程的完整知识。内容有数制和编码、布尔代数和逻辑函数、组合逻辑电路的分析和设计,时序逻辑电路的分析和设计,中、大规模集成电路的应用。通过对该课程的学习,可以为计算机组成原理、微型计算机技术、计算机系统结构等课程打下坚实的基础。 2.计算机组成原理: 本课程是计算机系本科生的一门重要专业基础课。在各门硬件课程中占有举足轻重的地位。它的先修课程是《数字逻辑电路》,后继课程有《微机接口技术》、《计算机系统结构》。从课程地位来说,本课程在先修课和后继课中起着承上启下的作用。主要讲解计算机五大部件的组成及工作原理,逻辑设计与实现方法,整机的互连技术,培养学生具有初步的硬件系统分析、设计、开发和使用的能力。具体内容包括:数制与码制、基本逻辑部件、运算方法与运算器、指令系统与寻址方式,中央处理器(CPU)的工作原理及设计方法。存储系统和输入/输出(I/O)系统等。通过该课程的学习,可以使学生较深地掌握单台计算机的组成及工作原理,进一步加深对先修课程的综合理解及灵活应用,为后继课程的学习建立坚实的基础知识。 3.微机接口技术: 本课程是计算机科学与技术专业学生必修的核心课程之一,它的先修课程为数字逻辑、计算机组成原理。本课程对于训练学生掌握硬件接口设计技术,熟悉微处理器和各种接口芯片的硬件设计和软件调试技术都有重要作用,在软件方面要求掌握汇编语言,在硬件方面要掌握中断、DMA、计数器/定时器等设计技术。通过该课程的学习使学生学会微机接口设计的基本方法和技能。 4.计算机系统结构: 计算机系统结构主要是研究高性能计算机组织与结构的课程。主要包括:计算机系统结构的基本概念、指令的流水处理与向量计算机、高性能微处理器技术、并行处理机结构及算法和多处理机技术。结合现代计算机系统结构的新发展,介绍近几年来计算机系统结构所出现的一些新概念和新技术。 5.数据库概论: 数据库已是计算机系本科生不可缺少的专业基础课,它是计算机应用的重要支柱之一。该课程讲授数据库技术的特点,数据库系统的结构,三种典型数据模型及系统(以关系型系统为主)、数据库规范化理论,数据库的设计与管理,以及数据库技术的新进展等。通过本课程学习,掌握基本概念、理论和方法,学会使用数据库管理系统设计和建立数据库的初步能力,为以后实现一个数据库管理系统及进行系统的理论研究打下基础。 6.算法与数据结构: “数据结构”是计算机程序设计的重要理论技术基础,是计算机科学与技术专业的必修课,是计算机学科其它专业课的先修课程。通过学习本课程使学生掌握数据结构的基本逻辑结构和存储结构及其基本算法的设计方法,并在实际应用中能灵活使用。学会分析研究数据对象的特性,选择合适的逻辑结构、存储结构及设计相应的算法。初步掌握算法的时空分析技巧,同时进行程序设计训练。使学生学会应用抽象数据类型概念进行抽象设计。主要内容有:线性表、链表、栈、队列、数组、广义表、树与二叉树、图、查找、排序、内存管理、文件存储管理。 7.离散数学: “离散数学”是计算机科学与技术专业必修课程,其主要内容包括:命题逻辑;一阶命题逻辑;集合、关系与映射;代数系统、布尔代数 ;图论等。这些内容为学习计算机专业课程,如编译原理、数据结构提供重要的理论工具,同时也是计算机应用不可缺少的理论基础。 离散数学主要培养学生对事物的抽象思维能力和逻辑推理能力,为今后处理离散信息,从事计算机软件的开发和设计,以及计算机的其它实际应用打好数学基础。 8.操作系统: 操作系统是现代计算机系统中不可缺少的重要组成部分。它的先修课程是数据结构和计算机基础,在此基础上讲解操作系统的主要内容:CPU管理、存储器管理、作业管理、I/O设备管理和文件管理。这些基本原理告诉人们作为计算机系统中各种资源的管理者和各种活动的组织者、指挥者,操作系统是如何使整个计算机系统有条不率地高效工作,以及它为用户使用计算机系统提供了哪些便利手段。掌握了这些知识,人们就会对计算机系统的总体框架、工作流程和使用方法有了一个全面的认识,就会清楚后续专业课程所述内容在计算机系统中所处的地位和作用,这样不仅便于理解后续课程内容,而且能使人们把计算机的各部分知识有机地联系起来。此外,由于多处理机系统和计算机网络的盛行,本课程中也包含了对多处理机操作系统和网络操作系统的概述,从而使学习者可以跟上计算机技术的发展速度。 9.数据通信与计算机网: 该课程主要介绍网络基本理论和网络最新实用技术,分基础理论、实用技术和新技术三部分进行讲述。主要讲解计算机网络的功能和组成,数据传输,链路控制,多路复用,差错检测,网络体系结构,网络分层协议及局域网、广域网等。要求学生掌握数据通信的基本原理和计算机网络的体系结构,打下坚实的理论基础,培养实际应用的能力,为今后从事计算机网络的科研和设计工作打下基础。 10.高级语言程序设计: 本课程介绍了C与C++的全集。它从语法入手,同时强调程序设计的基本方法,以使学生能在较短的时间内,掌握C语言的结构化程序设计方法与C++语言的面向对象程序设计方法。主要内容有:1、过程初步;2、过程组织和管理;3、C++的数据类型;4、类与对象;5、继承;6、I/O流。 11.软件工程: 软件工程课程是计算机专业的一门主要专业课程,是培养高水平软件研制和开发人员的一门重程。该课程主要介绍软件工程的概念、原理及典型的方法技术,进述软件生存周期各阶段的任务、过程、方法和工具,讨论了软件工程使用的科学管理技术。 12.数据库应用: 通过实践方式使学生进一步掌握数据库知识和技术,掌握C/S(客户/服务)模式下的大型数据库的设计与实现,培养同行间的合作精神,学习应用合作方法。 13.软件编程实践: 主要介绍最新的常规的软件编程平台、工具和方法。本课程面向应用技术和实用技术,培养学生自学新技术的能力,在WINDOWS下的综合编程能力,实际解决问题能力。 14.计算机网络工程: 计算机技术与通信技术相结合导致了计算机网络的产生。计算机网络已成为当今大型信息系统的基础。-------------------------高等数学、大学英语、概率统计、离散数学、电路、模拟电子、数字电子、数据结构、操作系统、编译原理、计算机网络、数据库原理、软件工程、汇编语言、C++程序设计、接口技术、Java、VC++、计算机病毒分析、信息安全、等。 高数学的是微积分,线性代数,概率论与数理统计。英语是大学英语上下。还有就是专业的计算机知识,数据分析,c语言,java,还有计算机的系统分析,各种软件技术,学会写代码,程序等。
琴瑟 2019-12-02 01:22:34 0 浏览量 回答数 0

问题

【教程免费下载】软件工程方法与实践 第3版

前  言        软件工程包含一系列软件开发的基本原理、方法和实践经验,用来指导人们进行正确的软件开发。软件工程强调从工程化的原理出发,按照标准化规程和软件开发实践来引导软件开发人员进行软件开发和...
玄学酱 2019-12-01 22:07:41 814 浏览量 回答数 0

问题

css的3D旋转问题,不知道哪里问题,应该每45度停一下,结果每90度停一下

html: <div class="details_gray" id="teacher"> <!--名师风采、教师队伍--> <div class="well_teacher_bo...
杨冬芳 2019-12-01 19:56:18 1421 浏览量 回答数 0

回答

嵌入式Linux操作系统学习规划 ARM+LINUX路线,主攻嵌入式Linux操作系统及其上应用软件开发目标: (1) 掌握主流嵌入式微处理器的结构与原理(初步定为arm9) (2) 必须掌握一个嵌入式操作系统 (初步定为uclinux或linux,版本待定) (3) 必须熟悉嵌入式软件开发流程并至少做一个嵌入式软件项目。 从事嵌入式软件开发的好处是: (1)目前国内外这方面的人都很稀缺。这一领域入门门槛较高,所以非专业IT人员很难切入这一领域;另一方面,是因为这一领域较新,目前发展太快,大多数人无条件接触。 (2)与企业计算等应用软件不同,嵌入式领域人才的工作强度通常低一些(但收入不低)。 (3)哪天若想创业,搞自已的产品,嵌入式不像应用软件那样容易被盗版。硬件设计一般都是请其它公司给订做(这叫“贴牌”:OEM),都是通用的硬件,我们只管设计软件就变成自己的产品了。 (4)兴趣所在,这是最主要的。 从事嵌入式软件开发的缺点是: (1)入门起点较高,所用到的技术往往都有一定难度,若软硬件基础不好,特别是操作系统级软件功底不深,则可能不适于此行。 (2)这方面的企业数量要远少于企业计算类企业。 (3)有少数公司经常要硕士以上的人搞嵌入式,主要是基于嵌入式的难度。但大多数公司也并无此要求,只要有经验即可。 (4)平台依托强,换平台比较辛苦。 兴趣的由来: 1、成功观念不同,不虚度此生,就是我的成功。 2、喜欢思考,挑战逻辑思维。 3、喜欢C C是一种能发挥思维极限的语言。关于C的精神的一些方面可以被概述成短句如下: 相信程序员。 不要阻止程序员做那些需要去做的。 保持语言短小精干。 一种方法做一个操作。 使得它运行的够快,尽管它并不能保证将是可移植的。 4、喜欢底层开发,讨厌vb类开发工具(并不是说vb不好)。 5、发展前景好,适合创业,不想自己要死了的时候还是一个工程师。 方法步骤: 1、基础知识: 目的:能看懂硬件工作原理,但重点在嵌入式软件,特别是操作系统级软件,那将是我的优势。 科目:数字电路、计算机组成原理、嵌入式微处理器结构。 汇编语言、C/C++、编译原理、离散数学。 数据结构和算法、操作系统、软件工程、网络、数据库。 方法:虽科目众多,但都是较简单的基础,且大部分已掌握。不一定全学,可根据需要选修。 主攻书籍:the c++ programming language(一直没时间读)、数据结构-C2。 2、学习linux: 目的:深入掌握linux系统。 方法:使用linux—〉linxu系统编程开发—〉驱动开发和分析linux内核。先看深,那主讲原理。看几遍后,看情景分析,对照深看,两本交叉,深是纲,情是目。剖析则是0.11版,适合学习。最后深入代码。 主攻书籍:linux内核完全剖析、unix环境高级编程、深入理解linux内核、情景分析和源代。 3、学习嵌入式linux: 目的:掌握嵌入式处理器其及系统。 方法:(1)嵌入式微处理器结构与应用:直接arm原理及汇编即可,不要重复x86。 (2)嵌入式操作系统类:ucOS/II简单,开源,可供入门。而后深入研究uClinux。 (3)必须有块开发板(arm9以上),有条件可参加培训(进步快,能认识些朋友)。 主攻书籍:毛德操的《嵌入式系统》及其他arm9手册与arm汇编指令等。 4、深入学习: A、数字图像压缩技术:主要是应掌握MPEG、mp3等编解码算法和技术。 B、通信协议及编程技术:TCP/IP协议、802.11,Bluetooth,GPRS、GSM、CDMA等。 2010-8-21 16:46 回复 122.90.173.* 2楼 C、网络与信息安全技术:如加密技术,数字证书CA等。 D、DSP技术:Digital Signal Process,DSP处理器通过硬件实现数字信号处理算法。 说明:太多细节未说明,可根据实际情况调整。重点在于1、3,不必完全按照顺序作。对于学习c++,理由是c++不只是一种语言,一种工具,她还是一种艺术,一种文化,一种哲学理念、但不是拿来炫耀得东西。对于linux内核,学习编程,读一些优秀代码也是有必要的。 注意: 要学会举一反多,有强大的基础,很多东西简单看看就能会。想成为合格的程序员,前提是必须熟练至少一种编程语言,并具有良好的逻辑思维。一定要理论结合实践。 不要一味钻研技术,虽然挤出时间是很难做到的,但还是要留点余地去完善其他的爱好,比如宇宙,素描、机械、管理,心理学、游戏、科幻电影。还有一些不愿意做但必须要做的。 技术是通过编程编程在编程编出来的。永远不要梦想一步登天,不要做浮躁的人,不要觉得路途漫上。而是要编程编程在编程,完了在编程,在编程。等机会来了在创业(不要相信有奇迹发生,盲目创业很难成功,即便成功了发展空间也不一定很大)。 嵌入式书籍推荐 Linux基础 1、《Linux与Unix Shell 编程指南》 C语言基础 1、《C Primer Plus,5th Edition》【美】Stephen Prata着 2、《The C Programming Language, 2nd Edition》【美】Brian W. Kernighan David M. Rithie(K & R)着 3、《Advanced Programming in the UNIX Environment,2nd Edition》(APUE) 4、《嵌入式Linux应用程序开发详解》 Linux内核 1、《深入理解Linux内核》(第三版) 2、《Linux内核源代码情景分析》毛德操 胡希明著 研发方向 1、《UNIX Network Programming》(UNP) 2、《TCP/IP详解》 3、《Linux内核编程》 4、《Linux设备驱动开发》(LDD) 5、《Linux高级程序设计》 杨宗德著 硬件基础 1、《ARM体系结构与编程》杜春雷着 2、S3C2410 Datasheet 英语基础 1、《计算机与通信专业英语》 系统教程 1、《嵌入式系统――体系结构、编程与设计》 2、《嵌入式系统――采用公开源代码和StrongARM/Xscale处理器》毛德操 胡希明着 3、《Building Embedded Linux Systems》 4、《嵌入式ARM系统原理与实例开发》 杨宗德著 理论基础 1、《算法导论》 2、《数据结构(C语言版)》 3、《计算机组织与体系结构?性能分析》 4、《深入理解计算机系统》【美】Randal E. Bryant David O''Hallaron着 5、《操作系统:精髓与设计原理》 6、《编译原理》 7、《数据通信与计算机网络》 8、《数据压缩原理与应用》 C语言书籍推荐 1. The C programming language 《C程序设计语言》 2. Pointers on C 《C和指针》 3. C traps and pitfalls 《C陷阱与缺陷》 4. Expert C Lanuage 《专家C编程》 5. Writing Clean Code -----Microsoft Techiniques for Developing Bug-free C Programs 《编程精粹--Microsoft 编写优质无错C程序秘诀》 6. Programming Embedded Systems in C and C++ 《嵌入式系统编程》 7.《C语言嵌入式系统编程修炼》 8.《高质量C++/C编程指南》林锐 尽可能多的编码,要学好C,不能只注重C本身。算法,架构方式等都很重要。 这里很多书其实是推荐而已,不必太在意,关键还是基础,才是重中之重。。。
小旋风柴进 2019-12-02 01:20:03 0 浏览量 回答数 0

回答

开发板用友善之臂的吧 mini2440 连3.5寸屏500块钱的样子 有好几张DVD学习光盘 这款口碑比较高 嵌入式Linux操作系统学习规划 ARM+LINUX路线,主攻嵌入式Linux操作系统及其上应用软件开发目标: (1) 掌握主流嵌入式微处理器的结构与原理(初步定为arm9) (2) 必须掌握一个嵌入式操作系统 (初步定为uclinux或linux,版本待定) (3) 必须熟悉嵌入式软件开发流程并至少做一个嵌入式软件项目。 从事嵌入式软件开发的好处是: (1)目前国内外这方面的人都很稀缺。这一领域入门门槛较高,所以非专业IT人员很难切入这一领域;另一方面,是因为这一领域较新,目前发展太快,大多数人无条件接触。 (2)与企业计算等应用软件不同,嵌入式领域人才的工作强度通常低一些(但收入不低)。 (3)哪天若想创业,搞自已的产品,嵌入式不像应用软件那样容易被盗版。硬件设计一般都是请其它公司给订做(这叫“贴牌”:OEM),都是通用的硬件,我们只管设计软件就变成自己的产品了。 (4)兴趣所在,这是最主要的。 从事嵌入式软件开发的缺点是: (1)入门起点较高,所用到的技术往往都有一定难度,若软硬件基础不好,特别是操作系统级软件功底不深,则可能不适于此行。 (2)这方面的企业数量要远少于企业计算类企业。 (3)有少数公司经常要硕士以上的人搞嵌入式,主要是基于嵌入式的难度。但大多数公司也并无此要求,只要有经验即可。 (4)平台依托强,换平台比较辛苦。 兴趣的由来: 1、成功观念不同,不虚度此生,就是我的成功。 2、喜欢思考,挑战逻辑思维。 3、喜欢C C是一种能发挥思维极限的语言。关于C的精神的一些方面可以被概述成短句如下: 相信程序员。 不要阻止程序员做那些需要去做的。 保持语言短小精干。 一种方法做一个操作。 使得它运行的够快,尽管它并不能保证将是可移植的。 4、喜欢底层开发,讨厌vb类开发工具(并不是说vb不好)。 5、发展前景好,适合创业,不想自己要死了的时候还是一个工程师。 方法步骤: 1、基础知识: 目的:能看懂硬件工作原理,但重点在嵌入式软件,特别是操作系统级软件,那将是我的优势。 科目:数字电路、计算机组成原理、嵌入式微处理器结构。 汇编语言、C/C++、编译原理、离散数学。 数据结构和算法、操作系统、软件工程、网络、数据库。 方法:虽科目众多,但都是较简单的基础,且大部分已掌握。不一定全学,可根据需要选修。 主攻书籍:the c++ programming language(一直没时间读)、数据结构-C2。 2、学习linux: 目的:深入掌握linux系统。 方法:使用linux—〉linxu系统编程开发—〉驱动开发和分析linux内核。先看深,那主讲原理。看几遍后,看情景分析,对照深看,两本交叉,深是纲,情是目。剖析则是0.11版,适合学习。最后深入代码。 主攻书籍:linux内核完全剖析、unix环境高级编程、深入理解linux内核、情景分析和源代。 3、学习嵌入式linux: 目的:掌握嵌入式处理器其及系统。 方法:(1)嵌入式微处理器结构与应用:直接arm原理及汇编即可,不要重复x86。 (2)嵌入式操作系统类:ucOS/II简单,开源,可供入门。而后深入研究uClinux。 (3)必须有块开发板(arm9以上),有条件可参加培训(进步快,能认识些朋友)。 主攻书籍:毛德操的《嵌入式系统》及其他arm9手册与arm汇编指令等。 4、深入学习: A、数字图像压缩技术:主要是应掌握MPEG、mp3等编解码算法和技术。 B、通信协议及编程技术:TCP/IP协议、802.11,Bluetooth,GPRS、GSM、CDMA等。 2010-8-21 16:46 回复 122.90.173.* 2楼 C、网络与信息安全技术:如加密技术,数字证书CA等。 D、DSP技术:Digital Signal Process,DSP处理器通过硬件实现数字信号处理算法。 说明:太多细节未说明,可根据实际情况调整。重点在于1、3,不必完全按照顺序作。对于学习c++,理由是c++不只是一种语言,一种工具,她还是一种艺术,一种文化,一种哲学理念、但不是拿来炫耀得东西。对于linux内核,学习编程,读一些优秀代码也是有必要的。 注意: 要学会举一反多,有强大的基础,很多东西简单看看就能会。想成为合格的程序员,前提是必须熟练至少一种编程语言,并具有良好的逻辑思维。一定要理论结合实践。 不要一味钻研技术,虽然挤出时间是很难做到的,但还是要留点余地去完善其他的爱好,比如宇宙,素描、机械、管理,心理学、游戏、科幻电影。还有一些不愿意做但必须要做的。 技术是通过编程编程在编程编出来的。永远不要梦想一步登天,不要做浮躁的人,不要觉得路途漫上。而是要编程编程在编程,完了在编程,在编程。等机会来了在创业(不要相信有奇迹发生,盲目创业很难成功,即便成功了发展空间也不一定很大)。 嵌入式书籍推荐 Linux基础 1、《Linux与Unix Shell 编程指南》 C语言基础 1、《C Primer Plus,5th Edition》【美】Stephen Prata着 2、《The C Programming Language, 2nd Edition》【美】Brian W. Kernighan David M. Rithie(K & R)着 3、《Advanced Programming in the UNIX Environment,2nd Edition》(APUE) 4、《嵌入式Linux应用程序开发详解》 Linux内核 1、《深入理解Linux内核》(第三版) 2、《Linux内核源代码情景分析》毛德操 胡希明著 研发方向 1、《UNIX Network Programming》(UNP) 2、《TCP/IP详解》 3、《Linux内核编程》 4、《Linux设备驱动开发》(LDD) 5、《Linux高级程序设计》 杨宗德著 硬件基础 1、《ARM体系结构与编程》杜春雷着 2、S3C2410 Datasheet 英语基础 1、《计算机与通信专业英语》 系统教程 1、《嵌入式系统――体系结构、编程与设计》 2、《嵌入式系统――采用公开源代码和StrongARM/Xscale处理器》毛德操 胡希明着 3、《Building Embedded Linux Systems》 4、《嵌入式ARM系统原理与实例开发》 杨宗德著 理论基础 1、《算法导论》 2、《数据结构(C语言版)》 3、《计算机组织与体系结构?性能分析》 4、《深入理解计算机系统》【美】Randal E. Bryant David O''Hallaron着 5、《操作系统:精髓与设计原理》 6、《编译原理》 7、《数据通信与计算机网络》 8、《数据压缩原理与应用》 C语言书籍推荐 1. The C programming language 《C程序设计语言》 2. Pointers on C 《C和指针》 3. C traps and pitfalls 《C陷阱与缺陷》 4. Expert C Lanuage 《专家C编程》 5. Writing Clean Code -----Microsoft Techiniques for Developing Bug-free C Programs 《编程精粹--Microsoft 编写优质无错C程序秘诀》 6. Programming Embedded Systems in C and C++ 《嵌入式系统编程》 7.《C语言嵌入式系统编程修炼》 8.《高质量C++/C编程指南》林锐 尽可能多的编码,要学好C,不能只注重C本身。算法,架构方式等都很重要。 这里很多书其实是推荐而已,不必太在意,关键还是基础,才是重中之重。。。
一键天涯 2019-12-02 01:19:56 0 浏览量 回答数 0

回答

在今天,系统软件研发并不是一个冷门的行业,很多公司都有负责开发维护系 统内核,甚至是研发全新操作系统的岗位,但是市场上系统软件研发专家仍然非常稀 缺,所以这是一个很有前景的方向。 从另一个角度看,系统软件研发的确是一个高门槛的技术领域,因此,对从业人 员的素质也有一定的要求。 这里面第一个门槛是需要有热情,愿意从事系统软件研发工作。因为很多时候工程师需要与底层软硬件打交道,需要深入理解操作系统与处理器的运作原理,这个过 程是很枯燥的,如果没有热情很难坚持下来。另外,系统软件和行业软件不一样,行 业软件在入职一到两周后就可能会有产出,但系统软件可能需要更长的周期,这也需 要坚持下来的定力。 其次,对应届生来说,想从事系统软件研发,需要学好计算机专业基础课程,把 基本功打扎实,对于计算机硬件、处理器、操作系统、虚拟化等要熟悉它们的功能和 原理。另外,需要持续学习,比如可以自学一些系统软件相关的论文和书籍,关注最 新的学术进展,在这里,承刚也推荐了几本书籍,让同学们可以提前了解: 1. 《Computer Architecture: A QuantitativeApproach》 2. 《Systems Performance: Enterprise and theCloud》 3. 《Understanding the Linux Kernel》 4. 《奔跑吧 Linux 内核》 5. 《系统虚拟化 ——原理与实现》 另外,如果从事这个领域,还需要关注的学术会议包括:OSDI、SOSP、 ASPLOS、EuroSys 等。 不过,系统软件研发并不是高不可攀,高校学生在校期间就可以参与,首先从熟 悉 Linux 系统开始,了解系统原理后,开发一些小功能,甚至小工具和脚本,也可以 提升自己对系统软件的理解。 这一项的进阶版本就是参与系统软件的开源社区,比如 Linux 内核、gVisor 等 等,从最基本的翻译编写文档,到参与某项功能模块的开发,通过这些行动,同学们 可以快速的成长。
Lee_tianbai 2020-12-31 18:01:56 0 浏览量 回答数 0

回答

工作流:   根据 WfMC 的定义,工作流(Workflow)就是自动运作的业务过程部分或整体,表现为参与者对文件、信息或任务按照规程采取行动,并令其在参与者之间传递。简单地说,工作流就是一系列相互衔接、自动进行的业务活动或任务。   工作流是针对工作中具有固定程序的常规活动而提出的一个概念。通过将工作活动分解成定义良好的任务、角色、规则和过程来进行执行和监控,达到提高生产组织水平和工作效率的目的。工作流技术为企业更好地实现经营目标提供了先进的手段。   1993年,国际工作流管理联盟(Workflow Management Coalition,WfMC)的成立标志着工作流技术开始进入相对成熟的阶段。为了实现不同工作流产品之间的互操作,WfMC在工作流管理系统的相关术语、体系结构及应用编程接口等方面制定了一系列标准。工作流管理联盟给出的工作流定义是:工作流是指整个或部分经营过程在计算机支持下的全自动或半自动化。在实际情况中可以更广泛地把凡是由计算机软件系统(工作流管理系统)控制其执行的过程都称为工作流。   一个工作流包括一组活动及它们的相互顺序关系,还包括过程及活动的启动和终止条件,以及对每个活动的描述。工作流管理系统指运行在一个或多个工作流引擎上用于定义、实现和管理工作流运行的一套软件系统,它与工作流执行者(人、应用)交互,推进工作流实例的执行,并监控工作流的运行状态。   一、工作流管理:   通常,工作流管理系统指运行在一个或多个称为工作流机的软件上的用于定义、实现和管理工作流运行的一套软件系统,它和工作流执行者(人、应用)交互,推进工作流实例的执行,并监控工作流的运行状态。在这里需要强调指出的是工作流管理系统不是企业的业务系统。在很大程度上,工作流管理系统为企业的业务系统运行提供一个软件支撑环境,非常类似于在单个计算机上的操作系统。只不过工作流管理系统支撑的范围比较大、环境比较复杂而已,所以也有人称工作流管理系统是业务操作系统(BOS - Business Operating System)。在工作流管理系统的支撑下,通过集成具体的业务应用软件和操作人员的界面操作,才能够良好地完成对企业经营过程运行的支持。所以,工作流管理系统在一个企业或部门的经营过程中的应用过程是一个业务应用软件系统的集成与实施过程。   二、工作流管理系统:   工作流管理系统可以用来定义与执行不同覆盖范围(单个工作者、部门、全企业、企业间)、不同时间跨度(分钟、小时、天、月)的经营过程。这完全取决于实际应用背景的需求。按照经营过程以及组成活动的复杂程度的不同,工作流管理系统可以采取许多种实施方式,在不同的实施方式中,所应用的信息技术、通信技术和支撑系统结构会有很大的差别。工作流管理系统的实际运行环境可以是在一个工作组内部或者在全企业的所有业务部门。   三、业务过程:   业务过程(business process)就是活动的集合,这些活动均关联于特定的托付事项(commitment),为过程的产出增值。相对于“工作流”,业务过程是一个更一般化的统称,而工作流这个词,则已经不能仅从字面含义或原理上去理解,它已经被赋予了更深一层的特定含义——专指基于信息技术规划、运作、管理的业务过程。   四、自动与协调:   “自动”(automate)是工作流的一个特征,但这主要是指它自动进行的特征,而不是说没有人的参与。工作流实际上是一个人-电脑协调的混合过程,在一个实际的工作流中,通常总有些步骤是人完成的。协调是工作流管理的一个目标或者特征,这包括了人与人、人与电脑,电脑(软件)之间等多种层面的含义。   五、监察与控制:   监察(Monitoring)与控制(Contorl)是工作流系统的重要功能与特征。这不仅包括对正在发生的业务过程(工作流),还包括它的定义或改变(比如BPR的过程)。这是工作流系统带给我们的明显好处之一。   六、标准化:   作流的概念被明确提出并得到重视的同时,人们就认识到了“标准化”在其中的重要性,有关工作流的标准开发和推广,基本是与“工作流”的开发和推广同步进行的。在这方面目前的权威性机构,是“工作流管理联盟”(Workflow Management Coalition, WfMC)。它成立于1993年8月,目前已拥有 130 余个成员,成员包括工作流产品的供应者、应用者,有关大学和研究机构和个人,是一个国际性的非赢利组织。在最近的投资成员(Funding members)清单中,可以看到诸如 Baan, HP, IBM, Microsoft, Oracle, Peplesoft, SAP AG, Xerox 等机构。   七、工作流与重规划:   从逻辑上,对工作流的关注和研究可以看作是对业务过程重规划(BPR)的一种深化。BPR的观点,要求我们将眼光投向实际业务进行的过程,但这个过程应当是什么样的,怎样分析、构造?工作流就是一个具体的、操作性的答案,它可以令我们从神秘的、难以预测和控制的“头脑风暴式”的“艺术的”业务过程创造,变成解析的、技术的、可控制和预测的工程化过程,如此,才真正体现出 re-engineering 中 engineering 的意义。   工作流与 BPR 的概念,已经被几乎所有的研究者联系在一起研究和应用。在这个领域有一个非常活跃的组织,即国际工作流与重规划协会( Workflow And Reengineering International Association, WARIA)。   八、工作流与企业工程:   无论从理论、方法上,还是对象、内容上,我们都有理由将“工作流”看作是企业工程的一部分。实际上,已有的关于工作流体系的描述,本身就是一个通用的业务模型框架。仅仅囿于工作流是不够的,必须对整个体系的目标及所有相关要素综合考虑——这正是企业工程。   九、工作流与IT应用体系:   与以往已经被采用的企业 IT 应用体系,例如 MRPII 或 ERP 相比,WFMS是一个相当重要的里程碑。(ERP的概念并不确定,我这里仅指其基本或较早期的含义而言)。从用户的角度,WFMS带来(或将要带来)的变化是极其强烈的,甚至可以形容为一种用户“梦想”的实现。   在一些老的“模块化”的产品中,系统的设计是通常是基于任务分割的,作业项目之间是分裂的。面向对象的技术,并不能直接解决这个的问题,相反,往往使系统变得更加混乱和琐碎。从操作上,典型地,我们必须不断地在层次结构的功能表(比如下拉菜单)或对象之间“进进退退”,或者在“神出鬼没”的对象以及相关菜单中捉迷藏。   工作流管理系统是一个真正的“人-机”系统,用户是系统中的基本角色,是直接的任务分派对象,他或她可以直接看到电脑针对自己列出的“任务清单”,跟踪每一项任务的状态,或继续一项任务,而不必从一个模块退出,进入另一个模块,搜索相应任务的线索。前者是面向功能或对象的,而后者是直接面向用户的。这样,用户的任务分派和任务的完成状态,可以被最大程度地电脑化和受到控制。   现在的典型工作流产品是客户-服务软件。而日益增长的重要途径是通过万维网界面,它可以令客户或远程的职员更好地参与。工作流的定义经常是借助于图形化工具,依照业务过程实例的情况定义相应工作的安排   OA(办公自动化): 引自肖淑男 2001-2-20   通常,OA 就是办公自动化,英文Office Automation的缩写。通过流程或特定环节与日常事务联系在一起,使公文在流转、审批、发布等方面提高效率,实现办公管理规范化和信息规范化,降低企业运行成本的一套系统的统称。   多年来,OA尚无一个确切的定义,人们对OA的看法和理解各有不同。笔者认为:OA本身就不是一个有确定界定的概念,它是一个过程、一种境界。它随技术的发展而发展,随人们办公方式和习惯以及管理思想的变化而变化。在技术发展过程中的每一个阶段,人们给OA赋予了不同的内容和新的想象,技术与管理的进步给OA打下了每一步发展的历史烙印。同时,不同行业、不同层次的人对OA的看法和理解也各有不同。也许正是OA这种变化和发展的特点使之成为30多年来常新不衰的话题。   现在有一种较普遍的偏见:认为OA仅仅是诸如公文流转、收发文管理、档案管理、会议安排、文献检索、电子表格、电子邮件等等这些非结构化数据的处理和交换过程,面向的用户群也只是机关办公室或企业的职能部门、文秘部门。其实,今天看来,OA应有更丰富的内容和层面,更广泛的用户群。以下是笔者对OA在功能上以及所涉及的技术范畴的肤浅理解,愿与同行商榷。   功能方面:广义面言,OA应该是一个企业除了生产控制之外的一切信息处理与管理的集合。它面向不同层次的使用者,便有不同的功能表现:   对于企业高层领导而言,OA是决策支持系统(DSS)。OA运用科学的数学模型,结合企业内部/外部的信息为条件,为企业领导提供决策参考和依据;   对于中层管理者而言:OA是信息管理系统(IMS),OA利用业务各环节提供的基础“数据”,提炼出有用的管理“信息”,把握业务进程,降低经营风险,提高经营效率;   对于普通员工而言:OA是事务/业务处理系统。OA为办公室人员提供良好的办公手段和环境,使之准确、高效,愉快地工作。   技术范畴:OA是计算机技术在办公业务中的合理应用。计算机技术是OA的前提。如果脱离计算机技术面阔谈OA,无异于痴人说梦。没有计算机技术,OA便成无源之水、无本之木。计算机对信息的存储与处理能力极大地改变了人们的办公方式,提高了工作效率。如:要建立决策支持系统,则需要数据仓库 、OLAP等技术;要建立信息管理系统,则要有数据库、程序设计语言等技术;要建立事务/业务处理系统,则离不开数据库、设计良好的人机界面和工作流控制、OLTP等技术。   OA是利用通信技术来实现人与机器、机器与机器及人与人的交流。通信技术是OA的基础。现代办公室不再是孤军奋战,而是一个团队的协同工作,团队中成员之间的协调、合作离不开通信技术;现代办公室也不再是闭门造车,企业需要与外界广泛的信息交流,这更离不开通信技术。没有通信技术的支持,OA便成空中楼阁。   OA是科学的管理思想在先进的技术手段下的物化。科学的管理思想是实现OA的核心。计算机技术和通信技术仅仅是为实现OA打下了基础,提供了可能。要真正实现OA,还需物化人类思维中科学管理的内容。正如仅有优质的画笔、画板、颜料而没有达.芬奇,就不会有蒙娜尼莎的微笑一样。不体现人类管理智慧,就不会有真正的OA,如果有,也只是技术的堆砌和摆设。   由此而知,OA是计算机技术、通信技术与科学的管理思想完美结合的一种境界和理想。我们一直在为实现OA而努力,但我们的成果仅仅是在某些环节、某些方面、部分地实现了OA的功能,与真正的OA尚有差距,差距的根本在于应用系统对管理思想的实现方面。 答案来源于网络
养狐狸的猫 2019-12-02 03:00:25 0 浏览量 回答数 0

回答

一:C语言 嵌入式Linux工程师的学习需要具备一定的C语言基础,C语言是嵌入式领域最重要也是最主要的编程语言,通过大量编程实例重点理解C语言的基础编程以及高级编程知识。包括:基本数据类型、数组、指针、结构体、链表、文件操作、队列、栈等。 二:Linux基础 Linux操作系统的概念、安装方法,详细了解Linux下的目录结构、基本命令、编辑器VI ,编译器GCC,调试器GDB和 Make 项目管理工具, Shell Makefile脚本编写等知识,嵌入式开发环境的搭建。 三:Linux系统编程 重点学习标准I/O库,Linux多任务编程中的多进程和多线程,以及进程间通信(pipe、FIFO、消息队列、共享内存、signal、信号量等),同步与互斥对共享资源访问控制等重要知识,主要提升对Linux应用开发的理解和代码调试的能力。 四:Linux网络编程 计算机网络在嵌入式Linux系统应用开发过程中使用非常广泛,通过Linux网络发展、TCP/IP协议、socket编程、TCP网络编程、UDP网络编程、Web编程开发等方面入手,全面了解Linux网络应用程序开发。重点学习网络编程相关API,熟练掌握TCP协议服务器的编程方法和并发服务器的实现,了解HTTP协议及其实现方法,熟悉UDP广播、多播的原理及编程方法,掌握混合C/S架构网络通信系统的设计,熟悉HTML,Javascript等Web编程技术及实现方法。 五:数据结构与算法 数据结构及算法在嵌入式底层驱动、通信协议、及各种引擎开发中会得到大量应用,对其掌握的好坏直接影响程序的效率、简洁及健壮性。此阶段的学习要重点理解数据结构与算法的基础内容,包括顺序表、链表、队列、栈、树、图、哈希表、各种查找排序算法等应用及其C语言实现过程。 六:C++ 、QT C++是Linux应用开发主要语言之一,本阶段重点掌握面向对象编程的基本思想以及C++的重要内容。图形界面编程是嵌入式开发中非常重要的一个环节。由于QT具有跨平台、面向对象、丰富API、支持2D/3D渲染、支持XML、多国语等强大功能,在嵌入式领域的GUI开发中得到了广范的应用,在本阶段通过基于QT图形库的学习使学员可以熟练编写GUI程序,并移植QT应用程序到Cortex-A8平台。包括IDE使用、QT部件及布局管理器、信息与槽机制的应用、鼠标、键盘及绘图事件处理及文件处理的应用。 七:Cortex A8 、Linux 平台开发 通过基于ARM Cortex-A8处理s5pv210了解芯片手册的基本阅读技巧,掌握s5pv210系统资源、时钟控制器、电源管理、异常中断控制器、nand flash控制器等模块,为底层平台搭建做好准备。Linux平台包括内核裁减、内核移植、交叉编译、GNU工具使用、内核调试、Bootloader介绍、制作与原理分析、根文件系统制作以及向内核中添加自己的模块,并在s5pv210实验平台上运行自己制作的Linux系统,集成部署Linux系统整个流程。同时了解Android操作系统开发流程。Android系统是基于Linux平台的开源操作系统,该平台由操作系统、中间件、用户界面和应用软件组成,是首个为移动终端打造的真正开放和完整的移动软件,目前它的应用不再局限于移动终端,还包括数据电视、机顶盒、PDA等消费类电子产品。 八:驱动开发 驱动程序设计是嵌入式Linux开发工作中重要的一部分,也是比较困难的一部分。本阶段的学习要熟悉Linux的内核机制、驱动程序与用户级应用程序的接口,掌握系统对设备的并发操作。熟悉所开发硬件的工作原理,具备ARM硬件接口的基础知识,熟悉ARM Cortex-A8处理器s5pv210各资源、掌握Linux设备驱动原理框架,熟悉工程中常见Linux高级字符设备、块设备、网络设备、USB设备等驱动开发,在工作中能独立胜任底层驱动开发。 以上就是列出的关于一名合格嵌入式Linux开发工程师所必学的理论知识,其实,作为一个嵌入式开发人员,专业知识和项目经验同样重要,所以在我们的理论学习中也要有一定的项目实践,锻炼自己的项目开发能力。
知与谁同 2019-12-02 01:22:27 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
小哇 2019-12-02 01:21:12 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
琴瑟 2019-12-02 01:21:11 0 浏览量 回答数 0

回答

回1楼hjytub2的帖子 centos 5.4 32 系统自带的? ------------------------- Re张华是谁?/usr/src/张华简历.pdf 个人简历 基本资料: 姓 名: 张华 性 别: 男 年 龄: 24 籍 贯: 宁夏银川 毕业院校: 西安邮电大学 专 业: 软件工程 学 历: 本科 移动电话: 18358154585 E-mail: zhanghuaEC2@126.com 职位意向 云存储,虚拟化存储开发,虚拟化,或云计算其他研发职位 个人爱好 热爱计算机技术,关注云计算,酷爱足球,关注足球赛事,热爱文学 技能与实践 � 熟悉虚拟化相关理论知识,熟练操作并运用 XEN 虚拟机。 能够源码编 译安装 XEN 虚拟机,能够开发并实施虚拟机的场景化。 � 熟悉虚拟机的网络相关知识, 具有良好的计算机网络基础。 熟悉云安全, 精通 iptables,arptable 和 ebtables,尝试构建过弹性计算分布式防 火墙。熟悉思科 N2K,N5K,N7K 以及 F5 等网络设备。熟悉 vlan。 � 熟悉文件系统相关知识, 熟悉虚拟机存储相关知识, 阅读过 XEN blktap2 框架代码,并且能基于 tapdisk 数据结构开发用户态文件系统。曾经利 用 hadoop hdfs 和 blktap2 框架开发分布式的虚拟机镜像存储文件系统。 熟悉虚拟机的快照功能的设计和实现。阅读过 vhd 实现源代码。 � 了解分布式存储文件系统, 熟悉 hadoop 和 hbase, 深入学习并了 解 hadoop 文件系统架构和原理。Hbase 组织和架构正在学习中,能够搭建 NFS,NBD 文件系统。 � 具有一定的云计算资源调度,分布式通信,分布式锁,分布式命名服务 理论基础。 � 精通 C 语言,C  ,具有良好的数据结构基础,学习过 erlang 语言。 � 具有两年的 linux 操作系统使用经验, 熟悉 Shell 脚本编程, 熟悉 python 语言以及 php,熟悉 Linux 下 C 编程,熟悉进程间通信。 � 具有良好的操作系统基础。具备一定的内核基础知识。 工作经历: 1. 2011-11 月-至今:就职于阿里云计算有限公司后羿弹性计算团队,负 责生产集群上虚拟机存储运维工作。 个人简介 具有良好的自学能力和动手操作能力, 渴望知识, 热爱技术。 乐观向上, 敢于承担压力。具有良好的沟通能力和团队意识。生活认真热情,富责 任心。为人坦诚、守信。适应新思维、新方式。 ------------------------- 回10楼shuguang的帖子 没有被黑,简历是阿里云的人 ------------------------- 回7楼cloudlu的帖子 那是我的主机被人黑了……然后就放了一个简历啊……而且简历内容刚好是你们阿里云内部人的啊? 主机刚重置系统不到30小时
lixin0598 2019-12-01 23:48:26 0 浏览量 回答数 0

回答

如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢。我希望这个书单列表内容丰富,可以涵盖很多东西。” 1、《代码大全》 史蒂夫·迈克康奈尔 推荐数:1684 “优秀的编程实践的百科全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky 对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。 现在,作者将这本经典著作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。 无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。 《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。 2、《程序员修炼之道》 推荐数:1504 对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。 就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel 《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。 无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。 3、《计算机程序的构造和解释》 推荐数:916 就个人而言,这本书目前为止对我影响醉倒的一本编程书。 《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。 然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。 其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。 同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。 一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给著名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。 4、《C程序设计语言》 推荐数:774 这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan 《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。 《C程序设计语言》(第2版新版)原著即为C语言的设计者之一Dennis M.Ritchie和著名的计算机科学家Brian W.Kernighan合著的 一本介绍C语言的权威经典著作。 我们现在见到的大量论述C语言程序设计的教材和专著均以此书为蓝本。 原著第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。 人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。 5、《算法导论》 推荐数:671 《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计…… 在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。 我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron 经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。 算法领域的标准教材,全球多所知名大学选用 MIT名师联手铸就,被誉为“计算机算法的圣经” 编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。 6、《重构:改善既有代码的设计》 推荐数:617 《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。 《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。 《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。 我想我不得不推荐《重构》:改进现有代码的设计。—— Martin 我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler 7、《设计模式》 推荐数:617 自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。 就我而言,我认为四人帮编著的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young 8、《人月神话》 推荐数:588 在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的著作。 Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。 该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。 9、《计算机程序设计艺术》 推荐数:542 《计算机程序设计艺术》系列著作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。 《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学著作。 目前Knuth正将毕生精力投入到这部史诗性著作的撰写中。 这是高德纳倾注心血写的一本书。—— Peter Coulton 10、《编译原理》(龙书) 推荐数:462 我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB 11、《深入浅出设计模式》 推荐数:445 强大的写作阵容。 《Head First设计模式》(中文版) 作者Eric Freeman; ElElisabeth Freeman是作家、讲师和技术顾问。 Eric拥有耶鲁大学的计算机科学博士学位,E1isabath拥有耶鲁大学的计算机科学硕士学位。 Kathy Sierra(javaranch.com的创始人)FHBert Bates是畅销的HeadFirst系列书籍的创立者,也是Sun公司Java开发员认证考试的开发者。 本书的产品设计应用神经生物学、认知科学,以及学习理论,这使得这本书能够将这些知识深深地印在你的脑海里, 不容易被遗忘。 本书的编写方式采用引导式教学,不直接告诉你该怎么做,而是利用故事当作引子,带领读者思考并想办法解决问题。 解决问题的过程中又会产生一些新的问题,再继续思考、继续解决问题,这样可以加深体会。 作者以大量的生活化故事当背景,例如第1章是鸭子,第2章是气象站,第3章是咖啡店, 书中搭配大量的插图(几乎每一页都有图),所以阅读起来生动有趣,不会感觉到昏昏欲睡。 作者还利用歪歪斜斜的手写字体,增加“现场感”。 精心设计许多爆笑的对白,让学习过程不会太枯燥。 还有模式告白节目,将设计模式拟人化成节目来宾,畅谈其内在的一切。 每一章都有数目不等的测验题。 每章最后有一页要点整理,这也是精华所在,我都是利用这一页做复习。 我知道四人帮的《设计模式》是一本标准书,但倒不如先看看这部大部头,此书更为简易。 一旦你了解了解了基本原则,可以去看四人帮的那本圣经了。- Calanus 12、《哥德尔、艾舍尔、巴赫书:集异璧之大成》 推荐数:437 如果下昂真正深入阅读,我推荐道格拉斯·侯世达(Douglas Hofstadter)的《哥德尔、艾舍尔、巴赫书》。 他极为深入研究了程序员每日都要面对的问题:递归、验证、证明和布尔代数。 这是一本很出色的读物,难度不大,偶尔有挑战,一旦你要鏖战到底,将是非常值得的。 – Jonik 13、《代码整洁之道》 推荐数:329 细节之中自有天地,整洁成就卓越代码 尽管糟糕的代码也能运行,但如果代码不整洁,会使整个开发团队泥足深陷, 写得不好的代码每年都要耗费难以计数的时间和资源。 然而这种情况并非无法避免。 著名软件专家RoberfC.Marlin在《代码整洁之道》中为你呈现出了革命性的视野。 Martin携同ObjectMetltor公司的同事,从他们有关整洁代码的最佳敏捷实践中提炼出软件技艺的价值观, 以飨读者,让你成为更优秀的程序员——只要你着手研读《代码整洁之道》。 阅读《代码整洁之道》需要你做些什么呢。你将阅读代码——大量代码。 《代码整洁之道》促使你思考代码中何谓正确,何谓错误。 更重要的是,《代码整洁之道》将促使你重新评估自己的专业价值观,以及对自己技艺的承诺。 从《代码整洁之道》中可以学到: 好代码和糟糕的代码之间的区别; 如何编写好代码,如何将糟糕的代码转化为好代码; 如何创建好名称、好函数、好对象和好类; 如何格式化代码以实现其可读性的最大化; 如何在不妨碍代码逻辑的前提下充分实现错误处理; 如何进行单元测试和测试驱动开发。 虽然《代码整洁之道》和《代码大全》有很多共同之处,但它有更为简洁更为实际的清晰例子。 – Craig P. Motlin 14、《Effective C++》和《More Effective C++》 推荐数:297 在我职业生涯早期,Scott Meyer的《Effective C++》和后续的《More Effective C++》都对我的编程能力有着直接影响。 正如当时的一位朋友所说,这些书缩短你培养编程技能的过程,而其他人可能要花费数年。 去年对我影响最大的一本书是《大教堂与市集》,该书教会我很有关开源开发过程如何运作,和如何处理我代码中的Bug。 – John Channing 15、《编程珠玑》 推荐数:282 多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位列前列。 正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力, 从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”, 成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏, 最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。 本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。 尽管我不得不羞愧地承认,书中一半的东西我都没有理解,但我真的推荐《编程珠玑》,书中有些令人惊奇的东西。 – Matt Warren 16、《修改代码的艺术》by Michael Feathers 本书是继《重构》和《重构与模式》之后探讨修改代码技术的又一里程碑式的著作, 而且从涵盖面和深度上都超过了前两部经典。 书中不仅讲述面向对象语言(Java、C#和C++)代码,也有专章讨论C这样的过程式语言。 作者将理解、测试和修改代码的原理、技术和最新工具(自动化重构工具、单元测试框架、仿对象、集成测试框架等), 与解依赖技术和大量开发和设计优秀代码的原则、最佳实践相结合,许多内容非常深入,而且常常发前人所未发。 书中处处体现出作者独到的洞察力,以及多年开发和指导软件项目所积累的丰富经验和深厚功力。 通过这部集大成之作,你不仅能掌握最顶尖的修改代码技术,还可以大大提高对代码和软件开发的领悟力。 我认为没有任何一本书能向这本书一样影响了我的编程观点。 它明确地告诉你如何处理其他人的代码,含蓄地教会你避免哪些(以及为什么要避免)。- Wolfbyte 同意。很多开发人员讨论用干净的石板来编写软件。 但我想几乎所有开发人员的某些时候是在吃其他开发人员的狗食。– Bernard Dy 17、《编码:隐匿在计算机软硬件背后的语言》 这是一本讲述计算机工作原理的书。 不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。 作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。 这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。 不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟, 都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。 我推荐Charles Petzold的《编码》。 在这个充满工具和IDE的年代,很多复杂度已经从程序员那“抽取”走了,这本书一本开眼之作。 – hemil 18、《禅与摩托车维修艺术 / Zen and the Art of Motorcycle Maintenance》 对我影响最大的那本书是 Robert Pirsig 的《禅与摩托车维修艺术》。 不管你做什么事,总是要力求完美,彻底了解你手中的工具和任务,更为重要的是, 要有乐趣(因为如果你做事有乐趣,一切将自发引向更好的结果)。 – akr 19、《Peopleware / 人件集:人性化的软件开发》 Demarco 和 Lister 表明,软件开发中的首要问题是人,并非技术。 他们的答案并不简单,只是令人难以置信的成功。 第二版新增加了八章内容。 – Eduardo Molteni 20、《Coders at Work / 编程人生》 这是一本访谈笔录,记录了当今最具个人魅力的15位软件先驱的编程生涯。 包括DonaldKnuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了 他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法, 并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。 一本非常有影响力的书,可以从中学到一些业界顶级人士的经验,了解他们如何思考并工作。 – Jahanzeb Farooq 21、《Surely You’re Joking, Mr. Feynman! / 别闹了,费曼先生。》 虽然这本书可能有点偏题,但不管你信不信,这本书曾在计算机科学专业课程的阅读列表之上。 一个优秀的角色模型,一本有关好奇心的优秀书籍。 – mike511 22、《Effective Java 中文版》 此书第二版教你如何编写漂亮并高效的代码,虽然这是一本Java书,但其中有很多跨语言的理念。 – Marcio Aguiar 23、《Patterns of Enterprise Application Architecture / 企业应用架构模式》 很奇怪,还没人推荐 Martin Fowler 的《企业应用架构模式》- levi rosol 24、《The Little Schemer》和《The Seasoned Schemer》 nmiranda 这两本是LISP的英文书,尚无中文版。 美国东北大学网站上也有电子版。 25、《交互设计之路》英文名:《The Inmates Are Running The Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity》该书作者:Alan Cooper,人称Visual Basic之父,交互设计之父。 本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。 本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。 作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的, 而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。 “难用”的产品不仅损害了用户的利益,最终也将导致企业的失败。 本书通过一些生动的实例,让人信服地讲述了由作者倡导的“目标导向”交互设计方法在解决“难用”问题方面的有效性, 证实了只有改变现有观念,才能有效地在开发过程中引入交互设计,将产品的设计引向成功。 本书虽然是一本面向商务人员而编写的书,但也适合于所有参与软件产品和基于软件的高科技产品开发的专业人士, 以及关心软件行业和高科技行业现状与发展的人士阅读。 他还有另一本中文版著作:《About Face 3 交互设计精髓》 26、《Why’s (Poignant) Guide to Ruby 》 如果你不是程序员,阅读此书可能会很有趣,但如果你已经是个程序员,可能会有点乏味。 27、《Unix编程艺术》 It is useful regardless operating system you use. – J.F. Sebastian 不管你使用什么操作系统,这本书都很有用。 – J.F. Sebastian 28、《高效程序员的45个习惯:敏捷开发修炼之道》 45个习惯,分为7个方面:工作态度、学习、软件交付、反馈、编码、调试和协作。 每一个具体的习惯里,一开始提出一个谬论,然后展开分析,之后有正队性地提出正确的做法,并设身处地地讲出了正确做法给你个人的“切身感受”,最后列出几条注意事项,帮助你修正自己的做法(“平衡的艺术”)。 29、《测试驱动开发》 前面已经提到的很多书都启发了我,并影响了我,但这本书每位程序员都应该读。 它向我展示了单元测试和TDD的重要性,并让我很快上手。 – Curro 我不关心你的代码有多好或优雅。 如果你没有测试,你或许就如同没有编写代码。 这本书得到的推荐数应该更高些。 人们讨论编写用户喜欢的软件,或既设计出色并健壮的高效代码,但如果你的软件有一堆bug,谈论那些东西毫无意义。– Adam Gent 30、《点石成金:访客至上的网页设计秘笈》 可用性设计是Web设计中最重要也是难度最大的一项任务。 《点石成金-访客至上的网页设计秘笈(原书第二版)》作者根据多年从业的经验,剖析用户的心理, 在用户使用的模式、为扫描进行设计、导航设计、主页布局、可用性测试等方面提出了许多独特的观点, 并给出了大量简单、易行的可用性设计的建议。 本书短小精炼,语言轻松诙谐,书中穿插大量色彩丰富的屏幕截图、趣味丛生的卡通插图以及包含大量信息的图表, 使枯燥的设计原理变得平易近人。 本书适合从事Web设计和Web开发的技术人员阅读,特别适合为如何留住访问者而苦恼的网站/网页设计人员阅读。 这是一本关于Web设计原则而不是Web设计技术的书。 本书作者是Web设计专家,具有丰富的实践经验。 他用幽默的语言为你揭示Web设计中重要但却容易被忽视的问题,只需几个小时, 你便能对照书中讲授的设计原则找到网站设计的症结所在,令你的网站焕然一新。
青衫无名 2019-12-02 01:20:04 0 浏览量 回答数 0

回答

研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,密码学是研究编制密码和破译密码的技术科学。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。 在西欧语文中之源於希腊语kryptós,“隐藏的”,和gráphein,“书写”)是研究如何隐密的传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。著名的密码学者Ron Rivest解释道:「密码学是关於如何在敌人存在的环境中通讯」,自工程学的角度,这相当于密码学与纯数学的异同。密码学是 信息安全等相关议题,如认证、访问控制的核心。密码学的首要目是隐藏信息的涵义,并不是将隐藏信息的存在。密码学也促进了计算机科学,特别是在於电脑与网路安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。 非对称加密算法的核心就是加密密钥不等于解密密钥,且无法从任意一个密钥推导出另一个密钥,这样就大大加强了信息保护的力度,而且基于密钥对的原理很容易的实现数字签名和电子信封。 比较典型的非对称加密算法是RSA算法,它的数学原理是大素数的分解,密钥是成对出现的,一个为公钥,一个是私钥。公钥是公开的,可以用私钥去解公钥加密过的信息,也可以用公钥去解私钥加密过的信息。 比如A向B发送信息,由于B的公钥是公开的,那么A用B的公钥对信息进行加密,发送出去,因为只有B有对应的私钥,所以信息只能为B所读取。 牢固的RSA算法需要其密钥长度为1024位,加解密的速度比较慢是它的弱点。 另外一种比较典型的非对称加密算法是ECC算法,基于的数学原理是椭圆曲线离散对数系统,这种算法的标准我国尚未确定,但是其只需要192 bit 就可以实现牢固的加密。所以,应该是优于RSA算法的。 对于加密,基本上不存在一个完全不可以被破解的加密算法,因为只要你有足够的时间,完全可以用穷举法来进行试探,如果说一个加密算法是牢固的,一般就是指在现有的计算条件下,需要花费相当长的时间才能够穷举成功(比如100年) RSA加密演算法是一种非对称加密演算法。在公钥加密标准和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。 1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相应的算法,但他的发现被列入机密,一直到1997年未被发表。 RSA算法的可靠性基于分解极大的整数是很困难的。假如有人找到一种很快的分解因子的算法的话,那么用RSA加密的信息的可靠性就肯定会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式解破。到2004年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。 更详细信息请进入维克百科快照http://203.208.33.101/search?q=cache:RSrtDijnQFcJ:zh.wikipedia.org/wiki/%E5%AF%86%E7%A0%81%E5%AD%A6+%E5%AF%86%E7%A0%81%E5%AD%A6&hl=zh-CN&ct=clnk&cd=3&gl=cn&client=aff-os-worldbrowser&st_usg=ALhdy2-pgUZXjYl-Mz_pl5gft4w9MJ94TQ 还有http://203.208.33.101/search?q=cache:LLAmzT7XnnYJ:zh.wikipedia.org/wiki/RSA%E5%8A%A0%E5%AF%86%E6%BC%94%E7%AE%97%E6%B3%95+RSA+1024%E4%BD%8D%E9%9D%9E%E5%AF%B9%E7%A7%B0%E5%AF%86%E9%92%A5&hl=zh-CN&newwindow=1&client=aff-os-worldbrowser&gl=cn&st_usg=ALhdy2-4cB1VU2Dtq1bXILD_m6EvFw9e5g&strip=1 后面这个链接断开了,要全部复制上去才打得开,直接点击打不开,BS CHN gov
晚来风急 2019-12-02 01:27:04 0 浏览量 回答数 0

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙
剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

问题

找个能做JAVA架构的人(北京)? 400 报错

找个能做JAVA架构的人(北京)? 400 报错 找个能做JAVA架构的人(北京)   资深Java开发工程师 35K起薪   联系邮箱:bjbwhr@12...
爱吃鱼的程序员 2020-05-30 13:56:25 2 浏览量 回答数 1

问题

找个能做JAVA架构的人(北京)? 400 报错

找个能做JAVA架构的人(北京)? 400 报错 找个能做JAVA架构的人(北京)   资深Java开发工程师 35K起薪   联系邮箱:bjbwhr@12...
优选2 2020-06-09 15:29:10 0 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】
行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

网站技术职位之我见:报错

文章出处:http://blog.helosa.org/2010/07/16/website-job.html 搭建一个网站,需要很多职能的人加在一起,如策划、美工、技术等。小时候,这...
kun坤 2020-06-09 13:55:57 0 浏览量 回答数 1

问题

【教程免费下载】深入浅出DPDK

前  言 2015年的春天,在北京参加DPDK研讨大会时,有幸结识了本书的部分作者和众多DPDK研发的专业人士。这使我对这个专题的感召力深感诧异。DPDK就像一块磁铁,可以把这么多不同行业的专业...
玄学酱 2019-12-01 22:07:40 2817 浏览量 回答数 0

问题

五步教你如何学习前端开发

前沿 算算时间今年(2016年)是进入前端开发这个领域第五个年头,自从上次总结完《我的编程之路》后,还想从更细节的方向上写一写自己是如何学习前端开发,并且还能够保持...
云效平台 2019-12-01 21:44:57 7061 浏览量 回答数 4

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。
祁同伟 2019-12-02 01:27:09 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。
青衫无名 2019-12-02 01:27:08 0 浏览量 回答数 0

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

2013年,Docker.Inc 开源了一款应用容器引擎 Docker。开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到相同内核的任何 Linux 机器上部署运行。这种集装箱式的应用开发和部署方...
kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。-------------------------就低频来说我认为是EX71好,如果你没有太高的要求EX71 吧 EX71是目前最好的 价钱也便宜 。最重要的是性价比超高。。。我就买了部
行者武松 2019-12-02 01:27:09 0 浏览量 回答数 0

问题

移动元年短视频、直播爆发,又将出现什么样的转码格式?

近二年随着短视频、直播迅猛爆发,越来越多的企业希望能够搭上这趟高速车,用视频、直播来为自家的产品创造新的内容、吸引更多的用户。 曾有人认为,视频是最为直观、成本最低的表达方式,但另一...
爵霸 2019-12-01 21:58:15 2521 浏览量 回答数 0

问题

【教程免费下载】Unity虚拟现实开发实战

前言   如今,我们正见证着虚拟现实(VR)的迅猛发展,这是一项令人激动的技术,它有望改变我们与信息、朋友和整个世界进行交互的基本方式。 什么是消费级虚拟现实&#...
玄学酱 2019-12-01 22:07:47 1731 浏览量 回答数 1

回答

2.1基于词频统计——词位置加权的搜索引擎 利用关键词在文档中出现的频率和位置排序是搜索引擎最早期排序的主要思想,其技术发展也最为成熟,是第一阶段搜索引擎的主要排序技术,应用非常广泛,至今仍是许多搜索引擎的核心排序技术。其基本原理是:关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。 1)词频统计 文档的词频是指查询关键词在文档中出现的频率。查询关键词词频在文档中出现的频率越高,其相关度越大。但当关键词为常用词时,使其对相关性判断的意义非常小。TF/IDF很好的解决了这个问题。TF/IDF算法被认为是信息检索中最重要的发明。TF(Term Frequency):单文本词汇频率,用关键词的次数除以网页的总字数,其商称为“关键词的频率”。IDF(Inverse Document Frequency):逆文本频率指数,其原理是,一个关键词在N个网页中出现过,那么N越大,此关键词的权重越小,反之亦然。当关键词为常用词时,其权重极小,从而解决词频统计的缺陷。 2)词位置加权 在搜索引擎中,主要针对网页进行词位置加权。所以,页面版式信息的分析至关重要。通过对检索关键词在Web页面中不同位置和版式,给予不同的权值,从而根据权值来确定所搜索结果与检索关键词相关程度。可以考虑的版式信息有:是否是标题,是否为关键词,是否是正文,字体大小,是否加粗等等。同时,锚文本的信息也是非常重要的,它一般能精确的描述所指向的页面的内容。 2.2基于链接分析排序的第二代搜索引擎 链接分析排序的思想起源于文献引文索引机制,即论文被引用的次数越多或被越权威的论文引用,其论文就越有价值。链接分析排序的思路与其相似,网页被别的网页引用的次数越多或被越权威的网页引用,其价值就越大。被别的网页引用的次数越多,说明该网页越受欢迎,被越权威的网页引用,说明该网页质量越高。链接分析排序算法大体可以分为以下几类:基于随机漫游模型的,比如PageRank和Repution算法;基于概率模型的,如SALSA、PHITS;基于Hub和Authority相互加强模型的,如HITS及其变种;基于贝叶斯模型的,如贝叶斯算法及其简化版本。所有的算法在实际应用中都结合传统的内容分析技术进行了优化。本文主要介绍以下几种经典排序算法: 1)PageRank算法 PageRank算法由斯坦福大学博士研究生Sergey Brin和Lwraence Page等提出的。PageRank算法是Google搜索引擎的核心排序算法,是Google成为全球最成功的搜索引擎的重要因素之一,同时开启了链接分析研究的热潮。 PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。一个页面P(A)被另一个页面P(B)引用,可看成P(B)推荐P(A),P(B)将其重要程度(PageRank值)平均的分配P(B)所引用的所有页面,所以越多页面引用P(A),则越多的页面分配PageRank值给P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的页面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。 其计算公式为: PR(A):页面A的PageRank值; d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。 R(Pi):页面Pi的PageRank值; C(Pi):页面链出的链接数量; PageRank值的计算初始值相同,为了不忽视被重要网页链接的网页也是重要的这一重要因素,需要反复迭代运算,据张映海撰文的计算结果,需要进行10次以上的迭代后链接评价值趋于稳定,如此经过多次迭代,系统的PR值达到收敛。 PageRank是一个与查询无关的静态算法,因此所有网页的PageRank值均可以通过离线计算获得。这样,减少了用户检索时需要的排序时间,极大地降低了查询响应时间。但是PageRank存在两个缺陷:首先PageRank算法严重歧视新加入的网页,因为新的网页的出链接和入链接通常都很少,PageRank值非常低。另外PageRank算法仅仅依靠外部链接数量和重要度来进行排名,而忽略了页面的主题相关性,以至于一些主题不相关的网页(如广告页面)获得较大的PageRank值,从而影响了搜索结果的准确性。为此,各种主题相关算法纷纷涌现,其中以以下几种算法最为典型。 2)Topic-Sensitive PageRank算法 由于最初PageRank算法中是没有考虑主题相关因素的,斯坦福大学计算机科学系Taher Haveli-wala提出了一种主题敏感(Topic-Sensitive)的PageRank算法解决了“主题漂流”问题。该算法考虑到有些页面在某些领域被认为是重要的,但并不表示它在其它领域也是重要的。 网页A链接网页B,可以看作网页A对网页B的评分,如果网页A与网页B属于相同主题,则可认为A对B的评分更可靠。因为A与B可形象的看作是同行,同行对同行的了解往往比不是同行的要多,所以同行的评分往往比不是同行的评分可靠。遗憾的是TSPR并没有利用主题的相关性来提高链接得分的准确性。 3)HillTop算法 HillTop是Google的一个工程师Bharat在2001年获得的专利。HillTop是一种查询相关性链接分析算法,克服了的PageRank的查询无关性的缺点。HillTop算法认为具有相同主题的相关文档链接对于搜索者会有更大的价值。在Hilltop中仅考虑那些用于引导人们浏览资源的专家页面(Export Sources)。Hilltop在收到一个查询请求时,首先根据查询的主题计算出一列相关性最强的专家页面,然后根据指向目标页面的非从属专家页面的数量和相关性来对目标页面进行排序。 HillTop算法确定网页与搜索关键词的匹配程度的基本排序过程取代了过分依靠PageRank的值去寻找那些权威页面的方法,避免了许多想通过增加许多无效链接来提高网页PageRank值的作弊方法。HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。 但是,专家页面的搜索和确定对算法起关键作用,专家页面的质量对算法的准确性起着决定性作用,也就忽略了大多数非专家页面的影响。专家页面在互联网中占的比例非常低(1.79%),无法代表互联网全部网页,所以HillTop存在一定的局限性。同时,不同于PageRank算法,HillTop算法的运算是在线运行的,对系统的响应时间产生极大的压力。 4)HITS HITS(Hyperlink Induced Topic Search)算法是Kleinberg在1998年提出的,是基于超链接分析排序算法中另一个最著名的算法之一。该算法按照超链接的方向,将网页分成两种类型的页面:Authority页面和Hub页面。Authority页面又称权威页面,是指与某个查询关键词和组合最相近的页面,Hub页面又称目录页,该页面的内容主要是大量指向Authority页面的链接,它的主要功能就是把这些Authority页面联合在一起。对于Authority页面P,当指向P的Hub页面越多,质量越高,P的Authority值就越大;而对于Hub页面H,当H指向的Authority的页面越多,Authority页面质量越高,H的Hub值就越大。对整个Web集合而言,Authority和Hub是相互依赖、相互促进,相互加强的关系。Authority和Hub之间相互优化的关系,即为HITS算法的基础。 HITS基本思想是:算法根据一个网页的入度(指向此网页的超链接)和出度(从此网页指向别的网页)来衡量网页的重要性。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量Authority和Hub值进行更新直至收敛。 实验数据表明,HITS的排名准确性要比PageRank高,HITS算法的设计符合网络用户评价网络资源质量的普遍标准,因此能够为用户更好的利用网络信息检索工具访问互联网资源带来便利。 但却存在以下缺陷:首先,HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;第三,HITS算法可以说一种实验性质的尝试。它必须在网络信息检索系统进行面向内容的检索操作之后,基于内容检索的结果页面及其直接相连的页面之间的链接关系进行计算。尽管有人尝试通过算法改进和专门设立链接结构计算服务器(Connectivity Server)等操作,可以实现一定程度的在线实时计算,但其计算代价仍然是不可接受的。 2.3基于智能化排序的第三代搜索引擎 排序算法在搜索引擎中具有特别重要的地位,目前许多搜索引擎都在进一步研究新的排序方法,来提升用户的满意度。但目前第二代搜索引擎有着两个不足之处,在此背景下,基于智能化排序的第三代搜索引擎也就应运而生。 1)相关性问题 相关性是指检索词和页面的相关程度。由于语言复杂,仅仅通过链接分析及网页的表面特征来判断检索词与页面的相关性是片面的。例如:检索“稻瘟病”,有网页是介绍水稻病虫害信息的,但文中没有“稻瘟病”这个词,搜索引擎根本无法检索到。正是以上原因,造成大量的搜索引擎作弊现象无法解决。解决相关性的的方法应该是增加语意理解,分析检索关键词与网页的相关程度,相关性分析越精准,用户的搜索效果就会越好。同时,相关性低的网页可以剔除,有效地防止搜索引擎作弊现象。检索关键词和网页的相关性是在线运行的,会给系统相应时间很大的压力,可以采用分布式体系结构可以提高系统规模和性能。 2)搜索结果的单一化问题 在搜索引擎上,任何人搜索同一个词的结果都是一样。这并不能满足用户的需求。不同的用户对检索的结果要求是不一样的。例如:普通的农民检索“稻瘟病”,只是想得到稻瘟病的相关信息以及防治方法,但农业专家或科技工作者可能会想得到稻瘟病相关的论文。 解决搜索结果单一的方法是提供个性化服务,实现智能搜索。通过Web数据挖掘,建立用户模型(如用户背景、兴趣、行为、风格),提供个性化服务。
琴瑟 2019-12-02 01:17:25 0 浏览量 回答数 0

问题

一个老码农的技术理想

小时候,老师问我,你的理想是什么? 我不假思索说是工程师,于是长大之后果然成了工程师。 工作这么多年,一直在思考工程师这三个字的意义,终于有一天恍然大...
技术小菜鸟 2019-12-01 21:17:10 3067 浏览量 回答数 1

问题

【精品问答】Python二级考试题库

1.关于数据的存储结构,以下选项描述正确的是( D ) A: 数据所占的存储空间量 B: 存储在外存中的数据 C: 数据在计算机中的顺序存储方式 D: 数据的逻辑结构在计算机中的表示 2.关于线性...
珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板