• 关于

    结束条件语句是什么

    的搜索结果

回答

// start<=范围开始时间 and end>=范围开始时间 :以前就有,范围内死或者一直持续         // start>=范围开始时间 and start<=范围结束时间 :范围内生,范围内死或者一直持续         return execute(select(CalendarEvent.class, null, new String[] {                 "userId=?",                 "((start<=? and end>=?) || (start>=? and start<=?))" }),                 new Object[] { userId, start, start, start, end },                 ResultSetHandlerFactory.CALENDAREVENT_LIST_HANDLER);######开始和结束时间明天看吧,应该可以用java计算出来######你的意思要查询日历中11月28到1月1日之间的事件么?如果是,下面的语句可以算出开始日和结束日,可以把他们放到语句中作为时间限定条件 select SUBDATE(now(), (weekday(subdate(now(), day(now())-1)) + day(now()))); select adddate(last_day(now()),(5 - weekday(last_day(now()))));######挺好的,就是想尽量不给数据库太多的压力。因为前面已经给了不少的压力了。###### 引用来自#4楼“antonie”的帖子 你的意思要查询日历中11月28到1月1日之间的事件么?如果是,下面的语句可以算出开始日和结束日,可以把他们放到语句中作为时间限定条件 select SUBDATE(now(), (weekday(subdate(now(), day(now())-1)) + day(now()))); select adddate(last_day(now()),(5 - weekday(last_day(now()))));  最后使用了JAVA计算: http://www.oschina.net/code/snippet_2765_2063######如果在 sql 中带上一些"函数", 很可能会让mysql 认为此 sql 无法缓存. 如果此SQL执行比较多的话,可以考虑其它的优化方式. 并不是SQL的查询次数多,mysql 压力就会大. 要综合应用环境,缓存和IO.###### 引用来自#6楼“杨焱”的帖子 引用来自#4楼“antonie”的帖子 你的意思要查询日历中11月28到1月1日之间的事件么?如果是,下面的语句可以算出开始日和结束日,可以把他们放到语句中作为时间限定条件 select SUBDATE(now(), (weekday(subdate(now(), day(now())-1)) + day(now()))); select adddate(last_day(now()),(5 - weekday(last_day(now()))));  最后使用了JAVA计算: http://www.oschina.net/code/snippet_2765_2063 性能是一个要考虑的问题,具体求值算法应该都差不太多,这个问题如果我设计的话,在字典表里设置日历起始日和日历结束日,每月第一天算一次,其他应用时都从字典表里直接取值使用,仅供参考,有什么好想法大家继续。

kun坤 2020-06-09 13:49:59 0 浏览量 回答数 0

回答

Python 调试器之pdb使用PDB的方式有两种:单步执行代码,通过命令 python -m pdb xxx.py 启动脚本,进入单步执行模式pdb命令行:1)进入命令行Debug模式,python -m pdb xxx.py 2)h:(help)帮助 3)w:(where)打印当前执行堆栈 4)d:(down)执行跳转到在当前堆栈的深一层(个人没觉得有什么用处) 5)u:(up)执行跳转到当前堆栈的上一层 6)b:(break)添加断点 b 列出当前所有断点,和断点执行到统计次数 b line_no:当前脚本的line_no行添加断点 b filename:line_no:脚本filename的line_no行添加断点 b function:在函数function的第一条可执行语句处添加断点 7)tbreak:(temporary break)临时断点 在第一次执行到这个断点之后,就自动删除这个断点,用法和b一样 8)cl:(clear)清除断点 cl 清除所有断点 cl bpnumber1 bpnumber2... 清除断点号为bpnumber1,bpnumber2...的断点 cl lineno 清除当前脚本lineno行的断点 cl filename:line_no 清除脚本filename的line_no行的断点 9)disable:停用断点,参数为bpnumber,和cl的区别是,断点依然存在,只是不启用 10)enable:激活断点,参数为bpnumber 11)s:(step)执行下一条命令 如果本句是函数调用,则s会执行到函数的第一句 12)n:(next)执行下一条语句 如果本句是函数调用,则执行函数,接着执行当前执行语句的下一条。 13)r:(return)执行当前运行函数到结束 14)c:(continue)继续执行,直到遇到下一条断点 15)l:(list)列出源码 l 列出当前执行语句周围11条代码 l first 列出first行周围11条代码 l first second 列出first--second范围的代码,如果second<first,second将被解析为行数 16)a:(args)列出当前执行函数的函数 17)p expression:(print)输出expression的值 18)pp expression:好看一点的p expression 19)run:重新启动debug,相当于restart 20)q:(quit)退出debug 21)j lineno:(jump)设置下条执行的语句函数 只能在堆栈的最底层跳转,向后重新执行,向前可直接执行到行号 22)unt:(until)执行到下一行(跳出循环),或者当前堆栈结束 23)condition bpnumber conditon,给断点设置条件,当参数condition返回True的时候bpnumber断点有效,否则bpnumber断点无效 注意:1:直接输入Enter,会执行上一条命令; 2:输入PDB不认识的命令,PDB会把他当做Python语句在当前环境下执行;

世事皆空 2019-12-02 01:07:48 0 浏览量 回答数 0

问题

java socket阻塞的问题:报错

kun坤 2020-06-06 23:13:57 0 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

1.字符串转义序列转义字符 描述(在行尾时) 续行符\ 反斜杠符号' 单引号" 双引号a 响铃b 退格(Backspace)e 转义000 空n 换行v 纵向制表符t 横向制表符r 回车f 换页oyy 八进制数yy代表的字符,例如:o12代表换行xyy 十进制数yy代表的字符,例如:x0a代表换行other 其它的字符以普通格式输出 2.字符串格式化 3.操作符 一、算术运算符 注意: 双斜杠 // 除法总是向下取整。 从符点数到整数的转换可能会舍入也可能截断,建议使用math.floor()和math.ceil()明确定义的转换。 Python定义pow(0, 0)和0 ** 0等于1。 二、比较运算符 运算符 描述< 小于<= 小于或等于 大于= 大于或等于== 等于 != 不等于is 判断两个标识符是不是引用自一个对象is not 判断两个标识符是不是引用自不同对象注意: 八个比较运算符优先级相同。 Python允许x < y <= z这样的链式比较,它相当于x < y and y <= z。 复数不能进行大小比较,只能比较是否相等。 三、逻辑运算符 运算符 描述 备注x or y if x is false, then y, elsex x andy if x is false, then x, elsey not x if x is false, then True,elseFalse 注意: or是个短路运算符,它只有在第一个运算数为False时才会计算第二个运算数的值。 and也是个短路运算符,它只有在第一个运算数为True时才会计算第二个运算数的值。 not的优先级比其他类型的运算符低,所以not a == b相当于not (a == b),而 a == not b是错误的。 四、位运算符 运算符 描述 备注x | y 按位或运算符 x ^ y 按位异或运算符 x & y 按位与运算符 x << n 左移动运算符 x >> n 右移动运算符 ~x 按位取反运算符 五、赋值运算符 复合赋值运算符与算术运算符是一一对应的: 六、成员运算符 Python提供了成员运算符,测试一个元素是否在一个序列(Sequence)中。 运算符 描述in 如果在指定的序列中找到值返回True,否则返回False。not in 如果在指定的序列中没有找到值返回True,否则返回False。 4.关键字总结 Python中的关键字包括如下: and del from not while as elif global or with assert else if pass yield break except import print class exec in raise continue finally is return def for lambda try你想看看有哪些关键字?OK,打开一个终端,就像这样~ long@zhouyl:~$ pythonPython 2.7.3 (default, Jan 2 2013, 16:53:07) [GCC 4.7.2] on linux2Type "help", "copyright", "credits" or "license" for more information. import keywordkeyword.kwlist ['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'while', 'with', 'yield'] ============================== 华丽的 正文分隔符 ======================================== 看到这些关键字你还能记得多少?你不妨自己一个一个对照想想它的用法,下面是我总结的,我根据前面的学习笔记将上述关键字分为以下几类: 1.判断、循环 对于Python的循环及判断主要包括这些关键字: if elif else for while break continue and or is not in 这几个关键字在前面介绍 if 语法、while语法、for语法以及and...or语法中已有介绍,下面再一笔带过: 1.1 if 语法 if语法与C语言、shell脚本之下的非常类似,最大的区别就是冒号以及严格的缩进,当然这两点也是Python区别于其他语言的地方: if condition1: do something elif condition2: do another thing else: also do something 1.2 while 语法 Python的while语法区别于C、shell下的while除了冒号及缩进之外,还有一点就是while可以携带一个可选的else语句: while condition: do something else: do something 注:else语句是可选的,但是使用while语句时一定要注意判断语句可以跳出! 1.3 for 语法 与while类似,Python的for循环也包括一个可选的else语句(跳出for循环时执行,但是如果是从break语句跳出则不执行else语句块中的代码!),而且for 加上 关键字in就组成了最常见的列表解析用法(以后会写个专门的博客)。 下面是for的一般用法: for i in range(1,10,2): do something if condition: break else: do something for的列表解析用法: for items in list: print items 1.4 and...or 语法 Python的and/or操作与其他语言不同的是它的返回值是参与判断的两个值之一,所以我们可以通过这个特性来实现Python下的 a ? b : c ! 有C语言基础的知道 “ a ? b : c ! ” 语法是判断 a,如果正确则执行b,否则执行 c! 而Python下我们可以这么用:“ a and b or c ”(此方法中必须保证b必须是True值),python自左向右执行此句,先判断a and b :如果a是True值,a and b语句仍需要执行b,而此时b是True值!所以a and b的值是b,而此时a and b or c就变成了b or c,因b是True值,所以b or c的结果也是b;如果a是False值,a and b语句的结果就是a,此时 a and b or c就转化为a or c,因为此时a是 False值,所以不管c是True 还是Flase,a or c的结果就是c!!!捋通逻辑的话,a and b or c 是不是就是Python下的a ? b : c ! 用法? 1.5 is ,not is 和 is not 是Python下判断同一性的关键字,通常用来判断 是 True 、False或者None(Python下的NULL)! 比如 if alue is True : ... (不记得本节的童鞋罚复习:python 学习笔记 2 -- 判断语句) 2.函数、模块、类 对于Python的函数及模块主要包括这些关键字: from import as def pass lambda return class 那么你还能记得它们么?下面简单介绍一下: 2.1 模块 Python的编程通常大量使用标准库中的模块,使用方法就是使用import 、from以及as 关键字。 比如: import sys # 导入sys模块 from sys import argv # 从sys模块中导入argv ,这个在前面介绍脚本传参数时使用到 import cPickle as p # 将cPickle模块导入并在此将它简单命名为p,此后直接可以使用p替代cPickle模块原名,这个在介绍文件输入输出时的存储器中使用到 2.2 函数 Python中定义函数时使用到def关键字,如果你当前不想写入真实的函数操作,可以使用pass关键字指代不做任何操作: def JustAFunction: pass 当然,在需要给函数返回值时就用到了return关键字,这里简单提一下Python下的函数返回值可以是多个(接收返回值时用相应数量的变量接收!)! 此外Python下有个神奇的Lambda函数,它允许你定义单行的最小函数,这是从Lisp中借用来的,可以用在任何需要函数的地方。比如: g = lambda x : x*2 # 定义一个Lambda函数用来计算参数的2倍并返回! print g(2) # 使用时使用lambda函数返回的变量作为这个函数的函数名,括号中带入相应参数即可! (不记得本节的童鞋罚复习:python 学习笔记 4 -- 函数篇) 3.异常 对于Python的异常主要包括这些关键字: try except finally raise 异常这一节还是比较简单的,将可能出现的异常放在 try: 后面的语句块中,使用except关键字捕获一定的异常并在接下来的语句块中做相应操作,而finally中接的是无论出现什么异常总在执行最后做finally: 后面的语句块(比如关闭文件等必要的操作!) raise关键字是在一定的情况下引发异常,通常结合自定义的异常类型使用。 (不记得本节的童鞋罚复习:python 学习笔记 6 -- 异常处理) 4.其他 上面的三类过后,还剩下这些关键字: print del global with assert yield exec 首先print 在前面的笔记或者任何地方你都能见到,所以还是比较熟悉的,此处就不多介绍了!del 关键字在前面的笔记中已有所涉及,比如删除列表中的某项,我们使用 “ del mylist[0] ” 可能这些剩下来的关键字你比较陌生,所以下面来介绍一下: 4.1.global 关键字 当你在函数定义内声明变量的时候,它们与函数外具有相同名称的其他变量没有任何关系,即变量名称对于函数来说是 局部 的。这称为变量的 作用域 。所有变量的作用域是它们被定义的块,从它们的名称被定义的那点开始。 eg. ? 1 2 3 4 5 6 7 8 9 10 11 !/usr/bin/python Filename: func_local.py def func(x): print'x is', x x = 2 print'Changed local x to', x x = 50 func(x) print'x is still', x 运行的结果是这样的:? 1 2 3 4 $ python func_local.py x is 50 # 运行func函数时,先打印x的值,此时带的值是作为参数带入的外部定义的50,所以能正常打印 x=50 Changed local x to 2 # 在func函数中将x赋2,并打印 x is still 50 # 运行完func函数,打印x的值,此时x的值仍然是之前赋给的50,而不是func函数中修改过的2,因为在函数中修改的只是函数内的局部变量 那么为什么我们要在这提到局部变量呢?bingo,聪明的你一下就猜到这个global就是用来定义全局变量的。也就是说如果你想要为一个在函数外定义的变量赋值,那么你就得告诉Python这个变量名不是局部的,而是 全局 的。我们使用global语句完成这一功能。没有global语句,是不可能为定义在函数外的变量赋值的。eg.? 1 2 3 4 5 6 7 8 9 10 11 12 !/usr/bin/python Filename: func_global.py def func(): global x print'x is', x x = 2 print'Changed local x to', x x = 50 func() print'Value of x is', x 运行的结果是这样的:? 1 2 3 4 $ python func_global.py x is 50 Changed global x to 2 Value of x is 2 # global语句被用来声明x是全局的——因此,当我们在函数内把值赋给x的时候,这个变化也反映在我们在主块中使用x的值的时候。 你可以使用同一个global语句指定多个全局变量。例如global x, y, z。 4.2.with 关键字 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。如果不用with语句,打开一个文件并读文件的代码如下:? 1 2 3 file = open("/tmp/foo.txt") data = file.read() file.close() 当然这样直接打开有两个问题:一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是添加上异常处理的版本:? 1 2 3 4 5 file = open("/tmp/foo.txt") try: data = file.read() finally: file.close() 虽然这段代码运行良好,但是太冗余了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:? 1 2 with open("/tmp/foo.txt") as file: data = file.read() 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。with语句的执行逻辑如下:紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 下面例子可以具体说明with如何工作:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 !/usr/bin/python with_example01.py classSample: def __enter__(self): print"In __enter__()" return"Foo" def __exit__(self, type, value, trace): print"In __exit__()" def get_sample(): returnSample() with get_sample() as sample: print"sample:", sample 运行代码,输出如下? 1 2 3 4 $python with_example01.py In __enter__() # __enter__()方法被执行 sample: Foo # __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample',执行代码块,打印变量"sample"的值为"Foo" In __exit__() # __exit__()方法被调用 4.3.assert 关键字 assert语句是一种插入调试断点到程序的一种便捷的方式。assert语句用来声明某个条件是真的,当assert语句失败的时候,会引发一AssertionError,所以结合try...except我们就可以处理这样的异常。 mylist # 此时mylist是有三个元素的列表['a', 'b', 'c']assert len(mylist) is not None # 用assert判断列表不为空,正确无返回assert len(mylist) is None # 用assert判断列表为空 Traceback (most recent call last): File "", line 1, in AssertionError # 引发AssertionError异常 4.4.yield 关键字 我们先看一个示例:? 1 2 3 4 5 6 7 8 def fab(max): n, a, b = 0,0,1 whilen < max: yield b # print b a, b = b, a + b n = n + 1 ''' 使用这个函数:? 1 2 3 4 5 6 7 8 forn in fab(5): ... print n ... 1 1 2 3 5 简单地讲,yield 的作用就是把一个函数变成一个 generator(生成器),带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable(可迭代的)对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 f = fab(5) f.next() 1 f.next() 1 f.next() 2 f.next() 3 f.next() 5 f.next() Traceback (most recent call last): File"", line 1, in StopIteration 当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。 我们可以得出以下结论:一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。 yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。 注:如果看完此段你还未明白yield,没问题,因为yield是初学者的一个难点,那么你下一步需要做的就是……看一看下面参考资料中给的关于yield的博文! 4.5.exec 关键字 官方文档对于exec的解释: "This statement supports dynamic execution of Python code."也就是说使用exec可以动态执行Python代码(也可以是文件)。? 1 2 3 4 5 6 7 8 9 10 11 12 13 longer = "print "Hello World ,my name is longer"" # 比如说我们定义了一个字符串 longer 'print "Hello World ,my name is longer"' exec(longer) # 使用exec 动态执行字符串中的代码 Hello World ,my name is longer exec(sayhi) # 使用exec直接打开文件名(指定sayhi,sayhi.py以及"sayhi.py"都会报一定的错,但是我觉得直接带sayhi报错非常典型) Traceback (most recent call last): File"", line 1, in TypeError: exec: arg 1must be a string, file, or code object # python IDE报错,提示exec的第一个参 数必须是一个字符串、文件或者一个代码对象 f = file("sayhi.py") # 使用file打开sayhi.py并创建f实例 exec(f) # 使用exec直接运行文件描述符f,运行正常!! Hi,thisis [''] script 上述给的例子比较简单,注意例子中exec语句的用法和eval_r(), execfile()是不一样的. exec是一个关键字(要不然我怎么会在这里介绍呢~~~), 而eval_r()和execfile()则是内建函数。更多关于exec的使用请详看引用资料或者Google之 在需要在字符中使用特殊字符时,python用反斜杠()转义字符。 原始字符串 有时我们并不想让转义字符生效,我们只想显示字符串原来的意思,这就要用r和R来定义原始字符串。如: print r’tr’ 实际输出为“tr”。 转义字符 描述 (在行尾时) 续行符 反斜杠符号 ’ 单引号 ” 双引号 a 响铃 b 退格(Backspace) e 转义 000 空 n 换行 v 纵向制表符 t 横向制表符 r 回车 f 换页 oyy 八进制数yy代表的字符,例如:o12代表换行 xyy 十进制数yy代表的字符,例如:x0a代表换行 other 其它的字符以普通格式输出

xuning715 2019-12-02 01:10:21 0 浏览量 回答数 0

回答

首先给你个忠告永远不要省略if for while等语句的大括号 然后 一行只写一句话 最后 具体的错误等稍后我看过代码再给出 ###### 递归爆炸了,改成循环吧 ######数据不大 可以使用递归  ,数据大了 会出现栈溢出,因为在没有分支结束前或者被强行中断,单个线程是不会释放栈现场的。1.修改栈大小 。2.采用非递归方式。----几乎各个语言都要避免下这个问题哦######应该需要修改编译器堆栈的大小,但没有实际尝试,可以先修改N的大小,看是否堆栈还溢出。是否还有其他错误。######递归函数中没有一个return,递归调用还在必经路径上——连编译器都知道它会归死。######回复 @zhangjihan10 : 模拟一个栈 加上goto语句 就比较简单了 不过代码还是会很乱######回复 @zhangjihan10 : 当然可以, 自己模拟一个栈就可以了, 但是这有什么意义呢?######回复 @猫咪喵喵 :没递归结束条件呀,你能用循环写出来吗######回复 @猫咪喵喵 : 你是怎么贴出带有行号和滚动条这种效果的######然后统计时间的时候居然把数据准备 打印输出结果都算进去 真是乱的可以###### 简单看了一下你的代码 你的代码确实会栈溢出 这源于你并没有指定结束递归的条件 ###### 试试看这个 #include<stdio.h> #include<stdlib.h> #include<time.h> #define N 1000 void quick_sort(int a[], int start, int end) { int i = start, j = end; int key = a[i]; while(i < j) { for(; i < j; j--) { if(a[j] < key) { a[i++] = a[j]; break; } } for(; i < j; i++) { if(a[i] > key) { a[j--] = a[i]; break; } } } a[i] = key; if(start < i - 1){ quick_sort(a, start, i - 1); } if(end > i + 1){ quick_sort(a, i + 1, end); } } int main() { srand((unsigned)time(NULL)); //随机数种子准备 int array[N] = {0}; //要被排序的数据准备 for(int i = 0; i < N; i++){ //随机生成一些数据 array[i] = rand() % N; } clock_t start = clock(); //记录开始时间 quick_sort(array, 0, 999); //调用排序算法对数据进行排序 clock_t end = clock(); //记录结束时间 for(int i = 0; i < N; i++){ //打印输出排序后的数据 printf("%5d", array[i]); } printf("\n"); double t = (double)(end - start) / CLOCKS_PER_SEC; //计算算法所消耗的时间 printf("快速排序运行时间:%lf秒\n", t); //输出时间 return 0; } ######回复 @月光双刀 : 仔细看提问者的代码 溢出并不是因为数据量过大 而是他的代码有问题 所以说 这个可以解决问题######这个也会栈溢出######编辑器上有个插入代码或脚本啦 @zhangjihan10######回复 @zhangjihan10 : 。######求大神手把手教代码高亮使用方法

kun坤 2020-06-02 14:30:33 0 浏览量 回答数 0

回答

首先给你个忠告永远不要省略if for while等语句的大括号 然后 一行只写一句话 最后 具体的错误等稍后我看过代码再给出 ###### 递归爆炸了,改成循环吧 ######数据不大 可以使用递归  ,数据大了 会出现栈溢出,因为在没有分支结束前或者被强行中断,单个线程是不会释放栈现场的。1.修改栈大小 。2.采用非递归方式。----几乎各个语言都要避免下这个问题哦######应该需要修改编译器堆栈的大小,但没有实际尝试,可以先修改N的大小,看是否堆栈还溢出。是否还有其他错误。######递归函数中没有一个return,递归调用还在必经路径上——连编译器都知道它会归死。######回复 @zhangjihan10 : 模拟一个栈 加上goto语句 就比较简单了 不过代码还是会很乱######回复 @zhangjihan10 : 当然可以, 自己模拟一个栈就可以了, 但是这有什么意义呢?######回复 @猫咪喵喵 :没递归结束条件呀,你能用循环写出来吗######回复 @猫咪喵喵 : 你是怎么贴出带有行号和滚动条这种效果的######然后统计时间的时候居然把数据准备 打印输出结果都算进去 真是乱的可以###### 简单看了一下你的代码 你的代码确实会栈溢出 这源于你并没有指定结束递归的条件 ###### 试试看这个 #include<stdio.h> #include<stdlib.h> #include<time.h> #define N 1000 void quick_sort(int a[], int start, int end) { int i = start, j = end; int key = a[i]; while(i < j) { for(; i < j; j--) { if(a[j] < key) { a[i++] = a[j]; break; } } for(; i < j; i++) { if(a[i] > key) { a[j--] = a[i]; break; } } } a[i] = key; if(start < i - 1){ quick_sort(a, start, i - 1); } if(end > i + 1){ quick_sort(a, i + 1, end); } } int main() { srand((unsigned)time(NULL)); //随机数种子准备 int array[N] = {0}; //要被排序的数据准备 for(int i = 0; i < N; i++){ //随机生成一些数据 array[i] = rand() % N; } clock_t start = clock(); //记录开始时间 quick_sort(array, 0, 999); //调用排序算法对数据进行排序 clock_t end = clock(); //记录结束时间 for(int i = 0; i < N; i++){ //打印输出排序后的数据 printf("%5d", array[i]); } printf("\n"); double t = (double)(end - start) / CLOCKS_PER_SEC; //计算算法所消耗的时间 printf("快速排序运行时间:%lf秒\n", t); //输出时间 return 0; } ######回复 @月光双刀 : 仔细看提问者的代码 溢出并不是因为数据量过大 而是他的代码有问题 所以说 这个可以解决问题######这个也会栈溢出######编辑器上有个插入代码或脚本啦 @zhangjihan10######回复 @zhangjihan10 : 。######求大神手把手教代码高亮使用方法

kun坤 2020-06-14 12:17:32 0 浏览量 回答数 0

回答

" 首先给你个忠告永远不要省略if for while等语句的大括号 然后 一行只写一句话 最后 具体的错误等稍后我看过代码再给出 ###### 递归爆炸了,改成循环吧 ######数据不大 可以使用递归  ,数据大了 会出现栈溢出,因为在没有分支结束前或者被强行中断,单个线程是不会释放栈现场的。1.修改栈大小 。2.采用非递归方式。----几乎各个语言都要避免下这个问题哦######应该需要修改编译器堆栈的大小,但没有实际尝试,可以先修改N的大小,看是否堆栈还溢出。是否还有其他错误。######递归函数中没有一个return,递归调用还在必经路径上——连编译器都知道它会归死。######回复 @zhangjihan10 : 模拟一个栈 加上goto语句 就比较简单了 不过代码还是会很乱######回复 @zhangjihan10 : 当然可以, 自己模拟一个栈就可以了, 但是这有什么意义呢?######回复 @猫咪喵喵 :没递归结束条件呀,你能用循环写出来吗######回复 @猫咪喵喵 : 你是怎么贴出带有行号和滚动条这种效果的######然后统计时间的时候居然把数据准备 打印输出结果都算进去 真是乱的可以###### 简单看了一下你的代码 你的代码确实会栈溢出 这源于你并没有指定结束递归的条件 ###### 试试看这个 #include<stdio.h> #include<stdlib.h> #include<time.h> #define N 1000 void quick_sort(int a[], int start, int end) { int i = start, j = end; int key = a[i]; while(i < j) { for(; i < j; j--) { if(a[j] < key) { a[i++] = a[j]; break; } } for(; i < j; i++) { if(a[i] > key) { a[j--] = a[i]; break; } } } a[i] = key; if(start < i - 1){ quick_sort(a, start, i - 1); } if(end > i + 1){ quick_sort(a, i + 1, end); } } int main() { srand((unsigned)time(NULL)); //随机数种子准备 int array[N] = {0}; //要被排序的数据准备 for(int i = 0; i < N; i++){ //随机生成一些数据 array[i] = rand() % N; } clock_t start = clock(); //记录开始时间 quick_sort(array, 0, 999); //调用排序算法对数据进行排序 clock_t end = clock(); //记录结束时间 for(int i = 0; i < N; i++){ //打印输出排序后的数据 printf("%5d", array[i]); } printf("\n"); double t = (double)(end - start) / CLOCKS_PER_SEC; //计算算法所消耗的时间 printf("快速排序运行时间:%lf秒\n", t); //输出时间 return 0; } ######回复 @月光双刀 : 仔细看提问者的代码 溢出并不是因为数据量过大 而是他的代码有问题 所以说 这个可以解决问题######这个也会栈溢出######编辑器上有个插入代码或脚本啦 @zhangjihan10######回复 @zhangjihan10 : 。######求大神手把手教代码高亮使用方法"

montos 2020-06-03 17:13:17 0 浏览量 回答数 0

回答

没玩过这些,我直接说一下我们公司内部架构的用法把,主要给你讲一下事务 什么叫做事务,不知道你用的是啥数据库,事务就是当前链接下的数据要保持一致性,也就是你上面的所谓的session,我只用Oracle数据库,如果你用过pl/sql的话你每打开一个COMMANDWINDOW他就是一个事务,当前的COMMANDWINDOW做一个数据的增,删,改,如果不提交的话,那么另外一个COMMANDWINDOW里是看不出数据的变化了的,如果需要在另外一个里面看得到数据变化,那么你需要提交事务,使用commit语句,关闭COMMANDWINDOW也就是释放事务 上面的一段配合的只是这么几句代码,我以最简单的JDBC为例 conn=DriverManager.getConnection("jdbc:mysql:///day11","root","root");//获取链接conn.setAutoCommit(false);//开启事务conn.commit();//事务提交conn.rollback();//事务回滚conn.close();//这里是关闭连接 你这里的疑问,我没玩过hibernet,但是大同小异,我以我 公司的内部框架的代码逻辑为例: 如果我是新开启一个事务,也就是你说的 opensession,那么就是新开启一个事务,如果我选择的是获取当前的事务,就是你这边的 getcurrentsession,那么我会做一下判断,当前的线程是否存在事务,如果不存在,我就会新建一个事务,而从你的这个报错看的很清楚,hibernate的获取当前事务的时候,如果不存在当前事务,那么他就直接报错了! ------菜鸟见解,欢迎拍砖,PS:JDBC的事务控制,回答这个问题的时候我才去百度,以前就一直是记JDBC五步操作,到公司直接用内部框架了,就没去认真研究! 不要狭义的理解session就是你想的那个session哈 getcurrentsession当前线程的session为了让pojo从数据库到页面到结束使用出于同一session便于hibernate代理,并添加各种操作,事务等保证状态一致, opensession开启一个新session,没有上述特点 spring其实在后面代理了你的hibernate动作,模板保证每个写操作[你配置的情况下]都有事务控制,保证数据一致性[出现异常,事务回滚] 首先明确一点,关系数据库中的事务,核心配置在DB中的由DBA设置,我们在JAVA层的操作准确的说是事务传播属性 首先说一下关系数据库中的事务特性 事务的 特性(ACID特性) A:原子性(Atomicity)    事务是数据库的逻辑工作单位,事务中包括的诸操作要么全做,要么全不做。B:一致性(Consistency)    事务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。C:隔离性(Isolation)   一个事务的执行不能被其他事务干扰。D:持续性/永久性(Durability)   一个事务一旦提交,它对数据库中数据的改变就应该是永久性的 然后在事务中存在的问题准确的说是有一些根据不同的隔离级别或业务要求是允许的 1、幻想读:事务T1读取一条指定where条件的语句,返回结果集。此时事务T2插入一行新记录,恰好满足T1的where条件。然后T1使用相同的条件再次查询,结果集中可以看到T2插入的记录,这条新纪录就是幻想。2、不可重复读取:事务T1读取一行记录,紧接着事务T2修改了T1刚刚读取的记录,然后T1再次查询,发现与第一次读取的记录不同,这称为不可重复读。3、脏读:事务T1更新了一行记录,还未提交所做的修改,这个T2读取了更新后的数据,然后T1执行回滚操作,取消刚才的修改,所以T2所读取的行就无效,也就是脏数据。 引用来自“卧枝会中田”的评论 首先明确一点,关系数据库中的事务,核心配置在DB中的由DBA设置,我们在JAVA层的操作准确的说是事务传播属性 首先说一下关系数据库中的事务特性 事务的 特性(ACID特性) A:原子性(Atomicity)    事务是数据库的逻辑工作单位,事务中包括的诸操作要么全做,要么全不做。B:一致性(Consistency)    事务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。C:隔离性(Isolation)   一个事务的执行不能被其他事务干扰。D:持续性/永久性(Durability)   一个事务一旦提交,它对数据库中数据的改变就应该是永久性的 然后在事务中存在的问题准确的说是有一些根据不同的隔离级别或业务要求是允许的 1、幻想读:事务T1读取一条指定where条件的语句,返回结果集。此时事务T2插入一行新记录,恰好满足T1的where条件。然后T1使用相同的条件再次查询,结果集中可以看到T2插入的记录,这条新纪录就是幻想。2、不可重复读取:事务T1读取一行记录,紧接着事务T2修改了T1刚刚读取的记录,然后T1再次查询,发现与第一次读取的记录不同,这称为不可重复读。3、脏读:事务T1更新了一行记录,还未提交所做的修改,这个T2读取了更新后的数据,然后T1执行回滚操作,取消刚才的修改,所以T2所读取的行就无效,也就是脏数据。

爱吃鱼的程序员 2020-06-12 15:51:30 0 浏览量 回答数 0

回答

include 包含其他库、类、接口等的头文件。预处理器实际上就只是把整个头文件复制到你的源代码里面 (是的,这就是包含防御之所以是件好事的原因了). define 谁会不喜欢宏呢! 预处理器会把所有定义的实体替换成被定义的代码. 定义会一直持续直到发现这个定义的 #undef 指令. ifdef 条件行为告诉预处理器包含在遇到声明的条件成立的条件块中的代码. 你可以就像if-else语句一样使用它们,从这里面选择: #ifdef, #ifndef, #if, #else, 以及 #elif, 而你总是要使用一个 #endif 作为结束。leoxuleoxu翻译于 1年前0人顶顶 翻译的不错哦! error #warning 用来向用户发送消息。预处理器会在 #error 处, 而不会在 #warning 处停下来. 两种情况下他都会发送他在指令背后(的括号里面)发现的字符串, 发送到屏幕作为输出,因此它是一种确保针对你的平台一切OK的手动方式. line 用来在你遇到编译错误时修改显示的错误行号和文件名. 例如,加入你需要查看一个来自编译的中间文件的源文件(可能是自动生成的). pragma 其它由编译器解释的特殊指令。你的编译器文档会告诉你指令是怎么用的,而你不要假定他们在全世界都通用哦.leoxuleoxu翻译于 1年前0人顶顶 翻译的不错哦! assert #unassert 这些在老程序里面总是特别受欢迎的 (好吧,只要我也曾经为这样一个程序工作过), 但是它们在现在已经过时了。强烈建议不使用它们,这意味着不要把他们放到新的代码里面预定义宏 有许多可以利用的预定义宏:FILE 给出一个字符串的文件名LINE 给出当前的行号(整型)DATE 当前编译日期的字符串TIME 当前编译时间的字符串STDC 同编译器相关的,但常常被定义成1,以声明同ISO C标准兼容.__cplusplus 在编译一个C++程序是总是会被定义特别是开头两个在调试时真的非常有用。只要拿出它们俩,不用你自己编写文件和行处理类,就能神奇的让你获得丰富的信息输出.leoxuleoxu翻译于 1年前0人顶顶 翻译的不错哦!你的编译器可能还支持其它的宏,例如,你这从 这里 获得(面向GCC)的整个宏清单.那么当你运行预处理器时实际会发生什么呢? 替换所有的三字母组合,我会在将来的一篇文章中谈论到他,因为尽管他只是一个历史上的特性(而且你也要在GCC中对它进行切换),它仍让是很有趣的. 将并列的源代码分成多行. 移除所有的注释并用一个空格替换. 处理(我们上面讲到的)的预处理器指令。对于 #include, 他会在新文件上递归执行1 - 3步 :-) 处理转义序列. 把文件发送给编译器 如果你想看看预处理之后你的文件会是什么样子 (谁不想呢?),你可以向 gcc 传入 -E 选项. 这将会想stdout标准输出发送预处理过的源代码,并且没有编译和连接就直接终止gcc命令的执行。具体实例如下:`1g++ -E myfile.cpp`你也可以使用这个参数:`1-save-temps`编译的后会有一份临时文件。拿下面这个简单的程序说吧: 1#include <stdio.h> 2 3#define ONE 1 4#define TWO 2 5 6int main() 7{ 8 printf("%d, %d\n", ONE, TWO); 9 return 0; 10} 用下面这行命令编译`1g++ hello.cpp -save-temps`编译完后, 会在文件夹中生成两个文件: hello.s 和 hello.iihello.s 里面是汇编代码, 而 hello.ii 则是预处理过后的源代码。用文本编辑器打开 hello.ii , 你会发现多出许多代码. 那是因为 #include 指令把 stdio 头文件的代码加进去了。如果你把滚动条拉到最底下, 就会发现, printf 那一行的宏定义 ONE 和 TWO 已经被预处理器替换成 1 和 2 了 .神奇吧!其实它只是在编译的时候, 把你的源代码文件复制一份, 当作临时文件, 然后把里面的预处理指令替换掉. 用完后就把这个临时文件删了. 所以一般情况下我们不知道这个文件的存在.

a123456678 2019-12-02 01:56:33 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

回答

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构的特点,存在多种数据存储引擎,每种存储引擎所针对的应用场景特点都不太一样,为了满足各自特定应用场景的需求,每种存储引擎的锁定机制都是为各自所面对的特定场景而优化设计,所以各存储引擎的锁定机制也有较大区别。MySQL各存储引擎使用了三种类型(级别)的锁定机制:表级锁定,行级锁定和页级锁定。 1.表级锁定(table-level) 表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。 当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。 使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。 2.行级锁定(row-level) 行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。 虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 使用行级锁定的主要是InnoDB存储引擎。 3.页级锁定(page-level) 页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。 在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。 使用页级锁定的主要是BerkeleyDB存储引擎。 总的来说,MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低; 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高; 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。 -------------MYSQL处理------------------ 表级锁定 由于MyISAM存储引擎使用的锁定机制完全是由MySQL提供的表级锁定实现,所以下面我们将以MyISAM存储引擎作为示例存储引擎。 1.MySQL表级锁的锁模式 MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性: 对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求; 对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作; MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 2.如何加表锁 MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。 3.MyISAM表锁优化建议 对于MyISAM存储引擎,虽然使用表级锁定在锁定实现的过程中比实现行级锁定或者页级锁所带来的附加成本都要小,锁定本身所消耗的资源也是最少。但是由于锁定的颗粒度比较到,所以造成锁定资源的争用情况也会比其他的锁定级别都要多,从而在较大程度上会降低并发处理能力。所以,在优化MyISAM存储引擎锁定问题的时候,最关键的就是如何让其提高并发度。由于锁定级别是不可能改变的了,所以我们首先需要尽可能让锁定的时间变短,然后就是让可能并发进行的操作尽可能的并发。 (1)查询表级锁争用情况 MySQL内部有两组专门的状态变量记录系统内部锁资源争用情况: mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 10 | +----------------------------+---------+ 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下: Table_locks_immediate:产生表级锁定的次数; Table_locks_waited:出现表级锁定争用而发生等待的次数; 两个状态值都是从系统启动后开始记录,出现一次对应的事件则数量加1。如果这里的Table_locks_waited状态值比较高,那么说明系统中表级锁定争用现象比较严重,就需要进一步分析为什么会有较多的锁定资源争用了。 (2)缩短锁定时间 如何让锁定时间尽可能的短呢?唯一的办法就是让我们的Query执行时间尽可能的短。 a)尽两减少大的复杂Query,将复杂Query分拆成几个小的Query分布进行; b)尽可能的建立足够高效的索引,让数据检索更迅速; c)尽量让MyISAM存储引擎的表只存放必要的信息,控制字段类型; d)利用合适的机会优化MyISAM表数据文件。 (3)分离能并行的操作 说到MyISAM的表锁,而且是读写互相阻塞的表锁,可能有些人会认为在MyISAM存储引擎的表上就只能是完全的串行化,没办法再并行了。大家不要忘记了,MyISAM的存储引擎还有一个非常有用的特性,那就是ConcurrentInsert(并发插入)的特性。 MyISAM存储引擎有一个控制是否打开Concurrent Insert功能的参数选项:concurrent_insert,可以设置为0,1或者2。三个值的具体说明如下: concurrent_insert=2,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录; concurrent_insert=1,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置; concurrent_insert=0,不允许并发插入。 可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。 (4)合理利用读写优先级 MyISAM存储引擎的是读写互相阻塞的,那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢? 答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前。 这是因为MySQL的表级锁定对于读和写是有不同优先级设定的,默认情况下是写优先级要大于读优先级。 所以,如果我们可以根据各自系统环境的差异决定读与写的优先级: 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接读比写的优先级高。如果我们的系统是一个以读为主,可以设置此参数,如果以写为主,则不用设置; 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”,因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行 三、行级锁定 行级锁定不是MySQL自己实现的锁定方式,而是由其他存储引擎自己所实现的,如广为大家所知的InnoDB存储引擎,以及MySQL的分布式存储引擎NDBCluster等都是实现了行级锁定。考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 1.InnoDB锁定模式及实现机制 考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 总的来说,InnoDB的锁定机制和Oracle数据库有不少相似之处。InnoDB的行级锁定同样分为两种类型,共享锁和排他锁,而在锁定机制的实现过程中为了让行级锁定和表级锁定共存,InnoDB也同样使用了意向锁(表级锁定)的概念,也就有了意向共享锁和意向排他锁这两种。 当一个事务需要给自己需要的某个资源加锁的时候,如果遇到一个共享锁正锁定着自己需要的资源的时候,自己可以再加一个共享锁,不过不能加排他锁。但是,如果遇到自己需要锁定的资源已经被一个排他锁占有之后,则只能等待该锁定释放资源之后自己才能获取锁定资源并添加自己的锁定。而意向锁的作用就是当一个事务在需要获取资源锁定的时候,如果遇到自己需要的资源已经被排他锁占用的时候,该事务可以需要锁定行的表上面添加一个合适的意向锁。如果自己需要一个共享锁,那么就在表上面添加一个意向共享锁。而如果自己需要的是某行(或者某些行)上面添加一个排他锁的话,则先在表上面添加一个意向排他锁。意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。所以,可以说InnoDB的锁定模式实际上可以分为四种:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX),我们可以通过以下表格来总结上面这四种所的共存逻辑关系 如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。 但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 2.InnoDB行锁实现方式 InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 (2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。 (3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 (4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。 3.间隙锁(Next-Key锁) 当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁; 对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 例: 假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: mysql> select * from emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的: (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读; (2)为了满足其恢复和复制的需要。 很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。 除了间隙锁给InnoDB带来性能的负面影响之外,通过索引实现锁定的方式还存在其他几个较大的性能隐患: (1)当Query无法利用索引的时候,InnoDB会放弃使用行级别锁定而改用表级别的锁定,造成并发性能的降低; (2)当Query使用的索引并不包含所有过滤条件的时候,数据检索使用到的索引键所只想的数据可能有部分并不属于该Query的结果集的行列,但是也会被锁定,因为间隙锁锁定的是一个范围,而不是具体的索引键; (3)当Query在使用索引定位数据的时候,如果使用的索引键一样但访问的数据行不同的时候(索引只是过滤条件的一部分),一样会被锁定。 因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁。 4.死锁 MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。 在InnoDB的事务管理和锁定机制中,有专门检测死锁的机制,会在系统中产生死锁之后的很短时间内就检测到该死锁的存在。当InnoDB检测到系统中产生了死锁之后,InnoDB会通过相应的判断来选这产生死锁的两个事务中较小的事务来回滚,而让另外一个较大的事务成功完成。 那InnoDB是以什么来为标准判定事务的大小的呢?MySQL官方手册中也提到了这个问题,实际上在InnoDB发现死锁之后,会计算出两个事务各自插入、更新或者删除的数据量来判定两个事务的大小。也就是说哪个事务所改变的记录条数越多,在死锁中就越不会被回滚掉。 但是有一点需要注意的就是,当产生死锁的场景中涉及到不止InnoDB存储引擎的时候,InnoDB是没办法检测到该死锁的,这时候就只能通过锁定超时限制参数InnoDB_lock_wait_timeout来解决。 需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。 通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法: (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。 (3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。 (4)在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。 (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。 5.什么时候使用表锁 对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁: (1)事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。 (2)事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。 应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。 在InnoDB下,使用表锁要注意以下两点。 (1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、InnoDB_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁,否则,InnoDB将无法自动检测并处理这种死锁。 (2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。

1006541099824509 2019-12-02 03:14:39 0 浏览量 回答数 0

问题

linux下php多线程的妙用(转):报错

kun坤 2020-06-14 09:08:45 0 浏览量 回答数 0

回答

Android平台进行数据存储的五大方式,分别如下: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面详细讲解这五种方式的特点 第一种: 使用SharedPreferences存储数据 适用范围:保存少量的数据,且这些数据的格式非常简单:字符串型、基本类型的值。比如应用程序的各种配置信息(如是否打开音效、是否使用震动效果、小游戏的玩家积分等),解锁口 令密码等 核心原理:保存基于XML文件存储的key-value键值对数据,通常用来存储一些简单的配置信息。通过DDMS的File Explorer面板,展开文件浏览树,很明显SharedPreferences数据总是存储在/data/data/<package name>/shared_prefs目录下。SharedPreferences对象本身只能获取数据而不支持存储和修改,存储修改是通过SharedPreferences.edit()获取的内部接口Editor对象实现。 SharedPreferences本身是一 个接口,程序无法直接创建SharedPreferences实例,只能通过Context提供的getSharedPreferences(String name, int mode)方法来获取SharedPreferences实例,该方法中name表示要操作的xml文件名,第二个参数具体如下: Context.MODE_PRIVATE: 指定该SharedPreferences数据只能被本应用程序读、写。 Context.MODE_WORLD_READABLE: 指定该SharedPreferences数据能被其他应用程序读,但不能写。 Context.MODE_WORLD_WRITEABLE: 指定该SharedPreferences数据能被其他应用程序读,写 Editor有如下主要重要方法: SharedPreferences.Editor clear():清空SharedPreferences里所有数据 SharedPreferences.Editor putXxx(String key , xxx value): 向SharedPreferences存入指定key对应的数据,其中xxx 可以是boolean,float,int等各种基本类型据 SharedPreferences.Editor remove(): 删除SharedPreferences中指定key对应的数据项 boolean commit(): 当Editor编辑完成后,使用该方法提交修改 实际案例:运行界面如下 这里只提供了两个按钮和一个输入文本框,布局简单,故在此不给出界面布局文件了,程序核心代码如下: 、class ViewOcl implements View.OnClickListener{ @Override public void onClick(View v) { switch(v.getId()){ case R.id.btnSet: //步骤1:获取输入值 String code = txtCode.getText().toString().trim(); //步骤2-1:创建一个SharedPreferences.Editor接口对象,lock表示要写入的XML文件名,MODE_WORLD_WRITEABLE写操作 SharedPreferences.Editor editor = getSharedPreferences("lock", MODE_WORLD_WRITEABLE).edit(); //步骤2-2:将获取过来的值放入文件 editor.putString("code", code); //步骤3:提交 editor.commit(); Toast.makeText(getApplicationContext(), "口令设置成功", Toast.LENGTH_LONG).show(); break; case R.id.btnGet: //步骤1:创建一个SharedPreferences接口对象 SharedPreferences read = getSharedPreferences("lock", MODE_WORLD_READABLE); //步骤2:获取文件中的值 String value = read.getString("code", ""); Toast.makeText(getApplicationContext(), "口令为:"+value, Toast.LENGTH_LONG).show(); break; } } } 、读写其他应用的SharedPreferences: 步骤如下 1、在创建SharedPreferences时,指定MODE_WORLD_READABLE模式,表明该SharedPreferences数据可以被其他程序读取 2、创建其他应用程序对应的Context: Context pvCount = createPackageContext("com.tony.app", Context.CONTEXT_IGNORE_SECURITY);这里的com.tony.app就是其他程序的包名 3、使用其他程序的Context获取对应的SharedPreferences SharedPreferences read = pvCount.getSharedPreferences("lock", Context.MODE_WORLD_READABLE); 4、如果是写入数据,使用Editor接口即可,所有其他操作均和前面一致。 SharedPreferences对象与SQLite数据库相比,免去了创建数据库,创建表,写SQL语句等诸多操作,相对而言更加方便,简洁。但是SharedPreferences也有其自身缺陷,比如其职能存储boolean,int,float,long和String五种简单的数据类型,比如其无法进行条件查询等。所以不论SharedPreferences的数据存储操作是如何简单,它也只能是存储方式的一种补充,而无法完全替代如SQLite数据库这样的其他数据存储方式。 第二种: 文件存储数据 核心原理: Context提供了两个方法来打开数据文件里的文件IO流 FileInputStream openFileInput(String name); FileOutputStream(String name , int mode),这两个方法第一个参数 用于指定文件名,第二个参数指定打开文件的模式。具体有以下值可选: MODE_PRIVATE:为默认操作模式,代表该文件是私有数据,只能被应用本身访问,在该模式下,写入的内容会覆盖原文件的内容,如果想把新写入的内容追加到原文件中。可 以使用Context.MODE_APPEND MODE_APPEND:模式会检查文件是否存在,存在就往文件追加内容,否则就创建新文件。 MODE_WORLD_READABLE:表示当前文件可以被其他应用读取; MODE_WORLD_WRITEABLE:表示当前文件可以被其他应用写入。 除此之外,Context还提供了如下几个重要的方法: getDir(String name , int mode):在应用程序的数据文件夹下获取或者创建name对应的子目录 File getFilesDir():获取该应用程序的数据文件夹得绝对路径 String[] fileList():返回该应用数据文件夹的全部文件 public String read() { try { FileInputStream inStream = this.openFileInput("message.txt"); byte[] buffer = new byte[1024]; int hasRead = 0; StringBuilder sb = new StringBuilder(); while ((hasRead = inStream.read(buffer)) != -1) { sb.append(new String(buffer, 0, hasRead)); } inStream.close(); return sb.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public void write(String msg){ // 步骤1:获取输入值 if(msg == null) return; try { // 步骤2:创建一个FileOutputStream对象,MODE_APPEND追加模式 FileOutputStream fos = openFileOutput("message.txt", MODE_APPEND); // 步骤3:将获取过来的值放入文件 fos.write(msg.getBytes()); // 步骤4:关闭数据流 fos.close(); } catch (Exception e) { e.printStackTrace(); } } openFileOutput()方法的第一参数用于指定文件名称,不能包含路径分隔符“/” ,如果文件不存在,Android 会自动创建它。创建的文件保存在/data/data//files目录,如: /data/data/cn.tony.app/files/message.txt, 下面讲解某些特殊文件读写需要注意的地方: 读写sdcard上的文件 其中读写步骤按如下进行: 1、调用Environment的getExternalStorageState()方法判断手机上是否插了sd卡,且应用程序具有读写SD卡的权限,如下代码将返回true Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED) 2、调用Environment.getExternalStorageDirectory()方法来获取外部存储器,也就是SD卡的目录,或者使用"/mnt/sdcard/"目录 3、使用IO流操作SD卡上的文件 注意点:手机应该已插入SD卡,对于模拟器而言,可通过mksdcard命令来创建虚拟存储卡 必须在AndroidManifest.xml上配置读写SD卡的权限 // 文件写操作函数 private void write(String content) { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } PrintStream out = null; // 打印流对象用于输出 try { out = new PrintStream(new FileOutputStream(file, true)); // 追加文件 out.println(content); } catch (Exception e) { e.printStackTrace(); } finally { if (out != null) { out.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "保存失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } } // 文件读操作函数 private String read() { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } Scanner scan = null; // 扫描输入 StringBuilder sb = new StringBuilder(); try { scan = new Scanner(new FileInputStream(file)); // 实例化Scanner while (scan.hasNext()) { // 循环读取 sb.append(scan.next() + "\n"); // 设置文本 } return sb.toString(); } catch (Exception e) { e.printStackTrace(); } finally { if (scan != null) { scan.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "读取失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } return null; } 复制代码 第三种:SQLite存储数据 SQLite是轻量级嵌入式数据库引擎,它支持 SQL 语言,并且只利用很少的内存就有很好的性能。现在的主流移动设备像Android、iPhone等都使用SQLite作为复杂数据的存储引擎,在我们为移动设备开发应用程序时,也许就要使用到SQLite来存储我们大量的数据,所以我们就需要掌握移动设备上的SQLite开发技巧 SQLiteDatabase类为我们提供了很多种方法,上面的代码中基本上囊括了大部分的数据库操作;对于添加、更新和删除来说,我们都可以使用 1 db.executeSQL(String sql); 2 db.executeSQL(String sql, Object[] bindArgs);//sql语句中使用占位符,然后第二个参数是实际的参数集 除了统一的形式之外,他们还有各自的操作方法: 1 db.insert(String table, String nullColumnHack, ContentValues values); 2 db.update(String table, Contentvalues values, String whereClause, String whereArgs); 3 db.delete(String table, String whereClause, String whereArgs);以上三个方法的第一个参数都是表示要操作的表名;insert中的第二个参数表示如果插入的数据每一列都为空的话,需要指定此行中某一列的名称,系统将此列设置为NULL,不至于出现错误;insert中的第三个参数是ContentValues类型的变量,是键值对组成的Map,key代表列名,value代表该列要插入的值;update的第二个参数也很类似,只不过它是更新该字段key为最新的value值,第三个参数whereClause表示WHERE表达式,比如“age > ? and age < ?”等,最后的whereArgs参数是占位符的实际参数值;delete方法的参数也是一样 下面给出demo 数据的添加 1.使用insert方法 复制代码1 ContentValues cv = new ContentValues();//实例化一个ContentValues用来装载待插入的数据2 cv.put("title","you are beautiful");//添加title3 cv.put("weather","sun"); //添加weather4 cv.put("context","xxxx"); //添加context5 String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")6 .format(new Date());7 cv.put("publish ",publish); //添加publish8 db.insert("diary",null,cv);//执行插入操作复制代码2.使用execSQL方式来实现 String sql = "insert into user(username,password) values ('Jack Johnson','iLovePopMuisc');//插入操作的SQL语句db.execSQL(sql);//执行SQL语句数据的删除 同样有2种方式可以实现 String whereClause = "username=?";//删除的条件String[] whereArgs = {"Jack Johnson"};//删除的条件参数db.delete("user",whereClause,whereArgs);//执行删除使用execSQL方式的实现 String sql = "delete from user where username='Jack Johnson'";//删除操作的SQL语句db.execSQL(sql);//执行删除操作数据修改 同上,仍是2种方式 ContentValues cv = new ContentValues();//实例化ContentValuescv.put("password","iHatePopMusic");//添加要更改的字段及内容String whereClause = "username=?";//修改条件String[] whereArgs = {"Jack Johnson"};//修改条件的参数db.update("user",cv,whereClause,whereArgs);//执行修改使用execSQL方式的实现 String sql = "update user set password = 'iHatePopMusic' where username='Jack Johnson'";//修改的SQL语句db.execSQL(sql);//执行修改数据查询 下面来说说查询操作。查询操作相对于上面的几种操作要复杂些,因为我们经常要面对着各种各样的查询条件,所以系统也考虑到这种复杂性,为我们提供了较为丰富的查询形式: 1 db.rawQuery(String sql, String[] selectionArgs); 2 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy); 3 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 4 db.query(String distinct, String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 上面几种都是常用的查询方法,第一种最为简单,将所有的SQL语句都组织到一个字符串中,使用占位符代替实际参数,selectionArgs就是占位符实际参数集; 各参数说明: table:表名称colums:表示要查询的列所有名称集selection:表示WHERE之后的条件语句,可以使用占位符selectionArgs:条件语句的参数数组groupBy:指定分组的列名having:指定分组条件,配合groupBy使用orderBy:y指定排序的列名limit:指定分页参数distinct:指定“true”或“false”表示要不要过滤重复值Cursor:返回值,相当于结果集ResultSet最后,他们同时返回一个Cursor对象,代表数据集的游标,有点类似于JavaSE中的ResultSet。下面是Cursor对象的常用方法: 复制代码 1 c.move(int offset); //以当前位置为参考,移动到指定行 2 c.moveToFirst(); //移动到第一行 3 c.moveToLast(); //移动到最后一行 4 c.moveToPosition(int position); //移动到指定行 5 c.moveToPrevious(); //移动到前一行 6 c.moveToNext(); //移动到下一行 7 c.isFirst(); //是否指向第一条 8 c.isLast(); //是否指向最后一条 9 c.isBeforeFirst(); //是否指向第一条之前 10 c.isAfterLast(); //是否指向最后一条之后 11 c.isNull(int columnIndex); //指定列是否为空(列基数为0) 12 c.isClosed(); //游标是否已关闭 13 c.getCount(); //总数据项数 14 c.getPosition(); //返回当前游标所指向的行数 15 c.getColumnIndex(String columnName);//返回某列名对应的列索引值 16 c.getString(int columnIndex); //返回当前行指定列的值 复制代码实现代码 复制代码String[] params = {12345,123456};Cursor cursor = db.query("user",columns,"ID=?",params,null,null,null);//查询并获得游标if(cursor.moveToFirst()){//判断游标是否为空 for(int i=0;i<cursor.getCount();i++){ cursor.move(i);//移动到指定记录 String username = cursor.getString(cursor.getColumnIndex("username"); String password = cursor.getString(cursor.getColumnIndex("password")); } }复制代码通过rawQuery实现的带参数查询 复制代码Cursor result=db.rawQuery("SELECT ID, name, inventory FROM mytable");//Cursor c = db.rawQuery("s name, inventory FROM mytable where ID=?",new Stirng[]{"123456"}); result.moveToFirst(); while (!result.isAfterLast()) { int id=result.getInt(0); String name=result.getString(1); int inventory=result.getInt(2); // do something useful with these result.moveToNext(); } result.close();复制代码 在上面的代码示例中,已经用到了这几个常用方法中的一些,关于更多的信息,大家可以参考官方文档中的说明。 最后当我们完成了对数据库的操作后,记得调用SQLiteDatabase的close()方法释放数据库连接,否则容易出现SQLiteException。 上面就是SQLite的基本应用,但在实际开发中,为了能够更好的管理和维护数据库,我们会封装一个继承自SQLiteOpenHelper类的数据库操作类,然后以这个类为基础,再封装我们的业务逻辑方法。 这里直接使用案例讲解:下面是案例demo的界面 SQLiteOpenHelper类介绍 SQLiteOpenHelper是SQLiteDatabase的一个帮助类,用来管理数据库的创建和版本的更新。一般是建立一个类继承它,并实现它的onCreate和onUpgrade方法。 方法名 方法描述SQLiteOpenHelper(Context context,String name,SQLiteDatabase.CursorFactory factory,int version) 构造方法,其中 context 程序上下文环境 即:XXXActivity.this; name :数据库名字; factory:游标工厂,默认为null,即为使用默认工厂; version 数据库版本号 onCreate(SQLiteDatabase db) 创建数据库时调用onUpgrade(SQLiteDatabase db,int oldVersion , int newVersion) 版本更新时调用getReadableDatabase() 创建或打开一个只读数据库getWritableDatabase() 创建或打开一个读写数据库首先创建数据库类 复制代码 1 import android.content.Context; 2 import android.database.sqlite.SQLiteDatabase; 3 import android.database.sqlite.SQLiteDatabase.CursorFactory; 4 import android.database.sqlite.SQLiteOpenHelper; 5 6 public class SqliteDBHelper extends SQLiteOpenHelper { 7 8 // 步骤1:设置常数参量 9 private static final String DATABASE_NAME = "diary_db";10 private static final int VERSION = 1;11 private static final String TABLE_NAME = "diary";12 13 // 步骤2:重载构造方法14 public SqliteDBHelper(Context context) {15 super(context, DATABASE_NAME, null, VERSION);16 }17 18 /*19 * 参数介绍:context 程序上下文环境 即:XXXActivity.this 20 * name 数据库名字 21 * factory 接收数据,一般情况为null22 * version 数据库版本号23 */24 public SqliteDBHelper(Context context, String name, CursorFactory factory,25 int version) {26 super(context, name, factory, version);27 }28 //数据库第一次被创建时,onCreate()会被调用29 @Override30 public void onCreate(SQLiteDatabase db) {31 // 步骤3:数据库表的创建32 String strSQL = "create table "33 + TABLE_NAME34 + "(tid integer primary key autoincrement,title varchar(20),weather varchar(10),context text,publish date)";35 //步骤4:使用参数db,创建对象36 db.execSQL(strSQL);37 }38 //数据库版本变化时,会调用onUpgrade()39 @Override40 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {41 42 }43 }复制代码正如上面所述,数据库第一次创建时onCreate方法会被调用,我们可以执行创建表的语句,当系统发现版本变化之后,会调用onUpgrade方法,我们可以执行修改表结构等语句。 我们需要一个Dao,来封装我们所有的业务方法,代码如下: 复制代码 1 import android.content.Context; 2 import android.database.Cursor; 3 import android.database.sqlite.SQLiteDatabase; 4 5 import com.chinasoft.dbhelper.SqliteDBHelper; 6 7 public class DiaryDao { 8 9 private SqliteDBHelper sqliteDBHelper;10 private SQLiteDatabase db;11 12 // 重写构造方法13 public DiaryDao(Context context) {14 this.sqliteDBHelper = new SqliteDBHelper(context);15 db = sqliteDBHelper.getWritableDatabase();16 }17 18 // 读操作19 public String execQuery(final String strSQL) {20 try {21 System.out.println("strSQL>" + strSQL);22 // Cursor相当于JDBC中的ResultSet23 Cursor cursor = db.rawQuery(strSQL, null);24 // 始终让cursor指向数据库表的第1行记录25 cursor.moveToFirst();26 // 定义一个StringBuffer的对象,用于动态拼接字符串27 StringBuffer sb = new StringBuffer();28 // 循环游标,如果不是最后一项记录29 while (!cursor.isAfterLast()) {30 sb.append(cursor.getInt(0) + "/" + cursor.getString(1) + "/"31 + cursor.getString(2) + "/" + cursor.getString(3) + "/"32 + cursor.getString(4)+"#");33 //cursor游标移动34 cursor.moveToNext();35 }36 db.close();37 return sb.deleteCharAt(sb.length()-1).toString();38 } catch (RuntimeException e) {39 e.printStackTrace();40 return null;41 }42 43 }44 45 // 写操作46 public boolean execOther(final String strSQL) {47 db.beginTransaction(); //开始事务48 try {49 System.out.println("strSQL" + strSQL);50 db.execSQL(strSQL);51 db.setTransactionSuccessful(); //设置事务成功完成 52 db.close();53 return true;54 } catch (RuntimeException e) {55 e.printStackTrace();56 return false;57 }finally { 58 db.endTransaction(); //结束事务 59 } 60 61 }62 }复制代码我们在Dao构造方法中实例化sqliteDBHelper并获取一个SQLiteDatabase对象,作为整个应用的数据库实例;在增删改信息时,我们采用了事务处理,确保数据完整性;最后要注意释放数据库资源db.close(),这一个步骤在我们整个应用关闭时执行,这个环节容易被忘记,所以朋友们要注意。 我们获取数据库实例时使用了getWritableDatabase()方法,也许朋友们会有疑问,在getWritableDatabase()和getReadableDatabase()中,你为什么选择前者作为整个应用的数据库实例呢?在这里我想和大家着重分析一下这一点。 我们来看一下SQLiteOpenHelper中的getReadableDatabase()方法: 复制代码 1 public synchronized SQLiteDatabase getReadableDatabase() { 2 if (mDatabase != null && mDatabase.isOpen()) { 3 // 如果发现mDatabase不为空并且已经打开则直接返回 4 return mDatabase; 5 } 6 7 if (mIsInitializing) { 8 // 如果正在初始化则抛出异常 9 throw new IllegalStateException("getReadableDatabase called recursively"); 10 } 11 12 // 开始实例化数据库mDatabase 13 14 try { 15 // 注意这里是调用了getWritableDatabase()方法 16 return getWritableDatabase(); 17 } catch (SQLiteException e) { 18 if (mName == null) 19 throw e; // Can't open a temp database read-only! 20 Log.e(TAG, "Couldn't open " + mName + " for writing (will try read-only):", e); 21 } 22 23 // 如果无法以可读写模式打开数据库 则以只读方式打开 24 25 SQLiteDatabase db = null; 26 try { 27 mIsInitializing = true; 28 String path = mContext.getDatabasePath(mName).getPath();// 获取数据库路径 29 // 以只读方式打开数据库 30 db = SQLiteDatabase.openDatabase(path, mFactory, SQLiteDatabase.OPEN_READONLY); 31 if (db.getVersion() != mNewVersion) { 32 throw new SQLiteException("Can't upgrade read-only database from version " + db.getVersion() + " to " 33 + mNewVersion + ": " + path); 34 } 35 36 onOpen(db); 37 Log.w(TAG, "Opened " + mName + " in read-only mode"); 38 mDatabase = db;// 为mDatabase指定新打开的数据库 39 return mDatabase;// 返回打开的数据库 40 } finally { 41 mIsInitializing = false; 42 if (db != null && db != mDatabase) 43 db.close(); 44 } 45 }复制代码在getReadableDatabase()方法中,首先判断是否已存在数据库实例并且是打开状态,如果是,则直接返回该实例,否则试图获取一个可读写模式的数据库实例,如果遇到磁盘空间已满等情况获取失败的话,再以只读模式打开数据库,获取数据库实例并返回,然后为mDatabase赋值为最新打开的数据库实例。既然有可能调用到getWritableDatabase()方法,我们就要看一下了: 复制代码public synchronized SQLiteDatabase getWritableDatabase() { if (mDatabase != null && mDatabase.isOpen() && !mDatabase.isReadOnly()) { // 如果mDatabase不为空已打开并且不是只读模式 则返回该实例 return mDatabase; } if (mIsInitializing) { throw new IllegalStateException("getWritableDatabase called recursively"); } // If we have a read-only database open, someone could be using it // (though they shouldn't), which would cause a lock to be held on // the file, and our attempts to open the database read-write would // fail waiting for the file lock. To prevent that, we acquire the // lock on the read-only database, which shuts out other users. boolean success = false; SQLiteDatabase db = null; // 如果mDatabase不为空则加锁 阻止其他的操作 if (mDatabase != null) mDatabase.lock(); try { mIsInitializing = true; if (mName == null) { db = SQLiteDatabase.create(null); } else { // 打开或创建数据库 db = mContext.openOrCreateDatabase(mName, 0, mFactory); } // 获取数据库版本(如果刚创建的数据库,版本为0) int version = db.getVersion(); // 比较版本(我们代码中的版本mNewVersion为1) if (version != mNewVersion) { db.beginTransaction();// 开始事务 try { if (version == 0) { // 执行我们的onCreate方法 onCreate(db); } else { // 如果我们应用升级了mNewVersion为2,而原版本为1则执行onUpgrade方法 onUpgrade(db, version, mNewVersion); } db.setVersion(mNewVersion);// 设置最新版本 db.setTransactionSuccessful();// 设置事务成功 } finally { db.endTransaction();// 结束事务 } } onOpen(db); success = true; return db;// 返回可读写模式的数据库实例 } finally { mIsInitializing = false; if (success) { // 打开成功 if (mDatabase != null) { // 如果mDatabase有值则先关闭 try { mDatabase.close(); } catch (Exception e) { } mDatabase.unlock();// 解锁 } mDatabase = db;// 赋值给mDatabase } else { // 打开失败的情况:解锁、关闭 if (mDatabase != null) mDatabase.unlock(); if (db != null) db.close(); } } }复制代码大家可以看到,几个关键步骤是,首先判断mDatabase如果不为空已打开并不是只读模式则直接返回,否则如果mDatabase不为空则加锁,然后开始打开或创建数据库,比较版本,根据版本号来调用相应的方法,为数据库设置新版本号,最后释放旧的不为空的mDatabase并解锁,把新打开的数据库实例赋予mDatabase,并返回最新实例。 看完上面的过程之后,大家或许就清楚了许多,如果不是在遇到磁盘空间已满等情况,getReadableDatabase()一般都会返回和getWritableDatabase()一样的数据库实例,所以我们在DBManager构造方法中使用getWritableDatabase()获取整个应用所使用的数据库实例是可行的。当然如果你真的担心这种情况会发生,那么你可以先用getWritableDatabase()获取数据实例,如果遇到异常,再试图用getReadableDatabase()获取实例,当然这个时候你获取的实例只能读不能写了 最后,让我们看一下如何使用这些数据操作方法来显示数据,界面核心逻辑代码: 复制代码public class SQLiteActivity extends Activity { public DiaryDao diaryDao; //因为getWritableDatabase内部调用了mContext.openOrCreateDatabase(mName, 0, mFactory); //所以要确保context已初始化,我们可以把实例化Dao的步骤放在Activity的onCreate里 @Override protected void onCreate(Bundle savedInstanceState) { diaryDao = new DiaryDao(SQLiteActivity.this); initDatabase(); } class ViewOcl implements View.OnClickListener { @Override public void onClick(View v) { String strSQL; boolean flag; String message; switch (v.getId()) { case R.id.btnAdd: String title = txtTitle.getText().toString().trim(); String weather = txtWeather.getText().toString().trim();; String context = txtContext.getText().toString().trim();; String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") .format(new Date()); // 动态组件SQL语句 strSQL = "insert into diary values(null,'" + title + "','" + weather + "','" + context + "','" + publish + "')"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"添加成功":"添加失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnDelete: strSQL = "delete from diary where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"删除成功":"删除失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnQuery: strSQL = "select * from diary order by publish desc"; String data = diaryDao.execQuery(strSQL); Toast.makeText(getApplicationContext(), data, Toast.LENGTH_LONG).show(); break; case R.id.btnUpdate: strSQL = "update diary set title = '测试标题1-1' where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"更新成功":"更新失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; } } } private void initDatabase() { // 创建数据库对象 SqliteDBHelper sqliteDBHelper = new SqliteDBHelper(SQLiteActivity.this); sqliteDBHelper.getWritableDatabase(); System.out.println("数据库创建成功"); } }复制代码 Android sqlite3数据库管理工具 Android SDK的tools目录下提供了一个sqlite3.exe工具,这是一个简单的sqlite数据库管理工具。开发者可以方便的使用其对sqlite数据库进行命令行的操作。 程序运行生成的.db文件一般位于"/data/data/项目名(包括所处包名)/databases/.db",因此要对数据库文件进行操作需要先找到数据库文件: 1、进入shell 命令 adb shell2、找到数据库文件 cd data/data ls --列出所有项目 cd project_name --进入所需项目名 cd databases ls --列出现寸的数据库文件 3、进入数据库 sqlite3 test_db --进入所需数据库 会出现类似如下字样: SQLite version 3.6.22Enter ".help" for instructionsEnter SQL statements terminated with a ";"sqlite>至此,可对数据库进行sql操作。 4、sqlite常用命令 .databases --产看当前数据库.tables --查看当前数据库中的表.help --sqlite3帮助.schema --各个表的生成语句 原文地址https://www.cnblogs.com/ITtangtang/p/3920916.html

auto_answer 2019-12-02 01:50:21 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

一.Lock接口(java.util.concurrent.locks): void lock():获取锁,阻塞方式;如果资源已被其他线程锁定,那么lock将会阻塞直到获取锁,锁阻塞期间不受线程的Interrupt的影响,在获取锁成功后,才会检测线程的interrupt状态,如果interrupt=true,则抛出异常。 unlock():释放锁 tryLock():尝试获取锁,并发环境中"闯入"行为,如果有锁可用,直接获取锁并返回true,否则范围false. lockInterruptibly():尝试获取锁,并支持"中断"请求。与lock的区别时,此方法的开始、结束和执行过程中,都会不断检测线程的interrupt状态,如果线程被中断,则立即抛出异常;而不像lock方法那样只会在获取锁之后才检测。 二.Lock接口实现类 Lock直接实现,只有3个类:ReentrantLock和WriteLock/ReadLock;这三种锁;Lock和java的synchronized(内置锁)的功能一致,均为排他锁. ReentrantLock为重入排他锁,对于同一线程,如果它已经持有了锁,那么将不会再次获取锁,而直接可以使用. ReentrantReadWriteLock并没有继承ReentrantLock,而是一个基于Lock接口的单独实现.它实现了 ReadWriteLock,即读写分离锁,是一种采用锁分离技巧的API. 尽管在API级别ReentrantReadWriteLock和ReentrantLock没有直接继承关系,但是ReentrantReadWriteLock中的ReadLock和WriteLock都具有ReentrantLock的全部语义(简单说,就是把ReentrantLock的代码copy了一下.),即锁的可重入性.WriteLock支持Condition(条件),ReadLock不支持. Lock的实现类中,都包含了2中锁等待策略:公平和非公平;其实他们的实现也非常简单,底层都是使用了queue来维持锁请求顺序.[参考:http://shift-alt-ctrl.iteye.com/blog/1839142] 公平锁,就是任何锁请求,首先将请求加入队列,然后再有队列机制来决定,是阻塞还是分配锁. 非公平,就是允许"闯入",当然公平锁,也无法干扰"闯入",对于任何锁请求,首先检测锁状态是否可用,如果可用直接获取,否则加入队列.. ReentrantLock本质上和synchronized修饰词是同一语义,如果一个线程lock()之后,其他线程进行lock时必须阻塞,直到当前线程的前续线程unlock.[执行lock操作时,将会被队列化(假如在公平模式下),获取lock的线程都将具有前续/后继线程,前续线程就是当前线程之前执行lock操作而阻塞的线程,后继线程就是当前线程之后执行lock操作的线程;那么对于unlock操作就是"解锁"信号的传递,如果当前线程unlock,那么将会触发后继线程被"唤醒",即它因为lock操作阻塞状态被解除.];这是ReentrantLock的基本原理,但是当ReentrantLock在Conditon情况下,事情就变得更加复杂.[参加下述] 三.Condition:锁条件 Condition与Lock形成happen-before关系。Condition将Object的监视器方法(wait,notify,notifyAll)分解成截然不同的对象,以便通过这些对象与任意Lock实现组合。使Lock具有等待“集合”的特性,或者“类型”;Lock替代了synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。(synchronized + object.wait对应Lock + Condition.await) Condition又称条件队列,为线程提供了一个含义,以便在某种状态条件现在可能为true的其他线程通知它之前,一直挂起该线程。即多个线程,其中一个线程因为某个条件而阻塞,其他线程当“条件”满足时,则“通知”哪些阻塞的线程。这,几乎和object中wait和notify的机制一样。 Condition和wait一样,阻塞时也将原子性的释放锁(间接执行了release()方法)。并挂起线程。Condition必须与Lock形成关系,只有获取lock权限的,才能进行Condition操作。Condition底层基于AQS实现,条件阻塞,将以队列的方式,LockSupport支持。其实现类有ConditionObject,这也是Lock.newCondition()的返回实际类型,在等待 Condition 时,允许发生“虚假唤醒”,这通常作为对基础平台语义的让步。对于大多数应用程序,这带来的实际影响很小,因为 Condition 应该总是在一个循环中被等待,并测试正被等待的状态声明。某个实现可以随意移除可能的虚假唤醒,但建议应用程序程序员总是假定这些虚假唤醒可能发生,因此总是在一个循环中等待。 void await() throws InterruptedException:当前线程阻塞,并原子性释放对象锁。如下条件将触发线程唤醒: 当线程被中断(支持中断响应), 其他线程通过condition.signal()方法,且碰巧选中当前线程唤醒 其他线程通过condition.signalAll()方法 发生虚假唤醒 底层实现,await()方法将当前线程信息添加到Conditon内部维护的"await"线程队列的尾部(此队列的目的就是为singal方法保持亟待唤醒的线程的顺序),然后释放锁(执行tryRelease()方法,注意此处释放锁,仅仅是释放了锁信号,并不是unlock,此时其他线程仍不能获取锁--lock方法阻塞),然后使用LockSupport.park(this)来强制剥夺当前线程执行权限。await方法会校验线程的中断标记。 由此可见,await()方法执行之后,因为已经"归还"了锁信号,那么其他线程此时执行lock方法,将不再阻塞.. void awaitUninterruptibly():阻塞,直到被唤醒。此方法不响应线程中断请求。即当线程被中断时,它将继续等待,直到接收到signal信号(你应该能想到"陷阱"),当最终从此方法返回时,仍然将设置其中断状态。 void signal()/signalAll():唤醒一个/全部await的线程。 对于signal()方法而言,底层实现为,遍历await"线程队列,找出此condition上最先阻塞的线程,并将此阻塞线程unpark.至此为止,我们似乎发现"锁信号"丢失了,因为在线程await时通过tryRelease时释放了一次信号.那么被signal成功的线程,首先执行一次acquire(增加锁信号),然后校验自己是否被interrupted,如果锁信号获取成功且线程状态正常,此时才正常的从await()方法退出.经过这么复杂的分析,终于明白了ReentrantLock + Condition情况下,锁状态变更和线程控制的来龙去脉... Java代码 收藏代码 //////例子: private Lock lock = new ReentrantLock(); private Condition full = lock.newCondition(); private Condition empty = lock.newCondition(); public Object take(){ lock.lock(); try{ while(isEmpty()){ empty.await() } Object o = get() full.signalAll(); return o; }finally{ lock.unlock(); } } public void put(Object o){ lock.lock(); try{ while(isFull()){ full.await(); } put(o); empty.signalAll(); }finally{ lock.unlock(); } } 四.机制 Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。此实现允许更灵活的结构,可以具有差别很大的属性,可以支持多个相关的 Condition 对象。注意,Lock 实例只是普通的对象,其本身可以在 synchronized 语句中作为目标使用。获取 Lock 实例的监视器锁与调用该实例的任何 lock() 方法没有特别的关系。为了避免混淆,建议除了在其自身的实现中之外,决不要以这种方式使用 Lock 实例。 Lock接口具有的方法: void lock():获取锁,阻塞直到获取。 void lockInterruptibly() throws InterrutedException:获取锁,阻塞直到获取成功,支持中断响应。 boolean tryLock():尝试获取锁,返回是否获取的结果。如果碰巧获取成功,则返回true,此时已经持有锁。 boolean tryLock(long time,TimeUnit) throws InterruptedException:尝试获取锁,获取成功返回true,超时时且没有获取锁则返回false。 void unlock():释放锁。约定只有持有锁者才能释放锁,否则抛出异常。 void newCondition():返回绑定到lock的条件。 五.ReadWriteLock ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 writer(写锁),读取锁可以由多个 reader 线程同时保持(共享锁)。写入锁是独占的。所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。 Lock readLock():返回读锁。 Lock writeLock():返回写锁。 六.ReentrantLock ReentrantLock,重入排它锁,它和synchronized具有相同的语义以及在监视器上具有相同的行为,但是功能更加强大。 ReetrantLock将由最近成功获得锁且还没有释放锁的线程标记为“锁占有者”;当锁没有被线程持有时,调用lock方法将会成功获取锁并返回,如果当前线程为锁持有者,再次调用lock将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。 ReentrantLock的构造方法,允许接收一个“公平策略”参数,“公平策略”下,多个线程竞争获取锁时,将会以队列化锁请求者,并将锁授予队列的head。在“非公平策略”下,则不完全保证锁获取的顺序,允许闯入行为(tryLock)。 ReentrantLock基于AQS机制,锁信号量为1,如果信号量为1且当前锁持有者不为自己,则不能获取锁。释放锁时,如果当前锁持有者不是自己,也将抛出“IllegalMonitorStateException”。由此可见,对于ReentrantLock,lock和release方法是需要组合出现。 七.ReentrantReadWriteLock:可重入读写分离锁 重入性 :当前线程可以重新获取相应的“读锁”或者“写锁”,在写入线程保持的所有写入锁都已经释放后,才允许重入reader(读取线程)使用它们。writer线程可以获取读锁,但是reader线程却不能直接获取写锁。 锁降级:重入还允许写入锁降级为读锁,其实现方式为:先获取写入锁,然后获取读取锁,最后释放写入锁。但是读取锁不能升级为写入锁。 Conditon的支持:只有写入锁支持conditon,对于读取锁,newConditon方法直接抛出UnsupportedOperationException。 ReentrantReadWriteLock目前在java api中无直接使用。ReentrantReadWriteLock并没有继承自 ReentrantLock,而是单独重新实现。其内部仍然支持“公平性”“非公平性”策略。 ReentrantReadWriteLock基于AQS,但是AQS只有一个state来表示锁的状态,所以如果一个state表示2种类型的锁状态,它做了一个很简单的策略,“位运算”,将一个int类型的state拆分为2个16位段,左端表示readlock锁引用计数,右端16位表示write锁。在readLock、writeLock进行获取锁或者释放锁时,均是通过有效的位运算和位控制,来达到预期的效果。 八.ReadLock void lock():获取读取锁,伪代码如下: Java代码 收藏代码 //如果当前已经有“写锁”,且持有写锁者不是当前线程(如果是当前线程,则支持写锁,降级为读锁),则获取锁失败 //即任何读锁的获取,必须等待队列中的写锁释放 //c为实际锁引用量(exclusiveCount方法实现为:c & ((1<<16) -1) if (exclusiveCount(c) != 0 &&getExclusiveOwnerThread() != current) return -1; //CAS操作,操作state的左端16位。 if(CAS(c,c + (1<<16))){ return 1; } void unlock():释放read锁,即共享锁,伪代码如下: Java代码 收藏代码 //CAS锁引用 for (;;) { int c = getState(); int nextc = c - (1<<16);//位操作,释放一个锁。 if (compareAndSetState(c, nextc)) return nextc == 0; } 九.WriteLock void lock():获取写入锁,伪代码如下: Java代码 收藏代码 //当前线程 Thread current = Thread.currentThread(); //实际的锁引用state int c = getState(); //右端16位,通过位运算获取“写入锁”的state int w = exclusiveCount(c); //如果有锁引用 if (c != 0) { //且所引用不是自己 if (w == 0 || current != getExclusiveOwnerThread()){ return false; } } //如果写入锁state为0,且CAS成功,则设置state和独占线程信息 if ((w == 0 && writerShouldBlock(current)) ||!compareAndSetState(c, c + acquires)){ return false; } setExclusiveOwnerThread(current); return true; void unlock():释放写入锁,伪代码如下: Java代码 收藏代码 //计算释放锁的信号量 int nextc = getState() - releases; //对于写入锁,则校验当前线程是否为锁持有者,否则不可以释放(死锁) if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); //释放锁,且重置独占线程信息 if (exclusiveCount(nextc) == 0) { setExclusiveOwnerThread(null); setState(nextc); return true; } else { setState(nextc); return false; } 十.LockSupport:用来创建锁和其他同步类的基本线程阻塞原语。 底层基于hotspot的实现unsafe。park 和 unpark 方法提供了阻塞和解除阻塞线程的有效方法。三种形式的 park(即park,parkNanos(Object blocker,long nanos),parkUntil(Object blocker,long timestamp)) 还各自支持一个 blocker 对象参数。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。(这样的工具可以使用方法 getBlocker(java.lang.Thread) 访问 blocker。)建议最好使用这些形式,而不是不带此参数的原始形式。 在锁实现中提供的作为 blocker 的普通参数是 this。 static void park(Object blocker):阻塞当前线程,直到如下情况发生: 其他线程,调用unpark方法,并将此线程作为目标而唤醒 其他线程中断当前线程此方法不报告,此线程是何种原因被放回,需要调用者重新检测,而且此方法也经常在while循环中执行 Java代码 收藏代码 while(//condition,such as:queue.isEmpty){ LockSupport.park(queue);//此时queue对象作为“阻塞”点传入,以便其他监控工具查看,queue的状态 //检测当前线程是否已经中断。 if(Thread.interrupted()){ break; } } void getBlocker(Thread t):返回提供最近一次尚未解除阻塞的park的阻塞点。可以返回null。 void unpark(Thread t):解除指定线程阻塞,使其可用。参数null则无效果。 LockSupport实例(不过不建议在实际代码中直接使用LockSupport,很多时候,你可以使用锁来控制): Java代码 收藏代码 /////////////Demo public class LockSupportTestMain { /** * @param args */ public static void main(String[] args) throws Exception{ System.out.println("Hear!"); BlockerObject blocker = new BlockerObject(); LThread tp = new LThread(blocker, false); LThread tt = new LThread(blocker, true); tp.start(); tt.start(); Thread.sleep(1000); } static class LThread extends Thread{ private BlockerObject blocker; boolean take; LThread(BlockerObject blocker,boolean take){ this.blocker = blocker; this.take = take; } @Override public void run(){ if(take){ while(true){ Object o = blocker.take(); if(o != null){ System.out.println(o.toString()); } } }else{ Object o = new Object(); System.out.println("put,,," + o.toString()); blocker.put(o); } } } static class BlockerObject{ Queue<Object> inner = new LinkedList<Object>(); Queue<Thread> twaiters = new LinkedList<Thread>(); Queue<Thread> pwaiters = new LinkedList<Thread>(); public void put(Object o){ inner.offer(o); pwaiters.offer(Thread.currentThread()); Thread t = twaiters.poll(); if(t != null){ LockSupport.unpark(t); } System.out.println("park"); LockSupport.park(Thread.currentThread()); System.out.println("park is over"); } public Object take(){ Thread t = pwaiters.poll(); if(t != null){ System.out.println("unpark"); LockSupport.unpark(t); System.out.println("unpark is OK"); } //twaiters.offer(Thread.currentThread()); return inner.poll(); } } } 备注:有时候会疑惑wait()/notify() 和Unsafe.park()/unpark()有什么区别?区别是wait和notify是Object类的方法,它们首选需要获得“对象锁”,并在synchronized同步快中执行。park和unpark怎不需要这么做。wait和park都是有当前线程发起,notify和unpark都是其他线程发起。wait针对的是对象锁,park针对的线程本身,但是最终的效果都是导致当前线程阻塞。Unsafe不建议开发者直接使用。

景凌凯 2020-04-24 16:41:16 0 浏览量 回答数 0

回答

  迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。   利用迭代算法解决问题,需要做好以下三个方面的工作:   一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。   二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。   三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。   例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。   分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有   u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……   根据这个规律,可以归纳出下面的递推公式:   u n = u n - 1 × 2 (n ≥ 2)   对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:   y=x*2   x=y   让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:   cls   x=1   for i=2 to 12   y=x*2   x=y   next i   print y   end   例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。   分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。   设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有   x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)   因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:   x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 )   让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:   cls   x=2^20   for i=1 to 15   x=x/2   next i   print x   end   例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。   要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。   分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:   if n 为偶数 then   n=n/2   else   n=n*3+1   end if   这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:   cls   input "Please input n=";n   do until n=1   if n mod 2=0 then   rem 如果 n 为偶数,则调用迭代公式 n=n/2   n=n/2   print "—";n;   else   n=n*3+1   print "—";n;   end if   loop   end   迭代法   迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:   (1) 选一个方程的近似根,赋给变量x0;   (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;   (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。   若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:   【算法】迭代法求方程的根   { x0=初始近似根;   do {   x1=x0;   x0=g(x1); /*按特定的方程计算新的近似根*/   } while ( fabs(x0-x1)>Epsilon);   printf(“方程的近似根是%f\n”,x0);   }   迭代算法也常用于求方程组的根,令   X=(x0,x1,…,xn-1)   设方程组为:   xi=gi(X) (I=0,1,…,n-1)   则求方程组根的迭代算法可描述如下:   【算法】迭代法求方程组的根   { for (i=0;i   x=初始近似根;   do {   for (i=0;i   y=x;   for (i=0;i   x=gi(X);   for (delta=0.0,i=0;i   if (fabs(y-x)>delta) delta=fabs(y-x);   } while (delta>Epsilon);   for (i=0;i   printf(“变量x[%d]的近似根是 %f”,I,x);   printf(“\n”);   }   具体使用迭代法求根时应注意以下两种可能发生的情况:   (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;   (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。   递归   递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。   能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。   【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。   斐波那契数列为:0、1、1、2、3、……,即:   fib(0)=0;   fib(1)=1;   fib(n)=fib(n-1)+fib(n-2) (当n>1时)。   写成递归函数有:   int fib(int n)   { if (n==0) return 0;   if (n==1) return 1;   if (n>1) return fib(n-1)+fib(n-2);   }   递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。   在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。   在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。   由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。   【问题】 组合问题   问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1   (4)5、3、2 (5)5、3、1 (6)5、2、1   (7)4、3、2 (8)4、3、1 (9)4、2、1   (10)3、2、1   分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。   【程序】   # include   # define MAXN 100   int a[MAXN];   void comb(int m,int k)   { int i,j;   for (i=m;i>=k;i--)   { a[k]=i;   if (k>1)   comb(i-1,k-1);   else   { for (j=a[0];j>0;j--)   printf(“%4d”,a[j]);   printf(“\n”);   }   }   }   void main()   { a[0]=3;   comb(5,3);   }   【问题】 背包问题   问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。   设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。   对于第i件物品的选择考虑有两种可能:   (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。   (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。   按以上思想写出递归算法如下:   try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)   { /*考虑物品i包含在当前方案中的可能性*/   if(包含物品i是可以接受的)   { 将物品i包含在当前方案中;   if (i   try(i+1,tw+物品i的重量,tv);   else   /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   恢复物品i不包含状态;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (不包含物品i仅是可男考虑的)   if (i   try(i+1,tw,tv-物品i的价值);   else   /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   }   为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:   物品 0 1 2 3   重量 5 3 2 1   价值 4 4 3 1   并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。   按上述算法编写函数和程序如下:   【程序】   # include   # define N 100   double limitW,totV,maxV;   int option[N],cop[N];   struct { double weight;   double value;   }a[N];   int n;   void find(int i,double tw,double tv)   { int k;   /*考虑物品i包含在当前方案中的可能性*/   if (tw+a.weight<=limitW)   { cop=1;   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv;   }   cop=0;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (tv-a.value>maxV)   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv-a.value;   }   }   void main()   { int k;   double w,v;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入各物品的重量和价值\n”);   for (totv=0.0,k=0;k   { scanf(“%1f%1f”,&w,&v);   a[k].weight=w;   a[k].value=v;   totV+=V;   }   printf(“输入限制重量\n”);   scanf(“%1f”,&limitV);   maxv=0.0;   for (k=0;k find(0,0.0,totV);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。   【程序】   # include   # define N 100   double limitW;   int cop[N];   struct ele { double weight;   double value;   } a[N];   int k,n;   struct { int ;   double tw;   double tv;   }twv[N];   void next(int i,double tw,double tv)   { twv.=1;   twv.tw=tw;   twv.tv=tv;   }   double find(struct ele *a,int n)   { int i,k,f;   double maxv,tw,tv,totv;   maxv=0;   for (totv=0.0,k=0;k   totv+=a[k].value;   next(0,0.0,totv);   i=0;   While (i>=0)   { f=twv.;   tw=twv.tw;   tv=twv.tv;   switch(f)   { case 1: twv.++;   if (tw+a.weight<=limitW)   if (i   { next(i+1,tw+a.weight,tv);   i++;   }   else   { maxv=tv;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   case 0: i--;   break;   default: twv.=0;   if (tv-a.value>maxv)   if (i   { next(i+1,tw,tv-a.value);   i++;   }   else   { maxv=tv-a.value;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   }   }   return maxv;   }   void main()   { double maxv;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入限制重量\n”);   scanf(“%1f”,&limitW);   printf(“输入各物品的重量和价值\n”);   for (k=0;k   scanf(“%1f%1f”,&a[k].weight,&a[k].value);   maxv=find(a,n);   printf(“\n选中的物品为\n”);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   递归的基本概念和特点   程序调用自身的编程技巧称为递归( recursion)。   一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。   一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。   注意:   (1) 递归就是在过程或函数里调用自身;   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

小哇 2019-12-02 01:25:19 0 浏览量 回答数 0

回答

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。 分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u n - 1 × 2 (n ≥ 2) 对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。 分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 ) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: cls x=2^20 for i=1 to 15 x=x/2 next i print x end 例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 迭代法 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1) 选一个方程的近似根,赋给变量x0; (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while ( fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1 (4)5、3、2 (5)5、3、1 (6)5、2、1 (7)4、3、2 (8)4、3、1 (9)4、2、1 (10)3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“\n”); } } } void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i else { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\n”); for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int ; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv.=1; twv.tw=tw; twv.tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv.; tw=twv.tw; tv=twv.tv; switch(f) { case 1: twv.++; if (tw+a.weight<=limitW) if (i { next(i+1,tw+a.weight,tv); i++; } else { maxv=tv; for (k=0;k cop[k]=twv[k].!=0; } break; case 0: i--; break; default: twv.=0; if (tv-a.value>maxv) if (i { next(i+1,tw,tv-a.value); i++; } else { maxv=tv-a.value; for (k=0;k cop[k]=twv[k].!=0; } break; } } return maxv; } void main() { double maxv; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入限制重量\n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值\n”); for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“\n选中的物品为\n”); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 递归的基本概念和特点 程序调用自身的编程技巧称为递归( recursion)。 一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。 一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。 注意: (1) 递归就是在过程或函数里调用自身; (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

马铭芳 2019-12-02 01:24:44 0 浏览量 回答数 0

问题

词汇表是什么样的?(S-V)

轩墨 2019-12-01 22:06:08 2089 浏览量 回答数 0

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1

回答

追加:目测代码逻辑完全没错,只是K值的问题,long类型的K值因为不断的相乘,超过long的上限值,恭喜,在某一次相乘的时候,k值duang一下变成0了,所以,换一种方法吧,题主可以自己断点测试一下,最后k是变成0的######回复 @月生无界 : 客气客气######回复 @月影南溪 : 感谢提出######数据溢出不会变0的###### 月生无界正确地说出了long 型的取值范围。特此,我将从前写的代码展示如下, 来表明JAVA不同类型的变量的取值范围: public class Limits{        public static void main(String args[]){ /* 打印六种数字基本类型变量的最大值和最小值 */   System.out.println("长型最大值 LONG_Max: " + Long.MAX_VALUE); System.out.println("长型最小值 LONG_Min: " + Long.MIN_VALUE); System.out.println("整型最大值 Int_Max: " + Integer.MAX_VALUE); System.out.println("整型最小值 Int_Min: " + Integer.MIN_VALUE); System.out.println("短型最大值 SHORT_Max: " + Short.MAX_VALUE); System.out.println("短型最小值 SHORT_Min: " + Short.MIN_VALUE); System.out.println("字节型最大值 BYTE_Max: " + Byte.MAX_VALUE); System.out.println("字节型最小值 BYTE_Min: " + Byte.MIN_VALUE); //System.out.println("浮点型最大值 FLOAT_Max: " + Float.MAX_VALUE); //System.out.println("浮点型最小值 FLOAT_Min: " + Float.MIN_VALUE); //System.out.println("双精度型最大值 DOUBLE_Max: " + Double.MAX_VALUE); //System.out.println("双精度型最小值 DOUBLE_Min: " + Double.MIN_VALUE);        } } 输出:   长型最大值 LONG_Max: 9223372036854775807 长型最小值 LONG_Min: -9223372036854775808 整型最大值 Int_Max: 2147483647 整型最小值 Int_Min: -2147483648 短型最大值 SHORT_Max: 32767 短型最小值 SHORT_Min: -32768 字节型最大值 BYTE_Max: 127 字节型最小值 BYTE_Min: -128 ..........   就拿计算阶乘为例,以下代码,可以检查JAVA 输出数据的有效性。 public class Factoria { public static void main(String args[]) { //主方法代码块开始 int iFactoria=1;    //用整型存储阶乘 long lFactoria=1; //用长型存储阶乘 for (int i=1; i<17;i++){ //用for循环语句输出1到16的阶乘    iFactoria *=i;  //将i的阶乘存入整型变量    lFactoria *=i;  //将i的阶乘存入长型变量    /* 分别输出存于整型变量和长型变量的阶乘 */    System.out.printf(" %d 的阶乘:\t %10d(int), %15d(long)\n",        i, iFactoria, lFactoria);        }    System.out.printf("最大整型:%12d, 最大长型: %d\n",        Integer.MAX_VALUE,Long.MAX_VALUE);   }  //主方法 main 代码块结束结束 }  // 类 Factoria 定义结束   输出:   1 的阶乘:                1(int),               1(long)  2 的阶乘:                2(int),               2(long)  3 的阶乘:                6(int),               6(long)  4 的阶乘:               24(int),              24(long)  5 的阶乘:              120(int),             120(long)  6 的阶乘:              720(int),             720(long)  7 的阶乘:             5040(int),            5040(long)  8 的阶乘:            40320(int),           40320(long)  9 的阶乘:           362880(int),          362880(long)  10 的阶乘:         3628800(int),         3628800(long)  11 的阶乘:        39916800(int),        39916800(long)  12 的阶乘:       479001600(int),       479001600(long)  13 的阶乘:      1932053504(int),      6227020800(long)  14 的阶乘:      1278945280(int),     87178291200(long)  15 的阶乘:      2004310016(int),   1307674368000(long)  16 的阶乘:      2004189184(int),  20922789888000(long) 最大整型:  2147483647, 最大长型: 9223372036854775807   这里, *      阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。N的阶乘可表示为n!=1×2×3×……×n 或 n!=n×(n-1)! *      用整型(int), 13的阶乘是: 6227020800,超过了 整型变量 int可以表示的最大正整数: 2147483647。 因此,13 或更大的阶乘数据,不能用整型int 表示。以上输出结果表明,用整型int变量存储的阶乘数据,若阶数超过12, 均不正确。 *      以上用长型变量输出的阶乘,尚且是正确的。但,它也有个限度, 17以上的阶乘, 就是“垃圾”了。 *     数学家定义,0!=1,所以0!=1! ######算法有问题,怎么判断素数,这个数学问题先搞清楚,然后再写程序,要不然全是乱的###### package test; public class Test { public static void main(String[] args) { String num = "素数:"; for(int i=2;i<=1000;i++){ //特殊值处理 if(i == 2){ num += i+","; //System.out.println("素数:"+i); }else{ //素数判断条件,从2开始除,取余,如果余值为0,表示不是素数,跳出这个数的循环判断, for(int j=2;j<i;j++){ if(i%j == 0){ break; } //判断是否是素数,能除到比该值小一,且余数不为0,肯定是素数 if(i%j != 0 && j == i-1){ num += i+","; //System.out.println("素数:"+i); } } } } System.out.println(num); } } //好人都是直接贴代码的 ###### 埃拉托色尼筛选法(Sieve of Eratosthenes) 也可以尝试。 import java.util.*; public class Eratosthenes{ // 埃拉托色尼筛选法 public static void main(String args[]){ int i,j; boolean b[]=new boolean[50]; for(i=0;i<b.length;i++) b[i]=true; //将数组的元素全部赋以true for ( i = 2; i < b.length; i++ ) // 从下标2开始递增循环 if ( b[ i ] ==true){// 每次找到值为true的元素 for (j =i+1;j < b.length;j++ ){ /* 就用其下标作为除数,去除往后余下的元素的下标*/ if (j%i == 0 ) //一旦能除尽 b[j] = false;// 将对应的元素值改为false } } for (i=2;i<b.length;i++ )//从2起,打印50以内的质数 if (b[ i ]) //若元素值为true System.out.printf("%4d", i);// 打印出该元素的下标 } } ###### 我已经将 tcxu 和 月生无界 所出示的代码,翻译成 PHP, 运行结果证明两种算法有效。 http://www.oschina.net/code/snippet_2756874_56652 ###### 查看楼主的代码发现, 你应当把 7 行的右花括号”}“,移到17行后边。这样,你的意向就对了: 从 第 9 行 至 第 17 行 处理 (k==0)的情况。从 18行 至 21 行,处理的是 (k != 0 的情况) ######k*(i%j)数值过大溢出了。 for(long j=2;j<i;j++){ k=i%j if(k==0) System.out.print(" "+i+"不是素数,有约数:"); break } ###### 不明白 ”k*(i%j)数值过大溢出了” 的情况 是什么情况? 指的是 这里的数值过大? 超过了 long型所能存储的最大数值 (2的63次方减 1)? 这里的数值并不大呀。 我这里没有安装Java环境,所以,参照楼主的代码,写出java脚本 代码,JavaScript 如下: 测试证明,楼主确实应当把 11 行 的 右花括号 ’ } ‘,移到 17 行:System.out.println(); 的后面。 <html> <head> <meta charset="gb2312"> <title>求1000以内的素数</title> <style> </style> </head> <body> <script>  var n=1; for (var i=1; i<1000;i++){ var k=1; for (var j=2;j<i;j++){ k=k*(i%j); } if (k==0){ //处理 不是素数的情况 document.write( i + " 不是素数,有约数: "); for (var j=2;j<i;j++) if (i%j==0){ document.write( j + " "); } document.write("<br>"); } else if (k !=0){ //处理素数的情况 document.write( "第 " + n +  " 个素数是:" + i + "<br>"); n++; } } </script> </body> </html> ######long取值范围:-9223372036854775808 -到9223372036854775807,明天再测试一下,long的最大值再乘其他数在代码中是否会变成0返回###### 引用来自“tcxu”的评论 月生无界正确地说出了long 型的取值范围。特此,我将从前写的代码展示如下, 来表明JAVA不同类型的变量的取值范围: public class Limits{        public static void main(String args[]){ /* 打印六种数字基本类型变量的最大值和最小值 */   System.out.println("长型最大值 LONG_Max: " + Long.MAX_VALUE); System.out.println("长型最小值 LONG_Min: " + Long.MIN_VALUE); System.out.println("整型最大值 Int_Max: " + Integer.MAX_VALUE); System.out.println("整型最小值 Int_Min: " + Integer.MIN_VALUE); System.out.println("短型最大值 SHORT_Max: " + Short.MAX_VALUE); System.out.println("短型最小值 SHORT_Min: " + Short.MIN_VALUE); System.out.println("字节型最大值 BYTE_Max: " + Byte.MAX_VALUE); System.out.println("字节型最小值 BYTE_Min: " + Byte.MIN_VALUE); //System.out.println("浮点型最大值 FLOAT_Max: " + Float.MAX_VALUE); //System.out.println("浮点型最小值 FLOAT_Min: " + Float.MIN_VALUE); //System.out.println("双精度型最大值 DOUBLE_Max: " + Double.MAX_VALUE); //System.out.println("双精度型最小值 DOUBLE_Min: " + Double.MIN_VALUE);        } } 输出:   长型最大值 LONG_Max: 9223372036854775807 长型最小值 LONG_Min: -9223372036854775808 整型最大值 Int_Max: 2147483647 整型最小值 Int_Min: -2147483648 短型最大值 SHORT_Max: 32767 短型最小值 SHORT_Min: -32768 字节型最大值 BYTE_Max: 127 字节型最小值 BYTE_Min: -128 ..........   就拿计算阶乘为例,以下代码,可以检查JAVA 输出数据的有效性。 public class Factoria { public static void main(String args[]) { //主方法代码块开始 int iFactoria=1;    //用整型存储阶乘 long lFactoria=1; //用长型存储阶乘 for (int i=1; i<17;i++){ //用for循环语句输出1到16的阶乘    iFactoria *=i;  //将i的阶乘存入整型变量    lFactoria *=i;  //将i的阶乘存入长型变量    /* 分别输出存于整型变量和长型变量的阶乘 */    System.out.printf(" %d 的阶乘:\t %10d(int), %15d(long)\n",        i, iFactoria, lFactoria);        }    System.out.printf("最大整型:%12d, 最大长型: %d\n",        Integer.MAX_VALUE,Long.MAX_VALUE);   }  //主方法 main 代码块结束结束 }  // 类 Factoria 定义结束   输出:   1 的阶乘:                1(int),               1(long)  2 的阶乘:                2(int),               2(long)  3 的阶乘:                6(int),               6(long)  4 的阶乘:               24(int),              24(long)  5 的阶乘:              120(int),             120(long)  6 的阶乘:              720(int),             720(long)  7 的阶乘:             5040(int),            5040(long)  8 的阶乘:            40320(int),           40320(long)  9 的阶乘:           362880(int),          362880(long)  10 的阶乘:         3628800(int),         3628800(long)  11 的阶乘:        39916800(int),        39916800(long)  12 的阶乘:       479001600(int),       479001600(long)  13 的阶乘:      1932053504(int),      6227020800(long)  14 的阶乘:      1278945280(int),     87178291200(long)  15 的阶乘:      2004310016(int),   1307674368000(long)  16 的阶乘:      2004189184(int),  20922789888000(long) 最大整型:  2147483647, 最大长型: 9223372036854775807   这里, *      阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。N的阶乘可表示为n!=1×2×3×……×n 或 n!=n×(n-1)! *      用整型(int), 13的阶乘是: 6227020800,超过了 整型变量 int可以表示的最大正整数: 2147483647。 因此,13 或更大的阶乘数据,不能用整型int 表示。以上输出结果表明,用整型int变量存储的阶乘数据,若阶数超过12, 均不正确。 *      以上用长型变量输出的阶乘,尚且是正确的。但,它也有个限度, 17以上的阶乘, 就是“垃圾”了。 *     数学家定义,0!=1,所以0!=1! 真有耐心,我只做了一个简单的测试,发现一些有趣的事情,希望得到正确的解答 上代码 long min = -9223372036854775808L; long max = 9223372036854775807L; System.out.println(min*1+","+min*2+","+min*3+","+min*4); System.out.println(max*1+","+max*2+","+max*3+","+max*4); 结果:-9223372036854775808,0,-9223372036854775808,0 9223372036854775807,-2,9223372036854775805,-4 long的最小最大值从1乘到4,会出现各种结果,不是很懂其中的原理

爱吃鱼的程序员 2020-06-03 16:40:47 0 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

回答

ReOSS C/CSDK分享交流区 分块上传大文件时加入进度条,上传成功的片数,和总片数在哪个变量里面? 新手,找了注释,但是没有发现有用的信息,只知道应该在下面的代码 List Part 里修改。 s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,                 part_num1, upload_file, &upload_part_resp_headers);         assert(200 == s->code);         //list part         list_part_resp_headers = aos_table_make(p, 5);         params = oss_create_list_upload_part_params(p);//所有分块信息存储在oss_list_upload_part_params_t的params中         aos_str_set(&params->part_number_marker, "");         params->max_ret = 10;         params->truncated = 0;         aos_list_init(&complete_part_list);         s = oss_list_upload_part(options, &bucket, &object, &upload_id, params, &list_part_resp_headers);//获取所有已上传的块信息         assert(200 == s->code);         assert(200 == s->code);         //通过aos_list_for_each_entry对part_list进行遍历。         aos_list_for_each_entry(oss_list_part_content_t, part_content1, &params->part_list, node){                 complete_content1 = oss_create_complete_part_content(p);                 aos_str_set(&complete_content1->part_number, part_content1->part_number.data);                 aos_str_set(&complete_content1->etag, part_content1->etag.data);                 aos_list_add_tail(&complete_content1->node, &complete_part_list);         } ------------------------- 回 77楼yjseu的帖子 谢谢您的回复! 您的说的这些条件里,现在就是不知道“累计上传的变量”在哪里。 文件的multipart上传,就在下面的这个函数中,什么时候上传完了,才能往下执行。 s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,                 part_num1, upload_file, &upload_part_resp_headers); 我想的是另开一个线程,定时读取其中的一个参数中的“累计上传”,来完成进度条。 我猜测着是不是 oss_upload_file_t *upload_file 里面的file_last 是不是我想要的东西呢。 ------------------------- Re回 79楼yjseu的帖子 太谢谢你了! 问题解决了, 关键是 oss_upload_part_from_file上传的是Part,我误以为是文件。原来官方给的示例,是不管文件多大就文件分成两个part进行发送。 现在修改了下原来的代码,更容易理解了些,下一步准备做的就是,每上传一个part就发送消息去更新进度条。  不知道理解的正确不正确,欢迎指正撒。     aos_file_buf_t * fb = aos_create_file_buf(p);     int res = aos_open_file_for_read(p, G2U("G:\\IEDownLoad\\UCode(IOCP例程).rar"), fb);     int64_t filesize = fb->file_last;     if(filesize<100*1024)     {         AfxMessageBox("文件不能小于100KB");         return ;     }     int64_t partsize = 100 * 1024;     int64_t partupload = 0;     part_num = 1;     while(1)     {         upload_file->file_pos = partsize*(part_num-1);         upload_file->file_last = partsize*part_num; //100k         s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,             part_num, upload_file, &upload_part_resp_headers);         assert(200 == s->code);         part_num++;         partupload += partsize;         if((filesize-partupload < partsize) | (filesize-partupload == partsize))         {             upload_file->file_pos = partsize*part_num;//remain content start pos             upload_file->file_last = get_file_size(G2U("G:\\IEDownLoad\\UCode(IOCP例程).rar"))-partupload;             s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,                 part_num, upload_file, &upload_part_resp_headers);             assert(200 == s->code);             break;         }     } ------------------------- 回 81楼yjseu的帖子 嗯嗯,现在解决了。衷心感谢你们的努力! ------------------------- ReOSS C/CSDK分享交流区 现在有个问题就是,分块的话 不管多大的part 只能 上传成功10个,比如用100KB上传3M 文件,网站上只有1M。(程序调试没有出现错误,不知道网站有没有给错误响应) aos_table_make(p,0); 请问这个语句是什么功能? 我的test_multipart_upload_from_file(LPVOID para) 代码也贴出来吧。 UINT test_multipart_upload_from_file(LPVOID para) {     if (aos_http_io_initialize("oss_test", 0) != AOSE_OK) {         exit(1);     }     Coos_demoDlg * oos_demoDlg = (Coos_demoDlg *)para;     char *object_name = G2U(oos_demoDlg->m_sFilename);     aos_pool_t *p;     aos_string_t bucket;     aos_string_t object;     int is_oss_domain = 1;     oss_request_options_t *options;     aos_status_t *s;     oss_upload_file_t *upload_file;     aos_table_t *upload_part_resp_headers;     oss_list_upload_part_params_t *params;     aos_table_t *list_part_resp_headers;     aos_string_t upload_id;     aos_list_t complete_part_list;     oss_list_part_content_t *part_content1;     oss_complete_part_content_t *complete_content1;     aos_table_t *complete_resp_headers;     int part_num = 1;     int part_num1 = 2;     aos_pool_create(&p, NULL);     options = oss_request_options_create(p);     init_test_request_options(options, is_oss_domain);     aos_str_set(&bucket, TEST_BUCKET_NAME);     aos_str_set(&object, object_name);     //init mulitipart     s = init_test_multipart_upload(options, TEST_BUCKET_NAME, object_name, &upload_id);     assert(200 == s->code);     //upload part from file     upload_part_resp_headers = aos_table_make(p,0);     upload_file = oss_create_upload_file(p);     aos_str_set(&upload_file->filename, G2U(oos_demoDlg->m_sPath));     aos_file_buf_t * fb = aos_create_file_buf(p);     int res = aos_open_file_for_read(p,  G2U(oos_demoDlg->m_sPath), fb);     int64_t filesize = fb->file_last;     int64_t partsize;      filesize/10>100*1024? partsize = filesize/10:partsize = 100*1024;     int64_t partupload = 0;     part_num = 1;     /********** 进度条***************/     //创建用户界面线程,用于进度的显示     oos_demoDlg->m_pUIThread=AfxBeginThread(RUNTIME_CLASS(CcbCopyFile));     if (oos_demoDlg->m_pUIThread == NULL)     {         AfxMessageBox("用户界面线程启动失败!",MB_OK|MB_ICONERROR);         return 0;     }//传递参数     oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO,0,(LPARAM)(oos_demoDlg->m_sPath.GetBuffer(0)));     oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO,1,(LPARAM)"服务器");     SetTimer(oos_demoDlg->m_hWnd,1,1000,NULL);//速度统计     SetTimer(oos_demoDlg->m_hWnd,2,100,NULL);//操作计时     oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO,2,1);//启动     //////////////////////     while(1)     {         if((filesize-partupload < partsize) | (filesize-partupload == partsize))         {             upload_file->file_pos = partupload;//remain content start pos             upload_file->file_last = filesize;             s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,                 part_num, upload_file, &upload_part_resp_headers);                          //**********更新进度****************/             oos_demoDlg->m_nSpeed1 = partupload;             oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO, 3,                 (LPARAM) int((partupload*1.0/filesize)*100));             /////////////////////////////             assert(200 == s->code);             break;         }         upload_file->file_pos = partsize*(part_num-1);         upload_file->file_last = partsize*part_num; //100k         s = oss_upload_part_from_file(options, &bucket, &object, &upload_id,             part_num, upload_file, &upload_part_resp_headers);         part_num++;         partupload += partsize;         //**********更新进度****************/         oos_demoDlg->m_nSpeed1 = partupload;         oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO, 3,             (LPARAM) int((partupload*1.0/filesize)*100));         /////////////////////////////         assert(200 == s->code);     }     //发送结束消息,用于关闭进度显示模块     oos_demoDlg->m_pUIThread->PostThreadMessage(WM_THREADINFO, 10, 1);     oos_demoDlg->KillTimer(1);     oos_demoDlg->KillTimer(2);     //////////////////     //list part     list_part_resp_headers = aos_table_make(p, 0);     params = oss_create_list_upload_part_params(p);//所有分块信息存储在oss_list_upload_part_params_t的params中     aos_str_set(&params->part_number_marker, "");     params->max_ret = 10;     params->truncated = 0;     aos_list_init(&complete_part_list);     s = oss_list_upload_part(options, &bucket, &object, &upload_id, params, &list_part_resp_headers);//获取所有已上传的块信息     assert(200 == s->code);     //通过aos_list_for_each_entry对part_list进行遍历。     aos_list_for_each_entry(oss_list_part_content_t, part_content1, &params->part_list, node){         complete_content1 = oss_create_complete_part_content(p);         aos_str_set(&complete_content1->part_number, part_content1->part_number.data);         aos_str_set(&complete_content1->etag, part_content1->etag.data);         aos_list_add_tail(&complete_content1->node, &complete_part_list);     }     //complete multipart     complete_resp_headers = aos_table_make(p, 0);     s = oss_complete_multipart_upload(options, &bucket, &object, &upload_id,         &complete_part_list, &complete_resp_headers);    //接口,完成分块上传     assert(200 == s->code);     aos_pool_destroy(p);     AfxMessageBox("上传成功");     //delete object_name;     aos_http_io_deinitialize();     return 0; } ------------------------- ReOSS C/CSDK分享交流区 可算搞定了,params->max_ret = 10; 应该就是最大Part数,真是一步一艰难啊 虽然还是有好多语句不懂,

小弟叶良辰 2019-12-02 02:32:04 0 浏览量 回答数 0

问题

【javascript学习全家桶】934道javascript热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:22 6202 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站