• 关于

    优先控制工作原理

    的搜索结果

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
小哇 2019-12-02 01:21:12 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
琴瑟 2019-12-02 01:21:11 0 浏览量 回答数 0

回答

Kafka 是目前主流的分布式消息引擎及流处理平台,经常用做企业的消息总线、实时数据管道,本文挑选了 Kafka 的几个核心话题,帮助大家快速掌握 Kafka,包括: Kafka 体系架构 Kafka 消息发送机制 Kafka 副本机制 Kafka 控制器 Kafka Rebalance 机制 因为涉及内容较多,本文尽量做到深入浅出,全面的介绍 Kafka 原理及核心组件,不怕你不懂 Kafka。 1. Kafka 快速入门 Kafka 是一个分布式消息引擎与流处理平台,经常用做企业的消息总线、实时数据管道,有的还把它当做存储系统来使用。早期 Kafka 的定位是一个高吞吐的分布式消息系统,目前则演变成了一个成熟的分布式消息引擎,以及流处理平台。 1.1 Kafka 体系架构 Kafka 的设计遵循生产者消费者模式,生产者发送消息到 broker 中某一个 topic 的具体分区里,消费者从一个或多个分区中拉取数据进行消费。拓扑图如下: 目前,Kafka 依靠 Zookeeper 做分布式协调服务,负责存储和管理 Kafka 集群中的元数据信息,包括集群中的 broker 信息、topic 信息、topic 的分区与副本信息等。 ** 1.2 Kafka 术语** 这里整理了 Kafka 的一些关键术语: Producer:生产者,消息产生和发送端。 Broker:Kafka 实例,多个 broker 组成一个 Kafka 集群,通常一台机器部署一个 Kafka 实例,一个实例挂了不影响其他实例。 Consumer:消费者,拉取消息进行消费。 一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组,一条消息只能被消费组中一个 Consumer 消费。 Topic:主题,服务端消息的逻辑存储单元。一个 topic 通常包含若干个 Partition 分区。 Partition:topic 的分区,分布式存储在各个 broker 中, 实现发布与订阅的负载均衡。若干个分区可以被若干个 Consumer 同时消费,达到消费者高吞吐量。一个分区拥有多个副本(Replica),这是Kafka在可靠性和可用性方面的设计,后面会重点介绍。 message:消息,或称日志消息,是 Kafka 服务端实际存储的数据,每一条消息都由一个 key、一个 value 以及消息时间戳 timestamp 组成。 offset:偏移量,分区中的消息位置,由 Kafka 自身维护,Consumer 消费时也要保存一份 offset 以维护消费过的消息位置。 1.3 Kafka 作用与特点 Kafka 主要起到削峰填谷(缓冲)、系统解构以及冗余的作用,主要特点有: 高吞吐、低延时:这是 Kafka 显著的特点,Kafka 能够达到百万级的消息吞吐量,延迟可达毫秒级; 持久化存储:Kafka 的消息最终持久化保存在磁盘之上,提供了顺序读写以保证性能,并且通过 Kafka 的副本机制提高了数据可靠性。 分布式可扩展:Kafka 的数据是分布式存储在不同 broker 节点的,以 topic 组织数据并且按 partition 进行分布式存储,整体的扩展性都非常好。 高容错性:集群中任意一个 broker 节点宕机,Kafka 仍能对外提供服务。 2. Kafka 消息发送机制 Kafka 生产端发送消息的机制非常重要,这也是 Kafka 高吞吐的基础,生产端的基本流程如下图所示: 主要有以下方面的设计: 2.1 异步发送 Kafka 自从 0.8.2 版本就引入了新版本 Producer API,新版 Producer 完全是采用异步方式发送消息。生产端构建的 ProducerRecord 先是经过 keySerializer、valueSerializer 序列化后,再是经过 Partition 分区器处理,决定消息落到 topic 具体某个分区中,最后把消息发送到客户端的消息缓冲池 accumulator 中,交由一个叫作 Sender 的线程发送到 broker 端。 这里缓冲池 accumulator 的最大大小由参数 buffer.memory 控制,默认是 32M,当生产消息的速度过快导致 buffer 满了的时候,将阻塞 max.block.ms 时间,超时抛异常,所以 buffer 的大小可以根据实际的业务情况进行适当调整。 2.2 批量发送 发送到缓冲 buffer 中消息将会被分为一个一个的 batch,分批次的发送到 broker 端,批次大小由参数 batch.size 控制,默认16KB。这就意味着正常情况下消息会攒够 16KB 时才会批量发送到 broker 端,所以一般减小 batch 大小有利于降低消息延时,增加 batch 大小有利于提升吞吐量。 那么生成端消息是不是必须要达到一个 batch 大小时,才会批量发送到服务端呢?答案是否定的,Kafka 生产端提供了另一个重要参数 linger.ms,该参数控制了 batch 最大的空闲时间,超过该时间的 batch 也会被发送到 broker 端。 2.3 消息重试 此外,Kafka 生产端支持重试机制,对于某些原因导致消息发送失败的,比如网络抖动,开启重试后 Producer 会尝试再次发送消息。该功能由参数 retries 控制,参数含义代表重试次数,默认值为 0 表示不重试,建议设置大于 0 比如 3。 3. Kafka 副本机制 前面提及了 Kafka 分区副本(Replica)的概念,副本机制也称 Replication 机制是 Kafka 实现高可靠、高可用的基础。Kafka 中有 leader 和 follower 两类副本。 3.1 Kafka 副本作用 Kafka 默认只会给分区设置一个副本,由 broker 端参数 default.replication.factor 控制,默认值为 1,通常我们会修改该默认值,或者命令行创建 topic 时指定 replication-factor 参数,生产建议设置 3 副本。副本作用主要有两方面: 消息冗余存储,提高 Kafka 数据的可靠性; 提高 Kafka 服务的可用性,follower 副本能够在 leader 副本挂掉或者 broker 宕机的时候参与 leader 选举,继续对外提供读写服务。 3.2 关于读写分离 这里要说明的是 Kafka 并不支持读写分区,生产消费端所有的读写请求都是由 leader 副本处理的,follower 副本的主要工作就是从 leader 副本处异步拉取消息,进行消息数据的同步,并不对外提供读写服务。 Kafka 之所以这样设计,主要是为了保证读写一致性,因为副本同步是一个异步的过程,如果当 follower 副本还没完全和 leader 同步时,从 follower 副本读取数据可能会读不到最新的消息。 3.3 ISR 副本集合 Kafka 为了维护分区副本的同步,引入 ISR(In-Sync Replicas)副本集合的概念,ISR 是分区中正在与 leader 副本进行同步的 replica 列表,且必定包含 leader 副本。 ISR 列表是持久化在 Zookeeper 中的,任何在 ISR 列表中的副本都有资格参与 leader 选举。 ISR 列表是动态变化的,并不是所有的分区副本都在 ISR 列表中,哪些副本会被包含在 ISR 列表中呢?副本被包含在 ISR 列表中的条件是由参数 replica.lag.time.max.ms 控制的,参数含义是副本同步落后于 leader 的最大时间间隔,默认10s,意思就是说如果某一 follower 副本中的消息比 leader 延时超过10s,就会被从 ISR 中排除。Kafka 之所以这样设计,主要是为了减少消息丢失,只有与 leader 副本进行实时同步的 follower 副本才有资格参与 leader 选举,这里指相对实时。 3.4 Unclean leader 选举 既然 ISR 是动态变化的,所以 ISR 列表就有为空的时候,ISR 为空说明 leader 副本也“挂掉”了,此时 Kafka 就要重新选举出新的 leader。但 ISR 为空,怎么进行 leader 选举呢? Kafka 把不在 ISR 列表中的存活副本称为“非同步副本”,这些副本中的消息远远落后于 leader,如果选举这种副本作为 leader 的话就可能造成数据丢失。Kafka broker 端提供了一个参数 unclean.leader.election.enable,用于控制是否允许非同步副本参与 leader 选举;如果开启,则当 ISR 为空时就会从这些副本中选举新的 leader,这个过程称为 Unclean leader 选举。 前面也提及了,如果开启 Unclean leader 选举,可能会造成数据丢失,但保证了始终有一个 leader 副本对外提供服务;如果禁用 Unclean leader 选举,就会避免数据丢失,但这时分区就会不可用。这就是典型的 CAP 理论,即一个系统不可能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)中的两个。所以在这个问题上,Kafka 赋予了我们选择 C 或 A 的权利。 我们可以根据实际的业务场景选择是否开启 Unclean leader选举,这里建议关闭 Unclean leader 选举,因为通常数据的一致性要比可用性重要的多。 4. Kafka 控制器 控制器(Controller)是 Kafka 的核心组件,它的主要作用是在 Zookeeper 的帮助下管理和协调整个 Kafka 集群。集群中任意一个 broker 都能充当控制器的角色,但在运行过程中,只能有一个 broker 成为控制器。 这里先介绍下 Zookeeper,因为控制器的产生依赖于 Zookeeper 的 ZNode 模型和 Watcher 机制。Zookeeper 的数据模型是类似 Unix 操作系统的 ZNode Tree 即 ZNode 树,ZNode 是 Zookeeper 中的数据节点,是 Zookeeper 存储数据的最小单元,每个 ZNode 可以保存数据,也可以挂载子节点,根节点是 /。基本的拓扑图如下: Zookeeper 有两类 ZNode 节点,分别是持久性节点和临时节点。持久性节点是指客户端与 Zookeeper 断开会话后,该节点依旧存在,直到执行删除操作才会清除节点。临时节点的生命周期是和客户端的会话绑定在一起,客户端与 Zookeeper 断开会话后,临时节点就会被自动删除。 Watcher 机制是 Zookeeper 非常重要的特性,它可以在 ZNode 节点上绑定监听事件,比如可以监听节点数据变更、节点删除、子节点状态变更等事件,通过这个事件机制,可以基于 ZooKeeper 实现分布式锁、集群管理等功能。 4.1 控制器选举 当集群中的任意 broker 启动时,都会尝试去 Zookeeper 中创建 /controller 节点,第一个成功创建 /controller 节点的 broker 则会被指定为控制器,其他 broker 则会监听该节点的变化。当运行中的控制器突然宕机或意外终止时,其他 broker 能够快速地感知到,然后再次尝试创建 /controller 节点,创建成功的 broker 会成为新的控制器。 4.2 控制器功能 前面我们也说了,控制器主要作用是管理和协调 Kafka 集群,那么 Kafka 控制器都做了哪些事情呢,具体如下: 主题管理:创建、删除 topic,以及增加 topic 分区等操作都是由控制器执行。 分区重分配:执行 Kafka 的 reassign 脚本对 topic 分区重分配的操作,也是由控制器实现。 Preferred leader 选举:这里有一个概念叫 Preferred replica 即优先副本,表示的是分配副本中的第一个副本。Preferred leader 选举就是指 Kafka 在某些情况下出现 leader 负载不均衡时,会选择 preferred 副本作为新 leader 的一种方案。这也是控制器的职责范围。 集群成员管理:控制器能够监控新 broker 的增加,broker 的主动关闭与被动宕机,进而做其他工作。这里也是利用前面所说的 Zookeeper 的 ZNode 模型和 Watcher 机制,控制器会监听 Zookeeper 中 /brokers/ids 下临时节点的变化。 数据服务:控制器上保存了最全的集群元数据信息,其他所有 broker 会定期接收控制器发来的元数据更新请求,从而更新其内存中的缓存数据。 从上面内容我们大概知道,控制器可以说是 Kafka 的心脏,管理和协调着整个 Kafka 集群,因此控制器自身的性能和稳定性就变得至关重要。 社区在这方面做了大量工作,特别是在 0.11 版本中对控制器进行了重构,其中最大的改进把控制器内部多线程的设计改成了单线程加事件队列的方案,消除了多线程的资源消耗和线程安全问题,另外一个改进是把之前同步操作 Zookeeper 改为了异步操作,消除了 Zookeeper 端的性能瓶颈,大大提升了控制器的稳定性。 5. Kafka 消费端 Rebalance 机制 前面介绍消费者术语时,提到了消费组的概念,一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组 ,一条消息只能被消费组中的一个消费者进行消费。我们用下图表示Kafka的消费模型。 5.1 Rebalance 概念 就 Kafka 消费端而言,有一个难以避免的问题就是消费者的重平衡即 Rebalance。Rebalance 是让一个消费组的所有消费者就如何消费订阅 topic 的所有分区达成共识的过程,在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 的完成。因为要停止消费等待重平衡完成,因此 Rebalance 会严重影响消费端的 TPS,是应当尽量避免的。 5.2 Rebalance 发生条件 关于何时会发生 Rebalance,总结起来有三种情况: 消费组的消费者成员数量发生变化 消费主题的数量发生变化 消费主题的分区数量发生变化 其中后两种情况一般是计划内的,比如为了提高消息吞吐量增加 topic 分区数,这些情况一般是不可避免的,后面我们会重点讨论如何避免因为组内消费者成员数发生变化导致的 Rebalance。 5.3 Kafka 协调器 在介绍如何避免 Rebalance 问题之前,先来认识下 Kafka 的协调器 Coordinator,和之前 Kafka 控制器类似,Coordinator 也是 Kafka 的核心组件。 主要有两类 Kafka 协调器: 组协调器(Group Coordinator) 消费者协调器(Consumer Coordinator) Kafka 为了更好的实现消费组成员管理、位移管理,以及 Rebalance 等,broker 服务端引入了组协调器(Group Coordinator),消费端引入了消费者协调器(Consumer Coordinator)。每个 broker 启动的时候,都会创建一个 GroupCoordinator 实例,负责消费组注册、消费者成员记录、offset 等元数据操作,这里也可以看出每个 broker 都有自己的 Coordinator 组件。另外,每个 Consumer 实例化时,同时会创建一个 ConsumerCoordinator 实例,负责消费组下各个消费者和服务端组协调器之前的通信。可以用下图表示协调器原理: 客户端的消费者协调器 Consumer Coordinator 和服务端的组协调器 Group Coordinator 会通过心跳不断保持通信。 5.4 如何避免消费组 Rebalance 接下来我们讨论下如何避免组内消费者成员发生变化导致的 Rebalance。组内成员发生变化无非就两种情况,一种是有新的消费者加入,通常是我们为了提高消费速度增加了消费者数量,比如增加了消费线程或者多部署了一份消费程序,这种情况可以认为是正常的;另一种是有消费者退出,这种情况多是和我们消费端代码有关,是我们要重点避免的。 正常情况下,每个消费者都会定期向组协调器 Group Coordinator 发送心跳,表明自己还在存活,如果消费者不能及时的发送心跳,组协调器会认为该消费者已经“死”了,就会导致消费者离组引发 Rebalance 问题。这里涉及两个消费端参数:session.timeout.ms 和 heartbeat.interval.ms,含义分别是组协调器认为消费组存活的期限,和消费者发送心跳的时间间隔,其中 heartbeat.interval.ms 默认值是3s,session.timeout.ms 在 0.10.1 版本之前默认 30s,之后默认 10s。另外,0.10.1 版本还有两个值得注意的地方: 从该版本开始,Kafka 维护了单独的心跳线程,之前版本中 Kafka 是使用业务主线程发送的心跳。 增加了一个重要的参数 max.poll.interval.ms,表示 Consumer 两次调用 poll 方法拉取数据的最大时间间隔,默认值 5min,对于那些忙于业务逻辑处理导致超过 max.poll.interval.ms 时间的消费者将会离开消费组,此时将发生一次 Rebalance。 此外,如果 Consumer 端频繁 FullGC 也可能会导致消费端长时间停顿,从而引发 Rebalance。因此,我们总结如何避免消费组 Rebalance 问题,主要从以下几方面入手: 合理配置 session.timeout.ms 和 heartbeat.interval.ms,建议 0.10.1 之前适当调大 session 超时时间尽量规避 Rebalance。 根据实际业务调整 max.poll.interval.ms,通常建议调大避免 Rebalance,但注意 0.10.1 版本之前没有该参数。 监控消费端的 GC 情况,避免由于频繁 FullGC 导致线程长时间停顿引发 Rebalance。 合理调整以上参数,可以减少生产环境中 Rebalance 发生的几率,提升 Consumer 端的 TPS 和稳定性。 6.总结 本文总结了 Kafka 体系架构、Kafka 消息发送机制、副本机制,Kafka 控制器、消费端 Rebalance 机制等各方面核心原理,通过本文的介绍,相信你已经对 Kafka 的内核知识有了一定的掌握,更多的 Kafka 原理实践后面有时间再介绍。
剑曼红尘 2020-04-16 18:15:45 0 浏览量 回答数 0

问题

如何设计一个高并发系统?【Java问答学堂】45期

面试题 如何设计一个高并发系统? 面试官心理分析 说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥࿰...
剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

回答

浅谈Flutter框架原理及其生态圈 Flutter的锋芒 跨平台高性能的渲染引擎逐渐成为移动端、大前端领域的一个热点,作为其中的明星框架Flutter,经过近几年来的迅速发展,由极大的可能成为下一代跨端终端解决方案。自从2017 年 5 月,谷歌公司发布的了 Alpha 版本的 Flutter; 2018 年底 Flutter Live 发布的 1.0 版本;2019年7月发布1.5版本,截止今日(2020年2月)已经发布了v1.14.6 Beta版本。 在Flutter诞生之前,已经有许多跨平台UI框架的方案如Cordova、ReactNative、weex、uni-app、Hippy等,常见的需要处理兼容的终端平台也包括android、ios、web、Iot等,但是在大前端的浪潮下,对于企业和开发者来说开发效率和使用体验都十分重要,传统的做法莫过于分不同的团队开发不同的终端项目,如果还要继续向其他平台,拓展的话,我们需要付出的成本和时间将成倍增长。正因为如此,在这样的背景下,Flutter等跨端框架的兴起,从本质上讲,帮助开发者增加业务代码的复用率,减少因为要适配多个平台带来的工作量,从而降低开发成本、提高开发效率。 纵观已有的跨端方案,可以分为三类:Web 容器、泛 Web 容器、自绘引擎框架。 基于web容器即基于浏览器的跨平台也做得越来越好,自然管线也越来越短,与native的一些技术手段来实现性能上的相互补充。比如Egret、Cocos、Laya这些游戏引擎,它们在跨平台方面的做法多以Typescript编写,在iOS和安卓平台的各种浏览器中轻松的运行HTML5游戏,并在不同平台浏览器里提供近乎一致的用户体验,比如Egret还会提供高效的 JS-C Binding 编译机制,以满足游戏编译为原生格式的需求,不过大多数HTML游戏引擎也属于web容器这个范畴内。web容器框架也有一个明显的致命(在对体验&性能有较高要求的情况下)的缺点,那就是WebView的渲染效率和JavaScript执行性能太差。再加上Android各个系统版本和设备厂商的定制,很难保证所在所有设备上都能提供一致的体验。 泛 Web 容器框架比如ReactNative和Weex,即上层通过面向前端友好的UI,下层通过native的渲染形式,虽然同样使用类HTML+JS的UI构建逻辑,但是最终会生成对应的自定义原生控件,以充分利用原生控件相对于WebView的较高的绘制效率,同时H5与native相互补充来达到更好的用户体验,这也是一种很好的解决方案。缺陷也很明显,随着系统版本变化和API的变化,开发者可能也需要处理不同平台的差异,甚至有些特性只能在部分平台上实现,这样框架的跨平台特性就会大打折扣。 自绘引擎框架这里专指Flutter框架,从底层就承担跨端的任务和渲染方式,从目前来看,从技术的实现和方案的成熟度、产品的性能方面比较,Flutter有很大可能成为下一代主流跨平台框架。 Flutter与其他跨端框架的不同点之一就是自带渲染引擎,Flutter渲染引擎依靠跨平台的Skia图形库来实现,Skia引擎会将使用Dart语言构建的抽象的视图结构数据加工成GPU数据,交由 OpenGL 最终提供给 GPU 渲染,至此完成渲染闭环,因此可以在最大程度上保证一款应用在不同平台、不同设备上的体验一致性。 而开发语言选用的是同时支持 JIT和 AOT的 Dart语言,Dart本身提供了三种运行方式,应对web环境,用Dart2js编译成JavaScript代码,运行在常规浏览器中;使用DartVM直接在命令行中运行Dart代码;AOT方式编译成机器码,例如Flutter App框架。而且Dart 避免了抢占式调度和共享内存,可以在没有锁的情况下进行对象分配和垃圾回收,在性能方面表现相当不错,不仅保证了开发效率,代码性能和用户体验也更卓越。因此,Flutter在各类跨平台移动开发方案中脱颖而出。同时在去年2019的Google IO大会上,备受关注的Fuchsia系统虽然并没有发布,但是宣布了 Flutter除了支持开发 Android 和 iOS 程序之外,现在还支持开发Web程序了,在 I/O 大会上,谷歌发布了 Web 版 Flutter 的首个技术预览版,宣布 Flutter 将为包括 Google Home Hub 在内的 Google Smart Display 平台提供技术支持,并迈出利用 Chrome 操作系统支持桌面级应用的第一步。 很多JS开发者会思考Google Flutter团队至于为啥选择Dart而不是JS,其实Google 公司给出的原因很简单也很直接:Dart 语言开发组就在隔壁,对于 Flutter 需要的一些语言新特性,能够快速在语法层面落地实现;而如果选择了 JavaScript,就必须经过各种委员会(TC39等)和浏览器提供商漫长的决议。 Flutter绘制原理 在计算机系统中,图像的显示需要 CPU、GPU 和显示器一起配合完成:CPU 负责图像数据计算,GPU 负责图像数据渲染,而显示器则负责最终图像显示。 CPU 把计算好的、需要显示的内容交给 GPU,由 GPU 完成渲染后放入帧缓冲区,随后视频控制器根据垂直同步信号(VSync)以每秒 60 次的速度,从帧缓冲区读取帧数据交由显示器完成图像显示。 操作系统在呈现图像时遵循了这种机制,而 Flutter 作为跨平台开发框架也采用了这种底层方案。下面有一张更为详尽的示意图来解释 Flutter 的绘制原理。可以看到,Flutter 关注如何尽可能快地在两个硬件时钟的 VSync 信号之间计算并合成视图数据,然后通过 Skia 交给 GPU 渲染:UI 线程使用 Dart 来构建视图结构数据,这些数据会在 GPU 线程进行图层合成,随后交给 Skia 引擎加工成 GPU 数据,而这些数据会通过 OpenGL 最终提供给 GPU 渲染。 Skia原理 Skia 是一款用由C++ 开发的2D 图像绘制引擎。在2005 年被 Google 公司收购后被广泛应用在 Android和其他等核心产品上,Skia 目前是Android 官方的图像渲染引擎,因此 Flutter Android SDK 无需内嵌 Skia 引擎就可以获得天然的 Skia 支持;而对于 iOS 平台来说,由于 Skia 是跨平台的,因此它作为 Flutter iOS 渲染引擎被嵌入到 Flutter 的 iOS SDK 中,替代了 iOS 闭源的 Core Graphics/Core Animation/Core Text,这也正是 Flutter iOS SDK 打包的 App 包体积比 Android 要大一些的原因。 底层渲染能力统一了,上层开发接口和功能体验也就随即统一了,开发者再也不用操心平台相关的渲染特性了。也就是说,Skia 保证了同一套代码调用在 Android 和 iOS 平台上的渲染效果是完全一致的。 Flutter架构 Framework底层是Flutter引擎,引擎主要负责图形绘制(Skia)、文字排版(libtxt)和提供Dart运行时,引擎全部使用C++实现,Framework层使我们可以用Dart语言调用引擎的强大能力。Flutter 架构采用分层设计,从下到上分为三层,依次为:Embedder、Engine、Framework。 Embedder 是操作系统适配层,实现了渲染 Surface 设置,线程设置,以及平台插件等平台相关特性的适配。从这里我们可以看到,Flutter 平台相关特性并不多,这就使得从框架层面保持跨端一致性的成本相对较低。 Engine 层主要包含 Skia、Dart 和 Text,实现了 Flutter 的渲染引擎、文字排版、事件处理和 Dart 运行时等功能。Skia 和 Text 为上层接口提供了调用底层渲染和排版的能力,Dart 则为 Flutter 提供了运行时调用 Dart 和渲染引擎的能力。而 Engine 层的作用,则是将它们组合起来,从它们生成的数据中实现视图渲染。 Framework 层则是一个用 Dart 实现的 UI SDK,包含了动画、图形绘制和手势识别等功能。为了在绘制控件等固定样式的图形时提供更直观、更方便的接口,Flutter 还基于这些基础能力,根据 Material 和 Cupertino 两种视觉设计风格封装了一套 UI 组件库,开发者可以直接使用这些组件库。 Flutter运行流程 页面中的各界面元素(Widget)以树的形式组织,即控件树。Flutter 通过控件树中的每个控件创建不同类型的渲染对象,组成渲染对象树。在Flutter界面渲染过程分为三个阶段:布局、绘制、合成,布局和绘制在Flutter框架中完成,合成则交由引擎负责。 Flutter 采用深度优先机制遍历渲染对象树,决定渲染对象树中各渲染对象在屏幕上的位置和尺寸。在布局过程中,渲染对象树中的每个渲染对象都会接收父对象的布局约束参数,决定自己的大小,然后父对象按照控件逻辑决定各个子对象的位置,最终完成布局过程。这里只需要注意一点,无论布局还是绘制,都是父子间的遍历关系:父Widget的布局需要依赖子Widget的布局结果;而绘制则反过来(子Widget需要盖在父Widget上),布局是后续遍历,绘制是前序遍历,他们都是深度优先遍历。 Flutter生命周期 可以看到,Flutter中State 的生命周期可以分为 3 个阶段:创建(插入视图树)、更新(在视图树中存在)、销毁(从视图树中移除)。接下来,我们一起看看每一个阶段的具体流程。 第一步创建 State 初始化时会依次执行 :构造方法 -> initState -> didChangeDependencies -> build,随后完成页面渲染。构造方法是 State 生命周期的起点,Flutter 会通过调用StatefulWidget.createState() 来创建一个 State。我们可以通过构造方法,来接收父 Widget 传递的初始化 UI 配置数据。这些配置数据,决定了 Widget 最初的呈现效果。 initState,会在 State 对象被插入视图树的时候调用。这个函数在 State 的生命周期中只会被调用一次,所以我们可以在这里做一些初始化工作,比如为状态变量设定默认值。 didChangeDependencies 则用来专门处理 State 对象依赖关系变化,会在 initState() 调用结束后,被 Flutter 调用。 build,作用是构建视图。经过以上步骤,Framework 认为 State 已经准备好了,于是调用 build。我们需要在这个函数中,根据父 Widget 传递过来的初始化配置数据,以及 State 的当前状态,创建一个 Widget 然后返回。 第二步更新 Widget 的状态更新,主要由个方法触发:setState、didchangeDependencies、didUpdateWidget。 setState:我们最熟悉的方法之一。当状态数据发生变化时,我们总是通过调用这个方法告诉 Flutter:“我这儿的数据变啦,请使用更新后的数据重建 UI!” didChangeDependencies:State 对象的依赖关系发生变化后,Flutter 会回调这个方法,随后触发组件构建。哪些情况下 State 对象的依赖关系会发生变化呢?典型的场景是,系统语言 Locale 或应用主题改变时,系统会通知 State 执行 didChangeDependencies 回调方法。 didUpdateWidget:当 Widget 的配置发生变化时,比如,父 Widget 触发重建(即父 Widget 的状态发生变化时),热重载时,系统会调用这个函数。一旦这三个方法被调用,Flutter 随后就会销毁老 Widget,并调用 build 方法重建 Widget。 第三步销毁 比如组件被移除,或是页面销毁的时候,系统会调用 deactivate 和 dispose 这两个方法,来移除或销毁组件。 Flutter生态圈及其常用框架 一项技术一个框架是否流行,最直观的体现就是它的生态圈是否活跃,下面列举了一些Flutter开发中常用的库工具。 参考文献 1、[Flutter原理与实践](https://tech.meituan.com/2018/08/09/waimai-flutter-practice.html) 少杰 2、[Flutter框架技术概览](https://flutter.dev/docs/resources/technical-overview) 3、[Flutter中文官网](https://pub.dartlang.org/flutter/) 4、[Flutter插件仓库](https://pub.dev/flutter/packages)
罗思雨 2020-02-27 11:47:50 0 浏览量 回答数 0

问题

Vue面试题汇总【精品问答】

是一套用于构建用户界面的渐进式JavaScript框架。与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层,方便与第三方库或既有项目整合。 从0到1自己构架一个vue项目...
问问小秘 2020-05-25 18:02:28 20475 浏览量 回答数 4

回答

要了解CDN 的实现原理,首先让我们来回顾一下网站传统的访问过程,以便理解其与CDN 访问方式之间的差别: 由上图可见,传统的网站访问过程为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,获得此域名对应的IP 地址; 3. 浏览器利用所得到的IP 地址,向该IP 对应的服务器发出访问请求; 4. 服务器对此响应,将数据回传至用户浏览器端显示出来。 与传统访问方式不同,CDN 网络则是在用户和服务器之间增加 Cache 层,将用户的访问请求引导到Cache 节点而不是服务器源站点,要实现这一目的,主要是通过接管DNS 实现,下图为使用CDN 缓存后的网站访问过程: 由上图可见,使用CDN 缓存后的网站访问过程演变为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,由于CDN 对域名解析过程进行了调整,所以用户端一般得到的是该域名对应的 CNAME 记录,此时浏览器需要再次对获得的 CNAME 域名进行解析才能得到缓存服务器实际的IP 地址。 注:在此过程中,全局负载均衡DNS 解析服务器会根据用户端的源IP 地址,如地理位置(深圳还是上海)、接入网类型(电信还是网通)将用户的访问请求定位到离用户路由最短、位置最近、负载最轻的Cache 节点(缓存服务器)上,实现就近定位。定位优先原则可按位置、可按路由、也可按负载等。 3. 再次解析后浏览器得到该域名CDN 缓存服务器的实际IP 地址,向缓存服务器发出访问请求; 4. 缓存服务器根据浏览器提供的域名,通过Cache 内部专用DNS 解析得到此域名源服务器的真实IP 地址,再由缓存服务器向此真实IP 地址提交访问请求; 5. 缓存服务器从真实 IP 地址得到内容后,一方面在本地进行保存,以备以后使用,同时把得到的数据发送到客户端浏览器,完成访问的响应过程; 6. 用户端得到由缓存服务器传回的数据后显示出来,至此完成整个域名访问过程。 通过以上分析可以看到,不论是否使用CDN 网络,普通用户客户端设置不需做任何改变,直接使用被加速网站原有域名访问即可。对于要加速的网站,只需修改整个访问过程中的域名解析部分,便能实现透明的网络加速服务。 CDN 应用与架构 CDN 速度快、传输安全、扩展性强,尤其在应对大容量迸发时游刃有余,主要应用于跨地域的门户及行业网站,如游戏、娱乐、IT、新闻传媒、VOD、远程教育、音视频、下载、IPTV、金融证券等。 利用CDN 网络,网站用户无需投资价值不菲的服务器、网络带宽及相应的人力成本,便能实现将网站内容发布到离终端用户距离最近、路由最短的网际边缘Cache 节点,创造完美、快捷的网站使用体验。 构建 CDN 网络的通常有三类机构,一是基础电信运营商(如中国电信、中国网通等),二是纯粹以 CDN 为主营业务的专业服务商(如 ChinaCache 等),三是 IDC 运营服务商(如 SouIDC 等)。虽然上述机构建设CDN 网络的出发点、侧重点不尽相同,但有一点却是相通的,即都是为用户提供完美的网站加速服务。 IDC 运营商部署在各地的 IDC 中心机房,非常有利于其快速建立起适合自身业务拓展的 CDN 网络,投资少见效快。其最大优势在于可以利用现有的 IDC 托管用户资源,进一步挖掘其潜在的增值服务空间。同时对于其 IDC 托管用户来讲,只需很少的投入便可实现网站的平滑加速,并保持了服务及支持上的无缝延续。 SynCDN 便是SouIDC 构建的CDN 网站加速运营平台。 一般来讲,CDN 网络主要由中心节点、边缘节点两部分构成。 CDN 架构导引 最简单的 CDN 网络只需一台负责全局负载均衡的 DNS 和各节点一台 Cache,即可运行。 DNS 支持根据用户源 IP 地址解析不同的 IP,实现就近访问。为了保证高可用性等,CDN 网管中心需要监控各节点的流量、健康状况等。一个节点的单台Cache 承载数量不够时,才需要多台 Cache,多台Cache 同时工作时,才需要负载均衡器,使Cache 群协同工作。 CDN 中心节点 中心节点包括CDN 网管中心和全局负载均衡DNS 重定向解析系统,负责整个CDN 网络的分发及管理。 CDN 网管中心是整个CDN 能够正常运转的基础保证,它不仅能对整个CDN 网络中的各个子系统和设备进行实时监控,对各种故障产生相应的告警,还可以实时监测到系统中总的流量和各节点的流量,并保存在系统数据库中,使网管人员能够方便地进行进一步分析。一套完善的网管系统,允许用户按需对系统配置进行修改。 全局负载均衡DNS 通过一组预先定义好的策略,将当时最接近用户的Cache 节点地址提供给用户,使用户能够得到快速的服务。同时,它还与分布在各地的所有CDN 节点保持持续通信,搜集各节点的通信状态,确保不会将用户的请求分发到不可用、或不健康的 Cache 节点上。 CDN 边缘节点 CDN 边缘节点主要指异地分发节点,由负载均衡设备、高速缓存服务器两部分组成。 负载均衡设备负责每个节点中各个Cache 的负载均衡,保证节点的工作效率;同时还负责收集节点与周围环境的信息,保持与全局负载均衡DNS 的通信,实现整个系统的负载均衡。 高速缓存服务器(Cache)负责存储客户网站的大量信息,就像一个靠近用户的网站服务器一样响应本地用户的访问请求。通过全局负载均衡DNS 的控制,用户的请求被透明地指向离他最近的节点,节点中Cache 服务器就像网站的原始服务器一样,响应终端用户的请求。因其距离用户更近,故其响应时间才更快。 答案来源于网络
养狐狸的猫 2019-12-02 02:37:34 0 浏览量 回答数 0

回答

要了解CDN 的实现原理,首先让我们来回顾一下网站传统的访问过程,以便理解其与CDN 访问方式之间的差别: 由上图可见,传统的网站访问过程为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,获得此域名对应的IP 地址; 3. 浏览器利用所得到的IP 地址,向该IP 对应的服务器发出访问请求; 4. 服务器对此响应,将数据回传至用户浏览器端显示出来。 与传统访问方式不同,CDN 网络则是在用户和服务器之间增加 Cache 层,将用户的访问请求引导到Cache 节点而不是服务器源站点,要实现这一目的,主要是通过接管DNS 实现,下图为使用CDN 缓存后的网站访问过程: 由上图可见,使用CDN 缓存后的网站访问过程演变为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,由于CDN 对域名解析过程进行了调整,所以用户端一般得到的是该域名对应的 CNAME 记录,此时浏览器需要再次对获得的 CNAME 域名进行解析才能得到缓存服务器实际的IP 地址。 注:在此过程中,全局负载均衡DNS 解析服务器会根据用户端的源IP 地址,如地理位置(深圳还是上海)、接入网类型(电信还是网通)将用户的访问请求定位到离用户路由最短、位置最近、负载最轻的Cache 节点(缓存服务器)上,实现就近定位。定位优先原则可按位置、可按路由、也可按负载等。 3. 再次解析后浏览器得到该域名CDN 缓存服务器的实际IP 地址,向缓存服务器发出访问请求; 4. 缓存服务器根据浏览器提供的域名,通过Cache 内部专用DNS 解析得到此域名源服务器的真实IP 地址,再由缓存服务器向此真实IP 地址提交访问请求; 5. 缓存服务器从真实 IP 地址得到内容后,一方面在本地进行保存,以备以后使用,同时把得到的数据发送到客户端浏览器,完成访问的响应过程; 6. 用户端得到由缓存服务器传回的数据后显示出来,至此完成整个域名访问过程。 通过以上分析可以看到,不论是否使用CDN 网络,普通用户客户端设置不需做任何改变,直接使用被加速网站原有域名访问即可。对于要加速的网站,只需修改整个访问过程中的域名解析部分,便能实现透明的网络加速服务。 CDN 应用与架构 CDN 速度快、传输安全、扩展性强,尤其在应对大容量迸发时游刃有余,主要应用于跨地域的门户及行业网站,如游戏、娱乐、IT、新闻传媒、VOD、远程教育、音视频、下载、IPTV、金融证券等。 利用CDN 网络,网站用户无需投资价值不菲的服务器、网络带宽及相应的人力成本,便能实现将网站内容发布到离终端用户距离最近、路由最短的网际边缘Cache 节点,创造完美、快捷的网站使用体验。 构建 CDN 网络的通常有三类机构,一是基础电信运营商(如中国电信、中国网通等),二是纯粹以 CDN 为主营业务的专业服务商(如 ChinaCache 等),三是 IDC 运营服务商(如 SouIDC 等)。虽然上述机构建设CDN 网络的出发点、侧重点不尽相同,但有一点却是相通的,即都是为用户提供完美的网站加速服务。 IDC 运营商部署在各地的 IDC 中心机房,非常有利于其快速建立起适合自身业务拓展的 CDN 网络,投资少见效快。其最大优势在于可以利用现有的 IDC 托管用户资源,进一步挖掘其潜在的增值服务空间。同时对于其 IDC 托管用户来讲,只需很少的投入便可实现网站的平滑加速,并保持了服务及支持上的无缝延续。 SynCDN 便是SouIDC 构建的CDN 网站加速运营平台。 一般来讲,CDN 网络主要由中心节点、边缘节点两部分构成。 CDN 架构导引 最简单的 CDN 网络只需一台负责全局负载均衡的 DNS 和各节点一台 Cache,即可运行。 DNS 支持根据用户源 IP 地址解析不同的 IP,实现就近访问。为了保证高可用性等,CDN 网管中心需要监控各节点的流量、健康状况等。一个节点的单台Cache 承载数量不够时,才需要多台 Cache,多台Cache 同时工作时,才需要负载均衡器,使Cache 群协同工作。 CDN 中心节点 中心节点包括CDN 网管中心和全局负载均衡DNS 重定向解析系统,负责整个CDN 网络的分发及管理。 CDN 网管中心是整个CDN 能够正常运转的基础保证,它不仅能对整个CDN 网络中的各个子系统和设备进行实时监控,对各种故障产生相应的告警,还可以实时监测到系统中总的流量和各节点的流量,并保存在系统数据库中,使网管人员能够方便地进行进一步分析。一套完善的网管系统,允许用户按需对系统配置进行修改。 全局负载均衡DNS 通过一组预先定义好的策略,将当时最接近用户的Cache 节点地址提供给用户,使用户能够得到快速的服务。同时,它还与分布在各地的所有CDN 节点保持持续通信,搜集各节点的通信状态,确保不会将用户的请求分发到不可用、或不健康的 Cache 节点上。 CDN 边缘节点 CDN 边缘节点主要指异地分发节点,由负载均衡设备、高速缓存服务器两部分组成。 负载均衡设备负责每个节点中各个Cache 的负载均衡,保证节点的工作效率;同时还负责收集节点与周围环境的信息,保持与全局负载均衡DNS 的通信,实现整个系统的负载均衡。 高速缓存服务器(Cache)负责存储客户网站的大量信息,就像一个靠近用户的网站服务器一样响应本地用户的访问请求。通过全局负载均衡DNS 的控制,用户的请求被透明地指向离他最近的节点,节点中Cache 服务器就像网站的原始服务器一样,响应终端用户的请求。因其距离用户更近,故其响应时间才更快。 答案来源于网络
养狐狸的猫 2019-12-02 03:03:30 0 浏览量 回答数 0

问题

【阿里云产品公测】消息队列服务MQS java SDK 机器人应用 初体验

先去投票,回来再看内容吧 http://bbs.aliyun.com/read/178799.html 文章编号18 初体验 之 测评环境                   ...
啊里新人 2019-12-01 21:08:47 25480 浏览量 回答数 18

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。
hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

回答

在这个问题中,我们集中讨论根据特殊语法去解析文本的问题。为了这样做,你首先要以BNF或者EBNF形式指定一个标准语法。比如,一个简单数学表达式语法可能像下面这样: expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= ( expr ) | NUM 或者,以EBNF形式: expr ::= term { (+|-) term }* term ::= factor { (|/) factor } factor ::= ( expr ) | NUM 在EBNF中,被包含在 {...}* 中的规则是可选的。*代表0次或多次重复(跟正则表达式中意义是一样的)。 现在,如果你对BNF的工作机制还不是很明白的话,就把它当做是一组左右符号可相互替换的规则。一般来讲,解析的原理就是你利用BNF完成多个替换和扩展以匹配输入文本和语法规则。为了演示,假设你正在解析形如 3 + 4 * 5 的表达式。这个表达式先要通过使用2.18节中介绍的技术分解为一组令牌流。结果可能是像下列这样的令牌序列: NUM + NUM * NUM 在此基础上, 解析动作会试着去通过替换操作匹配语法到输入令牌: expr expr ::= term { (+|-) term }* expr ::= factor { (|/) factor } { (+|-) term }* expr ::= NUM { (|/) factor } { (+|-) term }* expr ::= NUM { (+|-) term }* expr ::= NUM + term { (+|-) term }* expr ::= NUM + factor { (|/) factor } { (+|-) term }* expr ::= NUM + NUM { (|/) factor} { (+|-) term }* expr ::= NUM + NUM * factor { (|/) factor } { (+|-) term }* expr ::= NUM + NUM * NUM { (|/) factor } { (+|-) term }* expr ::= NUM + NUM * NUM { (+|-) term }* expr ::= NUM + NUM * NUM 下面所有的解析步骤可能需要花点时间弄明白,但是它们原理都是查找输入并试着去匹配语法规则。第一个输入令牌是NUM,因此替换首先会匹配那个部分。一旦匹配成功,就会进入下一个令牌+,以此类推。当已经确定不能匹配下一个令牌的时候,右边的部分(比如 { (/) factor } )就会被清理掉。在一个成功的解析中,整个右边部分会完全展开来匹配输入令牌流。 有了前面的知识背景,下面我们举一个简单示例来展示如何构建一个递归下降表达式求值程序: #!/usr/bin/env python -- encoding: utf-8 -- """ Topic: 下降解析器 Desc : """ import re import collections Token specification NUM = r'(?P \d+)' PLUS = r'(?P +)' MINUS = r'(?P -)' TIMES = r'(?P *)' DIVIDE = r'(?P /)' LPAREN = r'(?P ()' RPAREN = r'(?P ))' WS = r'(?P \s+)' master_pat = re.compile('|'.join([NUM, PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN, WS])) Tokenizer Token = collections.namedtuple('Token', ['type', 'value']) def generate_tokens(text): scanner = master_pat.scanner(text) for m in iter(scanner.match, None): tok = Token(m.lastgroup, m.group()) if tok.type != 'WS': yield tok Parser class ExpressionEvaluator: ''' Implementation of a recursive descent parser. Each method implements a single grammar rule. Use the ._accept() method to test and accept the current lookahead token. Use the ._expect() method to exactly match and discard the next token on on the input (or raise a SyntaxError if it doesn't match). ''' def parse(self, text): self.tokens = generate_tokens(text) self.tok = None # Last symbol consumed self.nexttok = None # Next symbol tokenized self._advance() # Load first lookahead token return self.expr() def _advance(self): 'Advance one token ahead' self.tok, self.nexttok = self.nexttok, next(self.tokens, None) def _accept(self, toktype): 'Test and consume the next token if it matches toktype' if self.nexttok and self.nexttok.type == toktype: self._advance() return True else: return False def _expect(self, toktype): 'Consume next token if it matches toktype or raise SyntaxError' if not self._accept(toktype): raise SyntaxError('Expected ' + toktype) # Grammar rules follow def expr(self): "expression ::= term { ('+'|'-') term }*" exprval = self.term() while self._accept('PLUS') or self._accept('MINUS'): op = self.tok.type right = self.term() if op == 'PLUS': exprval += right elif op == 'MINUS': exprval -= right return exprval def term(self): "term ::= factor { ('*'|'/') factor }*" termval = self.factor() while self._accept('TIMES') or self._accept('DIVIDE'): op = self.tok.type right = self.factor() if op == 'TIMES': termval *= right elif op == 'DIVIDE': termval /= right return termval def factor(self): "factor ::= NUM | ( expr )" if self._accept('NUM'): return int(self.tok.value) elif self._accept('LPAREN'): exprval = self.expr() self._expect('RPAREN') return exprval else: raise SyntaxError('Expected NUMBER or LPAREN') def descent_parser(): e = ExpressionEvaluator() print(e.parse('2')) print(e.parse('2 + 3')) print(e.parse('2 + 3 * 4')) print(e.parse('2 + (3 + 4) * 5')) # print(e.parse('2 + (3 + * 4)')) # Traceback (most recent call last): # File " ", line 1, in # File "exprparse.py", line 40, in parse # return self.expr() # File "exprparse.py", line 67, in expr # right = self.term() # File "exprparse.py", line 77, in term # termval = self.factor() # File "exprparse.py", line 93, in factor # exprval = self.expr() # File "exprparse.py", line 67, in expr # right = self.term() # File "exprparse.py", line 77, in term # termval = self.factor() # File "exprparse.py", line 97, in factor # raise SyntaxError("Expected NUMBER or LPAREN") # SyntaxError: Expected NUMBER or LPAREN if name == 'main': descent_parser() 讨论 文本解析是一个很大的主题, 一般会占用学生学习编译课程时刚开始的三周时间。如果你在找寻关于语法,解析算法等相关的背景知识的话,你应该去看一下编译器书籍。很显然,关于这方面的内容太多,不可能在这里全部展开。 尽管如此,编写一个递归下降解析器的整体思路是比较简单的。开始的时候,你先获得所有的语法规则,然后将其转换为一个函数或者方法。因此如果你的语法类似这样: expr ::= term { ('+'|'-') term }* term ::= factor { (''|'/') factor } factor ::= '(' expr ')' | NUM 你应该首先将它们转换成一组像下面这样的方法: class ExpressionEvaluator: ... def expr(self): ... def term(self): ... def factor(self): ... 每个方法要完成的任务很简单 - 它必须从左至右遍历语法规则的每一部分,处理每个令牌。从某种意义上讲,方法的目的就是要么处理完语法规则,要么产生一个语法错误。为了这样做,需采用下面的这些实现方法: 如果规则中的下个符号是另外一个语法规则的名字(比如term或factor),就简单的调用同名的方法即可。这就是该算法中”下降”的由来 - 控制下降到另一个语法规则中去。有时候规则会调用已经执行的方法(比如,在 factor ::= '('expr ')' 中对expr的调用)。这就是算法中”递归”的由来。 如果规则中下一个符号是个特殊符号(比如(),你得查找下一个令牌并确认是一个精确匹配)。如果不匹配,就产生一个语法错误。这一节中的 _expect() 方法就是用来做这一步的。 如果规则中下一个符号为一些可能的选择项(比如 + 或 -),你必须对每一种可能情况检查下一个令牌,只有当它匹配一个的时候才能继续。这也是本节示例中 _accept() 方法的目的。它相当于_expect()方法的弱化版本,因为如果一个匹配找到了它会继续,但是如果没找到,它不会产生错误而是回滚(允许后续的检查继续进行)。 对于有重复部分的规则(比如在规则表达式 ::= term { ('+'|'-') term }* 中),重复动作通过一个while循环来实现。循环主体会收集或处理所有的重复元素直到没有其他元素可以找到。 一旦整个语法规则处理完成,每个方法会返回某种结果给调用者。这就是在解析过程中值是怎样累加的原理。比如,在表达式求值程序中,返回值代表表达式解析后的部分结果。最后所有值会在最顶层的语法规则方法中合并起来。 尽管向你演示的是一个简单的例子,递归下降解析器可以用来实现非常复杂的解析。比如,Python语言本身就是通过一个递归下降解析器去解释的。如果你对此感兴趣,你可以通过查看Python源码文件Grammar/Grammar来研究下底层语法机制。看完你会发现,通过手动方式去实现一个解析器其实会有很多的局限和不足之处。 其中一个局限就是它们不能被用于包含任何左递归的语法规则中。比如,加入你需要翻译下面这样一个规则: items ::= items ',' item | item 为了这样做,你可能会像下面这样使用 items() 方法: def items(self): itemsval = self.items() if itemsval and self._accept(','): itemsval.append(self.item()) else: itemsval = [ self.item() ] 唯一的问题是这个方法根本不能工作,事实上,它会产生一个无限递归错误。 关于语法规则本身你可能也会碰到一些棘手的问题。比如,你可能想知道下面这个简单扼语法是否表述得当: expr ::= factor { ('+'|'-'|''|'/') factor } factor ::= '(' expression ')' | NUM 这个语法看上去没啥问题,但是它却不能察觉到标准四则运算中的运算符优先级。比如,表达式 "3 + 4 * 5" 会得到35而不是期望的23.分开使用”expr”和”term”规则可以让它正确的工作。 对于复杂的语法,你最好是选择某个解析工具比如PyParsing或者是PLY。下面是使用PLY来重写表达式求值程序的代码: from ply.lex import lex from ply.yacc import yacc Token list tokens = [ 'NUM', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'LPAREN', 'RPAREN' ] Ignored characters t_ignore = ' \t\n' Token specifications (as regexs) t_PLUS = r'+' t_MINUS = r'-' t_TIMES = r'*' t_DIVIDE = r'/' t_LPAREN = r'(' t_RPAREN = r')' Token processing functions def t_NUM(t): r'\d+' t.value = int(t.value) return t Error handler def t_error(t): print('Bad character: {!r}'.format(t.value[0])) t.skip(1) Build the lexer lexer = lex() Grammar rules and handler functions def p_expr(p): ''' expr : expr PLUS term | expr MINUS term ''' if p[2] == '+': p[0] = p[1] + p[3] elif p[2] == '-': p[0] = p[1] - p[3] def p_expr_term(p): ''' expr : term ''' p[0] = p[1] def p_term(p): ''' term : term TIMES factor | term DIVIDE factor ''' if p[2] == '*': p[0] = p[1] * p[3] elif p[2] == '/': p[0] = p[1] / p[3] def p_term_factor(p): ''' term : factor ''' p[0] = p[1] def p_factor(p): ''' factor : NUM ''' p[0] = p[1] def p_factor_group(p): ''' factor : LPAREN expr RPAREN ''' p[0] = p[2] def p_error(p): print('Syntax error') parser = yacc() 这个程序中,所有代码都位于一个比较高的层次。你只需要为令牌写正则表达式和规则匹配时的高阶处理函数即可。而实际的运行解析器,接受令牌等等底层动作已经被库函数实现了。 下面是一个怎样使用得到的解析对象的例子: parser.parse('2') 2 parser.parse('2+3') 5 parser.parse('2+(3+4)*5') 37
景凌凯 2020-04-16 19:33:06 0 浏览量 回答数 0

回答

虽然跨平台的移动APP开发有利有弊。但从业务初创的角度来看,优点应该是大于缺点的。而且,随着对跨平台移动应用需求的不断增长,现在可用的工具和框架数量也已经很可观了。 但选择过多会令人头疼,这就是为什么我们只关注最突出的跨平台移动开发框架的原因:React Native, Flutter, NativeScript, 和Xamarin。 为了让你更深入地了解是什么使这些工具成为2020年软件开发的可选选项,我们将根据以下标准对它们进行打分:社区支持、基于的编程语言、代码可重用性、性能、界面以及使用它们构建的重要应用程序。 React Native Reaction Native是Facebook于2015年发布的开源、跨平台的应用开发框架。作为2013年举办的一场内部黑客马拉松的产物,它已经成为最受欢迎的原生App开发替代方案之一,拥有2043名GitHub贡献者,获得了超过82900 GitHub标星。不断增长的社区认知度使得找到一支可靠且经验丰富的开发团队来承接你的项目变得相对容易。 Learn Once and Write Anywhere 基于React.JS,React Native利用JavaScript(根据2019年Stack Overflow的调查,JavaScript成为了最受欢迎的编程语言),为Android和iOS用户提供真正原生的应用外观和体验。另外,使该框架脱颖而出的是,如果你需要,React Native允许你使用Java、Objective-C或SWIFT编写部分原生模块来顺利处理复杂的操作,如视频播放或图像编辑。 虽然这些组件不能在不同的平台之间共享,并且需要开发人员做更多的工作,但多达90%的React Native代码是可以重用的。很好地表明该框架的座右铭不是“Write Once, Use Anywhere”,而是“learn once, write anywhere”。 就GUI而言,React Native可以提供接近原生的用户体验,这要归功于它使用了Android和iOS的本地控制器。它还使用带有UI元素的ReactJS库,这有助于加快UI设计过程。在开发移动应用程序时,使此框架值得考虑的另一个原因是,它可用在不丢失应用程序状态的情况下对UI进行更改。 另一个使React Native成为2020年跨平台移动开发框架的首选之一,是因为持续的更新,例如近期的版本 0.60 和 0.61 : 多项辅助功能改进。 更清晰、更人性化的开始屏幕。 快速刷新,融合了实时和热重新加载,从而显著加快了开发进程。 如上的Release Note只是React Native适应不断变化的需求其中一个很小的样本。 2020年值得考虑的第二个框架是Flutter。它在Google I/O 2017上宣布,并于2018年发布,对于跨平台的世界来说,它现在仍然是一个“新人”。但尽管如此,它已经获得了超过80500 GitHub星标和绝大多数工程师将其称为2019年Stack Overflow调查中最受欢迎的三个框架之一,Flutter无疑是一股不可忽视的力量。 Dart是如何使Flutter变得独一无二的 Flutter 背后的编程语言是 Dart,谷歌称之为"客户端优化",适合在任何平台上"快速构建应用程序"。它于 2011 年推出,是一种响应式面向对象的语言,被开发者认为相对容易学习,其中原因有二:第一,语法上它借鉴了C/C++ 和 Java; 第二,在官方网站上,您可以找到内容广泛且相当简单的文档。值得一提的是,Dart 附带了大量Flutter 兼容软件包的软件包,允许您使应用程序更加复杂。 lutter的一个主要优势是,它的性能比本文提到的任何其他跨平台移动开发框架都要好。这归功于Dart的编译器和Flutter拥有自己的一套小部件。结果是它能更快、更直接地与平台直接通信,而不需要JavaScript桥(例如,Reaction Native就是这种情况)。说到小部件:通过Flutter的“UI-as-a-code”方法,它们只用DART编写,这就提高了代码的可重用性。 效率与用户体验和界面密不可分。如前所述,Flutter不依赖于一组原生组件,而是利用可视化、结构化、平台性和交互式小部件进行UI的设计,所有这些都由框架的图形引擎呈现。更重要的是,Flutter留下了很大的定制空间,如果你想要设计一个很完美的UI,它是个很好的选择。 说到Flutter的更新,最新的稳定版本是在12月12日发布的,根据官方发布说明,它合并了来自188个贡献者的近2000个pull。例如,版本1.12.13中包括的改进: 重大的API变动。 新功能,例如SliverOpacity小部件和SliverAnimatedList。 修复了崩溃和性能问题。 Beta版中的Web支持。 这不是一个完整的清单,因为Flutter的目标是让每年发布的四个版本中的每一个版本都能为框架的可用性提升一个台阶。 Flutter是一个年轻的跨平台移动应用程序开发框架,所以它没有像React Native受到众多的大公司青睐也是不足为奇的。然而,这并不意味着它不好,截至2019年12月,它也为阿里巴巴、谷歌广告、Groupon等众多公司和业务所采用。 NativeScript 如果你要开始开发你的产品,“React Native”和“Flutter”绝不是唯一的解决方案。在 2020 年初,适合您的企业的替代框架也可能是 NativeScript。 这个开源框架于2015年3月公开发布,并迅速成为广受欢迎的解决方案。例如,在发布后的短短两个月内,它就获得了3000颗GitHub星标,并在Twitter上吸引了1500多名粉丝的关注。到今天为止,市场上已有超过700个插件可供选择。 在使用NativeScript构建跨平台应用程序时,开发人员首先用JavaScript及其超集TypeScript编写代码。然后,将代码库编译成各自平台原生的编程语言。 另外值得一提的是,使用 NativeScript 的开发人员也可以使用第三方库(CocoaPods 和 Android SDK),而无需包装。 与React Native类似,NativeScript允许访问Android和iOS原生API,这对跨平台应用程序有明显的积极影响。然而,不同之处在于,前者需要构建桥接API,而后者(用Progress首席开发者倡导者TJ VanToll的话说是“将所有iOS和Android API注入JavaScript虚拟机”)。与Facebook框架的另一个相似之处在于代码重用,在这两种情况下都可以达到90%。 Xamarin Xamarin开源框架创建于2011年,这使它成为了这个列表中最“古老“的框架,但直到五年前它被微软收购时,它才获得了发展势头。截至今天,它号称拥有超过6万名贡献者的社区。 从技术上讲,要用Xamarin构建跨平台的移动应用,需要很好地掌握.NET和C#两种技术,前者是使用多种语言(包括C#编程语言)、编辑器和库的开发平台。Xamarin用一组工具补充了上述平台,这些工具有助于构建跨平台应用程序,例如库、编辑器扩展和XAML。第二种技术是C#,这是一种面向对象的编程语言,它被认为比JavaScript学习起来稍难。Xamarin利用这种编程语言编写整个应用程序,从后端到原生API,再到业务逻辑。 Xamarin.Native和Xamarin.Forms Xamarin与其他框架的不同之处在于,它提供了两种编译跨平台移动应用的方式:Xamarin Native(也称为Xamarin.Android/iOS)和Xamarin.Forms。前一种方法优先考虑共享业务逻辑,并通过使用本机接口控件实现近乎本机的性能。 后者侧重于共享代码,而不是业务原理,这一方面会导致代码重用比例增加(使用Xamarin,开发人员可以重用高达96%的C#代码),但另一方面这样会降低代码性能。 您可能已经注意到,跨平台移动应用程序的性能和GUI密切相关,所以如果我说Xamarin构建应用程序的两种方法对界面的最终外观有很大影响,我可能不会感到惊讶。 Xamarin.Android/iOS允许开发人员使用原生控件和布局,而Xamarin.Forms基于标准UI元素,允许从单个API设计应用程序,但如果你需要更完美的原生UI,则可能还不够。 2020年跨平台应用程序开发还值得考虑吗? 不论如何,跨平台确实是一个值得考虑和极具前景的方向,特别是我们上面提到的 “React Native”和“Flutter”。 前者是一个成熟而稳定的框架,利用了最流行的编程语言之一,并拥有成熟的大型开发人员社区。后者是一个快速发展的技术,尽管它比React Native年轻的多,它也已经赢得了世界各地许多开发人员的青睐。 但无论您选择的是“React Native”、“Flutter”还是任何其他框架,跨平台方法都一定会为您节省时间和金钱,同时能为你最大限度地扩大市场覆盖范围。 最后,值不值得考虑,最终还是取决于你的业务目标、预算和时限。 来源;:葡萄城官网
问问小秘 2020-04-15 13:30:17 0 浏览量 回答数 0

回答

新地址 24题 Starters可以理解为启动器,它包含了一系列可以集成到应用里面的依赖包,你可以一站式集成 Spring 及其他技术,而不需要到处找示例代码和依赖包。如你想使用 Spring JPA 访问数据库,只要加入 spring-boot-starter-data-jpa 启动器依赖就能使用了。Starters包含了许多项目中需要用到的依赖,它们能快速持续的运行,都是一系列得到支持的管理传递性依赖。 23题 Spring Boot 的核心配置文件是application(.yml 或者 .properties) 和 bootstrap(.yml 或者 .properties) 配置文件。boostrap 由父 ApplicationContext 加载,比 applicaton 优先加载,boostrap 里面的属性不能被覆盖。application 配置文件主要用于 Spring Boot 项目的自动化配置。bootstrap 配置文件的应用场景:使用 Spring Cloud Config 配置中心时,这时需要在 bootstrap 配置文件中添加连接到配置中心的配置属性来加载外部配置中心的配置信息;一些固定的不能被覆盖的属性;一些加密/解密的场景。 22题 优点:快速构建项目;对主流开发框架的无配置集成;starters自动依赖与版本控制;大量的自动配置,简化开发,也可修改默认值;无需配置XML,无代码生成,开箱即用;项目可独立运行,无须外部依赖Servlet容器;提供运行时的应用监控;与云计算的天然集成。缺点:集成度较高,使用过程中不太容易了解底层。 21题 Spring Boot的初衷就是为了简化spring的配置,使得开发中集成新功能时更快,简化或减少相关的配置文件。Spring Boot其实是一个整合很多可插拔的组件(框架),内嵌了使用工具(比如内嵌了Tomcat、Jetty等),方便开发人员快速搭建和开发的一个框架。 20题 当程序创建对象、数组等引用类型实体时,系统会在堆内存中为之分配一块内存区,对象就保存在内存区中,不需要显式的去释放一个对象的内存,而是由虚拟机自行执行。在JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,标记那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。 19题 HashMap线程不安全,HashTable线程安全。HashMap允许有一个key为null,多个value为null;而HashTable不允许key和vale为null。继承类不一样,HashMap继承的是AbstractMap,HashTable继承的是Dictionary。初始容量不一样。使用的hashcode不一样。内部遍历方式的实现不一样。 18题 作用:内容可见性和禁止指令重排。内存可见性:某线程对 volatile 变量的修改,对其他线程都是可见的,即获取 volatile 变量的值都是最新的;禁止指令重排:重排序在单线程下一定能保证结果的正确性,但是在多线程环境下,可能发生重排序影响结果,若用volatile修饰共享变量,在编译时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。使用:当一个线程需要立刻读取到另外一个线程修改的变量值的时候,我们就可以使用volatile。区别:volatile是变量修饰符,而synchronized则作用于一段代码或者方法;volatile只是在线程内存和main memory(主内存)间同步某个变量的值,而synchronized通过锁定和解锁某个监视器同步所有变量的值。显然synchronized要比volatile消耗更多资源;synchronized 关键字可以保证变量原子性和可见性,volatile 不能保证原子性。 17题 非公平主要表现在获取锁的行为上,并非是按照申请锁的时间前后给等待线程分配锁的 ,每当锁被释放后 ,任何一个线程都有机会竞争到锁,这样做的目的是为了提高执行性能 ,缺点是可能会产生线程饥饿现象 。 16题 如果线程遇到了 IO 阻塞,无能为力,因为IO是操作系统实现的,Java代码并没有办法直接接触到操作系统。如果线程因为调用 wait()、sleep()、或者 join()方法而导致的阻塞,可以中断线程,并且通过抛出 InterruptedException 来唤醒它。 15题 原子操作就是无法被别的线程打断的操作。要么不执行,要么就执行成功。在Java中可以通过锁和循环CAS的方式来实现原子操作。从JDK 1.5开始提供了java.util.concurrent.atomic包,这个包中的原子操作类提供了一种用法简单、性能高效、线程安全地更新一个变量的方式。 14题 wait()是Object类的方法,所以每一个对象能使用wait()方法。sleep()是Thread类中的静态方法。sleep不会释放锁,但会让出cpu,sleep会在指定的休眠时间后自动唤醒。wait则会释放锁,让出系统资源,并且加入wait set中,wait不会自动唤醒,而需要notify()或者notifyAll()唤醒。sleep和wait都可以被中断,使用sleep需要捕获异常。wait与notify、notifyAll只能在同步代码块中使用,而sleep可以在任何地方使用。 13题 Synchronized 是由 JVM 实现的一种实现互斥同步的一种方式,查看编译后的字节码,会发现被 Synchronized 修饰过的程序块,在编译前后被编译器生成了monitorenter 和 monitorexit 两个字节码指令。在虚拟机执行到 monitorenter 指令时,首先要尝试获取对象的锁:如果这个对象没有锁定,或者当前线程已经拥有了这个对象的锁,把锁的计数器+1;当执行 monitorexit 指令时将锁计数器-1;当计数器为0时,锁就被释放了。如果获取对象失败了,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。Java 中 Synchronize 通过在对象头设置标记,达到了获取锁和释放锁的目的。 12题 Mybatis 通过动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这 4 种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler 的 invoke()方法,只会拦截那些你指定需要拦截的方法。 实现方法:1.编写Intercepror接口的实现类;2.设置插件的签名,告诉mybatis拦截哪个对象的哪个方法;3.最后将插件注册到全局配置文件中。 11题 Mybatis可以映射枚举类,不单可以映射枚举类,Mybatis可以映射任何对象到表的一列上。映射方式为自定义一个TypeHandler,实现TypeHandler的setParameter()和getResult()接口方法。TypeHandler 有两个作用,一是完成从 javaType至jdbcType 的转换,二是完成jdbcType至javaType的转换,体现为 setParameter()和getResult()两个方法,分别代表设置sql问号占位符参数和获取列查询结果。 10题 Mybatis使用RowBounds对象进行分页,也可以直接编写sql实现分页,也可以使用Mybatis的分页插件。分页插件的原理:使用Mybatis提供的插件接口,实现自定义插件,在插件的拦截方法内拦截待执行的sql,然后重写sql,根据dialect方言,添加对应的物理分页语句和物理分页参数。举例:select * from student,拦截 sql 后重写为:select t.* from(select * from student)t limit 0,10。 9题 resultType和resultMap都是表示数据库表与pojo之间的映射规则的。类的名字和数据库相同时,可以直接设置resultType 参数为Pojo类。若不同或者有关联查询,需要设置resultMap将结果名字和Pojo名字进行转换。在项目中我们定义的resultMap多了property和column属性,实际也就是分别配置Pojo类的属性和对应的表字段之间的映射关系,多了这个映射关系以后,方便维护。 8题 之所以说Mybatis半自动化,是因为SQL语句需要用户自定义,SQL的解析、执行等工作由Mybatis执行。区别:Hibernate属于全自动 ORM 映射工具,使用Hibernate查询关联对象或者关联集合对象时,可以根据对象关系模型直接获取,所以它是全自动的。而 Mybatis 在查询关联对象或关联集合对象时,需要手动编写 sql 来完成,所以它是半自动ORM映射工具。 7题 MyBatis 的缓存分为一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,默认就有,在操作数据库时需要构造 sqlSession对象,在对象中有一个(内存区域)数据结构(HashMap)用于存储缓存数据,不同的sqlSession之间的缓存数据区域(HashMap)是互相不影响的。二级缓存是mapper级别的缓存,默认是不打开的,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession去操作数据库得到数据会存在二级缓存区域,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession的。 6题 RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。用于方法上是为了细化映射,即根据特定的HTTP请求方法(GET、POST 方法等)、HTTP请求中是否携带特定参数等条件,将请求映射到匹配的方法上。 5题 1、前置通知(before advice):在目标方法调用之前执行; 2、后置通知(after returning advice):在目标方法调用之后执行,一旦目标方法产生异常不会执行; 3、最终通知(after(finally) advice):在目标调用方法之后执行,无论目标方法是否产生异常,都会执行; 4、异常通知(after throwing advice):在目标方法产生异常时执行; 5、环绕通知(around advice):在目标方法执行之前和执行之后都会执行,可以写一些非核心的业务逻辑,一般用来替代前置通知和后置通知。 4题 1、通过构造器或工厂方法创建Bean实例;2、为Bean的属性设置值和对其他Bean的引用;3、将Bean实例传递给Bean后置处理器的postProcessBeforeInitialization方法;4、调用Bean的初始方法(init-method);5、将bean实例传递给bean后置处理器的postProcessAfterInitialization方法;6、bean可以使用了;7、当容器关闭时,调用Bean的销毁方法(destroy-method) 3题 在TransactionDefinition接口中定义了五个表示隔离级别的常量: ISOLATION_DEFAULT:使用后端数据库默认的隔离级别,Mysql默认采用的REPEATABLE_READ隔离级别;Oracle默认采用的READ_COMMITTED隔离级别。 ISOLATION_READ_UNCOMMITTED:最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。 ISOLATION_READ_COMMITTED:允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生 ISOLATION_REPEATABLE_READ:对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。 ISOLATION_SERIALIZABLE:最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。 2 题 自动装配提供五种不同的模式供Spring容器用来自动装配beans之间的依赖注入: 1.默认的方式是不进行自动装配,通过手工设置ref 属性来进行装配bean。 2.byName:通过参数名自动装配,之后容器试图匹配、装配和该bean的属性具有相同名字的bean。 3.byType:按照参数的数据类型进行自动装配,之后容器试图匹配和装配和该bean的属性类型一样的bean。如果存在多个相同类型的bean对象,会出错。 4.constructor:使用构造方法完成对象注入,其实也是根据构造方法的参数类型进行对象查找,相当于采用byType的方式。 5.autodetect:如果找到默认的构造函数,则通过 constructor的方式自动装配,否则使用 byType的方式自动装配。在Spring3.0以后的版本此模式已被废弃,已经不再合法了。 1 题 循环依赖只会存在在单例实例中,多例循环依赖直接报错。Spring先用构造器实例化Bean对象,然后将实例化结束的对象放到一个Map中,并且Spring提供获取这个未设置属性的实例化对象的引用方法。当Spring实例化了A类、B类后,紧接着会去设置对象的属性,此时发现A类依赖B类,就会去Map中取出已经存在的单例B类对象,以此类推。因为所持有的都是引用,所以A类一改变B类也会跟着改变。从而解决循环依赖问题。
游客ih62co2qqq5ww 2020-03-03 18:05:36 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

问题

Java技术1000问(3)【精品问答】

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的Java语言概述、数据类型和运算符、面向对象等维度内容。 我们会以每天至少50条的速度,增...
问问小秘 2020-06-02 14:27:10 11463 浏览量 回答数 3

问题

[IBM DW] 用 inotify 监控 Linux 文件系统事件:报错

简介: 当需要对 Linux®文件系统进行高效率、细粒度、异步地监控时,可以采用 inotify。可利用它对用户空间进行安全、性能、以及其他方面的监控。(2010 年 9 月 10 日,...
kun坤 2020-06-07 16:43:37 0 浏览量 回答数 1

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务