• 关于

    单总线系统有什么用

    的搜索结果

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

回答

Spring Cloud 学习笔记(一)——入门、特征、配置 0 放在前面 0.1 参考文档 http://cloud.spring.io/spring-cloud-static/Brixton.SR7/ https://springcloud.cc/ http://projects.spring.io/spring-cloud/ 0.2 maven配置 org.springframework.boot spring-boot-starter-parent 1.5.2.RELEASE org.springframework.cloud spring-cloud-dependencies Dalston.RELEASE pom import org.springframework.cloud spring-cloud-starter-config org.springframework.cloud spring-cloud-starter-eureka 0.3 简介 Spring Cloud为开发人员提供了快速构建分布式系统中的一些通用模式(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁,领导选举,分布式 会话,群集状态)。 分布式系统的协调引出样板模式(boiler plate patterns),并且使用Spring Cloud开发人员可以快速地实现这些模式来启动服务和应用程序。 它们可以在任何分布式环境中正常工作,包括开发人员自己的笔记本电脑,裸机数据中心和受管平台,如Cloud Foundry。 Version: Brixton.SR7 1 特征 Spring Cloud专注于为经典用例和扩展机制提供良好的开箱即用 分布式/版本配置 服务注册与发现 路由选择 服务调用 负载均衡 熔断机制 全局锁 领导人选举和集群状态 分布式消息 2 原生云应用程序 原生云是应用程序开发的一种风格,鼓励在持续交付和价值驱动领域的最佳实践。 Spring Cloud的很多特性是基于Spring Boot的。更多的是由两个库实现:Spring Cloud Context and Spring Cloud Commons。 2.1 Spring Cloud Context: 应用上下文服务 Spring Boot关于使用Spring构建应用有硬性规定:通用的配置文件在固定的位置,通用管理终端,监控任务。建立在这个基础上,Spring Cloud增加了一些额外的特性。 2.1.1 引导应用程序上下文 Spring Cloud会创建一个“bootstrap”的上下文,这是主应用程序的父上下文。对应的配置文件拥有最高优先级,并且,默认不能被本地配置文件覆盖。对应的文件名bootstrap.yml或bootstrap.properties。 可通过设置spring.cloud.bootstrap.enabled=false来禁止bootstrap进程。 2.1.2 应用上下文层级结构 当用SpringApplication或SpringApplicationBuilder创建应用程序上下文时,bootstrap上下文将作为父上下文被添加进去,子上下文将继承父上下文的属性。 子上下文的配置信息可覆盖父上下文的配置信息。 2.1.3 修改Bootstrap配置文件位置 spring.cloud.bootstrap.name(默认是bootstrap),或者spring.cloud.bootstrap.location(默认是空) 2.1.4 覆盖远程配置文件的值 spring.cloud.config.allowOverride=true spring.cloud.config.overrideNone=true spring.cloud.config.overrideSystemProperties=false 2.1.5 定制Bootstrap配置 在/META-INF/spring.factories的key为org.springframework.cloud.bootstrap.BootstrapConfiguration,定义了Bootstrap启动的组件。 在主应用程序启动之前,一开始Bootstrap上下文创建在spring.factories文件中的组件,然后是@Beans类型的bean。 2.1.6 定制Bootstrap属性来源 关键点:spring.factories、PropertySourceLocator 2.1.7 环境改变 应用程序可通过EnvironmentChangedEvent监听应用程序并做出响应。 2.1.8 Refresh Scope Spring的bean被@RefreshScope将做特殊处理,可用于刷新bean的配置信息。 注意 需要添加依赖“org.springframework.boot.spring-boot-starter-actuator” 目前我只在@Controller测试成功 需要自己发送POST请求/refresh 修改配置文件即可 2.1.9 加密和解密 Spring Cloud可对配置文件的值进行加密。 如果有"Illegal key size"异常,那么需要安装JCE。 2.1.10 服务点 除了Spring Boot提供的服务点,Spring Cloud也提供了一些服务点用于管理,注意都是POST请求 /env:更新Environment、重新绑定@ConfigurationProperties跟日志级别 /refresh重新加载配置文件,刷新标记@RefreshScope的bean /restart重启应用,默认不可用 生命周期方法:/pause、/resume 2.2 Spring Cloud Commons:通用抽象 服务发现、负载均衡、熔断机制这种模式为Spring Cloud客户端提供了一个通用的抽象层。 2.2.1 RestTemplate作为负载均衡客户端 通过@Bean跟@LoadBalanced指定RestTemplate。注意URI需要使用虚拟域名(如服务名,不能用域名)。 如下: @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; public String doOtherStuff() { String results = restTemplate.getForObject(" http://stores/stores", String.class); return results; } } 2.2.2 多个RestTemplate对象 注意@Primary注解的使用。 @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate loadBalanced() { return new RestTemplate(); } @Primary @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; @Autowired @LoadBalanced private RestTemplate loadBalanced; public String doOtherStuff() { return loadBalanced.getForObject(" http://stores/stores", String.class); } public String doStuff() { return restTemplate.getForObject(" http://example.com", String.class); } } 2.2.3 忽略网络接口 忽略确定名字的服务发现注册,支持正则表达式配置。 3 Spring Cloud Config Spring Cloud Config提供服务端和客户端在分布式系统中扩展配置。支持不同环境的配置(开发、测试、生产)。使用Git做默认配置后端,可支持配置环境打版本标签。 3.1 快速开始 可通过IDE运行或maven运行。 默认加载property资源的策略是克隆一个git仓库(at spring.cloud.config.server.git.uri')。 HTTP服务资源的构成: /{application}/{profile}[/{label}] /{application}-{profile}.yml /{label}/{application}-{profile}.yml /{application}-{profile}.properties /{label}/{application}-{profile}.properties application是SpringApplication的spring.config.name,(一般来说'application'是一个常规的Spring Boot应用),profile是一个active的profile(或者逗号分隔的属性列表),label是一个可选的git标签(默认为"master")。 3.1.1 客户端示例 创建以Spring Boot应用即可,添加依赖“org.springframework.cloud:spring-cloud-starter-config”。 配置application.properties,注意URL为配置服务端的地址 spring.cloud.config.uri: http://myconfigserver.com 3.2 Spring Cloud Config 服务端 针对系统外的配置项(如name-value对或相同功能的YAML内容),该服务器提供了基于资源的HTTP接口。使用@EnableConfigServer注解,该服务器可以很容易的被嵌入到Spring Boot 系统中。使用该注解之后该应用系统就是一个配置服务器。 @SpringBootApplication @EnableConfigServer public class ConfigApplicion { public static void main(String[] args) throws Exception { SpringApplication.run(ConfigApplicion.class, args); } } 3.2.1 资源库环境 {application} 对应客户端的"spring.application.name"属性 {profile} 对应客户端的 "spring.profiles.active"属性(逗号分隔的列表) {label} 对应服务端属性,这个属性能标示一组配置文件的版本 如果配置库是基于文件的,服务器将从application.yml和foo.yml中创建一个Environment对象。高优先级的配置优先转成Environment对象中的PropertySource。 3.2.1.1 Git后端 默认的EnvironmentRepository是用Git后端进行实现的,Git后端对于管理升级和物理环境是很方便的,对审计配置变更也很方便。也可以file:前缀从本地配置库中读取数据。 这个配置库的实现通过映射HTTP资源的{label}参数作为git label(提交id,分支名称或tag)。如果git分支或tag的名称包含一个斜杠 ("/"),此时HTTP URL中的label需要使用特殊字符串"(_)"来替代(为了避免与其他URL路径相互混淆)。如果使用了命令行客户端如 curl,请谨慎处理URL中的括号(例如:在shell下请使用引号''来转义它们)。 Git URI占位符 Spring Cloud Config Server支持git库URL中包含针对{application}和 {profile}的占位符(如果你需要,{label}也可包含占位符, 不过要牢记的是任何情况下label只指git的label)。所以,你可以很容易的支持“一个应用系统一个配置库”策略或“一个profile一个配置库”策略。 模式匹配和多资源库 spring: cloud: config: server: git: uri: https://github.com/spring-cloud-samples/config-repo repos: simple: https://github.com/simple/config-repo special: pattern: special*/dev*,special/dev* uri: https://github.com/special/config-repo local: pattern: local* uri: file:/home/configsvc/config-repo 如果 {application}/{profile}不能匹配任何表达式,那么将使用“spring.cloud.config.server.git.uri”对应的值。在上例子中,对于 "simple" 配置库, 匹配模式是simple/* (也就说,无论profile是什么,它只匹配application名称为“simple”的应用系统)。“local”库匹配所有application名称以“local”开头任何应用系统,不管profiles是什么(来实现覆盖因没有配置对profile的匹配规则,“/”后缀会被自动的增加到任何的匹配表达式中)。 Git搜索路径中的占位符 spring.cloud.config.server.git.searchPaths 3.2.1.2 版本控制后端文件系统使用 伴随着版本控制系统作为后端(git、svn),文件都会被check out或clone 到本地文件系统中。默认这些文件会被放置到以config-repo-为前缀的系统临时目录中。在Linux上,譬如应该是/tmp/config-repo- 目录。有些操作系统routinely clean out放到临时目录中,这会导致不可预知的问题出现。为了避免这个问题,通过设置spring.cloud.config.server.git.basedir或spring.cloud.config.server.svn.basedir参数值为非系统临时目录。 3.2.1.3 文件系统后端 使用本地加载配置文件。 需要配置:spring.cloud.config.server.native.searchLocations跟spring.profiles.active=native。 路径配置格式:classpath:/, classpath:/config,file:./, file:./config。 3.2.1.4 共享配置给所有应用 基于文件的资源库 在基于文件的资源库中(i.e. git, svn and native),这样的文件名application 命名的资源在所有的客户端都是共享的(如 application.properties, application.yml, application-*.properties,etc.)。 属性覆盖 “spring.cloud.config.server.overrides”添加一个Map类型的name-value对来实现覆盖。 例如 spring: cloud: config: server: overrides: foo: bar 会使所有的配置客户端应用程序读取foo=bar到他们自己配置参数中。 3.2.2 健康指示器 通过这个指示器能够检查已经配置的EnvironmentRepository是否正常运行。 通过设置spring.cloud.config.server.health.enabled=false参数来禁用健康指示器。 3.2.3 安全 你可以自由选择任何你觉得合理的方式来保护你的Config Server(从物理网络安全到OAuth2 令牌),同时使用Spring Security和Spring Boot 能使你做更多其他有用的事情。 为了使用默认的Spring Boot HTTP Basic 安全,只需要把Spring Security 增加到classpath中(如org.springframework.boot.spring-boot-starter-security)。默认的用户名是“user”,对应的会生成一个随机密码,这种情况在实际使用中并没有意义,一般建议配置一个密码(通过 security.user.password属性进行配置)并对这个密码进行加密。 3.2.4 加密与解密 如果远程属性包含加密内容(以{cipher}开头),这些值将在通过HTTP传递到客户端之前被解密。 使用略 3.2.5 密钥管理 配置服务可以使用对称(共享)密钥或者非对称密钥(RSA密钥对)。 使用略 3.2.6 创建一个测试密钥库 3.2.7 使用多密钥和循环密钥 3.2.8 加密属性服务 3.3 可替换格式服务 配置文件可加后缀".yml"、".yaml"、".properties" 3.4 文本解释服务 /{name}/{profile}/{label}/{path} 3.5 嵌入配置服务器 一般配置服务运行在单独的应用里面,只要使用注解@EnableConfigServer即可嵌入到其他应用。 3.6 推送通知和总线 添加依赖spring-cloud-config-monitor,激活Spring Cloud 总线,/monitor端点即可用。 当webhook激活,针对应用程序可能已经变化了的,配置服务端将发送一个RefreshRemoteApplicationEvent。 3.7 客户端配置 3.7.1 配置第一次引导 通过spring.cloud.config.uri属性配置Config Server地址 3.7.2 发现第一次引导 如果用的是Netflix,则用eureka.client.serviceUrl.defaultZone进行配置。 3.7.3 配置客户端快速失败 在一些例子里面,可能希望在没有连接配置服务端时直接启动失败。可通过spring.cloud.config.failFast=true进行配置。 3.7.4 配置客户端重试 添加依赖spring-retry、spring-boot-starter-aop,设置spring.cloud.config.failFast=true。默认的是6次重试,初始补偿间隔是1000ms,后续补偿为1.1指数乘数,可通过spring.cloud.config.retry.*配置进行修改。 3.7.5 定位远程配置资源 路径:/{name}/{profile}/{label} "name" = ${spring.application.name} "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles()) "label" = "master" label对于回滚到之前的版本很有用。 3.7.6 安全 通过spring.cloud.config.password、spring.cloud.config.username进行配置。 答案来源于网络

养狐狸的猫 2019-12-02 02:18:34 0 浏览量 回答数 0

回答

当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; ###### 引用来自“vvtf”的评论 当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的 ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; 临时表方案靠谱。###### 首先,判断重复用数据库的uniq来做(程序里处理uniq的报错),而不是自己写代码另外去判断。 大数据量的导入建议用csv,读一行导一行,内存占用小。如果非要用excel,记得服务器内存要设置大点。 ######你说的那两个字段加入唯一约束 . 然后开启事务,循环插入,如果插入失败,则改为更新(或你自己的逻辑). 这样快,但肯定很消耗CPU. ######为什么不在list里面去重,再一次导入######这样数据库只需要批量插入的时候维护一次索引,如果修改的其他字段没建索引,那么update是不需要维护索引的######看能不能插入之前拆出2个list,一个是重复的,一个是不重复的(这样拆之前需要select……for update,防止其他事务修改数据)###### 引用来自“death_rider”的评论 为什么不在list里面去重,再一次导入 赞同。具体设计问题不明确不好给意见。不过系统和算法设计中有点是可以肯定的:逻辑处理和数据载入尽量分开。 在单纯的算法设计中,往往不会去考虑数据迁移的成本,这是比较理科的分析方式,而在系统开发过程中,数据迁移的成本是必须要考虑的,这是工程化的必然。 数据迁移,这里是广义上的,包括,数据的转移,从磁盘到外部存储(主板上所谓的内存),从外部存储到片内存储(soc,cpu的内部cache,差异在于无需外部总线);也包括,通过网络在不同处理设备之间的转移;同时还包括数据的结构调整,如数据清洗在逻辑层面的工作。 楼主应该考虑数据的预清洗或后处理。当然具体用哪种更合适,还要自己根据数据的来源,数据之间的关联性,数据处理的实时性等要求来判断。 哈,反正是个系统设计层面的工作。不是工具选择层面的事务。 ######回复 @首席打酱油 : 把需要比对的,做md5等散列数据,可把大概率数据测出来。只有命中时才进行比对。这些工作,需要额外的数据组织,同时需要额外的编程。这些数据过滤的算法,如果用c我看不出有啥太大计算量。######目测楼主说的不能重复不仅是指Excle中的数据不能重复,而且还要Excel中的数据和现有数据库中的数据不能重复,所以不能单纯的把Excle中的数据加载到List中内存去重###### 引用来自“vvtf”的评论 当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的 ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; 一般怎么把EXCEL转换成SQL文件呢?######如果你的excel本来就是符合load data infile的文件格式, 都不需要解析的。######就是解析excel啊。所以这个方案的耗时也就是解析excel这里。当然这可能也浪费不了多少时间的。 我这里是对MySQL的方案。 解析成对应的MySQL能解析的。比如load data infile。 或者批量insert也行。 然后source。6W条瞬间插入的。######数据直接用com接口导出(服务器处理),分布式处理也行,但是不做任何处理,极限速度,10w体积很小的,1m?连1个高清png的大小都没有,数据也是可以压缩的,重复的数据会压缩很多,上传和带宽不是瓶颈,主要是数据逻辑处理和数据库瓶颈,你处理的时候解析到内存,一个瓶颈,倒入数据库又temp table,还是内存,数据库的内存,又一个瓶颈######你要懂服务器编程才行啊,很多处理单机导出数据还可以,服务器就不这么处理了,还有就是数据库,知道temp table,stor procedure,导入导出,那是数据库初级而已######主要问题在“ Excel文档转List花费4m”,只能异步了。

kun坤 2020-06-08 19:23:25 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现

剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

回答

重试作用: 对于重试是有场景限制的,不是什么场景都适合重试,比如参数校验不合法、写操作等(要考虑写是否幂等)都不适合重试。 远程调用超时、网络突然中断可以重试。在微服务治理框架中,通常都有自己的重试与超时配置,比如dubbo可以设置retries=1,timeout=500调用失败只重试1次,超过500ms调用仍未返回则调用失败。 比如外部 RPC 调用,或者数据入库等操作,如果一次操作失败,可以进行多次重试,提高调用成功的可能性。 优雅的重试机制要具备几点: 无侵入:这个好理解,不改动当前的业务逻辑,对于需要重试的地方,可以很简单的实现 可配置:包括重试次数,重试的间隔时间,是否使用异步方式等 通用性:最好是无改动(或者很小改动)的支持绝大部分的场景,拿过来直接可用 优雅重试共性和原理: 正常和重试优雅解耦,重试断言条件实例或逻辑异常实例是两者沟通的媒介。 约定重试间隔,差异性重试策略,设置重试超时时间,进一步保证重试有效性以及重试流程稳定性。 都使用了命令设计模式,通过委托重试对象完成相应的逻辑操作,同时内部封装实现重试逻辑。 Spring-tryer和guava-tryer工具都是线程安全的重试,能够支持并发业务场景的重试逻辑正确性。 优雅重试适用场景: 功能逻辑中存在不稳定依赖场景,需要使用重试获取预期结果或者尝试重新执行逻辑不立即结束。比如远程接口访问,数据加载访问,数据上传校验等等。 对于异常场景存在需要重试场景,同时希望把正常逻辑和重试逻辑解耦。 对于需要基于数据媒介交互,希望通过重试轮询检测执行逻辑场景也可以考虑重试方案。 优雅重试解决思路: 切面方式 这个思路比较清晰,在需要添加重试的方法上添加一个用于重试的自定义注解,然后在切面中实现重试的逻辑,主要的配置参数则根据注解中的选项来初始化 优点: 真正的无侵入 缺点: 某些方法无法被切面拦截的场景无法覆盖(如spring-aop无法切私有方法,final方法) 直接使用aspecj则有些小复杂;如果用spring-aop,则只能切被spring容器管理的bean 消息总线方式 这个也比较容易理解,在需要重试的方法中,发送一个消息,并将业务逻辑作为回调方法传入;由一个订阅了重试消息的consumer来执行重试的业务逻辑 优点: 重试机制不受任何限制,即在任何地方你都可以使用 利用EventBus框架,可以非常容易把框架搭起来 缺点: 业务侵入,需要在重试的业务处,主动发起一条重试消息 调试理解复杂(消息总线方式的最大优点和缺点,就是过于灵活了,你可能都不知道什么地方处理这个消息,特别是新的童鞋来维护这段代码时) 如果要获取返回结果,不太好处理, 上下文参数不好处理 模板方式 优点: 简单(依赖简单:引入一个类就可以了; 使用简单:实现抽象类,讲业务逻辑填充即可;) 灵活(这个是真正的灵活了,你想怎么干都可以,完全由你控制) 缺点: 强侵入 代码臃肿 把这个单独捞出来,主要是某些时候我就一两个地方要用到重试,简单的实现下就好了,也没有必用用到上面这么重的方式;而且我希望可以针对代码快进行重试 这个的设计还是非常简单的,基本上代码都可以直接贴出来,一目了然: 复制代码 public abstract class RetryTemplate { private static final int DEFAULT_RETRY_TIME = 1; private int retryTime = DEFAULT_RETRY_TIME; private int sleepTime = 0;// 重试的睡眠时间 public int getSleepTime() { return sleepTime; } public RetryTemplate setSleepTime(int sleepTime) { if(sleepTime < 0) { throw new IllegalArgumentException("sleepTime should equal or bigger than 0"); } this.sleepTime = sleepTime; return this; } public int getRetryTime() { return retryTime; } public RetryTemplate setRetryTime(int retryTime) { if (retryTime <= 0) { throw new IllegalArgumentException("retryTime should bigger than 0"); } this.retryTime = retryTime; return this; } /** * 重试的业务执行代码 * 失败时请抛出一个异常 * * todo 确定返回的封装类,根据返回结果的状态来判定是否需要重试 * * @return */ protected abstract Object doBiz() throws Exception; //预留一个doBiz方法由业务方来实现,在其中书写需要重试的业务代码,然后执行即可 public Object execute() throws InterruptedException { for (int i = 0; i < retryTime; i++) { try { return doBiz(); } catch (Exception e) { log.error("业务执行出现异常,e: {}", e); Thread.sleep(sleepTime); } } return null; } public Object submit(ExecutorService executorService) { if (executorService == null) { throw new IllegalArgumentException("please choose executorService!"); } return executorService.submit((Callable) () -> execute()); } } 复制代码 使用示例: 复制代码 public void retryDemo() throws InterruptedException { Object ans = new RetryTemplate() { @Override protected Object doBiz() throws Exception { int temp = (int) (Math.random() * 10); System.out.println(temp); if (temp > 3) { throw new Exception("generate value bigger then 3! need retry"); } return temp; } }.setRetryTime(10).setSleepTime(10).execute(); System.out.println(ans); } 复制代码 spring-retry Spring Retry 为 Spring 应用程序提供了声明性重试支持。 它用于Spring批处理、Spring集成、Apache Hadoop(等等)的Spring。 在分布式系统中,为了保证数据分布式事务的强一致性,在调用RPC接口或者发送MQ时,针对可能会出现网络抖动请求超时情况采取一下重试操作。 用的最多的重试方式就是MQ了,但是如果你的项目中没有引入MQ,就不方便了。 还有一种方式,是开发者自己编写重试机制,但是大多不够优雅。 缺陷 spring-retry 工具虽能优雅实现重试,但是存在两个不友好设计: 一个是重试实体限定为 Throwable 子类,说明重试针对的是可捕捉的功能异常为设计前提的,但是我们希望依赖某个数据对象实体作为重试实体, 但 sping-retry框架必须强制转换为Throwable子类。 另一个是重试根源的断言对象使用的是 doWithRetry 的 Exception 异常实例,不符合正常内部断言的返回设计。 Spring Retry 提倡以注解的方式对方法进行重试,重试逻辑是同步执行的,当抛出相关异常后执行重试, 如果你要以返回值的某个状态来判定是否需要重试,可能只能通过自己判断返回值然后显式抛出异常了。只读操作可以重试,幂等写操作可以重试,但是非幂等写操作不能重试,重试可能导致脏写,或产生重复数据。 @Recover 注解在使用时无法指定方法,如果一个类中多个重试方法,就会很麻烦。 spring-retry 结构 BackOff:补偿值,一般指失败后多久进行重试的延迟值。 Sleeper:暂停应用的工具,通常用来应用补偿值。 RetryState:重试状态,通常包含一个重试的键值。 RetryCallback:封装你需要重试的业务逻辑(上文中的doSth) RecoverCallback:封装了多次重试都失败后你需要执行的业务逻辑(上文中的doSthWhenStillFail) RetryContext:重试语境下的上下文,代表了能被重试动作使用的资源。可用于在多次Retry或者Retry 和Recover之间传递参数或状态(在多次doSth或者doSth与doSthWhenStillFail之间传递参数) RetryOperations: 定义了“重试”的模板(重试的API),要求传入RetryCallback,可选传入RecoveryCallback; RetryTemplate :RetryOperations的具体实现,组合了RetryListener[],BackOffPolicy,RetryPolicy。 RetryListener:用来监控Retry的执行情况,并生成统计信息。 RetryPolicy:重试的策略或条件,可以简单的进行多次重试,可以是指定超时时间进行重试(上文中的someCondition),决定失败能否重试。 BackOffPolicy: 重试的回退策略,在业务逻辑执行发生异常时。如果需要重试,我们可能需要等一段时间(可能服务器过于繁忙,如果一直不间隔重试可能拖垮服务器),当然这段时间可以是0,也可以是固定的,可以是随机的(参见tcp的拥塞控制算法中的回退策略)。回退策略在上文中体现为wait(); RetryPolicy提供了如下策略实现: NeverRetryPolicy:只允许调用RetryCallback一次,不允许重试; AlwaysRetryPolicy:允许无限重试,直到成功,此方式逻辑不当会导致死循环; SimpleRetryPolicy:固定次数重试策略,默认重试最大次数为3次,RetryTemplate默认使用的策略; TimeoutRetryPolicy:超时时间重试策略,默认超时时间为1秒,在指定的超时时间内允许重试; CircuitBreakerRetryPolicy:有熔断功能的重试策略,需设置3个参数openTimeout、resetTimeout和delegate delegate:是真正判断是否重试的策略,当重试失败时,则执行熔断策略;应该配置基于次数的SimpleRetryPolicy或者基于超时的TimeoutRetryPolicy策略,且策略都是全局模式,而非局部模式,所以要注意次数或超时的配置合理性。 openTimeout:openWindow,配置熔断器电路打开的超时时间,当超过openTimeout之后熔断器电路变成半打开状态(主要有一次重试成功,则闭合电路); resetTimeout:timeout,配置重置熔断器重新闭合的超时时间 CompositeRetryPolicy:组合重试策略,有两种组合方式,乐观组合重试策略是指只要有一个策略允许重试即可以,悲观组合重试策略是指只要有一个策略不允许重试即可以,但不管哪种组合方式,组合中的每一个策略都会执行。 BackOffPolicy 提供了如下策略实现: NoBackOffPolicy:无退避算法策略,即当重试时是立即重试; FixedBackOffPolicy:固定时间的退避策略,需设置参数sleeper(指定等待策略,默认是Thread.sleep,即线程休眠)、backOffPeriod(休眠时间,默认1秒); UniformRandomBackOffPolicy:随机时间退避策略,需设置sleeper、minBackOffPeriod、maxBackOffPeriod,该策略在[minBackOffPeriod,maxBackOffPeriod之间取一个随机休眠时间,minBackOffPeriod默认500毫秒,maxBackOffPeriod默认1500毫秒; ExponentialBackOffPolicy:指数退避策略,需设置参数sleeper、initialInterval、maxInterval和multiplier。initialInterval指定初始休眠时间,默认100毫秒,maxInterval指定最大休眠时间,默认30秒,multiplier指定乘数,即下一次休眠时间为当前休眠时间*multiplier; ExponentialRandomBackOffPolicy:随机指数退避策略,引入随机乘数,固定乘数可能会引起很多服务同时重试导致DDos,使用随机休眠时间来避免这种情况。 RetryTemplate主要流程实现: 复制代码 //示例一 public void upload(final Map<String, Object> map) throws Exception { // 构建重试模板实例 RetryTemplate retryTemplate = new RetryTemplate(); // 设置重试策略,主要设置重试次数 SimpleRetryPolicy policy =         new SimpleRetryPolicy(3, Collections.<Class<? extends Throwable>, Boolean> singletonMap(Exception.class, true)); // 设置重试回退操作策略,主要设置重试间隔时间 FixedBackOffPolicy fixedBackOffPolicy = new FixedBackOffPolicy(); fixedBackOffPolicy.setBackOffPeriod(100); retryTemplate.setRetryPolicy(policy); retryTemplate.setBackOffPolicy(fixedBackOffPolicy); // 通过RetryCallback 重试回调实例包装正常逻辑逻辑,第一次执行和重试执行执行的都是这段逻辑 final RetryCallback<Object, Exception> retryCallback = new RetryCallback<Object, Exception>() { //RetryContext 重试操作上下文约定,统一spring-try包装 public Object doWithRetry(RetryContext context) throws Exception { System.out.println("do some thing"); Exception e = uploadToOdps(map); System.out.println(context.getRetryCount()); throw e;//这个点特别注意,重试的根源通过Exception返回 } }; // 通过RecoveryCallback 重试流程正常结束或者达到重试上限后的退出恢复操作实例 final RecoveryCallback recoveryCallback = new RecoveryCallback() { public Object recover(RetryContext context) throws Exception { System.out.println("do recory operation"); return null; } }; try { // 由retryTemplate 执行execute方法开始逻辑执行 retryTemplate.execute(retryCallback, recoveryCallback); } catch (Exception e) { e.printStackTrace(); } } //示例二 protected <T, E extends Throwable> T doExecute(RetryCallback<T, E> retryCallback,RecoveryCallback recoveryCallback,   RetryState state) throws E, ExhaustedRetryException { //重试策略 RetryPolicy retryPolicy = this.retryPolicy; //退避策略 BackOffPolicy backOffPolicy = this.backOffPolicy; //重试上下文,当前重试次数等都记录在上下文中 RetryContext context = open(retryPolicy, state); try { //拦截器模式,执行RetryListener#open boolean running = doOpenInterceptors(retryCallback, context); //判断是否可以重试执行 while (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { try {//执行RetryCallback回调 return retryCallback.doWithRetry(context); } catch (Throwable e) {//异常时,要进行下一次重试准备 //遇到异常后,注册该异常的失败次数 registerThrowable(retryPolicy, state, context, e); //执行RetryListener#onError doOnErrorInterceptors(retryCallback, context, e); //如果可以重试,执行退避算法,比如休眠一小段时间后再重试 if (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { backOffPolicy.backOff(backOffContext); } //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy, context, state)) { throw RetryTemplate. wrapIfNecessary(e); } } //如果是有状态重试,且有GLOBAL_STATE属性,则立即跳出重试终止;       //当抛出的异常是非需要执行回滚操作的异常时,才会执行到此处,CircuitBreakerRetryPolicy会在此跳出循环; if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } } //重试失败后,如果有RecoveryCallback,则执行此回调,否则抛出异常 return handleRetryExhausted(recoveryCallback, context, state); } catch (Throwable e) { throw RetryTemplate. wrapIfNecessary(e); } finally { //清理环境 close(retryPolicy, context, state, lastException == null || exhausted); //执行RetryListener#close,比如统计重试信息 doCloseInterceptors(retryCallback, context, lastException); } } 复制代码 有状态or无状态 无状态重试,是在一个循环中执行完重试策略,即重试上下文保持在一个线程上下文中,在一次调用中进行完整的重试策略判断。如远程调用某个查询方法时是最常见的无状态重试: 复制代码 RetryTemplate template = new RetryTemplate(); //重试策略:次数重试策略 RetryPolicy retryPolicy = new SimpleRetryPolicy(3); template.setRetryPolicy(retryPolicy); //退避策略:指数退避策略 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy(); backOffPolicy.setInitialInterval(100); backOffPolicy.setMaxInterval(3000); backOffPolicy.setMultiplier(2); backOffPolicy.setSleeper(new ThreadWaitSleeper()); template.setBackOffPolicy(backOffPolicy); //当重试失败后,抛出异常 String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { throw new RuntimeException("timeout"); } }); //当重试失败后,执行RecoveryCallback String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }); 复制代码 有状态重试,有两种情况需要使用有状态重试,事务操作需要回滚、熔断器模式。 事务操作需要回滚场景时,当整个操作中抛出的是数据库异常DataAccessException,则不能进行重试需要回滚,而抛出其他异常则可以进行重试,可以通过RetryState实现: 复制代码 //当前状态的名称,当把状态放入缓存时,通过该key查询获取 Object key = "mykey"; //是否每次都重新生成上下文还是从缓存中查询,即全局模式(如熔断器策略时从缓存中查询) boolean isForceRefresh = true; //对DataAccessException进行回滚 BinaryExceptionClassifier rollbackClassifier = new BinaryExceptionClassifier(Collections.<Class<? extends Throwable>>singleton(DataAccessException.class)); RetryState state = new DefaultRetryState(key, isForceRefresh, rollbackClassifier); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new TypeMismatchDataAccessException(""); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); 复制代码 RetryTemplate中在有状态重试时,回滚场景时直接抛出异常处理代码: //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy,context, state)) { throw RetryTemplate. wrapIfNecessary(e); } 熔断器场景。在有状态重试时,且是全局模式,不在当前循环中处理重试,而是全局重试模式(不是线程上下文),如熔断器策略时测试代码如下所示。 复制代码 RetryTemplate template = new RetryTemplate(); CircuitBreakerRetryPolicy retryPolicy = new CircuitBreakerRetryPolicy(new SimpleRetryPolicy(3)); retryPolicy.setOpenTimeout(5000); retryPolicy.setResetTimeout(20000); template.setRetryPolicy(retryPolicy); for (int i = 0; i < 10; i++) { try { Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key, isForceRefresh); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); System.out.println(result); } catch (Exception e) { System.out.println(e); } } 复制代码 为什么说是全局模式呢?我们配置了isForceRefresh为false,则在获取上下文时是根据key “circuit”从缓存中获取,从而拿到同一个上下文。 Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key,isForceRefresh); 如下RetryTemplate代码说明在有状态模式下,不会在循环中进行重试。 if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } 判断熔断器电路是否打开的代码: 复制代码 public boolean isOpen() { long time = System.currentTimeMillis() - this.start; boolean retryable = this.policy.canRetry(this.context); if (!retryable) {//重试失败 //在重置熔断器超时后,熔断器器电路闭合,重置上下文 if (time > this.timeout) { this.context = createDelegateContext(policy, getParent()); this.start = System.currentTimeMillis(); retryable = this.policy.canRetry(this.context); } else if (time < this.openWindow) { //当在熔断器打开状态时,熔断器电路打开,立即熔断 if ((Boolean) getAttribute(CIRCUIT_OPEN) == false) { setAttribute(CIRCUIT_OPEN, true); } this.start = System.currentTimeMillis(); return true; } } else {//重试成功 //在熔断器电路半打开状态时,断路器电路闭合,重置上下文 if (time > this.openWindow) { this.start = System.currentTimeMillis(); this.context = createDelegateContext(policy, getParent()); } } setAttribute(CIRCUIT_OPEN, !retryable); return !retryable; } 复制代码 从如上代码可看出spring-retry的熔断策略相对简单: 当重试失败,且在熔断器打开时间窗口[0,openWindow) 内,立即熔断; 当重试失败,且在指定超时时间后(>timeout),熔断器电路重新闭合; 在熔断器半打开状态[openWindow, timeout] 时,只要重试成功则重置上下文,断路器闭合。 注解介绍 @EnableRetry 表示是否开始重试。 序号 属性 类型 默认值 说明 1 proxyTargetClass boolean false 指示是否要创建基于子类的(CGLIB)代理,而不是创建标准的基于Java接口的代理。当proxyTargetClass属性为true时,使用CGLIB代理。默认使用标准JAVA注解 @Retryable 标注此注解的方法在发生异常时会进行重试 序号 属性 类型 默认值 说明 1 interceptor String ”” 将 interceptor 的 bean 名称应用到 retryable() 2 value class[] {} 可重试的异常类型 3 include class[] {} 和value一样,默认空,当exclude也为空时,所有异常都重试 4 exclude class[] {} 指定异常不重试,默认空,当include也为空时,所有异常都重试 5 label String ”” 统计报告的唯一标签。如果没有提供,调用者可以选择忽略它,或者提供默认值。 6 maxAttempts int 3 尝试的最大次数(包括第一次失败),默认为3次。 7 backoff @Backoff @Backoff() 重试补偿机制,指定用于重试此操作的backoff属性。默认为空 @Backoff 不设置参数时,默认使用FixedBackOffPolicy(指定等待时间),重试等待1000ms 序号 属性 类型 默认值 说明 1 delay long 0 指定延迟后重试 ,如果不设置则默认使用 1000 milliseconds 2 maxDelay long 0 最大重试等待时间 3 multiplier long 0 指定延迟的倍数,比如delay=5000l,multiplier=2时,第一次重试为5秒后,第二次为10秒,第三次为20秒(大于0生效) 4 random boolean false 随机重试等待时间 @Recover 用于恢复处理程序的方法调用的注释。返回类型必须与@retryable方法匹配。 可抛出的第一个参数是可选的(但是没有它的方法只会被调用)。 从失败方法的参数列表按顺序填充后续的参数。 用于@Retryable重试失败后处理方法,此注解注释的方法参数一定要是@Retryable抛出的异常,否则无法识别,可以在该方法中进行日志处理。 说明: 使用了@Retryable的方法不能在本类被调用,不然重试机制不会生效。也就是要标记为@Service,然后在其它类使用@Autowired注入或者@Bean去实例才能生效。 要触发@Recover方法,那么在@Retryable方法上不能有返回值,只能是void才能生效。 使用了@Retryable的方法里面不能使用try...catch包裹,要在发放上抛出异常,不然不会触发。 在重试期间这个方法是同步的,如果使用类似Spring Cloud这种框架的熔断机制时,可以结合重试机制来重试后返回结果。 Spring Retry不只能注入方式去实现,还可以通过API的方式实现,类似熔断处理的机制就基于API方式实现会比较宽松。 转载于:https://www.cnblogs.com/whatarewords/p/10656514.html

养狐狸的猫 2019-12-02 02:11:54 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅