• 关于

    电子系统设计自动化如何看配置

    的搜索结果

回答

作者:九章算法 链接:https://www.zhihu.com/question/22744854/answer/763206431 来源:知乎 首先,这个神仙项目请你pick: https://github.com/sindresorhus/awesome 各领域各语言资源大合集 另外,可以关注GitHub的每日榜单,看看大家都在关注些什么(虽然有国外小哥吐槽榜单上都是中文哈哈 https://github.com/trending/python?since=daily 推荐不同语言的几个项目: Python : youtube-dl这个程序是一个开源的python项目。支持MacOS、Linux和Windows平台,可以在官网直接下载编译好的程序。可以用来下载YouTube视频,国内的一些视频站也可以进行下载。 interview_internal_reference: 总结了2019年最新的阿里,腾讯,百度,美团,头条等技术面试题目以及答案,分析汇总。 sherlock: 高级机器视觉软件,可以用于广泛的自动化检测应用。它提供了最大的设计灵活性,丰富的已验证的工具和功能。 DeepFaceLab: 这是一个github上的开源项目,所有人都可以查看源代码也能免费使用。个人认为这个项目的最大优点就是安装超级简单,几乎是无需安装,使用过程也不复杂 Manim: 解释数学视频的动画引擎。可以用来创建精确的2D动画。 XSStrike:XSStrike是一个Cross Site Scripting检测套件,配备四个手写解析器,一个智能有效载荷生成器,一个强大的模糊引擎和一个非常快速的爬虫。 XSStrike不是像其他工具一样注入有效载荷并检查它的工作原理,而是通过多个解析器分析响应,然后通过与模糊引擎集成的上下文分析来保证有效载荷。 f="https://github.com/wangshub">Douyin -Bot:抖音机器人。是用于机器人算法的Python代码。教你如何在抖音上找到漂亮小姐姐~~ Photon:快速抓取工具,可以提取网址,电子邮件,文件,网站帐户等等。 google-images-download:可以实现搜索和下载数百个Google图像的Python脚本到本地。 faceswap是个基于dlib的换脸程序。模型训练速度较快,同样配置下更快的到达低loss值,而且有gui界面版本。 you-getyou-get 是py上一个方便的下载工具。这个爬虫神器能爬取视频网站和图片网站,你不用写任何代码就能很容易的把你喜欢的视频或者图片甚至音频文件给扒下来。而且支持腾讯、搜狐、新浪、B站、央视网、芒果TV,乐视网、优酷、熊猫斗鱼等等大多数的国内主流视频网站。 Java: advanced-java: Java工程师进阶知识扫盲,适合系统学习。 vhr:一个前后端分离的人力资源管理系统,采用SpringBoot+Vue开发。这个项目的权限管理模块已经开发完成,其他模块还在开发当中。可以管理角色和资源的关系,管理用户和角色的关系。 cat:作为服务端项目基础组件,cat提供了 Java, C/C++, Node.js, Python, Go 等多语言客户端,已经在美团点评的基础架构中间件框架(MVC框架,RPC框架,数据库框架,缓存框架等,消息队列,配置系统等)深度集成,为美团点评各业务线提供系统丰富的性能指标、健康状况、实时告警等。 jeecg-boot:一款基于代码生成器的JAVA快速开发平台!全新架构前后端分离:SpringBoot 2.x,Ant Design&Vue,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码,绝对是全栈开发的福音!! interviews:软件工程技术面试个人指南。可以这里找到针对很多面试问题的视频解决方案以及详细说明。 p3c:是阿里巴巴p3c项目组进行研发。根据《阿里巴巴Java开发规范》转化而成的自动化插件,并且实现了部分自动编程。 SpringAll:包括了Spring Boot,Spring Boot&Shiro,Spring Cloud,Spring Boot&Spring Security&Spring Security OAuth2等系列教程。toBeTopJavaer:Java工程师成神之路。总结的很好,直接理解学习就完了。 JavaScript: quasar:Quasar Framework是MIT许可的开源项目。能在记录时间内构建高性能VueJS用户界面 Daily-Interview-Question:前端大厂面试题汇总 next.js:一个基于React的一个服务端渲染简约框架。它使用React语法,可以很好的实现代码的模块化,有利于代码的开发和维护。 javascript-algorithms:这个存储库包含许多流行算法和数据结构的基于JavaScript的示例。每个算法和数据结构都有自己独立的自述文件,包含相关说明和链接,供进一步阅读 baidu-netdisk-downloaderx:一款图形界面的百度网盘不限速下载器,支持Windows,Linux和Mac。重点在不限速! 其他好玩的项目~ ChineseBQB:国内表情包大集合~~ komeiji-satori/Dress:女装大佬项目,一张图你就懂了 chinese-poetry最全的中文诗歌古典文集数据库.包含5.5万首唐诗、26万首宋诗和2.1万首宋词。唐宋两朝近1.4万古诗人, 和两宋时期1千多位词人 thefuck该项目的主要作用是,在terminal 里输错命令之后无需修改,fuck 一下,自动帮你更正命令,既解气又实用。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-08 10:37:26 0 浏览量 回答数 0

回答

1、拼多多被黑产薅羊毛事件 提名理由: 2019 年 1 月 20 日,微博爆料称拼多多出现重大 Bug:从网友晒出的图片看,此次 100 元无门槛券随便领,全场通用(特殊商品除外),有效期一年。有网友表示,凌晨 3 点多被同行“喊醒”,让来拼多多“薅羊毛”,“只需支付 4 毛钱,就可以充值 100 元话费”。 拼多多回应表示:有黑灰产团伙通过一个过期的优惠券漏洞盗取数千万元平台优惠券,进行不正当牟利。针对此行为,平台已第一时间修复漏洞,并正对涉事订单进行溯源追踪。同时我们已向公安机关报案,并将积极配合相关部门对涉事黑灰产团伙予以打击。 **翻车点评:**本次事件除了反映出拼多多在研发流程上的管控问题,也侧写出了中国企业的公关之难:在拼多多公关看来,此次被薅羊毛 200 亿的谣言是有心人在造谣抹黑;在旁观者看来,此次 200 亿谣言是拼多多的营销手段。一场罗生门背后,除了要敬畏每一行代码,还要敬畏每一位用户才是。 翻车等级:★★★☆☆ 2、苹果误发 7 倍工资给开发者,随后追回 提名理由: 2019 年 9 月 4 日,一位名为 @waylybaye 的 IOS 开发者在社交平台上爆料:“苹果搞了个大事故!!给国内开发者打上上个月的钱的时候,把单位是人民币的钱当成美元打过来了!所有开发者的收入都翻了 7 倍!现在这笔 7 倍的外汇已经到账可以申报了,但我不敢动……请问这种情况怎么搞?” 9 月 5 日,苹果官方发出邮件回应结算出错。在邮件中,苹果公司称,由于合作银行德意志银行方的问题,影响了开发者 2019 年 7 月的收入。希望开发者能够配合银行退回错误的金额,另外再汇一笔正确的金额。 该开发者表示将配合苹果公司退回款项,律师表示如果主张返还的行为给中国开发者带来很大的不便,甚至造成一些损失并有证据证明,那么中国开发者可以向苹果公司主张赔偿损失。 **翻车点评:**如果是越南开发者,收入岂不是翻了 2 万多倍?如果是津巴布韦开发者,岂不是要上天? **翻车等级:**★★★☆☆ 3、李世石击败围棋 AI:怀疑电脑质量有问题 提名理由: 李世石是当今世界唯一一位曾经打败 AI 围棋程序 AlphaGo 的人类棋手,他在 2019 年宣布了正式退役。这位棋手表示:在 AI 出现之后,他意识到即使通过疯狂的努力再次成为排名第一的棋手,他也无法真正一览众山小,因为有一个实体你无法击败它。 此次退役赛,李世石选择了对战 NHN Entertainment 开发的 AI 围棋程序 HanDol,这名 AI 棋手已经打败了韩国排名前五的棋手。2019 年 12 月 18 日,退役赛首战,李世石被让两子,做好了首战告负心理准备的李世石却意外取胜,原因在于 AI 程序在对弈中出现了一个低级失误,被李世石抓住机会一举奠定胜局。赢棋后的李世石并没有表现出过多的兴奋,他甚至怀疑是这台电脑的质量没有达到应有的水平。 **翻车点评:**AI、大数据、云计算的三位一体 ABC 战略,将给未来的世界带来怎样的颠覆?也许再过几年,你看到的金翻车奖就是 AI 评选的了。 翻车等级:★★★☆☆ 4、程序员用 Null 做车牌,命中车管所漏洞吃下所有无主罚单 提名理由: Joseph Tartaro 是一位美国软件安全领域的专家,2016 年年底,Tartaro 决定要注册一块有个性的车牌。作为一名软件安全方面的专家,他有着许多技术人独有的职业癖好:希望车牌号能够与工作联系在一起。“我可以给我老婆注册一块 VOID 车牌,这样我们的车道就变成了 NULL 和 VOID 了”。 当然,这里面是有其深层含义的。Tartaro 在最近的一次 Defcon 黑客大会上说,“null”在很多编程语言中是一个文本字符串,用来表示空值或未定义的值。在很多计算机中,null 就是 void。也就是说,他跟她老婆其实是二位一体的存在,公不离婆秤不离砣,颇有点程序员式的浪漫。但很快,这个车牌就让他浪不起来了,因为 Null 命中了车管所系统漏洞,他为此收到了所有的无名罚单,总额超过 1.2 万美元。他后来坦言,初衷其实只是为了使用 Null 车牌来逃避罚单,万万没想到无名罚单却成了自己的。 延展阅读:使用 Null 做自定义车牌,成功命中车管所系统漏洞,所有未填车牌的罚单都是我的了 **翻车点评:**我在看房的时候是坚决不看 404 号门牌的,这哥们却主动给自己报空指针,果然跟那些妖艳贱货有些不同。 **翻车等级:**★★★☆☆ 5、游戏公司主程锁死服务器事件 提名理由: 2019 年 1 月 21 日,一封《告游戏行业全体同仁书》将一家创业公司 C++ 主程燕某推向舆论高潮,这篇文章指责燕某在就职深圳螃蟹网络科技有限公司 3 个月期间,出于报复心理,于游戏上线测试当天无故失踪并锁死电脑和服务器,最终导致公司开发两年的项目失败,损失惨重,创始人尹某背上百万债务开始打工之路。 1 月 24 日,燕某发表长文针对深圳市螃蟹网络科技有限公司创始人尹某的《告游戏行业全体同仁书》中提及的各项指责以及网络传言一一反驳,并表示一切法庭上见,相信法律会还一个公道。 **翻车点评:**2019 年让吃瓜群众真正学到了新闻等等再看,本次事件是典型的反转案例,从《告游戏行业全体同仁书》发布后的”程序员是如何逼死一家公司“的舆论,到后来的风向大反转,深刻地揭示了:瓜,要慢慢吃。脸,要慢慢打。 **翻车等级:**★★★★☆ 6、李彦宏被泼水 提名理由: 2019 年 7 月 3 日,百度 AI 开发者大会于北京国家会议中心举行。百度创始人、董事长兼任 CEO 李彦宏首先发表演讲。而在他正在演示 AI 自主泊车“最后一公里”时,有持矿泉水瓶的男青年冲上台,将水浇在李彦宏头上。李彦宏的白衬衫几乎湿透,他愣了一下后说:“What‘s your problem?” 随后泼水者被工作人员控制,李彦宏在掌声鼓励中说道:“大家看到在 AI 前进的道路上还是会有各种各样想不到的事情会发生。但是我们前行的决心不会改变,我们坚信 AI 会改变每一个人的生活。” **翻车点评:**在技术发展的历史上,总会出现风口过热的情况,无论是 AI 还是区块链,都存在被吹过头的现象,我们愿意看到有清醒的人为这些过热的技术降降温,但却绝对不认可目前这种方式。 翻车等级:★★★★☆ 7、62 岁程序员骚操作,翻车获刑 **提名理由: ** 现年 62 岁的大卫·廷利 (David Tinley) 来自匹兹堡附近的哈里森市,廷利为西门子在 Monroeville 的办事处工作了将近 10 年的时间,他曾接过一个为西门子公司创建管理订单的电子表格需求,电子表格包含自定义脚本,可以根据存储在其他远程文档中的当前订单更新文件的内容,从而允许公司自动化库存和订单管理。 廷利十年前在给西门子写的电子表格中植入了逻辑炸弹,它会在特定日期之后导致电子表格崩溃,于是西门子就必须再次雇佣他进行修复,每次都需要重新支付修复费用,持续时间近 3 年。最近他被抓包了,面临最高十年监禁和 25 万美元(约合人民币 172 万)的指控。 **翻车点评:**西门子居然没有人 review 代码,廷利居然忘了自己挖的坑的发作时间,60 多岁还没退休,资本主义果然罪恶,emmm… 翻车等级:★★★★☆ 8、FBI 网站被黑,数千特工信息泄露 提名理由: 在传统的好莱坞大片里,FBI 通常都是神通广大,无所不能,个个有着汤姆斯克鲁斯的脸,施瓦辛格的体格,既有拳脚功夫了得的特工,也有技术实力超群的 Nerd。从来只有他们攻破某某国家防火墙的份,但现实告诉我们,这真的只是在拍戏。 2019 年 4 月,包括 TechCrunch 等多家媒体报导,一个黑客组织黑了美国联邦调查局 FBI 的附属网站,并泄露了数千名联邦特工和执法人员的个人信息。黑客攻击了与 FBI 培训学院 National Academy Association 相关的三个网站,利用其中存在的漏洞,下载了每个服务器上的内容。随后黑客将数据发布到他们自己的网站上,并提供下载。电子表格在删除重复数据后包含大约 4 000 条独特记录,包括 FBI 特工与其它执法人员的姓名、个人和政府电子邮件地址、职位、电话号码和邮政地址等信息。 **翻车点评:**有道是终日打雁,却被雁啄了眼睛。但对我们这一代看着 FBI Warning 长大的孩子来说,FBI 它算个球。 翻车等级:★★★★☆ 9、IT 圈的暴力裁员事件 提名理由: 2018 年的春天,堪称近年来最暖的春天。彼时人工智能领域风起云涌,AI 创业公司们纷纷高薪疯抢 AI 开发者,月薪动辄 10 万级别。人工智能的流行还未结束,一个名叫区块链的技术突然又火爆了起来,一时间,“凡人饮水处,皆言区块链”。那是程序员们最甜蜜的一段时间。 这一年的上半年,互联网公司们扎堆上市,蔚为壮观:哔哩哔哩、爱奇艺、美团、小米、拼多多、趣头条……上市后的互联网新兴巨头、独角兽公司为了攻城略地,开启了全面的整军备战:唯有技术、开发者,才是未来的决定因素,这是技术最好的时代。许多人都如此笃信。 一年后的 2019,一切变了:保安赶走身患绝症员工、统计时长裁员、251、1024 等事件频繁映入眼帘,从最开始的愤怒到最后来的无助,我们感同身受。当企业紧缩银根,高薪资的开发们就成了裁员者的 KPI 了。 **翻车点评:**2019 也许是过去十年最坏的一年,也可能是未来十年最好的一年。如果真到万不得已,我们只求一场好聚好散。PS:小编我买了一支录音笔。 **翻车等级:**★★★★★ 10、波音 737 Max 客机软件故障坠机事件 提名理由: 2019 年 3 月 10 日,埃塞俄比亚航空公司一架波音 737 MAX 8 客机在飞往肯尼亚途中坠毁。机上有 149 名乘客和 8 名机组成员,无人生还。据报道,此次失事的是一架全新的波音飞机,四个月前才交付给该航空公司。这是波音 737 MAX 8 半年内出现的第二起严重事故。(第一起为 2018 年 10 月 29 日印尼狮航的坠落事件,189 人罹难) 两次空难的影响因素都有该机型配置的自动控制下压机头的系统,其设计初衷是,如果机身上的传感器检测到高速失速的情况,即使在没有飞行员输入信号的情况下,该系统将强制将飞机的机头向下推。但在狮航空难事件中,该系统接收到了错误数据,导致飞机在正常情况下开始不断下压机头,飞行员在 11 分钟内连续手动拉升 20 余次终告失败,坠海罹难。 这次事故引发了技术圈的广泛讨论,这种由软件带来的自动化能力,究竟是好是坏? **点评:**两起空难总计 346 条人命面前,我们不愿也不敢戏谑。通过对波音公司的陆续调查发现,该公司为了节省成本,裁员了大量资深开发,代之以时薪 9 美元的印度外包,这家数字化转型的“代表企业”看起来光鲜亮丽,但也有阳光下的阴暗背面。 **等级:**★★★★★ 其他候选事件 韩企被爆用免费饮料换 GitHub 上的 star Twitter CEO 杰克·多西的推特账号被黑 特斯拉 App 突然瘫痪,大批车主没法上车 太空作案,NASA 女航天员在太空盗窃前任银行账户 中国人霸榜 GitHub Trending 引发国外开发者不满 你心目中,今年的翻车新闻之首是谁呢?

游客pklijor6gytpx 2020-01-02 10:26:08 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站