• 关于

    段表起始地址是什么

    的搜索结果

问题

线性表 7月8日 【今日算法】

游客ih62co2qqq5ww 2020-07-09 07:47:37 504 浏览量 回答数 1

回答

我们都知道虚拟机的内存划分了多个区域,并不是一张大饼。那么为什么要划分为多块区域呢,直接搞一块区域,所有用到内存的地方都往这块区域里扔不就行了,岂不痛快。是的,如果不进行区域划分,扔的时候确实痛快,可用的时候再去找怎么办呢,这就引入了第一个问题,分类管理,类似于衣柜,系统磁盘等等,为了方便查找,我们会进行分区分类。另外如果不进行分区,内存用尽了怎么办呢?这里就引入了内存划分的第二个原因,就是为了方便内存的回收。如果不分,回收内存需要全部内存扫描,那就慢死了,内存根据不同的使用功能分成不同的区域,那么内存回收也就可以根据每个区域的特定进行回收,比如像栈内存中的栈帧,随着方法的执行栈帧进栈,方法执行完毕就出栈了,而对于像堆内存的回收就需要使用经典的回收算法来进行回收了,所以看起来分类这么麻烦,其实是大有好处的。 提到虚拟机的内存结构,可能首先想起来的就是堆栈。对象分配到堆上,栈上用来分配对象的引用以及一些基本数据类型相关的值。但是·虚拟机的内存结构远比此要复杂的多。除了我们所认识的(还没有认识完全)的堆栈以外,还有程序计数器,本地方法栈和方法区。我们平时所说的栈内存,一般是指的栈内存中的局部变量表。 从图中可以看到有5大内存区域,按照是否被线程所共享可分为两部分,一部分是线程独占区域,包括Java栈,本地方法栈和程序计数器。还有一部分是被线程所共享的,包括方法区和堆。什么是线程共享和线程独占呢,非常好理解,我们知道每一个Java进行都会有多个线程同时运行,那么线程共享区的这片区域就是被所有线程一起使用的,不管有多少个线程,这片空间始终就这一个。而线程的独占区,是每个线程都有这么一份内存空间,每个线程的这片空间都是独有的,有多少个线程就有多少个这么个空间。上图的区域的大小并不代表实际内存区域的大小,实际运行过程中,内存区域的大小也是可以动态调整的。下面来具体说说每一个区域的主要功能。 程序计数器,我们在写代码的过程中,开发工具一般都会给我们标注行号方便查看和阅读代码。那么在程序在运行过程中也有一个类似的行号方便虚拟机的执行,就是程序计数器,在c语言中,我们知道会有一个goto语句,其实就是跳转到了指定的行,这个行号就是程序计数器。存储的就是程序下一条所执行的指令。这部分区域是线程所独享的区域,我们知道线程是一个顺序执行流,每个线程都有自己的执行顺序,如果所有线程共用一个程序计数器,那么程序执行肯定就会出乱子。为了保证每个线程的执行顺序,所以程序计数器是被单个线程所独显的。程序计数器这块内存区域是唯一一个在jvm规范中没有规定内存溢出的。 java虚拟机栈,java虚拟机栈是程序运行的动态区域,每个方法的执行都伴随着栈帧的入栈和出栈。 栈帧也叫过程活动记录,是编译器用来实现过程/函数调用的一种数据结构。栈帧中包括了局部变量表,操作数栈,方法返回地址以及额外的一些附加信息,在编译过程中,局部变量表的大小已经确定,操作数栈深度也已经确定,因此栈帧在运行的过程中需要分配多大的内存是固定的,不受运行时影响。对于没有逃逸的对象也会在栈上分配内存,对象的大小其实在运行时也是确定的,因此即使出现了栈上内存分配,也不会导致栈帧改变大小。 一个线程中,可能调用链会很长,很多方法都同时处于执行状态。对于执行引擎来讲,活动线程中,只有栈顶的栈帧是最有效的,称为当前栈帧,这个栈帧所关联的方法称为当前方法。执行引擎所运行的字节码指令仅对当前栈帧进行操作。Ft5rk58GfiJxcdcCzGeAt8fjkFPkMRdf 局部变量表:我们平时所说的栈内存一般就是指栈内存中的局部变量表。这里主要是存储变量所用。对于基本数据类型直接存储其值,对于引用数据类型则存储其地址。局部变量表的最小存储单位是Slot,每个Slot都能存放一个boolean、byte、char、short、int、float、reference或returnAddress类型的数据。 既然前面提到了数据类型,在此顺便说一下,一个Slot可以存放一个32位以内的数据类型,Java中占用32位以内的数据类型有boolean、byte、char、short、int、float、reference和returnAddress八种类型。前面六种不需要多解释,大家都认识,而后面的reference是对象的引用。虚拟机规范既没有说明它的长度,也没有明确指出这个引用应有怎样的结构,但是一般来说,虚拟机实现至少都应当能从此引用中直接或间接地查找到对象在Java堆中的起始地址索引和方法区中的对象类型数据。而returnAddress是为字节码指令jsr、jsr_w和ret服务的,它指向了一条字节码指令的地址。 对于64位的数据类型,虚拟机会以高位在前的方式为其分配两个连续的Slot空间。Java语言中明确规定的64位的数据类型只有long和double两种(reference类型则可能是32位也可能是64位)。值得一提的是,这里把long和double数据类型读写分割为两次32读写的做法类似。不过,由于局部变量表建立在线程的堆栈上,是线程私有的数据,无论读写两个连续的Slot是否是原子操作,都不会引起数据安全问题。 操作数栈是一个后入先出(Last In First Out, LIFO)栈。同局部变量表一样,操作数栈的最大深度也在编译的时候被写入到字节码文件中,关于字节码文件,后面我会具体的来描述。操作数栈的每一个元素可以是任意的Java数据类型,包括long和double。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。在方法执行的任何时候,操作数栈的深度都不会超过在max_stacks数据项中设定的最大值。 当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令向操作数栈中写入和提取内容,也就是入栈出栈操作。例如,在做算术运算的时候是通过操作数栈来进行的,又或者在调用其他方法的时候是通过操作数栈来进行参数传递的。 举个例子,整数加法的字节码指令iadd在运行的时候要求操作数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会将这两个int值和并相加,然后将相加的结果入栈。 操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。再以上面的iadd指令为例,这个指令用于整型数加法,它在执行时,最接近栈顶的两个元素的数据类型必须为int型,不能出现一个long和一个float使用iadd命令相加的情况。 本地方法栈 与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。虚拟机规范中对本地方法栈中的方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。 方法区经常会被人称之为永久代,但这俩并不是一个概念。首先永久代的概念仅仅在HotSpot虚拟机中存在,不幸的是,在jdk8中,Hotspot去掉了永久代这一说法,使用了Native Memory,也就是Metaspace空间。那么方法区是干嘛的呢?我们可以这么理解,我们要运行Java代码,首先需要编译,然后才能运行。在运行的过程中,我们知道首先需要加载字节码文件。也就是说要把字节码文件加载到内存中。好了,问题就来了,字节码文件放到内存中的什么地方呢,就是方法区中。当然除了编译后的字节码之外,方法区中还会存放常量,静态变量以及及时编译器编译后的代码等数据。 堆,一般来讲堆内存是Java虚拟机中最大的一块内存区域,同方法区一样,是被所有线程所共享的区域。此区域所存在的唯一目的就存放对象的实例(对象实例并不一定全部在堆中创建)。堆内存是垃圾收集器主要光顾的区域,一般来讲根据使用的垃圾收集器的不同,堆中还会划分为一些区域,比如新生代和老年代。新生代还可以再划分为Eden,Survivor等区域。另外为了性能和安全性的角度,在堆中还会为线程划分单独的区域,称之为线程分配缓冲区。更细致的划分是为了让垃圾收集器能够更高效的工作,提高垃圾收集的效率。 如果想要了解更多的关于虚拟机的内容,可以观看录制的<深入理解Java虚拟机>这套视频教程。

zwt9000 2019-12-02 00:21:07 0 浏览量 回答数 0

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

从HTML中攫取你所需的信息:报错

kun坤 2020-06-08 11:01:51 3 浏览量 回答数 1

问题

第6篇 指针数组字符串(下)补充:报错

kun坤 2020-06-08 11:02:03 3 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅