• 关于

    数据输出流故障原因

    的搜索结果

回答

1、用户面承载链路故障告警,警告影响:该用户面承载的业务无法正常进行。产生告警原因:自建立模式下,当检测到本端无法和对端正常通讯时,产生此告警。 2、 SCTP链路故障告警,警告影响:导致SCTP链路上无法承载信令。产生告警原因:当基站检测到SCTP(Stream Control Transmission Protocol,流控制传输协议)链路无法承载业务时,产生此告警。 3、 X2接口故障告警,警告影响:基站释放正在通过产生告警的X2接口进行切换的用户,在该告警恢复前,基站将无法继续支持与对应基站间的X2接口切换流程,无法继续支持与对应基站间的小区干扰协调过程。产生告警原因:X2AP(X2 Application Protocol)连接在底层SCTP链路资源可用时,eNodeB将向对端eNodeB发起连接建立请求;对端eNodeB对连接请求做合法性检查,检查不通过,将无法建立连接;eNodeB收到对端eNodeB的响应后,如果发现对端eNodeB在黑名单中将无法建立连接。 当底层SCTP链路故障、X2AP协议层因配置错误或者对端eNodeB异常无法建立连接时,产生此告警。 4、 小区不可用告警,警告影响:小区状态与基带资源、射频资源、CPRI资源和传输资源这些物理资源有关,也与License有关。在物理资源不足、物理资源故障或物理资源被闭塞的情况下,小区状态会因为无可用的物理资源而变为不可用。即使物理资源可用但License不足时,也会导致小区不可用。多模场景下,由于共享资源受限(如频率、功率),也会导致小区不可用。当小区状态变为不可用,且该状态持续90秒(默认)未恢复时,将产生该告警。当小区状态变为可用,且该状态持续15秒(默认)一直可用时,则上报告警恢复。告警产生和恢复的时长可以通过SET ALMFILTER命令进行设置。产生告警原因:供电后自恢复,OMC920每隔1分钟会向被管网元发送握手请求,当被管网元三次无应答时判定通信状态为断连,上报本告警。本告警上报后,只要断连未恢复,OMC920不会因断连期间的故障原因变更而上报新的告警。OMC920会每隔2分钟重连已断开的连接,如果重连成功则自动清除本告警。 5、 S1接口故障告警,警告影响:基站将主动去激活所有与异常的S1接口相关的小区,并释放此前已经成功接入到这些小区内的所有在网用户。新的用户将无法接入到这些小区。 6、 射频单元驻波告警,警告影响:天馈接口的回波损耗过大,系统根据配置决定是否自动关闭射频单元发射通道开关,当“驻波比告警后处理开关”取值为“打开”时,射频单元发射通道开关被关闭且告警无法自动恢复,该发射通道承载的业务中断。当“驻波比告警后处理开关”取值为“关闭”时,射频单元会启动降额(默认3dB,具体由当前的业务状态决定),从而防止硬件损坏, 且告警可以自动恢复。天馈接口的回波损耗较大,导致实际输出功率减小,小区覆盖减小。产生告警原因:当射频单元与对端设备(上级/下级射频单元或BBU)间接口链路(链路层)数据收发异常时,产生此告警。 7、 射频单元维护链路异常告警, 警告影响:射频单元承载的业务中断。产生告警原因:BBU和射频单元之间通过电缆或者光纤进行连接。当BBU与射频单元间的维护链路出现异常时,产生此告警。 8、 BBU IR接口异常告警, 警告影响:在链形组网下,下级射频单元的连接链路中断,下级射频单元承载的业务中断。如果基站工作在CPRI MUX特性的组网,本制式为汇聚方且故障端口为提供汇聚功能的端口时,会造成对端制式的业务中断。在环形组网下,射频单元连接链路的可靠性下降,下级射频 单元的激活链路将倒换到备份链路上,在热环配置下对业务没有影响,在冷环配置下业务会出现短暂中断。BBU与下级射频单元的光模块的收发性能轻微恶化,可 能导致下级射频单元承载的业务质量出现轻微恶化。产生告警原因:当BBU与下级射频单元之间的光纤链路(物理层)的光信号接收异常时,产生此告警。 9、星卡锁星不足告警,警告影响:如果该告警一直存在,最终会导 致基站GPS时钟源不可用 10、 小区退服告警 ,警告影响:小区建立失败,所有业务中断。产生告警原因:当小区建立失败或小区退出服务,并且原因不是配置管理员人为闭塞时,产生此告警。 另外还有 BBU IR光模块收发异常告警, 基站控制面传输中断告警,网元连接中断,小区服务能力下降告警,射频单元IR接口异常告警,同类告警数量超出门限, BBU IR光模块/电接口不在位告警等警告类型。 此答案来源于网络,希望对您有所帮助。
养狐狸的猫 2019-12-02 02:13:16 0 浏览量 回答数 0

回答

Checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 证应用流图状态的一致性。Flink的checkpoint机制原理来自“Chandy-Lamport algorithm”算法。 每个需要checkpoint的应用在启动时,Flink的JobManager为其创建一个 CheckpointCoordinator,CheckpointCoordinator全权负责本应用的快照制作。 CheckpointCoordinator周期性的向该流应用的所有source算子发送barrier。 2.当某个source算子收到一个barrier时,便暂停数据处理过程,然后将自己的当前状 态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告 自己快照制作情况,同时向自身所有下游算子广播该barrier,恢复数据处理 3.下游算子收到barrier之后,会暂停自己的数据处理过程,然后将自身的相关状态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告自身 快照情况,同时向自身所有下游算子广播该barrier,恢复数据处理。 每个算子按照步骤3不断制作快照并向下游广播,直到最后barrier传递到sink算子,快照制作完成。 当CheckpointCoordinator收到所有算子的报告之后,认为该周期的快照制作成功; 否则,如果在规定的时间内没有收到所有算子的报告,则认为本周期快照制作失败 如果一个算子有两个输入源,则暂时阻塞先收到barrier的输入源,等到第二个输入源相 同编号的barrier到来时,再制作自身快照并向下游广播该barrier。具体如下图所示 两个输入源 checkpoint 过程 假设算子C有A和B两个输入源 在第i个快照周期中,由于某些原因(如处理时延、网络时延等)输入源A发出的 barrier先到来,这时算子C暂时将输入源A的输入通道阻塞,仅收输入源B的数据。 当输入源B发出的barrier到来时,算子C制作自身快照并向CheckpointCoordinator报 告自身的快照制作情况,然后将两个barrier合并为一个,向下游所有的算子广播。 当由于某些原因出现故障时,CheckpointCoordinator通知流图上所有算子统一恢复到某 个周期的checkpoint状态,然后恢复数据流处理。分布式checkpoint机制保证了数据仅被 处理一次(Exactly Once)。 持久化存储 目前,Checkpoint持久化存储可以使用如下三种: MemStateBackend 该持久化存储主要将快照数据保存到JobManager的内存中,仅适合作为测试以及 快照的数据量非常小时使用,并不推荐用作大规模商业部署。 FsStateBackend 该持久化存储主要将快照数据保存到文件系统中,目前支持的文件系统主要是 HDFS和本地文件。如果使用HDFS,则初始化FsStateBackend时,需要传入以 “hdfs://”开头的路径(即: new FsStateBackend("hdfs:///hacluster/checkpoint")), 如果使用本地文件,则需要传入以“file://”开头的路径(即:new FsStateBackend("file:///Data"))。在分布式情况下,不推荐使用本地文件。如果某 个算子在节点A上失败,在节点B上恢复,使用本地文件时,在B上无法读取节点 A上的数据,导致状态恢复失败。 RocksDBStateBackend RocksDBStatBackend介于本地文件和HDFS之间,平时使用RocksDB的功能,将数 据持久化到本地文件中,当制作快照时,将本地数据制作成快照,并持久化到 FsStateBackend中(FsStateBackend不必用户特别指明,只需在初始化时传入HDFS 或本地路径即可,如new RocksDBStateBackend("hdfs:///hacluster/checkpoint")或new RocksDBStateBackend("file:///Data"))。 如果用户使用自定义窗口(window),不推荐用户使用RocksDBStateBackend。在自 定义窗口中,状态以ListState的形式保存在StatBackend中,如果一个key值中有多 个value值,则RocksDB读取该种ListState非常缓慢,影响性能。用户可以根据应用 的具体情况选择FsStateBackend+HDFS或RocksStateBackend+HDFS。 语法 ​ val env = StreamExecutionEnvironment.getExecutionEnvironment() // start a checkpoint every 1000 ms env.enableCheckpointing(1000) // advanced options: // 设置checkpoint的执行模式,最多执行一次或者至少执行一次 env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) // 设置checkpoint的超时时间 env.getCheckpointConfig.setCheckpointTimeout(60000) // 如果在只做快照过程中出现错误,是否让整体任务失败:true是 false不是 env.getCheckpointConfig.setFailTasksOnCheckpointingErrors(false) //设置同一时间有多少 个checkpoint可以同时执行 env.getCheckpointConfig.setMaxConcurrentCheckpoints(1) ​ 例子 需求 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,然后对统计的结果值进行checkpoint处理 数据规划 使用自定义算子每秒钟产生大约10000条数据。 
 产生的数据为一个四元组(Long,String,String,Integer)—------(id,name,info,count)。 
 数据经统计后,统计结果打印到终端输出。 
 打印输出的结果为Long类型的数据。 
 开发思路 
 source算子每隔1秒钟发送10000条数据,并注入到Window算子中。 window算子每隔1秒钟统计一次最近4秒钟内数据数量。 每隔1秒钟将统计结果打印到终端 每隔6秒钟触发一次checkpoint,然后将checkpoint的结果保存到HDFS中。 //发送数据形式 case class SEvent(id: Long, name: String, info: String, count: Int) class SEventSourceWithChk extends RichSourceFunction[SEvent]{ private var count = 0L private var isRunning = true private val alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWZYX0987654321" // 任务取消时调用 override def cancel(): Unit = { isRunning = false } //// source算子的逻辑,即:每秒钟向流图中注入10000个元组 override def run(sourceContext: SourceContext[SEvent]): Unit = { while(isRunning) { for (i <- 0 until 10000) { sourceContext.collect(SEvent(1, "hello-"+count, alphabet,1)) count += 1L } Thread.sleep(1000) } } } /** 该段代码是流图定义代码,具体实现业务流程,另外,代码中窗口的触发时间使 用了event time。 */ object FlinkEventTimeAPIChkMain { def main(args: Array[String]): Unit ={ val env = StreamExecutionEnvironment.getExecutionEnvironment env.setStateBackend(new FsStateBackend("hdfs://hadoop01:9000/flink-checkpoint/checkpoint/")) env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) env.getCheckpointConfig.setCheckpointInterval(6000) env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // 应用逻辑 val source: DataStream[SEvent] = env.addSource(new SEventSourceWithChk) source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[SEvent] { // 设置watermark override def getCurrentWatermark: Watermark = { new Watermark(System.currentTimeMillis()) } // 给每个元组打上时间戳 override def extractTimestamp(t: SEvent, l: Long): Long = { System.currentTimeMillis() } }) .keyBy(0) .window(SlidingEventTimeWindows.of(Time.seconds(4), Time.seconds(1))) .apply(new WindowStatisticWithChk) .print() env.execute() } } //该数据在算子制作快照时用于保存到目前为止算子记录的数据条数。 // 用户自定义状态 class UDFState extends Serializable{ private var count = 0L // 设置用户自定义状态 def setState(s: Long) = count = s // 获取用户自定状态 def getState = count } //该段代码是window算子的代码,每当触发计算时统计窗口中元组数量。 class WindowStatisticWithChk extends WindowFunction[SEvent, Long, Tuple, TimeWindow] with ListCheckpointed[UDFState]{ private var total = 0L // window算子的实现逻辑,即:统计window中元组的数量 override def apply(key: Tuple, window: TimeWindow, input: Iterable[SEvent], out: Collector[Long]): Unit = { var count = 0L for (event <- input) { count += 1L } total += count out.collect(count) } // 从自定义快照中恢复状态 override def restoreState(state: util.List[UDFState]): Unit = { val udfState = state.get(0) total = udfState.getState } // 制作自定义状态快照 override def snapshotState(checkpointId: Long, timestamp: Long): util.List[UDFState] = { val udfList: util.ArrayList[UDFState] = new util.ArrayList[UDFState] val udfState = new UDFState udfState.setState(total) udfList.add(udfState) udfList } } flink-SQL Table API和SQL捆绑在flink-table Maven工件中。必须将以下依赖项添加到你的项目才能使用Table API和SQL: org.apache.flink flink-table_2.11 1.5.0 另外,你需要为Flink的Scala批处理或流式API添加依赖项。对于批量查询,您需要添加: org.apache.flink flink-scala_2.11 1.5.0 Table API和SQL程序的结构 Flink的批处理和流处理的Table API和SQL程序遵循相同的模式; 所以我们只需要使用一种来演示即可 要想执行flink的SQL语句,首先需要获取SQL的执行环境: 两种方式(batch和streaming): // *************** // STREAMING QUERY // *************** val sEnv = StreamExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for streaming queries val sTableEnv = TableEnvironment.getTableEnvironment(sEnv) // *********** // BATCH QUERY // *********** val bEnv = ExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for batch queries val bTableEnv = TableEnvironment.getTableEnvironment(bEnv) 通过getTableEnvironment可以获取TableEnviromment;这个TableEnviromment是Table API和SQL集成的核心概念。它负责: 在内部目录中注册一个表 注册外部目录 执行SQL查询 注册用户定义的(标量,表格或聚合)函数 转换DataStream或DataSet成Table 持有一个ExecutionEnvironment或一个参考StreamExecutionEnvironment 在内部目录中注册一个表 TableEnvironment维护一个按名称注册的表的目录。有两种类型的表格,输入表格和输出表格。 输入表可以在Table API和SQL查询中引用并提供输入数据。输出表可用于将表API或SQL查询的结果发送到外部系统 输入表可以从各种来源注册: 现有Table对象,通常是表API或SQL查询的结果。 TableSource,它访问外部数据,例如文件,数据库或消息传递系统。 DataStream或DataSet来自DataStream或DataSet程序。 输出表可以使用注册TableSink。 注册一个表 // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // register the Table projTable as table "projectedX" tableEnv.registerTable("projectedTable", projTable) // Table is the result of a simple projection query val projTable: Table = tableEnv.scan("projectedTable ").select(...) 注册一个tableSource TableSource提供对存储在诸如数据库(MySQL,HBase等),具有特定编码(CSV,Apache [Parquet,Avro,ORC],...)的文件的存储系统中的外部数据的访问或者消息传送系统(Apache Kafka,RabbitMQ,...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSource val csvSource: TableSource = new CsvTableSource("/path/to/file", ...) // register the TableSource as table "CsvTable" tableEnv.registerTableSource("CsvTable", csvSource) 注册一个tableSink 注册TableSink可用于将表API或SQL查询的结果发送到外部存储系统,如数据库,键值存储,消息队列或文件系统(使用不同的编码,例如CSV,Apache [Parquet ,Avro,ORC],...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSink val csvSink: TableSink = new CsvTableSink("/path/to/file", ...) // define the field names and types val fieldNames: Array[String] = Array("a", "b", "c") val fieldTypes: Array[TypeInformation[_]] = Array(Types.INT, Types.STRING, Types.LONG) // register the TableSink as table "CsvSinkTable" tableEnv.registerTableSink("CsvSinkTable", fieldNames, fieldTypes, csvSink) 例子 //创建batch执行环境 val env = ExecutionEnvironment.getExecutionEnvironment //创建table环境用于batch查询 val tableEnvironment = TableEnvironment.getTableEnvironment(env) //加载外部数据 val csvTableSource = CsvTableSource.builder() .path("data1.csv")//文件路径 .field("id" , Types.INT)//第一列数据 .field("name" , Types.STRING)//第二列数据 .field("age" , Types.INT)//第三列数据 .fieldDelimiter(",")//列分隔符,默认是"," .lineDelimiter("\n")//换行符 .ignoreFirstLine()//忽略第一行 .ignoreParseErrors()//忽略解析错误 .build() //将外部数据构建成表 tableEnvironment.registerTableSource("tableA" , csvTableSource) //TODO 1:使用table方式查询数据 val table = tableEnvironment.scan("tableA").select("id , name , age").filter("name == 'lisi'") //将数据写出去 table.writeToSink(new CsvTableSink("bbb" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) //TODO 2:使用sql方式 // val sqlResult = tableEnvironment.sqlQuery("select id,name,age from tableA where id > 0 order by id limit 2") //// //将数据写出去 // sqlResult.writeToSink(new CsvTableSink("aaaaaa.csv", ",", 1, FileSystem.WriteMode.OVERWRITE)) able和DataStream和DataSet的集成 1:将DataStream或DataSet转换为表格 在上面的例子讲解中,直接使用的是:registerTableSource注册表 对于flink来说,还有更灵活的方式:比如直接注册DataStream或者DataSet转换为一张表。 然后DataStream或者DataSet就相当于表,这样可以继续使用SQL来操作流或者批次的数据 语法: // get TableEnvironment // registration of a DataSet is equivalent Env:DataStream val tableEnv = TableEnvironment.getTableEnvironment(env) val stream: DataStream[(Long, String)] = ... // register the DataStream as Table "myTable" with fields "f0", "f1" tableEnv.registerDataStream("myTable", stream) 例子 object SQLToDataSetAndStreamSet { def main(args: Array[String]): Unit = { // set up execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment val tEnv = TableEnvironment.getTableEnvironment(env) //构造数据 val orderA: DataStream[Order] = env.fromCollection(Seq( Order(1L, "beer", 3), Order(1L, "diaper", 4), Order(3L, "rubber", 2))) val orderB: DataStream[Order] = env.fromCollection(Seq( Order(2L, "pen", 3), Order(2L, "rubber", 3), Order(4L, "beer", 1))) // 根据数据注册表 tEnv.registerDataStream("OrderA", orderA) tEnv.registerDataStream("OrderB", orderB) // union the two tables val result = tEnv.sqlQuery( "SELECT * FROM OrderA WHERE amount > 2 UNION ALL " + "SELECT * FROM OrderB WHERE amount < 2") result.writeToSink(new CsvTableSink("ccc" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) env.execute() } } case class Order(user: Long, product: String, amount: Int) 将表转换为DataStream或DataSet A Table可以转换成a DataStream或DataSet。通过这种方式,可以在Table API或SQL查询的结果上运行自定义的DataStream或DataSet程序 1:将表转换为DataStream 有两种模式可以将 Table转换为DataStream: 1:Append Mode 将一个表附加到流上 2:Retract Mode 将表转换为流 语法格式: // get TableEnvironment. // registration of a DataSet is equivalent // ge val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into an append DataStream of Row val dsRow: DataStream[Row] = tableEnv.toAppendStreamRow // convert the Table into an append DataStream of Tuple2[String, Int] val dsTuple: DataStream[(String, Int)] dsTuple = tableEnv.toAppendStream(String, Int) // convert the Table into a retract DataStream of Row. // A retract stream of type X is a DataStream[(Boolean, X)]. // The boolean field indicates the type of the change. // True is INSERT, false is DELETE. val retractStream: DataStream[(Boolean, Row)] = tableEnv.toRetractStreamRow 例子: object TableTODataSet_DataStream { def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tEnv = TableEnvironment.getTableEnvironment(env) val stream = env.fromCollection(data) val table: Table = tEnv.fromDataStream(stream) //TODO 将table转换为DataStream----[数控等离子切割机](http://www.158cnc.com)[http://www.158cnc.com](http://www.158cnc.com)将一个表附加到流上Append Mode val appendStream: DataStream[Peoject] = tEnv.toAppendStream[Peoject](table) //TODO 将表转换为流Retract Mode true代表添加消息,false代表撤销消息 val retractStream: DataStream[(Boolean, Peoject)] = tEnv.toRetractStream[Peoject](table) retractStream.print() env.execute() } } case class Peoject(user: Long, index: Int, content: String) 将表转换为DataSet 语法格式 // get TableEnvironment // registration of a DataSet is equivalent val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into a DataSet of Row val dsRow: DataSet[Row] = tableEnv.toDataSetRow // convert the Table into a DataSet of Tuple2[String, Int] val dsTuple: DataSet[(String, Int)] = tableEnv.toDataSet(String, Int) 例子: case class Peoject(user: Long, index: Int, content: String) object TableTODataSet{ def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) //初始化环境,加载table数据 val env = ExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tableEnvironment = TableEnvironment.getTableEnvironment(env) val collection: DataSet[Peoject] = env.fromCollection(data) val table: Table = tableEnvironment.fromDataSet(collection) //TODO 将table转换为dataSet val toDataSet: DataSet[Peoject] = tableEnvironment.toDataSet[Peoject](table) toDataSet.print() // env.execute() } }
凹凹凸曼 2020-06-16 19:23:12 0 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。
hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

云数据库新人专场

MySQL年付低至19.9,其它热门产品1元起购!

问题

程序员报错行为大赏-配置报错

Maven本地仓库配置报错:配置报错  GO语言配置什么的都没问题,但就是LiteIDE配置不好。。。:配置报错  Maven 配置nexus仓库 POM文件报错:配置报错  10个你可能从未用过的PHP函数:配置报错  QT...
问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

回答

异常是程序中的一些错误,但并不是所有的错误都是异常,并且错误有时候是可以避免的。 比如说,你的代码少了一个分号,那么运行出来结果是提示是错误 java.lang.Error;如果你用System.out.println(11/0),那么你是因为你用0做了除数,会抛出 java.lang.ArithmeticException 的异常。 异常发生的原因有很多,通常包含以下几大类: 用户输入了非法数据。 要打开的文件不存在。 网络通信时连接中断,或者JVM内存溢出。 这些异常有的是因为用户错误引起,有的是程序错误引起的,还有其它一些是因为物理错误引起的。- 要理解Java异常处理是如何工作的,你需要掌握以下三种类型的异常: 检查性异常:最具代表的检查性异常是用户错误或问题引起的异常,这是程序员无法预见的。例如要打开一个不存在文件时,一个异常就发生了,这些异常在编译时不能被简单地忽略。 运行时异常: 运行时异常是可能被程序员避免的异常。与检查性异常相反,运行时异常可以在编译时被忽略。 错误: 错误不是异常,而是脱离程序员控制的问题。错误在代码中通常被忽略。例如,当栈溢出时,一个错误就发生了,它们在编译也检查不到的。 Exception 类的层次 所有的异常类是从 java.lang.Exception 类继承的子类。 Exception 类是 Throwable 类的子类。除了Exception类外,Throwable还有一个子类Error 。 Java 程序通常不捕获错误。错误一般发生在严重故障时,它们在Java程序处理的范畴之外。 Error 用来指示运行时环境发生的错误。 例如,JVM 内存溢出。一般地,程序不会从错误中恢复。 异常类有两个主要的子类:IOException 类和 RuntimeException 类。 在 Java 内置类中(接下来会说明),有大部分常用检查性和非检查性异常。 Java 内置异常类 Java 语言定义了一些异常类在 java.lang 标准包中。 标准运行时异常类的子类是最常见的异常类。由于 java.lang 包是默认加载到所有的 Java 程序的,所以大部分从运行时异常类继承而来的异常都可以直接使用。 Java 根据各个类库也定义了一些其他的异常,下面的表中列出了 Java 的非检查性异常。 异常 描述 ArithmeticException 当出现异常的运算条件时,抛出此异常。例如,一个整数"除以零"时,抛出此类的一个实例。 ArrayIndexOutOfBoundsException 用非法索引访问数组时抛出的异常。如果索引为负或大于等于数组大小,则该索引为非法索引。 ArrayStoreException 试图将错误类型的对象存储到一个对象数组时抛出的异常。 ClassCastException 当试图将对象强制转换为不是实例的子类时,抛出该异常。 IllegalArgumentException 抛出的异常表明向方法传递了一个不合法或不正确的参数。 IllegalMonitorStateException 抛出的异常表明某一线程已经试图等待对象的监视器,或者试图通知其他正在等待对象的监视器而本身没有指定监视器的线程。 IllegalStateException 在非法或不适当的时间调用方法时产生的信号。换句话说,即 Java 环境或 Java 应用程序没有处于请求操作所要求的适当状态下。 IllegalThreadStateException 线程没有处于请求操作所要求的适当状态时抛出的异常。 IndexOutOfBoundsException 指示某排序索引(例如对数组、字符串或向量的排序)超出范围时抛出。 NegativeArraySizeException 如果应用程序试图创建大小为负的数组,则抛出该异常。 NullPointerException 当应用程序试图在需要对象的地方使用 null 时,抛出该异常 NumberFormatException 当应用程序试图将字符串转换成一种数值类型,但该字符串不能转换为适当格式时,抛出该异常。 SecurityException 由安全管理器抛出的异常,指示存在安全侵犯。 StringIndexOutOfBoundsException 此异常由 String 方法抛出,指示索引或者为负,或者超出字符串的大小。 UnsupportedOperationException 当不支持请求的操作时,抛出该异常。 下面的表中列出了 Java 定义在 java.lang 包中的检查性异常类。 异常 描述 ClassNotFoundException 应用程序试图加载类时,找不到相应的类,抛出该异常。 CloneNotSupportedException 当调用 Object 类中的 clone 方法克隆对象,但该对象的类无法实现 Cloneable 接口时,抛出该异常。 IllegalAccessException 拒绝访问一个类的时候,抛出该异常。 InstantiationException 当试图使用 Class 类中的 newInstance 方法创建一个类的实例,而指定的类对象因为是一个接口或是一个抽象类而无法实例化时,抛出该异常。 InterruptedException 一个线程被另一个线程中断,抛出该异常。 NoSuchFieldException 请求的变量不存在 NoSuchMethodException 请求的方法不存在 异常方法 下面的列表是 Throwable 类的主要方法: 序号 方法及说明 1 public String getMessage() 返回关于发生的异常的详细信息。这个消息在Throwable 类的构造函数中初始化了。 2 public Throwable getCause() 返回一个Throwable 对象代表异常原因。 3 public String toString() 使用getMessage()的结果返回类的串级名字。 4 public void printStackTrace() 打印toString()结果和栈层次到System.err,即错误输出流。 5 public StackTraceElement [] getStackTrace() 返回一个包含堆栈层次的数组。下标为0的元素代表栈顶,最后一个元素代表方法调用堆栈的栈底。 6 public Throwable fillInStackTrace() 用当前的调用栈层次填充Throwable 对象栈层次,添加到栈层次任何先前信息中。 捕获异常 使用 try 和 catch 关键字可以捕获异常。try/catch 代码块放在异常可能发生的地方。 try/catch代码块中的代码称为保护代码,使用 try/catch 的语法如下: try { // 程序代码 }catch(ExceptionName e1) { //Catch 块 } Catch 语句包含要捕获异常类型的声明。当保护代码块中发生一个异常时,try 后面的 catch 块就会被检查。 如果发生的异常包含在 catch 块中,异常会被传递到该 catch 块,这和传递一个参数到方法是一样。 实例 下面的例子中声明有两个元素的一个数组,当代码试图访问数组的第三个元素的时候就会抛出一个异常。 ExcepTest.java 文件代码: // 文件名 : ExcepTest.java import java.io.*; public class ExcepTest{ public static void main(String args[]){ try{ int a[] = new int[2]; System.out.println("Access element three :" + a[3]); }catch(ArrayIndexOutOfBoundsException e){ System.out.println("Exception thrown :" + e); } System.out.println("Out of the block"); } } 以上代码编译运行输出结果如下: Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3 Out of the block 多重捕获块 一个 try 代码块后面跟随多个 catch 代码块的情况就叫多重捕获。 多重捕获块的语法如下所示: try{ // 程序代码 }catch(异常类型1 异常的变量名1){ // 程序代码 }catch(异常类型2 异常的变量名2){ // 程序代码 }catch(异常类型3 异常的变量名3){ // 程序代码 } 上面的代码段包含了 3 个 catch块。 可以在 try 语句后面添加任意数量的 catch 块。 如果保护代码中发生异常,异常被抛给第一个 catch 块。 如果抛出异常的数据类型与 ExceptionType1 匹配,它在这里就会被捕获。 如果不匹配,它会被传递给第二个 catch 块。 如此,直到异常被捕获或者通过所有的 catch 块。 实例 该实例展示了怎么使用多重 try/catch。 try { file = new FileInputStream(fileName); x = (byte) file.read(); } catch(FileNotFoundException f) { // Not valid! f.printStackTrace(); return -1; } catch(IOException i) { i.printStackTrace(); return -1; } throws/throw 关键字: 如果一个方法没有捕获到一个检查性异常,那么该方法必须使用 throws 关键字来声明。throws 关键字放在方法签名的尾部。 也可以使用 throw 关键字抛出一个异常,无论它是新实例化的还是刚捕获到的。 下面方法的声明抛出一个 RemoteException 异常: import java.io.*; public class className { public void deposit(double amount) throws RemoteException { // Method implementation throw new RemoteException(); } //Remainder of class definition } 一个方法可以声明抛出多个异常,多个异常之间用逗号隔开。 例如,下面的方法声明抛出 RemoteException 和 InsufficientFundsException: import java.io.*; public class className { public void withdraw(double amount) throws RemoteException, InsufficientFundsException { // Method implementation } //Remainder of class definition } finally关键字 finally 关键字用来创建在 try 代码块后面执行的代码块。 无论是否发生异常,finally 代码块中的代码总会被执行。 在 finally 代码块中,可以运行清理类型等收尾善后性质的语句。 finally 代码块出现在 catch 代码块最后,语法如下: try{ // 程序代码 }catch(异常类型1 异常的变量名1){ // 程序代码 }catch(异常类型2 异常的变量名2){ // 程序代码 }finally{ // 程序代码 } 实例 ExcepTest.java 文件代码: public class ExcepTest{ public static void main(String args[]){ int a[] = new int[2]; try{ System.out.println("Access element three :" + a[3]); }catch(ArrayIndexOutOfBoundsException e){ System.out.println("Exception thrown :" + e); } finally{ a[0] = 6; System.out.println("First element value: " +a[0]); System.out.println("The finally statement is executed"); } } } 以上实例编译运行结果如下: Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3 First element value: 6 The finally statement is executed 注意下面事项: catch 不能独立于 try 存在。 在 try/catch 后面添加 finally 块并非强制性要求的。 try 代码后不能既没 catch 块也没 finally 块。 try, catch, finally 块之间不能添加任何代码。 声明自定义异常 在 Java 中你可以自定义异常。编写自己的异常类时需要记住下面的几点。 所有异常都必须是 Throwable 的子类。 如果希望写一个检查性异常类,则需要继承 Exception 类。 如果你想写一个运行时异常类,那么需要继承 RuntimeException 类。 可以像下面这样定义自己的异常类: class MyException extends Exception{ } 只继承Exception 类来创建的异常类是检查性异常类。 下面的 InsufficientFundsException 类是用户定义的异常类,它继承自 Exception。 一个异常类和其它任何类一样,包含有变量和方法。 实例 以下实例是一个银行账户的模拟,通过银行卡的号码完成识别,可以进行存钱和取钱的操作。 InsufficientFundsException.java 文件代码: // 文件名InsufficientFundsException.java import java.io.*; //自定义异常类,继承Exception类 public class InsufficientFundsException extends Exception { //此处的amount用来储存当出现异常(取出钱多于余额时)所缺乏的钱 private double amount; public InsufficientFundsException(double amount) { this.amount = amount; } public double getAmount() { return amount; } } 为了展示如何使用我们自定义的异常类, 在下面的 CheckingAccount 类中包含一个 withdraw() 方法抛出一个 InsufficientFundsException 异常。 CheckingAccount.java 文件代码: // 文件名称 CheckingAccount.java import java.io.*; //此类模拟银行账户 public class CheckingAccount { //balance为余额,number为卡号 private double balance; private int number; public CheckingAccount(int number) { this.number = number; } //方法:存钱 public void deposit(double amount) { balance += amount; } //方法:取钱 public void withdraw(double amount) throws InsufficientFundsException { if(amount <= balance) { balance -= amount; } else { double needs = amount - balance; throw new InsufficientFundsException(needs); } } //方法:返回余额 public double getBalance() { return balance; } //方法:返回卡号 public int getNumber() { return number; } } 下面的 BankDemo 程序示范了如何调用 CheckingAccount 类的 deposit() 和 withdraw() 方法。 BankDemo.java 文件代码: //文件名称 BankDemo.java public class BankDemo { public static void main(String [] args) { CheckingAccount c = new CheckingAccount(101); System.out.println("Depositing $500..."); c.deposit(500.00); try { System.out.println("\nWithdrawing $100..."); c.withdraw(100.00); System.out.println("\nWithdrawing $600..."); c.withdraw(600.00); }catch(InsufficientFundsException e) { System.out.println("Sorry, but you are short $" + e.getAmount()); e.printStackTrace(); } } } 编译上面三个文件,并运行程序 BankDemo,得到结果如下所示: Depositing $500... Withdrawing $100... Withdrawing $600... Sorry, but you are short $200.0 InsufficientFundsException at CheckingAccount.withdraw(CheckingAccount.java:25) at BankDemo.main(BankDemo.java:13) 通用异常 在Java中定义了两种类型的异常和错误。 JVM(Java虚拟机) 异常:由 JVM 抛出的异常或错误。例如:NullPointerException 类,ArrayIndexOutOfBoundsException 类,ClassCastException 类。 程序级异常:由程序或者API程序抛出的异常。例如 IllegalArgumentException 类,IllegalStateException 类。
游客2q7uranxketok 2021-02-07 20:08:10 0 浏览量 回答数 0

回答

经常出现CPU占用100%的情况,主要问题可能发生在下面的某些方面: CPU占用率高 的九种可能 1、防杀毒软件造成 故障 由于新版的 KV 、金山、 瑞星 都加入了对网页、 插件 、邮件的随机监控,无疑增大了系统负担。处理方式:基本上没有合理的处理方式,尽量使用最少的监控服务吧,或者,升级你的硬件配备。 2、驱动没有经过认证,造成CPU资源占用100% 大量的测试版的驱动在网上泛滥,造成了难以发现的故障原因。 处理方式:尤其是 显卡驱动 特别要注意,建议使用 微软认证 的或由官方发布的驱动,并且严格核对型号、版本。 3、 病毒、木马 造成 大量的蠕虫病毒在系统内部迅速复制,造成CPU占用资源率据高不下。解决办法:用可靠的杀毒软件彻底清理系统内存和本地硬盘,并且打开系统设置软件,察看有无异常启动的程序。经常性更新升级杀毒软件和防火墙,加强防毒意识,掌握正确的防杀毒知识。 4、控制面板— 管理工具 —服务—RISING REALTIME MONITOR SERVICE 点鼠标右键,改为手动。 5、开始->运行->msconfig->启动,关闭不必要的启动项,重启。 6、查看“ svchost ”进程。 svchost . exe 是Windows XP系统 的一个核心进程。 svchost.exe 不单单只出现 在Window s XP中,在使用 NT 内核的 Windows系统 中都会有svchost.exe的存在。一般在 Windows 2000 中 svchost.exe进程 的数目为2个,而 在Windows XP中svchost.exe进程的数目就上升到了4个及4个以上。 7、查看 网络连接 。主要是网卡。 8、查看网络连接 当安装了Windows XP的计算机做服务器的时候,收到端口 445 上的连接请求时,它将分配内存和少量地调配 CPU资源来为这些连接提供服务。当负荷过重的时候,CPU占用率可能过高,这是因为在工作项的数目和响应能力之间存在固有的权衡关系。你要确定合适的 MaxWorkItems 设置以提高系统响应能力。如果设置的值不正确,服务器的响应能力可能会受到影响,或者某个用户独占太 多系统 资源。 要解决此问题,我们可以通过修改注册表来解决:在 注册表编辑器 中依次展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver ]分支,在右侧窗口中 新建 一个名为“maxworkitems”的 DWORD值 。然后双击该值,在打开的窗口中键入下列数值并保存退出: 如果计算机有512MB以上的内存,键入“1024”;如果计算机内存小于 512 MB,键入“256”。 9、看看是不是Windows XP使用鼠标右键引起CPU占用100% 前不久的报到说在资源管理器里面使用鼠标右键会导致CPU资源100%占用,我们来看看是怎么回事? 征兆: 在资源管理器里面,当你右键点击一个目录或一个文件,你将有可能出现下面所列问题: 任何文件的拷贝操作在那个时间将有可能停止相应 网络连接速度将显著性的降低 所有的流输入/输出操作例如使用Windows Media Player 听音乐将有可能是音乐失真成因: 当你在资源管理器里面右键点击一个文件或目录的时候,当快捷 菜单显示 的时候,CPU占用率将增加到100%,当你关闭快捷菜单的时候才返回正常水平。 解决方法: 方法一:关闭“为菜单和工具提示使用过渡效果” 1、点击“开始”--“控制面板” 2、在“控制面板”里面双击“显示” 3、在“显示”属性里面点击“外观”标签页 4、在“外观”标签页里面点击“效果” 5、在“效果”对话框里面,清除“为菜单和工具提示使用过渡效果”前面的复选框接着点击两次“确定”按钮。 方法二:在使用鼠标右键点击文件或目录的时候先使用鼠标左键选择你的目标文件或目录。然后再使用鼠标右键弹出快捷菜单。 CPU占用100%解决办法 一般情况下CPU占了100%的话我们的电脑总会慢下来,而很多时候我们是可以通过做 一点点 的改动就可以解决,而不必问那些大虾了。 当机器慢下来的时候,首先我们想到的当然是任务管理器了,看看到底是哪个程序占了较搞的比例,如果是某个大程序那还可以原谅,在关闭该程序后只要CPU正常了那就没问题;如果不是,那你就要看看是什幺程序了,当你查不出这个进程是什幺的时候就去google或者 baidu 搜。有时只结束是没用的,在 xp下 我们可以结合msconfig里的启动项,把一些不用的项给关掉。在2000下可以去下个winpatrol来用。 一些常用的软件,比如浏览器占用了很搞的CPU,那幺就要升级该软件或者干脆用别的同类软件代替,有时软件和系统会有点不兼容,当然我们可以试下xp系统下给我们的那个兼容项,右键点该. exe文件 选兼容性。 svchost.exe有时是比较头痛的,当你看到你的某个svchost.exe占用很大CPU时你可以去下个aports或者fport来检查其对应的程序路径,也就是什幺东西在掉用这个svchost.exe,如果不是c:\Windows\ system32 (xp)或c:\winnt\system32(2000)下的,那就可疑。升级杀毒软件杀毒吧。 右击 文件导致100%的CPU占用我们也会遇到,有时点右键停顿可能就是这个问题了。官方的解释:先点左键选中,再右键(不是很理解)。非官方:通过在桌面点右键-属性-外观-效果,取消”为菜单和工具提示使用下列过度效果(U)“来解决。还有某些杀毒软件对文件的监控也会有所影响,可以 关闭杀毒软件 的文件监控;还有就是对网页,插件,邮件的监控也是同样的道理。 一些驱动程序有时也可能出现这样的现象,最好是选择微软认证的或者是官方发布的驱动来装,有时可以适当的升级驱动,不过记得最新的不是最好的。 CPU降温软件 ,由于软件在运行时会利用所以的CPU空闲时间来进行降温,但Windows不能分辨普通的CPU占用和 降温软件 的降温指令 之间的区别 ,因此CPU始终显示100%,这个就不必担心了,不影响正常的系统运行。 在处理较大的 word文件 时由于word的拼写和语法检查会使得CPU累,只要打开word的工具-选项-拼写和语法把”检查拼写和检查语法“勾去掉。 单击 avi视频 文件后CPU占用率高是因为系统要先扫描该文件,并检查文件所有部分,并建立索引;解决办法:右击保存视频文件的文件夹-属性-常规-高级,去掉为了快速搜索,允许索引服务编制该文件夹的索引的勾。 CPU占用100%案例分析 1、 dllhost进程造成CPU使用率占用100% 特征:服务器正常CPU消耗应该在75%以下,而且CPU消耗应该是上下起伏的,出现这种问题的服务器,CPU会突然一直处100%的水平,而且不会下降。查看任务管理器,可以发现是DLLHOST.EXE消耗了所有的CPU空闲时间,管理员在这种情况下,只好重新启动IIS服务,奇怪的是,重新启动IIS服务后一切正常,但可能过了一段时间后,问题又再次出现了。 直接原因: 有一个或多个ACCESS数据库在多次读写过程中损坏,微软的 MDAC 系统在写入这个损坏的ACCESS文件时,ASP线程处于BLOCK状态,结果其它线程只能等待,IIS被死锁了,全部的CPU时间都消耗在DLLHOST中。 解决办法: 安装“一流信息监控拦截系统”,使用其中的“首席文件检查官IIS健康检查官”软件, 启用”查找死锁模块”,设置: --wblock=yes 监控的目录,请指定您的主机的文件所在目录: --wblockdir=d:\test 监控生成的日志的文件保存位置在安装目录的log目录中,文件名为:logblock.htm 停止IIS,再启动“首席文件检查官IIS健康检查官”,再启动IIS,“首席文件检查官IIS健康检查官”会在logblock.htm中记录下最后写入的ACCESS文件的。 过了一段时间后,当问题出来时,例如CPU会再次一直处100%的水平,可以停止IIS,检查logblock.htm所记录的最后的十个文件,注意,最有问题的往往是计数器类的ACCESS文件,例如:”COUNT. MDB ”,”COUNT.ASP”,可以先把最后十个文件或有所怀疑的文件删除到回收站中,再启动IIS,看看问题是否再次出现。我们相信,经过仔细的查找后,您肯定可以找到这个让您操心了一段时间的文件的。 找到这个文件后,可以删除它,或下载下来,用ACCESS2000修复它,问题就解决了。 2、 svchost.exe造成CPU使用率占用100% 在win.ini文件中,在[Windows]下面,“run=”和“load=”是可能加载“木马”程序的途径,必须仔细留心它们。一般情况下,它们的等号后面什幺都没有,如果发现后面跟有路径与文件名不是你熟悉的启动文件,你的计算机就可能中上“木马”了。当然你也得看清楚,因为好多“木马”,如“AOL Trojan木马”,它把自身伪装成command.exe文件,如果不注意可能不会发现它不是真正的系统启动文件。 在system.ini文件中,在[BOOT]下面有个“shell=文件名”。正确的文件名应该是“explorer.exe”,如果不是“explorer.exe”,而是“shell= explorer.exe 程序名”,那幺后面跟着的那个程序就是“木马”程序,就是说你已经中“木马”了。 在注册表中的情况最复杂,通过regedit命令打开注册表编辑器,在点击至:“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”目录下,查看键值中有没有自己不熟悉的自动启动文件,扩展名为EXE,这里切记:有的“木马”程序生成的文件很像系统自身文件,想通过伪装蒙混过关,如“Acid Battery v1.0木马”,它将注册表“HKEY-LOCAL-MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”下的Explorer 键值改为Explorer=“C:\Windows\expiorer.exe”,“木马”程序与真正的Explorer之间只有“i”与“l”的差别。当然在注册表中还有很多地方都可以隐藏“木马”程序,如:“HKEY-CURRENT-USER\Software\Microsoft\Windows\CurrentVersion\Run”、“HKEY-USERS*\Software\Microsoft\Windows\CurrentVersion\Run”的目录下都有可能,最好的办法就是在“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”下找到“木马该病毒也称为“Code Red II(红色代码2)”病毒,与早先在西方英文系统下流行“红色代码”病毒有点相反,在国际上被称为VirtualRoot(虚拟目录)病毒。该蠕虫病毒利用Microsoft已知的溢出漏洞,通过80端口来传播到其它的Web页服务器上。受感染的机器可由黑客们通过Http Get的请求运行scripts/root.exe来获得对受感染机器的完全控制权。 当感染一台服务器成功了以后,如果受感染的机器是中文的系统后,该程序会休眠2天,别的机器休眠1天。当休眠的时间到了以后,该蠕虫程序会使得机器重新启动。该蠕虫也会检查机器的月份是否是10月或者年份是否是2002年,如果是,受感染的服务器也会重新启动。当Windows NT系统启动时,NT系统会自动搜索C盘根目录下的文件explorer.exe,受该网络蠕虫程序感染的服务器上的文件explorer.exe也就是该网络蠕虫程序本身。该文件的大小是8192字节,VirtualRoot网络蠕虫程序就是通过该程序来执行的。同时,VirtualRoot网络蠕虫程序还将cmd.exe的文件从Windows NT的system目录拷贝到别的目录,给黑客的入侵敞开了大门。它还会修改系统的注册表项目,通过该注册表项目的修改,该蠕虫程序可以建立虚拟的目录C或者D,病毒名由此而来。值得一提的是,该网络蠕虫程序除了文件explorer.exe外,其余的操作不是基于文件的,而是直接在内存中来进行感染、传播的,这就给捕捉带来了较大难度。 ”程序的文件名,再在整个注册表中搜索即可。 我们先看看微软是怎样描述svchost.exe的。在微软知识库314056中对svchost.exe有如下描述:svchost.exe 是从动态链接库 (DLL) 中运行的服务的通用主机进程名称。 其实svchost.exe是Windows XP系统的一个核心进程。svchost.exe不单单只出现在Windows XP中,在使用NT内核的Windows系统中都会有svchost.exe的存在。一般在Windows 2000中svchost.exe进程的数目为2个,而在Windows XP中svchost.exe进程的数目就上升到了4个及4个以上。所以看到系统的进程列表中有几个svchost.exe不用那幺担心。 svchost.exe到底是做什幺用的呢? 首先我们要了解一点那就是Windows系统的中的进程分为:独立进程和共享进程这两种。由于Windows系统中的服务越来越多,为了节约有限的系统资源微软把很多的系统服务做成了共享模式。那svchost.exe在这中间是担任怎样一个角色呢? svchost.exe的工作就是作为这些服务的宿主,即由svchost.exe来启动这些服务。svchost.exe只是负责为这些服务提供启动的条件,其自身并不能实现任何服务的功能,也不能为用户提供任何服务。svchost.exe通过为这些系统服务调用动态链接库(DLL)的方式来启动系统服务。 svchost.exe是病毒这种说法是任何产生的呢? 因为svchost.exe可以作为服务的宿主来启动服务,所以病毒、木马的编写者也挖空心思的要利用svchost.exe的这个特性来迷惑用户达到入侵、破坏计算机的目的。 如何才能 辨别 哪些是正常的svchost.exe进程,而哪些是 病毒进程 呢? svchost.exe的键值是在“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Svchost”,如图1所示。图1中每个键值表示一个独立的svchost.exe组。 微软还为我们提供了一种察看系统正在运行在svchost.exe列表中的服务的方法。以Windows XP为例:在“运行”中输入:cmd,然后在命令行模式中输入:tasklist /svc。系统列出如图2所示的服务列表。图2中红框包围起来的区域就是svchost.exe启动的服务列表。如果使用的是Windows 2000系统则把前面的“tasklist /svc”命令替换为:“tlist -s”即可。如果你怀疑计算机有可能被病毒感染,svchost.exe的服务出现异常的话通过搜索 svchost.exe文件 就可以发现异常情况。一般只会找到一个在:“C:\Windows\System32”目录下的svchost.exe程序。如果你在其它目录下发现svchost.exe程序的话,那很可能就是中毒了。 还有一种确认svchost.exe是否中毒的方法是在任务管理器中察看进程的执行路径。但是由于在Windows系统自带的任务管理器不能察看进程路径,所以要使用第三方的进程察看工具。 上面简单的介绍了svchost.exe进程的相关情况。总而言之,svchost.exe是一个系统的核心进程,并不是病毒进程。但由于svchost.exe进程的特殊性,所以病毒也会千方百计的入侵svchost.exe。通过察看svchost.exe进程的执行路径可以确认是否中毒。 3、 Services.exe造成CPU使用率占用100% 症状 在基于 Windows 2000 的计算机上,Services.exe 中的 CPU 使用率可能间歇性地达到100 %,并且计算机可能停止响应(挂起)。出现此问题时,连接到该计算机(如果它是文件服务器或域控制器)的用户会被断开连接。您可能还需要重新启动计算机。如果 Esent.dll 错误地处理将文件刷新到磁盘的方式,则会出现此症状。 解决方案 Service Pack 信息 要解决此问题,请获取最新的 Microsoft Windows 2000 Service Pack。有关其它信息,请单击下面的文章编号,以查看 Microsoft 知识库中相应的文章: 260910 如何获取最新的 Windows 2000 Service Pack 修复程序信息 Microsoft 提供了受支持的修补程序,但该程序只是为了解决本文所介绍的问题。只有计算机遇到本文提到的特定问题时才可应用此修补程序。此修补程序可能还会接受其它一些测试。因此,如果这个问题没有对您造成严重的影响,Microsoft 建议您等待包含此修补程序的下一个 Windows 2000 Service Pack。 要立即解决此问题,请与“Microsoft 产品支持服务”联系,以获取此修补程序。有关“Microsoft 产品支持服务”电话号码和支持费用信息的完整列表,请访问 Microsoft Web 站点: 注意 :特殊情况下,如果 Microsoft 支持专业人员确定某个特定的更新程序能够解决您的问题,可免收通常情况下收取的电话支持服务费用。对于特定更新程序无法解决的其它支持问题和事项,将正常收取支持费用。 下表列出了此修补程序的全球版本的文件属性(或更新的属性)。这些文件的日期和时间按协调通用时间 (UTC) 列出。查看文件信息时,它将转换为本地时间。要了解 UTC 与本地时间之间的时差,请使用“控制面板”中的“日期和时间”工具中的 时区 选项卡。 状态 Microsoft 已经确认这是在本文开头列出的 Microsoft 产品中存在的问题。此问题最初是在 Microsoft Windows 2000 Service Pack 4 中更正的。 4、正常软件造成CPU使用率占用100% 首先,如果是从开机后就发生上述情况直到关机。那幺就有可能是由某个随系统同时登陆的软件造成的。可以通过运行输入“msconfig”打开“系统实用配置工具”,进入“启动”选项卡。接着,依次取消可疑选项前面的对钩,然后重新启动电脑。反复测试直到找到造成故障的软件。或者可以通过一些优化软件如“优化大师”达到上述目的。另:如果键盘内按键卡住也可能造成开机就出现上述问题。 如果是使用电脑途中出项这类问题,可以调出任务管理器(WINXP CTRL+ALT+DEL WIN2000 CTRL+SHIFT“ESC),进入”进程“选项卡,看”CPU“栏,从里面找到占用资源较高的程序(其中SYSTEM IDLE PROCESS是属于正常,它的值一般都很高,它的作用是告诉当前你可用的CPU资源是多少,所以它的值越高越好)通过搜索功能找到这个进程属于哪个软件。然后,可以通过升级、关闭、卸载这个软件或者干脆找个同类软件替换,问题即可得到解决。 5、病毒、木马、间谍软件造成CPU使用率占用100% 出现CPU占用率100% 的故障经常是因为病毒木马造成的,比如震荡波病毒。应该首先更新病毒库,对电脑进行全机扫描 。接着,在使用反间谍软件Ad—Aware,检查是否存在间谍软件。论坛上有不少朋友都遇到过svchost.exe占用CPU100%,这个往往是中毒的表现。 svchost.exe Windows中的系统服务是以动态链接库(DLL)的形式实现的,其中一些会把可执行程序指向svchost.exe,由它调用相应服务的动态链接库并加上相应参数来启动服务。正是因为它的特殊性和重要性,使它更容易成为了一些病毒木马的宿主。 6、 explorer.exe进程造成CPU使用率占用100% 在system.ini文件中,在[BOOT]下面有个“shell=文件名”。正确的文件名应该是“explorer.exe”,如果不是“explorer.exe”,而是“shell= explorer.exe 程序名”,那幺后面跟着的那个程序就是“木马”程序,就是说你已经中“木马”了。 在注册表中的情况最复杂,通过regedit命令打开注册表编辑器,在点击至:“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”目录下,查看键值中有没有自己不熟悉的自动启动文件,扩展名为EXE,这里切记:有的“木马”程序生成的文件很像系统自身文件,想通过伪装蒙混过关,如“Acid Battery v1.0木马”,它将注册表“HKEY-LOCAL-MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”下的 Explorer 键值改为Explorer=“C:\Windows\expiorer.exe”,“木马”程序与真正的Explorer之间只有“i”与“l”的差别。当然在注册表中还有很多地方都可以隐藏“木马”程序,如:“HKEY-CURRENT-USER\Software\Microsoft\Windows\CurrentVersion\Run”、“HKEY-USERS*\Software\Microsoft\Windows\CurrentVersion\Run”的目录下都有可能,最好的办法就是在“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”下找到“木马”程序的文件名,再在整个注册表中搜索即可。 7、超线程导致CPU使用率占用100% 这类故障的共同原因就是都使用了具有超线程功能的P4 CPU。我查找了一些资料都没有明确的原因解释。据一些网友总结超线程似乎和天网防火墙有冲突,可以通过卸载天网并安装其它防火墙解决,也可以通过在BIOS中关闭超线程功能解决。 8、AVI视频文件造成CPU使用率占用100% 在Windows XP中,单击一个较大的AVI视频文件后,可能会出现系统假死现象,并且造成exploere.exe进程的使用率100%,这是因为系统要先扫描该文件,并检查文件所有部分,建立索引。如果文件较大就会需要较长时间并造成CPU占用率100%。解决方法:右键单击保存视频文件的文件夹,选择”属性—>常规—>高级“,去掉”为了快速搜索,允许索引服务编制该文件夹的索引“前面复选框的对钩即可。 9、杀毒软件CPU使用率占用100% 现在的杀毒软件一般都加入了,对网页、邮件、个人隐私的即时监空功能,这样无疑会加大系统的负担。比如:在玩游戏的时候,会非常缓慢。关闭该杀毒软件是解决得最直接办法。 10、处理较大的Word文件时CPU使用率过高 上述问题一般还会造成电脑假死,这些都是因为WORD的拼写和语法检查造成的,只要打开WORD的“工具—选项”,进入“拼写和语法”选项卡,将其中的“键入时检查拼写”和“键入时检查语法”两项前面的复选框中的钩去掉即可。 11、网络连接导致CPU使用率占用100% 当你的Windows2000/xp作为服务器时,收到来自端口445上的连接请求后,系统将分配内存和少量CPU资源来为这些连接提供服务,当负荷过重,就会出现上述情况。要解决这个问题可以通过修改注册表来解决,打开注册表,找到HKEY—LOCAL—MACHNE\SYSTEM\CurrentControlSet\Services\lanmanserver,在右面新建一个名为";maxworkitems";的DWORD值.然后双击该值,如果你的电脑有512以上内存,就设置为";1024";,如果小于512,就设置为256. 一些不完善的驱动程序也可以造成CPU使用率过高 经常使用待机功能,也会造成系统自动关闭硬盘DMA模式。这不仅会使系统性能大幅度下降,系统启动速度变慢,也会使是系统在运行一些大型软件和游戏时CPU使用率100%,产生停顿。 进程占用CPU 100%时可能中的病毒 system Idle Process 进程文件: [system process] or [system process] 进程名称: Windows内存处理系统进程 描 述: Windows页面内存管理进程,拥有0级优先。 介 绍:该进程作为单线程运行在每个处理器上,并在系统不处理其它线程的时候分派处理器的时间。它的CPU占用率越大表示可供分配的CPU资源越多,数字越小则表示CPU资源紧张。 Spoolsv.exe 进程文件: spoolsv or Spoolsv.exe 进程名称: Printer Spooler Service 描 述: Windows打印任务控制程序,用以打印机就绪。 介 绍:缓冲(spooler)服务是管理缓冲池中的打印和传真作业。 Spoolsv.exe→打印任务控制程序,一般会先加载以供列表机打印前的准备工作 Spoolsv.exe,如果常增高,有可能是病毒感染所致 目前常见的是: Backdoor/Byshell(又叫隐形大盗、隐形杀手、西门庆病毒) 危害程度:中 受影响的系统: Windows 2000, Windows XP, Windows Server 2003 未受影响的系统: Windows 95, Windows 98, Windows Me, Windows NT, Windows 3.x, Macintosh, Unix, Linux, 病毒危害: 1. 生成病毒文件 2. 插入正常系统文件中 3. 修改系统注册表 4. 可被黑客远程控制 5. 躲避反病毒软件的查杀 简单的后门木马,发作会删除自身程序,但将自身程序套入可执行程序内(如:exe),并与计算机的通口(TCP端口138)挂钩,监控计算机的信息、密码,甚至是键盘操作,作为回传的信息,并不时驱动端口,以等候传进的命令,由于该木马不能判别何者是正确的端口,所以负责输出的列表机也是其驱动对象,以致Spoolsv.exe的使用异常频繁...... Backdoor.Win32.Plutor 破坏方法:感染PE文件的后门程序 病毒采用VC编写。 病毒运行后有以下行为: 1、将病毒文件复制到%WINDIR%目录下,文件名为";Spoolsv.exe";,并该病毒文件运行。";Spoolsv.exe";文件运行后释放文件名为";mscheck.exe";的文件到%SYSDIR%目录下,该文件的主要功能是每次激活时运行";Spoolsv.exe";文件。如果所运行的文件是感染了正常文件的病毒文件,病毒将会把该文件恢复并将其运行。 2、修改注册表以下键值: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\Run 增加数据项:";Microsoft Script Checker"; 数据为:";MSCHECK.EXE /START"; 修改该项注册表使";MSCHECK.EXE";文件每次系统激活时都将被运行,而";MSCHECK.EXE";用于运行";Spoolsv.exe";文件,从而达到病毒自激活的目的。 3、创建一个线程用于感染C盘下的PE文件,但是文件路径中包含";winnt";、";Windows";字符串的文件不感染。另外,该病毒还会枚举局域网中的共享目录并试图对这些目录下的文件进行感染。该病毒感染文件方法比较简单,将正常文件的前0x16000个字节替换为病毒文件中的数据,并将原来0x16000个字节的数删除
游客2q7uranxketok 2021-02-22 13:26:20 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT