• 关于 基于点特征不可用 的搜索结果

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

问题

学术界关于HBase在物联网/车联网/互联网/金融/高能物理等八大场景的理论研究

pandacats 2019-12-18 16:06:18 1 浏览量 回答数 0

问题

Kafka、RabbitMQ、RocketMQ 消息中间件的对比 | 消息发送性能篇

琴瑟 2019-12-01 21:36:29 3527 浏览量 回答数 0

新用户福利专场,云服务器ECS低至102元/年

新用户专场,1核2G 102元/年起,2核4G 699.8元/年起

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:09 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:09 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 Web应用防火墙(WAF)帮助您轻松应对各类Web应用攻击,确保网站的Web安全与可用性。 核心攻防+大数据能力驱动Web安全 新时代的云WAF 一款淘宝天猫都在用的WAF WAF支持以下功能: 业务配置 支持对网站的HTTP、HTTPS(高级版及以上)流量进行Web安全防护。 Web应用安全防护 常见Web应用攻击防护 防御OWASP常见威胁,包括:SQL注入、XSS跨站、Webshell上传、后门隔离保护、命令注入、非法HTTP协议请求、常见Web服务器漏洞攻击、核心文件非授权访问、路径穿越、扫描防护等。 网站隐身:不对攻击者暴露站点地址、避免其绕过Web应用防火墙直接攻击。 0day补丁定期及时更新:防护规则与淘宝同步,及时更新最新漏洞补丁,第一时间全球同步下发最新补丁,对网站进行安全防护。 友好的观察模式:针对网站新上线的业务开启观察模式,对于匹配中防护规则的疑似攻击只告警不阻断,方便统计业务误报状况。 CC恶意攻击防护 对单一源IP的访问频率进行控制,基于重定向跳转验证,人机识别等。 针对海量慢速请求攻击,根据统计响应码及URL请求分布、异常Referer及User-Agent特征识别,结合网站精准防护规则进行综合防护。 充分利用阿里云大数据安全优势,建立威胁情报与可信访问分析模型,快速识别恶意流量。 精准访问控制 提供友好的配置控制台界面,支持IP、URL、Referer、User-Agent等HTTP常见字段的条件组合,配置强大的精准访问控制策略;支持盗链防护、网站后台保护等防护场景。 与Web常见攻击防护、CC防护等安全模块结和,搭建多层综合保护机制;依据需求,轻松识别可信与恶意流量。 虚拟补丁 在Web应用漏洞补丁发布和修复之前,通过调整Web防护策略实现快速防护。 攻击事件管理 支持对攻击事件、攻击流量、攻击规模的集中管理统计。 可靠性 支持负载均衡:以集群方式提供服务,多台机器负载均衡,支持多种负载均衡策略。 支持平滑扩容:可根据实际流量情况,缩减或增加集群机器的数量,进行服务能力弹性扩容。 无单点问题:单台机器宕机或者下线维修,均不影响正常服务。 更多产品信息,请查看Web应用防火墙产品页面。

2019-12-01 23:11:09 0 浏览量 回答数 0

回答

软件系统架构设计原则就是把我们在各种场景下的架构设计进行抽选化提取公共特征形成过一定的方法论,这些方法论是经过严格推敲并具备移植性的,我们在设计系统时遵从这些设计规则可以为我们的体统提供更高的扩展性、稳定性。抽象原则各平台(含基础设施、中间件技术服务、各层业务服务等)需要通过合理地抽象,将内部信息、处理与扩展能力聚合成标准的服务于扩展接口,并通过统一的形式提供给使用者,屏蔽内部的实现与运行细节。以下是一些符合抽象原则的架构规范或模式: 架构分层(layer)/级(tier),层、级间提供标准服务与数据接口 根据业务模型,统一服务标准与数据标准 使用服务目录屏蔽服务位置等实现细节 使用“逻辑库”屏蔽数据库物理细节 通过SLA,标准化服务的质量水平 提供标准插件架构支持扩展 使用标准数据库特性,保持厂商无关性 使用逻辑的网络与系统名称 使用商品化硬件单元共享原则最大化重用数据、计算资源、业务组件等资产,防止数据、逻辑与技术实现不一致性带来的管理复杂性,避免重复建设成本与管理成本,通过安全机制保证共享资产的合法使用,通过业务分级保障共享资源效益最大化。 以下是一些符合共享原则的架构规范或模式:同一业务服务有唯一提供者 同一技术服务有唯一提供者 同一数据有唯一可信源 控制技术多样性 (但需要同时防止厂商绑定) 服务具备互操作性 服务具备易用性 统一的身份、访问控制与加解密机制 为共享服务提供多租户能力 (Multi-tenancy) 提供访问计量与控制能力 提供业务分级能力,对不同级别的业务提供区分服务 自治原则每一个组件(计算资源、业务组件、信息实体等)具备最大可能的自我完备性,可独立运行、监控、部署、配置与禁用,具备确定的SLA,并与其它组件之间以松散耦合的方式进行协作。当依赖的组件不存在或者无法正常提供服务时,能够以良好的方式降级,且在故障解除后自动恢复。 以下是一些符合自治原则的架构规范或模式:基于开-闭原则(OCP)设计组件 应用无启动依赖 最小化运行依赖集 根据运行依赖关系合理安排组件物理colocation 能够隔离依赖组件的故障 异步调用 (提升异常流量的承载能力,简化故障隔离的实现) 具备自我健康检查能力 具备自我恢复能力 无状态设计 冗余原则各组件(计算资源、业务组件、数据等)都必须有充分、合理的冗余实例,保证单一组件实例失效不影响业务正常运行(多活/热备),或可以通过切换备份实例快速恢复(温备/冷备),不会丢失不可恢复的数据。针对不同类型的组件,需要明确定义冗余量与冗余类型。 以下是一些符合冗余原则的架构规范或模式:高可用水平扩展服务器集群(负载均衡、健康检查与自动切换) 无单点设计 (含逻辑单点) 采用“随机写”策略的数据库水平拆分 Failover数据库 N+1或N+x设计 “多活”数据中心 数据复制 灾难备份 分布原则整个系统拆分成职责清晰、粒度恰当、便于管理的组件,各组件(计算资源、业务组件、数据等)可分布部署运行。组件的拆分与分布可以采取复制、根据功能垂直拆分、或根据用户与访问模式水平拆分等形式。 以下是一些符合分布原则的架构规范或模式:读写分离设计 垂直分拆 水平分拆 柔性的分布事务 自动原则系统设计了具备自监控、自管理、自适应与自优化能力,可以随着业务量与访问模式的变化、以及其它内、外部因素的改变,自动地对资源进行调度、调整服务策略,保障自身的稳定与服务的质量。 以下是一些符合自动原则的架构规范或模式:监控每一个服务的质量与资源的状态与报警 从客户视角监控最终服务的质量 统一、自动的错误报告、管理与响应 提供完备的配置能力 自动化系统安装 自动化应用部署 自动化资源分配 可以mark up/mark down服务 支持优雅降级 自动拒绝超出SLA之外异常流量 作者:技术僧 来源:CSDN 原文:https://blog.csdn.net/Bryans/article/details/80545040 版权声明:本文为博主原创文章,转载请附上博文链接!

wangccsy 2019-12-02 01:46:48 0 浏览量 回答数 0

问题

【教程免费下载】Apache Spark机器学习

知与谁同 2019-12-01 22:07:50 1848 浏览量 回答数 1

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。

剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

回答

网络性能主要有主动测试,被动式测试以及主动被动相结合测试三种方法 1.主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量注入网络,并根据测量数据流的传送情况来分析网络的性能。 主动测量在性能参数的测量中应用十分广泛,因为它可以以任何希望的数据类型在所选定的网络端点间进行端到端性能参数的测量。最为常见的主动测量工具就是“Ping”,它可以测量双向时延,IP 包丢失率以及提供其它一些信息,如主机的可达性等。主动测量可以测量端到端的IP 网络可用性、延迟和吞吐量等。因为一次主动测量只是查验了瞬时的网络质量,因此有必要重复多次,用统计的方法获得更准确的数据。 要对一个网络进行主动测量,则需要一个面向网络的测量系统,这种主动测量系统应包括以下几个部分: - 测量节点:它们分布在网络的不同端点上,进行测量数据包的发送和接收,若要进行单向性能的测量,则它们之间应进行严格的时钟同步; - 中心服务器:它与各个测量节点通信,进行整个测量的控制以及测量节点的配置工作; - 中心数据库:存储各个节点所收集的测量数据; - 分析服务器:对中心数据库中的数据进行分析,得到网络整体的或具体节点间的性能状况 在实际中,中心服务器,中心数据库和分析服务器可能位于同一台主机中。 主动测量法依赖于向网络注入测量包,利用这些包测量网络的性能,因此这种方法肯定会产生额外的流量。另一方面,测量中所使用的流量大小以及其他参数都是可调的。主动测量法能够明确地控制测量中所产生的流量的特征,如流量的大小、抽样方法、发包频率、测量包大小和类型(以仿真各种应用)等,并且实际上利用很小的流量就可以获得很有意义的测量结果。主动测量意味着测量可以按测量者的意图进行,容易进行场景的仿真,检验网络是否满足QoS 或SLA 非常简单明了。 总之,主动测量的优点在于可以主动发送测量数据,对测量过程的可控制性比较高,比较灵活机动,并易于对端到端的性能进行直观的统计;其缺点是注入测量流量本身就改变了网络的运行情况,即改变了被测对象本身,使得测量的结果与实际情况存在一定的偏差,而且注入网络的测量流量还可能会增加网络的负担。 2.被动测量是指在链路或设备(如路由器,交换机等)上对网络进行监测,而不需要产生流量的测量方法。 被动测量利用测量设备监视经过它的流量。这些设备可以是专用的,如Sniffer,也可以是嵌入在其它设备(如路由器、防火墙、交换机和主机)之中的,如RMON, SNMP 和netflow 使能设备等。控制者周期性地轮询被动监测设备并采集信息(在SNMP 方式时,从MIB 中采集),以判断网络性能和状态。被动测量主要有三种方式: - 通过SNMP 协议采集网络上的数据信息,并提交至服务器进行处理。 - 在一条指定的链路上进行数据监测,此时数据的采集和分析是两个独立的处理过程。这种方法的问题是OC48(2.5Gbit/s)以上的链路速度超过了 PCI 总线(64bit,33MHz)的能力,因此对这些高速链路的数据采集只能采用数据压缩,聚合等方式,这样会损失一定的准确性。 - 在一台主机上有选择性的进行数据的采集和分析。这种工具只是用来采集分析网络上数据包的内容特性,并不能进行性能参数的测量,如Ethereal 等工具。 被动测量非常适合用来测量和统计链路或设备上的流量,但它并不是一个真正的 QoS 参数,因为流量只是当前网络(设备)上负载情况的一个反映,通过它并不能得到网络实际的性能情况,如果要通过被动测量的方法得到终端用户所关心的时延,丢包,时延抖动等性能参数,只能采用在被测路径的两个端点上同时进行被动测量,并进行数据分析,但这种分析将是十分复杂的,并且由于网络上数据流量特征的不确定性,这种分析在一定程度上也是不够准确的。只有链路带宽这个流量参数可以通过被动测量估算出来。 被动测量法在测量时并不增加网络上的流量,测量的是网络上的实际业务流量,理论上说不会增加网络的负担。但是被动测量设备需要用轮询的方法采集数据、陷阱(trap)和告警(利用SNMP 时),所有这些都会产生网络流量,因此实际测量中产生的流量开销可能并不小。 另外,在做流分析或试图对所有包捕捉信息时,所采集的数据可能会非常大。被动测量的方法在网络排错时特别有价值,但在仿真网络故障或隔离确切的故障位置时其作用会受到限制。 总之,被动测量的优点在于理论上它不产生流量,不会增加网络的负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,且存在用户数据泄漏等安全性问题。 3.主动、被动相结合测试 主动测量与被动测量各有其有缺点,而且对于不同的参数来说,主动测量和被动测量也都有其各自的用途。对端到端的时延,丢包,时延变化等参数比较适于进行主动测量;而对于路径吞吐量等流量参数来说,被动测量则更适用。因此,对网络性能进行全面的测量需要主动测量与被动测量相结合,并对两种测量结果进行对比和分析,以获得更为全面科学的结论。 来自百度知道初夏0535

YDYK 2020-03-26 09:42:40 0 浏览量 回答数 0

问题

Spring Cloud Alibaba:Spring 社区的唯一国产开源项目

珍宝珠 2020-02-17 17:19:23 211 浏览量 回答数 1

回答

Spring Cloud 学习笔记(一)——入门、特征、配置 0 放在前面 0.1 参考文档 http://cloud.spring.io/spring-cloud-static/Brixton.SR7/ https://springcloud.cc/ http://projects.spring.io/spring-cloud/ 0.2 maven配置 org.springframework.boot spring-boot-starter-parent 1.5.2.RELEASE org.springframework.cloud spring-cloud-dependencies Dalston.RELEASE pom import org.springframework.cloud spring-cloud-starter-config org.springframework.cloud spring-cloud-starter-eureka 0.3 简介 Spring Cloud为开发人员提供了快速构建分布式系统中的一些通用模式(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁,领导选举,分布式 会话,群集状态)。 分布式系统的协调引出样板模式(boiler plate patterns),并且使用Spring Cloud开发人员可以快速地实现这些模式来启动服务和应用程序。 它们可以在任何分布式环境中正常工作,包括开发人员自己的笔记本电脑,裸机数据中心和受管平台,如Cloud Foundry。 Version: Brixton.SR7 1 特征 Spring Cloud专注于为经典用例和扩展机制提供良好的开箱即用 分布式/版本配置 服务注册与发现 路由选择 服务调用 负载均衡 熔断机制 全局锁 领导人选举和集群状态 分布式消息 2 原生云应用程序 原生云是应用程序开发的一种风格,鼓励在持续交付和价值驱动领域的最佳实践。 Spring Cloud的很多特性是基于Spring Boot的。更多的是由两个库实现:Spring Cloud Context and Spring Cloud Commons。 2.1 Spring Cloud Context: 应用上下文服务 Spring Boot关于使用Spring构建应用有硬性规定:通用的配置文件在固定的位置,通用管理终端,监控任务。建立在这个基础上,Spring Cloud增加了一些额外的特性。 2.1.1 引导应用程序上下文 Spring Cloud会创建一个“bootstrap”的上下文,这是主应用程序的父上下文。对应的配置文件拥有最高优先级,并且,默认不能被本地配置文件覆盖。对应的文件名bootstrap.yml或bootstrap.properties。 可通过设置spring.cloud.bootstrap.enabled=false来禁止bootstrap进程。 2.1.2 应用上下文层级结构 当用SpringApplication或SpringApplicationBuilder创建应用程序上下文时,bootstrap上下文将作为父上下文被添加进去,子上下文将继承父上下文的属性。 子上下文的配置信息可覆盖父上下文的配置信息。 2.1.3 修改Bootstrap配置文件位置 spring.cloud.bootstrap.name(默认是bootstrap),或者spring.cloud.bootstrap.location(默认是空) 2.1.4 覆盖远程配置文件的值 spring.cloud.config.allowOverride=true spring.cloud.config.overrideNone=true spring.cloud.config.overrideSystemProperties=false 2.1.5 定制Bootstrap配置 在/META-INF/spring.factories的key为org.springframework.cloud.bootstrap.BootstrapConfiguration,定义了Bootstrap启动的组件。 在主应用程序启动之前,一开始Bootstrap上下文创建在spring.factories文件中的组件,然后是@Beans类型的bean。 2.1.6 定制Bootstrap属性来源 关键点:spring.factories、PropertySourceLocator 2.1.7 环境改变 应用程序可通过EnvironmentChangedEvent监听应用程序并做出响应。 2.1.8 Refresh Scope Spring的bean被@RefreshScope将做特殊处理,可用于刷新bean的配置信息。 注意 需要添加依赖“org.springframework.boot.spring-boot-starter-actuator” 目前我只在@Controller测试成功 需要自己发送POST请求/refresh 修改配置文件即可 2.1.9 加密和解密 Spring Cloud可对配置文件的值进行加密。 如果有"Illegal key size"异常,那么需要安装JCE。 2.1.10 服务点 除了Spring Boot提供的服务点,Spring Cloud也提供了一些服务点用于管理,注意都是POST请求 /env:更新Environment、重新绑定@ConfigurationProperties跟日志级别 /refresh重新加载配置文件,刷新标记@RefreshScope的bean /restart重启应用,默认不可用 生命周期方法:/pause、/resume 2.2 Spring Cloud Commons:通用抽象 服务发现、负载均衡、熔断机制这种模式为Spring Cloud客户端提供了一个通用的抽象层。 2.2.1 RestTemplate作为负载均衡客户端 通过@Bean跟@LoadBalanced指定RestTemplate。注意URI需要使用虚拟域名(如服务名,不能用域名)。 如下: @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; public String doOtherStuff() { String results = restTemplate.getForObject(" http://stores/stores", String.class); return results; } } 2.2.2 多个RestTemplate对象 注意@Primary注解的使用。 @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate loadBalanced() { return new RestTemplate(); } @Primary @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; @Autowired @LoadBalanced private RestTemplate loadBalanced; public String doOtherStuff() { return loadBalanced.getForObject(" http://stores/stores", String.class); } public String doStuff() { return restTemplate.getForObject(" http://example.com", String.class); } } 2.2.3 忽略网络接口 忽略确定名字的服务发现注册,支持正则表达式配置。 3 Spring Cloud Config Spring Cloud Config提供服务端和客户端在分布式系统中扩展配置。支持不同环境的配置(开发、测试、生产)。使用Git做默认配置后端,可支持配置环境打版本标签。 3.1 快速开始 可通过IDE运行或maven运行。 默认加载property资源的策略是克隆一个git仓库(at spring.cloud.config.server.git.uri')。 HTTP服务资源的构成: /{application}/{profile}[/{label}] /{application}-{profile}.yml /{label}/{application}-{profile}.yml /{application}-{profile}.properties /{label}/{application}-{profile}.properties application是SpringApplication的spring.config.name,(一般来说'application'是一个常规的Spring Boot应用),profile是一个active的profile(或者逗号分隔的属性列表),label是一个可选的git标签(默认为"master")。 3.1.1 客户端示例 创建以Spring Boot应用即可,添加依赖“org.springframework.cloud:spring-cloud-starter-config”。 配置application.properties,注意URL为配置服务端的地址 spring.cloud.config.uri: http://myconfigserver.com 3.2 Spring Cloud Config 服务端 针对系统外的配置项(如name-value对或相同功能的YAML内容),该服务器提供了基于资源的HTTP接口。使用@EnableConfigServer注解,该服务器可以很容易的被嵌入到Spring Boot 系统中。使用该注解之后该应用系统就是一个配置服务器。 @SpringBootApplication @EnableConfigServer public class ConfigApplicion { public static void main(String[] args) throws Exception { SpringApplication.run(ConfigApplicion.class, args); } } 3.2.1 资源库环境 {application} 对应客户端的"spring.application.name"属性 {profile} 对应客户端的 "spring.profiles.active"属性(逗号分隔的列表) {label} 对应服务端属性,这个属性能标示一组配置文件的版本 如果配置库是基于文件的,服务器将从application.yml和foo.yml中创建一个Environment对象。高优先级的配置优先转成Environment对象中的PropertySource。 3.2.1.1 Git后端 默认的EnvironmentRepository是用Git后端进行实现的,Git后端对于管理升级和物理环境是很方便的,对审计配置变更也很方便。也可以file:前缀从本地配置库中读取数据。 这个配置库的实现通过映射HTTP资源的{label}参数作为git label(提交id,分支名称或tag)。如果git分支或tag的名称包含一个斜杠 ("/"),此时HTTP URL中的label需要使用特殊字符串"(_)"来替代(为了避免与其他URL路径相互混淆)。如果使用了命令行客户端如 curl,请谨慎处理URL中的括号(例如:在shell下请使用引号''来转义它们)。 Git URI占位符 Spring Cloud Config Server支持git库URL中包含针对{application}和 {profile}的占位符(如果你需要,{label}也可包含占位符, 不过要牢记的是任何情况下label只指git的label)。所以,你可以很容易的支持“一个应用系统一个配置库”策略或“一个profile一个配置库”策略。 模式匹配和多资源库 spring: cloud: config: server: git: uri: https://github.com/spring-cloud-samples/config-repo repos: simple: https://github.com/simple/config-repo special: pattern: special*/dev*,special/dev* uri: https://github.com/special/config-repo local: pattern: local* uri: file:/home/configsvc/config-repo 如果 {application}/{profile}不能匹配任何表达式,那么将使用“spring.cloud.config.server.git.uri”对应的值。在上例子中,对于 "simple" 配置库, 匹配模式是simple/* (也就说,无论profile是什么,它只匹配application名称为“simple”的应用系统)。“local”库匹配所有application名称以“local”开头任何应用系统,不管profiles是什么(来实现覆盖因没有配置对profile的匹配规则,“/”后缀会被自动的增加到任何的匹配表达式中)。 Git搜索路径中的占位符 spring.cloud.config.server.git.searchPaths 3.2.1.2 版本控制后端文件系统使用 伴随着版本控制系统作为后端(git、svn),文件都会被check out或clone 到本地文件系统中。默认这些文件会被放置到以config-repo-为前缀的系统临时目录中。在Linux上,譬如应该是/tmp/config-repo- 目录。有些操作系统routinely clean out放到临时目录中,这会导致不可预知的问题出现。为了避免这个问题,通过设置spring.cloud.config.server.git.basedir或spring.cloud.config.server.svn.basedir参数值为非系统临时目录。 3.2.1.3 文件系统后端 使用本地加载配置文件。 需要配置:spring.cloud.config.server.native.searchLocations跟spring.profiles.active=native。 路径配置格式:classpath:/, classpath:/config,file:./, file:./config。 3.2.1.4 共享配置给所有应用 基于文件的资源库 在基于文件的资源库中(i.e. git, svn and native),这样的文件名application 命名的资源在所有的客户端都是共享的(如 application.properties, application.yml, application-*.properties,etc.)。 属性覆盖 “spring.cloud.config.server.overrides”添加一个Map类型的name-value对来实现覆盖。 例如 spring: cloud: config: server: overrides: foo: bar 会使所有的配置客户端应用程序读取foo=bar到他们自己配置参数中。 3.2.2 健康指示器 通过这个指示器能够检查已经配置的EnvironmentRepository是否正常运行。 通过设置spring.cloud.config.server.health.enabled=false参数来禁用健康指示器。 3.2.3 安全 你可以自由选择任何你觉得合理的方式来保护你的Config Server(从物理网络安全到OAuth2 令牌),同时使用Spring Security和Spring Boot 能使你做更多其他有用的事情。 为了使用默认的Spring Boot HTTP Basic 安全,只需要把Spring Security 增加到classpath中(如org.springframework.boot.spring-boot-starter-security)。默认的用户名是“user”,对应的会生成一个随机密码,这种情况在实际使用中并没有意义,一般建议配置一个密码(通过 security.user.password属性进行配置)并对这个密码进行加密。 3.2.4 加密与解密 如果远程属性包含加密内容(以{cipher}开头),这些值将在通过HTTP传递到客户端之前被解密。 使用略 3.2.5 密钥管理 配置服务可以使用对称(共享)密钥或者非对称密钥(RSA密钥对)。 使用略 3.2.6 创建一个测试密钥库 3.2.7 使用多密钥和循环密钥 3.2.8 加密属性服务 3.3 可替换格式服务 配置文件可加后缀".yml"、".yaml"、".properties" 3.4 文本解释服务 /{name}/{profile}/{label}/{path} 3.5 嵌入配置服务器 一般配置服务运行在单独的应用里面,只要使用注解@EnableConfigServer即可嵌入到其他应用。 3.6 推送通知和总线 添加依赖spring-cloud-config-monitor,激活Spring Cloud 总线,/monitor端点即可用。 当webhook激活,针对应用程序可能已经变化了的,配置服务端将发送一个RefreshRemoteApplicationEvent。 3.7 客户端配置 3.7.1 配置第一次引导 通过spring.cloud.config.uri属性配置Config Server地址 3.7.2 发现第一次引导 如果用的是Netflix,则用eureka.client.serviceUrl.defaultZone进行配置。 3.7.3 配置客户端快速失败 在一些例子里面,可能希望在没有连接配置服务端时直接启动失败。可通过spring.cloud.config.failFast=true进行配置。 3.7.4 配置客户端重试 添加依赖spring-retry、spring-boot-starter-aop,设置spring.cloud.config.failFast=true。默认的是6次重试,初始补偿间隔是1000ms,后续补偿为1.1指数乘数,可通过spring.cloud.config.retry.*配置进行修改。 3.7.5 定位远程配置资源 路径:/{name}/{profile}/{label} "name" = ${spring.application.name} "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles()) "label" = "master" label对于回滚到之前的版本很有用。 3.7.6 安全 通过spring.cloud.config.password、spring.cloud.config.username进行配置。 答案来源于网络

养狐狸的猫 2019-12-02 02:18:34 0 浏览量 回答数 0

回答

BRD文档(商业需求文档) 定义:BRD 是英文”Business Requirement Document“的缩写,根据英文直译过来就是”商业需求文档“的意思,指的就是基于商业目标或价值所描述的产品需求内容文档(报告),其核心的用途就是用于产品在投入研发之前,由企业高层作为决策评估的重要依据。一般来说全新的产品、未来发展有潜力的产品提供BRD! 真相君:市场前景无限大;用户需求未满足;同类竞品没做到;好机会啊,老板 MRD(市场需求文档) 定义:MRD 是英文”Market Requirements Document“的缩写,根据英文直译过来就是”市场需求文档“的意思,主要是描述什么样的功能和特点的产品(包含产品版本)可以在市场上取得成功。一般新功能的实现,上线新的产品提供MRD! 真相君:老板,市场真的很大,产品路线图我都规划好了,我们按照产品路线发展,肯定能成。 PRD(产品需求文档) 定义:PRD 是英文”Product Requirement Document“的缩写,根据英文直译过来就是”产品需求文档“的意思, PRD文档是产品项目由“概念化”阶段进入到“图纸化”阶段的最主要的一个文档,其作用就是“对MRD中的内容进行指标化和技术化”,这个文档的质量好坏直接影响产品能否顺利的实施完成。一般产品的功能改善、产品的细节说明提供PRD文档! 真相君:确保文档可读性;名词不要有歧义;从概念到图纸化;设计开发全靠它。 用户场景 用户场景是什么?是人物、时间、地点、欲望、手段五要素所组成的特定关系。在xx时间(when),xx地点(where),特定类型的用户(who)萌发了某种欲望(desire),会想通过某种手段(method)来满足欲望。 真相君:产品原型很简单;洞察用户才最难;带入场景去分析;用户心理全了然 MVP 简单的说法就是用最小的成本开发出可表达项目创意、可用且能用于表达核心理念的原型产品,功能极简而且能用于快速验证想法的最小化产品。 真相君:糟了,老板明天要验收;别慌,他不懂技术;咱先拿个半成品忽悠他。 灰度发布 定义:灰度发布(又名金丝雀发布)是指让一部分用户继续用产品特性A,一部分用户开始用产品特性B,如果用户对B没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到B上面来。灰度发布可以保证整体系统的稳定,在初始灰度的时候就可以发现、调整问题,以保证其影响度。经常与A/B测试一起使用,用于测试选择多种方案。 真相君:不知新版发布会不会挨骂?;找群白鼠测一下;如果反馈还不错;那就逐步推出它。 用户研究 定义:用户研究是指通过对用户的任务操作特性、知觉特征、认知心理特征的研究,使用户的实际需求成为产品设计的导向,使您的产品更符合用户的习惯、经验和期待。 在互联网领域内,用户研究主要应用于两个方面: 对于新产品来说,用户研究一般用来明确用户需求点,帮助设计师选定产品的设计方向; 对于已经发布的产品来说,用户研究一般用于发现产品问题,帮助设计师优化产品体验。 真相君:用户研究不简单;定性定量都精通;还得数据来建模;产品决策要靠它。 用户画像 定义:用户画像就是你的粉丝群体属性的数据,比如性别、学历、职业、收入水平、手机型号、兴趣爱好等等。是根据用户在互联网留下的种种数据,主动或被动地收集,最后加工成一系列的标签。 真相君:平时上网别乱点;行为历史有记录;根据数据贴标签;再想撕掉难上天 A / B测试 定义:AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本,收集各群组的用户体验数据和业务数据,最后分析、评估出最好版本,正式采用。 真相君:不知道功能上线后效果好不好,先找一部分用户测试看看,好了再全面推广。 UCD 定义:(User Centered Design)是一种设计思维、模式,指以用户为中心的设计。是在设计过程中以用户体验为设计决策的中心,强调用户优先的设计模式。 真相君:先不要考虑盈利,先让用户用的爽再说。 智能推送 定义:将用户“个性”和“商品、服务、内容”属性进行精准的匹配,达到用户所见即所需所想的目的,缩短了信息触达用户的路径,减少用户流失,促进用户快速转化。 真相君:你想看什么,就给你推送什么。 AIOT 定义:智联网(AIOT,是AI + IOT物联网的结合) 2018年开始崛起,核心是能够运用大量传感设备,综合语音、视觉、动作、温度等数据,实现IOT设备的全自然化的人机交互。 真相君:物联网喊了好多年;体验提升太有限;如今终于有突破;人机交互成关键。 AM敏捷开发 定义:以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。在敏捷开发中,软件项目在构建初期被切分成多个子项目,各个子项目的成果都经过测试,具备可视、可集成和可运行使用的特征。换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。 真相君:一点点来,不要想一口吃个胖子。 PLC 定义:产品生命周期(Product Life Cycle),简称PLC,是产品的市场寿命,即一种新产品从开始进入市场到被市场淘汰的整个过程。这个过程其实就是经历了一个从“启动、成长、成熟一直到衰退”的阶段。 真相君:一个产品四阶段;阶段策略各不同;快速验证和开发;尽力延长成熟期。 可用性测试 定义:让一群具有代表性的用户对产品进行典型操作,同时观察员和开发人员在一旁观察,聆听,做记录。 真相君:观察用户使用产品。 商业闭环 定义:商业闭环是围绕着顾客一系列关联性消费需求,逐一提供相应的产品予以满足的商业模式。主要在商业体系中营造循环圈,各个环节都可以相互依靠,既可以作为个体支撑点也可以协同合作。 真相君:产品分步走;逻辑真是乱;怎么讲清楚;就得靠闭环! 互联网上半场/下半场 定义: 互联网上半场即消费互联网时代,注重的是入口和流量,线上打造; 而下半场即产业互联网时代,注重的是服务和价值,线上线下充分融合。 真相君:上半场玩的是流量,现在流量已经被占完,再看产业和互联;线上线下共融合;下半场来临! CRUD 创建(Create)、检索(Retrieve)、更新(Update)、删除(Delete),有时候也简称“增删改查”这是面向对象设计中最常用的4个基本方法。说来这是数据库里的必备的知识,但作为互联网公司的产品经理,这也是经常会提起的功能点。 真相君:就是后台功能操作分为:增删改查和搜索。 用户任务的闭环 定义:指的是一系列帮助用户完成任务的环节,这些环节可以应对任务可能出现的各种情况。 真相君:就是用户做一件事情要能做完。 KPI 定义:KPI绩效考核,又称“关键业绩指标”考核法,是企业绩效考核的方法之一。这种方法的优点是标准比较鲜明,易于做出评估。它的缺点是对简单的工作制定标准难度较大,缺乏一定的定量性。 真相君:就是给你分配的任务。 蓝海与红海 定义:所谓蓝海,指的是未知的市场空间,即尚未有人涉足,或是只有极少人涉足并且还没有做出太大成绩的市场。这样的市场,如果成功进入,则会是一段绝佳的时期,因为这段时间内你处于绝对的垄断地位,直到你的竞争对手赶上来。做好核心业务,做足差异化,能够帮助你将你的蓝海时段尽可能地延长,保证你的利益。 所谓红海,指的是已经发展的比较成熟,竞争非常激烈的市场。通常红海里的新人很难在短时间内做出成就,除非你在某一方面比你的竞争对手优势更大,或者你让投资人和初期用户看到了你巨大的发展潜力,又或者你在另一片红海中有着极佳的口碑,现在跨界进入这个行业。 真相君:蓝海就是竞争没那么激烈,红海就是竞争很激烈,刺刀见红。 进入壁垒 定义:进入壁垒值得是进入某一市场的难度,这一高度取决于自身的技术、成本、对特定资源的占有情况,以及对手的发展程度。 真相君:就是进入的门槛到底。 商业价值 定义:商业价值指的是一款产品如何创造价值。 真相君:就是如何赚钱。 墨菲定律 定义:事情如果有变坏的可能,不管这种可能性有多小,它总会发生。 真相君:越怕出事,越会出事。 放到互联网行业通常就是这样: 凡是输入框,都会遭遇灌水、SPAM、脚本注入 凡是积分,都会被刷 凡是推到网站首页的内容,都会出现色情、政治 凡是用户间沟通的渠道,都会被广告机器人利用 而对于项目管理而言,又可能是这样: 一项工作如果只有一个人负责,这个人肯定会休假或者离职 认为没有技术难点的地方,都会成为技术难点或性能瓶颈 羊群效应 定义:头羊往哪里走,后面的羊就跟着往哪里走。 真相君:说白了,其实就是从众心理。 破窗理论 定义:如果有人打坏了一幢建筑物的窗户玻璃,而这扇窗户又得不到及时的维修,别人就可能受到某些示范性的纵容去打烂更多的窗户。 真相君:环境中的不良现象如果被放任存在,会诱使人们仿效,甚至变本加厉。 二八定律 定义:也叫巴莱多定律,19世纪末20世纪初意大利的经济学家巴莱多认为,在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的。社会约80%的财富集中在20%的人手里,而80%的人只拥有20%的社会财富。80%的回报来源于20%的有效付出。这种统计的不平衡性在社会、经济及生活中无处不在,这就是二八法则。 真相君:一个人的时间和精力都是非常有限的,要想真正做好每一件事情几乎是不可能的,要学会抓住主要矛盾,合理分配我们的时间和精力。要想面面俱到还不如重点突破,把80%的资源花在能出关键效益的20%的方面,这20%的方面又能带动其余80%的发展。 马太效应 定义:指强者愈强,弱者愈弱的现象。《圣经—马太福音》中有一句名言:凡有的,还要加给他,让他有余;没有的,连他所有的,也要夺过来。社会学家从中引申出马太效应这一概念,用以描述社会生活领域中普遍存在的两极分化现象。 真相君:好的愈好,坏的愈坏,多的愈多,少的愈少。

剑曼红尘 2020-04-09 14:21:15 0 浏览量 回答数 0

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

回答

一、BMP格式 BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被广泛应用。这种格式的特点是包含的图像信息较丰富,几乎不进行压缩,但由此导致了它与生俱生来的缺点--占用磁盘空间过大。所以,目前BMP在单机上比较流行。 二、GIF格式 GIF是英文Graphics Interchange Format(图形交换格式)的缩写。顾名思义,这种格式是用来交换图片的。事实上也是如此,上世纪80年代,美国一家著名的在线信息服务机构CompuServe针对当时网络传输带宽的限制,开发出了这种GIF图像格式。 GIF格式的特点是压缩比高,磁盘空间占用较少,所以这种图像格式迅速得到了广泛的应用。 最初的GIF只是简单地用来存储单幅静止图像(称为GIF87a),后来随着技术发展,可以同时存储若干幅静止图象进而形成连续的动画,使之成为当时支持2D动画为数不多的格式之一(称为GIF89a),而在GIF89a图像中可指定透明区域,使图像具有非同一般的显示效果,这更使GIF风光十足。目前Internet上大量采用的彩色动画文件多为这种格式的文件,也称为GIF89a格式文件。 此外,考虑到网络传输中的实际情况,GIF图像格式还增加了渐显方式,也就是说,在图像传输过程中,用户可以先看到图像的大致轮廓,然后随着传输过程的继续而逐步看清图像中的细节部分,从而适应了用户的"从朦胧到清楚"的观赏心理。目前Internet上大量采用的彩色动画文件多为这种格式的文件。 但GIF有个小小的缺点,即不能存储超过256色的图像。尽管如此,这种格式仍在网络上大行其道应用,这和GIF图像文件短小、下载速度快、可用许多具有同样大小的图像文件组成动画等优势是分不开的。 三、JPEG格式 JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为"ISO 10918-1",JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。 同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,比如我们最高可以把1.37MB的BMP位图文件压缩至20.3KB。当然我们完全可以在图像质量和文件尺寸之间找到平衡点。 由于JPEG优异的品质和杰出的表现,它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。 四、JPEG2000格式 JPEG 2000同样是由JPEG 组织负责制定的,它有一个正式名称叫做"ISO 15444",与JPEG相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。 JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而 JPEG 只能支持有损压缩。无损压缩对保存一些重要图片是十分有用的。JPEG2000的一个极其重要的特征在于它能实现渐进传输,这一点与GIF的"渐显"有异曲同工之妙,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图象由朦胧到清晰显示,而不必是像现在的 JPEG 一样,由上到下慢慢显示。 此外,JPEG2000还支持所谓的"感兴趣区域"特性,你可以任意指定影像上你感兴趣区域的压缩质量,还可以选择指定的部份先解压缩。 JPEG 2000 和 JPEG 相比优势明显,且向下兼容,因此取代传统的JPEG格式指日可待。 JPEG2000可应用于传统的JPEG市场,如扫描仪、数码相机等,亦可应用于新兴领域,如网路传输、无线通讯等等。 五、TIFF格式 TIFF(Tag Image File Format)是Mac中广泛使用的图像格式,它由Aldus和微软联合开发,最初是出于跨平台存储扫描图像的需要而设计的。它的特点是图像格式复杂、存贮信息多。正因为它存储的图像细微层次的信息非常多,图像的质量也得以提高,故而非常有利于原稿的复制。 该格式有压缩和非压缩二种形式,其中压缩可采用LZW无损压缩方案存储。不过,由于TIFF格式结构较为复杂,兼容性较差,因此有时你的软件可能不能正确识别TIFF文件(现在绝大部分软件都已解决了这个问题)。目前在Mac和PC机上移植TIFF文件也十分便捷,因而TIFF现在也是微机上使用最广泛的图像文件格式之一。 六、PSD格式 这是著名的Adobe公司的图像处理软件Photoshop的专用格式Photoshop Document(PSD)。PSD其实是Photoshop进行平面设计的一张"草稿图",它里面包含有各种图层、通道、遮罩等多种设计的样稿,以便于下次打开文件时可以修改上一次的设计。在Photoshop所支持的各种图像格式中,PSD的存取速度比其它格式快很多,功能也很强大。由于Photoshop越来越被广泛地应用,所以我们有理由相信,这种格式也会逐步流行起来。 七、PNG格式 PNG(Portable Network Graphics)是一种新兴的网络图像格式。在1994年底,由于Unysis公司宣布GIF拥有专利的压缩方法,要求开发GIF软件的作者须缴交一定费用,由此促使免费的png图像格式的诞生。PNG一开始便结合GIF及JPG两家之长,打算一举取代这两种格式。1996年10月1日由PNG向国际网络联盟提出并得到推荐认可标准,并且大部分绘图软件和浏览器开始支持PNG图像浏览,从此PNG图像格式生机焕发。 PNG是目前保证最不失真的格式,它汲取了GIF和JPG二者的优点,存贮形式丰富,兼有GIF和JPG的色彩模式;它的另一个特点能把图像文件压缩到极限以利于网络传输,但又能保留所有与图像品质有关的信息,因为PNG是采用无损压缩方式来减少文件的大小,这一点与牺牲图像品质以换取高压缩率的JPG有所不同;它的第三个特点是显示速度很快,只需下载1/64的图像信息就可以显示出低分辨率的预览图像;第四,PNG同样支持透明图像的制作,透明图像在制作网页图像的时候很有用,我们可以把图象背景设为透明,用网页本身的颜色信息来代替设为透明的色彩,这样可让图像和网页背景很和谐地融合在一起。 PNG的缺点是不支持动画应用效果,如果在这方面能有所加强,简直就可以完全替代GIF和JPEG了。Macromedia公司的Fireworks软件的默认格式就是PNG。现在,越来越多的软件开始支持这一格式,而且在网络上也越来截止流行。 八、SWF格式 利用Flash我们可以制作出一种后缀名为SWF(Shockwave Format)的动画,这种格式的动画图像能够用比较小的体积来表现丰富的多媒体形式。在图像的传输方面,不必等到文件全部下载才能观看,而是可以边下载边看,因此特别适合网络传输,特别是在传输速率不佳的情况下,也能取得较好的效果。事实也证明了这一点,SWF如今已被大量应用于WEB网页进行多媒体演示与交互性设计。此外,SWF动画是其于矢量技术制作的,因此不管将画面放大多少倍,画面不会因此而有任何损害。综上,SWF格式作品以其高清晰度的画质和小巧的体积,受到了越来越多网页设计者的青睐,也越来越成为网页动画和网页图片设计制作的主流,目前已成为网上动画的事实标准。 九、SVG格式 SVG可以算是目前最最火热的图像文件格式了,它的英文全称为Scalable Vector Graphics,意思为可缩放的矢量图形。它是基于XML(Extensible Markup Language),由World Wide Web Consortium(W3C)联盟进行开发的。严格来说应该是一种开放标准的矢量图形语言,可让你设计激动人心的、高分辨率的Web图形页面。用户可以直接用代码来描绘图像,可以用任何文字处理工具打开SVG图像,通过改变部分代码来使图像具有互交功能,并可以随时插入到HTML中通过浏览器来观看。 它提供了目前网络流行格式GIF和JPEG无法具备了优势:可以任意放大图形显示,但绝不会以牺牲图像质量为代价;字在SVG图像中保留可编辑和可搜寻的状态;平均来讲,SVG文件比JPEG和GIF格式的文件要小很多,因而下载也很快。可以相信,SVG的开发将会为Web提供新的图像标准。 其它非主流图像格式: 1、PCX格式 PCX格式是ZSOFT公司在开发图像处理软件Paintbrush时开发的一种格式,这是一种经过压缩的格式,占用磁盘空间较少。由于该格式出现的时间较长,并且具有压缩及全彩色的能力,所以现在仍比较流行。 2、DXF格式 DXF(Autodesk Drawing Exchange Format)是AutoCAD中的矢量文件格式,它以ASCII码方式存储文件,在表现图形的大小方面十分精确。许多软件都支持DXF格式的输入与输出。 3、WMF格式 WMF(Windows Metafile Format)是Windows中常见的一种图元文件格式,属于矢量文件格式。它具有文件短小、图案造型化的特点,整个图形常由各个独立的组成部分拼接而成,其图形往往较粗糙。 4、EMF格式 EMF(Enhanced Metafile)是微软公司为了弥补使用WMF的不足而开发的一种Windows 32位扩展图元文件格式,也属于矢量文件格式,其目的是欲使图元文件更加容易接受 5、LIC(FLI/FLC)格式 Flic格式由Autodesk公司研制而成,FLIC是FLC和FLI的统称:FLI是最初的基于320×200分辨率的动画文件格式,而FLC则采用了更高效的数据压缩技术,所以具有比FLI更高的压缩比,其分辨率也有了不少提高。 6、EPS格式 EPS(Encapsulated PostScript)是PC机用户较少见的一种格式,而苹果Mac机的用户则用得较多。它是用PostScript语言描述的一种ASCII码文件格式,主要用于排版、打印等输出工作。 7、TGA格式 TGA(Tagged Graphics)文件是由美国Truevision公司为其显示卡开发的一种图像文件格式,已被国际上的图形、图像工业所接受。TGA的结构比较简单,属于一种图形、图像数据的通用格式,在多媒体领域有着很大影响,是计算机生成图像向电视转换的一种首选格式。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:56 0 浏览量 回答数 0

回答

【丁宁-清华大学-阿里达摩院自然语言技术实习体验】 作者简介:丁宁,清华大学计算机科学与技术系2年级博士生,研究方向为自然语言处理、信息抽取、语言表示学习等,在ACL、EMNLP、AAAI、IJCAI等发表多篇文章,作为研究型实习生在阿里达摩院实习半年+。 实习体会 很幸运能来到阿里巴巴进行实习!组里的氛围特别好,同事和师兄师姐都非常专业、友善、亲切。无论是科研上还是工作生活上的任 何问题,都能得到慷慨的帮助。在这里,我认识了一批学术和生活上的榜样(我的主管每天都吃健康餐,而我牛肉汤泡饼),结交了志同道合的朋友(排队喝牛肉汤回来写论文的日子),见识到了IT同学的认真负责(远程帮我调试打印机,周末修电脑),见过了马云老师,也亲身经历了一次双十一奋战。阿里的科研积淀和文化氛围都让我感到收获颇丰,感谢阿里巴巴提供研究型实习生这一高水平项目,也期待更多的同学可以加入研究型实习生的大家庭。 科研心得& 工作宣传 今年在阿里巴巴所做的跨领域分词工作被ACL 2020高分接收,其中meta review说“well-written, well-motivated with strong results, sure accept”。其实这句话可以很好地总结评判科研论文好坏的标准,实际上或许现阶段的科研也并没有什么秘密,动机明确、方法得当、实验充分,就可以形成一篇不错的科研论文。当然了,如果想做出让领域内眼前一亮的工作,可能就需要一些灵光一闪了。 具体到我们的工作上来,跨领域任务往往面临目标领域精标注数据缺失的问题,具体到分词任务上来说,这种数据缺失往往会导致OOV和词的分布差异问题。本文通过弱监督启发式算法来进行远程标注,并引入对抗学习来进行降噪。本文的实验中以newswire (新闻语料)作为源领域,在5个不同的目标领域数据上都取得了较好的效果。 这个工作或许有助于我们真正的往跨领域的两个通用问题上去设计了相关的解决办法。论文名字:《Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation》,具体可以查看达摩院的官方宣传~:ACL 2020有哪些值得关注的论文? - 阿里巴巴达摩院的回答 - 知乎https://www.zhihu.com/question/385259014/answer/1190808208 另外,也宣传一下作为co-author的另一篇ACL 2020论文,是实习生同事周洁(上海交大研究生)的工作,瞄准多层级文本分类任务,设计层级敏感编码器将多层结构作为有向图建模,并且实现了一个串行和并行的版本,论文名字:Hierarchy-Aware Global Model for Hierarchical Text Classification。 还有另一个实习生同事张浩宇(国防科大博士生)在IJCAI 2020的工作,使用noisy learning的方法去进行远程监督entity typing降噪,方法非常优雅,论文名字:Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling。 【杜志浩-哈尔滨工业大学-我在达摩院作实习研究僧的那些事儿】 经韩老师介绍,2019年7月,有幸进入阿里巴巴达摩院成为一名实习研究僧。如今也已半年有余,期间发生的事情仍然历历在目。从初出茅庐的不安,到积极融入的快乐,再到宠辱不惊的泰然,一路走来收获良多! 初出茅庐 其实,刚到达摩院语音算法组时,我的内心充满了不安。这种不安来自于初出茅庐的不自信,不知自己能否胜任这份工作,为公司带来效益。同时,也来自于环境转变的不适应,换了一个全新的环境,对公司内的工作方式、待人接物都不甚了解。 但是,在算法组师兄师姐的帮助下,我的这些不安很快就烟消云散了。为了能够使我尽快熟悉工作内容、了解工作方式,雷鸣师兄坚持每周四晚上为实习生开组会,拉着仕良哥、智颖等很多小伙伴一起讨论算法思路和实验中遇到的问题。我想他们应该都挺忙的吧,但还是牺牲自己休息的时间来参加组会。 刚来的那段时间,除了“雷老师,xxx麻烦审批通过一下”以外,我说的最多的恐怕就是“xx姐/哥,xxx在哪”。由于对很多事情都不了解,比如服务器怎么申请啊,oss怎么弄啊,我总是要麻烦逍北姐、遥仙哥等目之所及的小伙伴。他们一边在忙自己的工作一边还不厌其烦的告诉我,为我提供了莫大的帮助。 积极融入 在算法组这段时间,让我印象最为深刻的一句话就是“我们做事情都很直接,有什么问题,就带着方案提出来”。以前,总是被教育和鼓励发现问题,在阿里,找到问题只是完成了第一步,还需要再提出一个切实可行的解决方案。期间发生的一段小插曲让我现在依然记忆犹新。  为了准备910,语音测试组的小伙伴每天都在紧张的进行测试。其中一项是对语音实时转录及翻译软件的稳定性测试。由于已经进入应用阶段,不能在直接将数据送入到模型中,需要将语音播放出来,再由软件录音进行测试。播放的内容是马老师的演讲,对于坐在旁边的小伙伴来说既是一件好事,也是一件坏事。由于马老师的演讲实在太引人入胜了,每次他们进行测试时,我们都无法专心工作,最终只能……。 咳咳,我心想,这么下去也不是事儿啊,梦想要有,生活也得继续啊,得想想办法解决一下这个问题。我尝试了各种办法,但似乎都无法绕过功放这个问题。最终功夫不负有心人,找到了一款虚拟声卡的软件,能够将一个应用程序的音频输出直接作为另一个应用程序的输入。在熟悉过这个软件的使用方式后,我找到测试组的组长,向他提出了我现在的处境和解决方案。他告诉我,他也知道这样会打扰到周边的人,但是之前也没有太好的办法,感谢我提出的解决方案。 虽然这只是实习期间的一段小插曲,但是我依然印象深刻。通过这件事,我践行了带着方案提问题,这一阿里人所特有的工作方式,让我感觉自己正在逐渐融入到这个集体当中。 宠辱不惊 经过几个月“死去”又“活来”的做实验、写论文,我跟雷鸣师兄合作的语音增强相关工作投稿到了ICASSP 2020。这是语音信号处理领域的顶级会议,在来阿里之前,我也投稿过一次,但不幸被拒。为了准备这篇文章,雷鸣师兄跟我保持着很高互动,了解实验进度,适时的进行指导。此外,还有仕良哥帮助我进行语音畸变的评估。 2020年1月25日这一天,是我国的传统节日,春节,同时也是ICASSP出结果的日子。在得知结果前,我的内心非常忐忑。但当得知接收的喜讯时,我反而没有想象中那么兴奋,没有想象中那么高兴。我的第一反应是看看审稿人的意见,看看我专家们对我文章的看法,还有哪些不足和需要改进的地方。 我想宠辱不惊的心态应该是我在阿里的一个重要收获吧,不以物喜不以己悲。尽力做好自己该做的事儿,结果自然水到渠成。 再说两句 在阿里的这段实习使我受益匪浅。这里有乐于助人、善解人意的师兄师姐,也有认真负责、要求严格的主管Leader;有弹性自由的工作时间,也有肝到深夜的满腔热情;有最新最热的研究成果,也有成熟稳定的应用软件。这里不像实验室的象牙塔,关注技术的同时,也更关注技术如何落地、如何应用到生活中去,最终如何造福亿万用户。 韩鹏-KAUST-青春没有我之阿里巴巴天猫精灵争夺赛被迫写的研究心得 竞选宣言: 在阿里实习摸了几个月的鱼,最开心的就是又吃到了祖国的美食,虽然杭州的食物实在是太清淡了,但总比我在沙特每天吃水煮青菜不放盐要好很多。在阿里的这几个月,让我看淡了很多,发现生命里比较重要的就是长在自己脑袋上的头发,不能太年轻就失去他们。女网红我是感觉自己这辈子没机会了,毕竟流量明星也不是靠推荐算法能捧红的,也就希望能够得到这次500块钱的天猫精灵,请大家pick我。 研究心得: 多抱大腿 为了凑足300字的内心情感白描: 这个世界实在是太无聊了,尤其疫情导致的只能居家办公,我已经憋得快精神失常了,虽然平时也不是那么正常。希望这个世界早日恢复原来的美好,我还打算去越南胡志明市的日式KTV感受一下女仆装呢,希望疫情不会让这些服务业倒闭呢吧。 居然还不够300字,感觉生命浪费在写文字上要比大保健上还是好一些的,希望这些文字能够启发你,虽然我感觉也并没有什么意义,而人活着的意义又是什么呢? 【韩镕罄-南加州大学- 阿里研究型实习生体验】 简介: 经过两年研究时间,找到了学校的教职,也找到了老婆,感谢阿里~ 2018年八月来阿里做研究型实习生,本人在南加州大学商学院读Operations Management 的Ph.D. 块两年时间做了几篇 field experiment paper, 感觉阿里有太多好玩有趣的商业问题可以讨论直接研究。 通过和阿里的合作顺利找到UIUC 伊利诺伊大学香槟分校的常任轨教职。 更神奇的是,在实习期间,随便刷个阿里妹儿的相亲帖, 加个微信 聊一聊 发现和自己一天生日。 就是你了!现在已经结婚快半年! 三十而立,一切静好,感谢阿里! 【马腾-清华大学- 阿里巴巴RI项目心得】 我与阿里之缘 在2019年的夏天,后来成为我主管的文侑来到清华进行交流,当时的我刚刚完成了一个学术项目的研究,正在寻求于之后的研究方向。恰好在交流会上碰见了文侑,经过一番交流之后吗,了解到操作系统团队是阿里 RDMA 技术的先行者和推广者,这正是我计划之后想要研究的方向,于是便一拍即合。由于我之前所研究的领域刚好符合是阿里目前正在做的一些项目,所以文侑提供了一个可以在阿里实习的机会。 在通过了多轮面试之后,我终于成功的入职了操作系统内核组作为学术型实习生。从2018年九月初入职至今,将近两年的时间,我也逐渐地适应了在阿里的生活,松弛有度而又充满欢乐。在这里我也结识了许多要好的朋友,并且,通过公司组织的各种聚会和团建的活动,让我解释了许多有着共同语言爱好的伙伴,大家给与了我这个新人很多的帮助和照顾,使我也渐渐地融入了这个有爱的团队。 在阿里的学术成果 在阿里实习期间,在同事们的帮助下,我顺利地完成了两个与我所在实验室合作的学术项目,并且这两个项目也幸运的产出了两篇高质量的论文,分别发表在了不同领域的高水平会议当中。 其中,第一篇论文发表在第21届Cluster会议,与2019年在美国阿尔伯克基召开。Cluster 是高性能计算方向计算机系统领域的主要会议,这个工作提出并实现了统一高效的 RDMA 消息中间件,解决了 RDMA 在实际生产过程中的一些关键可靠性和可用性问题,例如:极简的接口抽象,必要的上层消息确认机制,中间件辅助流控配合 DCQCN,结合生产系统的诊断机制等等,目前该技术已经被广泛应用在阿里巴巴基础云产品中(包括:数据库,分布式存储等)。另外一个工作则发表在了第25届 ASPLOS会议。ASPLOS 是操作系统,体系结构和编程语言三个方向综合的计算机系统领域顶级会议。这篇论文是和我所在的清华高性能所合作完成的,文章中第一次提出了利用RDMA将数据中心的NVM做disaggregation, 实现了高效的框架,同时证明了这种新架构的可行性。 在阿里的感想 阿里巴巴操作系统团队是一直致力于建立和完善系统领域工业界和学术界的纽带,并且在持续实践工业界和学术界之间的问题分享和工作互动,他们希望通过这些分析和互动能够更好地促进中国在世界计算机系统领域的整体发展和创新。作为操作系统团队中的一员,我深切了解到了先进技术对于企业发展的重要性,在实习的过程中,同我所在的实验室进行合作,我更是深深感受到只有通过学术与工业相辅相成,才能够真正让企业发展先进技术。另外一方面,经过一段时间的实习,我对所在的操作系统团队和阿里技术部门的工作有了更深入的了解,我对自己也有了进一步的规划,计划在毕业之后能够入职阿里,通过我的努力,继续在追逐技术之路上奋斗着。 【亓家鑫-新加坡南洋理工大学- 阿里云实习心得】 非常荣幸我们的研究工作*《Two causal principles for improving visual dialog》*获得了同行的认可,并收录在CVPR 2020会议中。在此要特别感谢我的教授,MReaL实验室成员以及阿里城市大脑实验室师兄师姐一直以来的支持和帮助。比起论文本身的内容,我更希望跟大家分享一年来做研究的心得和感悟,虽然目前我仍然是一个萌新,不过我希望通过萌新的角度能带给大家一些研究上的启发。 开始一个研究之前,选择方向很重要。当然,每一个方向都有自己的优缺点,比如新的方向“容易”发文章,可能将其他领域原有的方法引入加一些调整就可以达到比较高的结果。不过如果没有坚实的创新,在同行评议时,可能会受到质疑。一旦没有通过,再转投时可能发现已经落后于其他人。“老“的方向可能会感觉灌水困难,不过因为我没有真正做过经典的方向,所以不太好发表评论。根据观察,在一堆全面而又坚实的研究中找到创新点,对萌新来说确实困难,不过一旦有所突破,肯定会对这个社区产生广泛的影响。作为一个萌新,可能不会自己选择方向或者领域,所以接受导师或者主管的安排成了唯一的选择,不过要相信自己的导师和主管,因为大家都是在帮助你,而且他们经验丰富。只有当自己走完一套研究的流程,并且真正找到自己感兴趣或者觉得可以有所突破的方向,那可能才是真正属于自己的研究的开始。 当选定了方向,开始做研究的时候,清楚的了解所有有关的方法是非常重要的,因为这样可以防止你的idea被存在的方法“抄袭“。其实对一个比较成熟的研究方向来说,简单思考得到的idea一般都会被提出过。不过研究完所有存在方法后,要跳出这些方法,因为阅读他们的方法可能不是来借鉴,更多的是防止撞车,想要真正有创新,在别人的方法上改动往往是不够的,这就要求我们重新审视这个任务甚至数据集的每一个样本。当然目前即使是学术界toy的数据集也有动辄几十万的数据量,看完是不可能的,不过根据自己的思路统计一些数据特征,有时候对研究会产生很大的帮助。当觉得自己已经掌握了这个数据集或者这个任务的时候,应该是跑一些baseline来练习了。 我作为萌新,没有从零开始写,而是找了一个现成的模型开始修改,这样难度会减少很多,不过毕竟是别人的代码,还是有很多不舒服的地方,所以等自己成熟了的时候,有空的时候,一定要从头写一遍。当然我也不知道什么时候有空。当我开始修改baseline的时候,此次的研究旅行就算是上路了,在接受导师的指引的同时也可以自己不断的尝试自己的想法,因为不知道什么是有用的。我作为萌新刚开始的感受是我觉得可能我想的都有用,那一定要去试一下,所以我也建议大家多试一下,说不定真的有用呢,反正电费不花自己的。当一个东西有用的时候,就可以来思考他为什么有用了,当你想好它为什么有用并且通过了广泛的测试,就到了跟大家分享成果的时候。 当然,一个有用的idea背后可能有无数个没用的idea,至于他们为什么没用,我觉得如果实在是有兴趣,可以研究一下,但是有时候会花大量的时间。举一个实际的例子,我在去年做visual dialog比赛,大概四月份就发现了一个有用的方法,之后也顺利的拿到了第一并且在此基础上进行探究和扩展发表了自己的成果。不过同时,当时有一个效果降低的操作一直困扰着我,直到六个月以后,当然这六个月中还做了其他的事情,我才发现了它真正的原因,并且最终变成了我文章中的一句话。举这个例子的目的是,研究没有效果的idea会对研究有所帮助,不过可能会收益较低。 研究成果的发表是一个很重要的过程,它可以给领域内的同行以启发,甚至可以影响本领域之外的人,所以有时候高度总结自己的思想是一件有用的事情。比如我所做的工作我认为进行高度总结之后可以得到一个启发是:对多模态任务来说不一定所有模态都是平等的,对模型来说所存在模态也不一定是影响结果的全部。除了对自己motivation的总结,应用细节以及结果展示也是非常重要的,因为我是萌新,怎样写出一篇文章的经验肯定是不足的,所以在此不再赘述。在发表完文章之后,“售后服务“也是非常重要的一点,这也是我的教授教我的很重要的理念。因为发表的内容不是刊登出来就结束了,而是你对社区贡献的开始,之后做研究可能会发现更好的实现,或者当时的理论没有讲清楚完善,这些都可以补充到自己的代码中,让大家更好的了解你的思路和工作,或许以后还能收获好评。 此外,实验室的成员就是自己研究道路上的引导者和伙伴,会对自己的研究产生各种各样至关重要的影响,大多时候大家都不会吝惜跟你讨论分享自己的观点,有时还会亲自帮助你解决问题,所以要记得经常参加团建和小集体聚会。不过也不能太依赖别人,每当遇到问题的时候,特别是技术性的问题,还是依靠自己解决的好,毕竟未来总会离开实验室,离开乐于帮助你的人。最后,保护好自己的头发,还是要早睡早起,调不出来的bug熬夜也调不出来,不work的idea可能真的不work,没有人保证炼出来的一定是金子,不要过分影响正常的作息,毕竟这不是百米赛跑,也不能算是马拉松,而是长久的起码好几年以上要坚持的事业。不过我作为萌新才刚刚起步,依然没有体会到最艰难的时刻,不过做好心理准备还是应该的,该来的总是会来的。最后的最后希望这些浅显的经验总结能够给大家带来一点儿帮助,谢谢大家的阅读。 【田冰川-南京大学- 在阿里网络团队实习两年是一种怎样的体验?】 简介: 大家好!我是田冰川,南京大学2016级直博生,导师为田臣老师,研究方向为计算机网络。2018年6月,我以研究型实习生的身份入职阿里巴巴基础设施事业部网络研究团队,实习期间主要从事网络验证相关的研究工作,即通过形式化方法与灰度测试,来降低网络变更中的潜在风险。 2018年既是网络研究团队刚刚组建的一年,也是研究型实习生在阿里刚刚起步的一年。这年春天,经我导师田臣老师介绍,我参加了研究型实习生面试,加入了网络研究团队。 来到团队后,我参加的第一个研究项目是“金睛”,用以保障复杂ACL变更的正确性。ACL即访问控制列表,网络中的ACL决定着流量的连通性。网络架构演化有时会伴随着对ACL的迁移,如何保证迁移前后网络连通性是等价的,是困扰架构与运营部门的一大难题,而金睛项目则是为该问题而生。项目落地以来,金睛系统多次在骨干网ACL迁移中对变更方案进行了验证,并逐渐扩展至对边缘网络的验证。相关论文发表于SIGCOMM 2019主会,我在会场进行了20余分钟的演讲,与我们团队的另一篇文章HPCC共同成为阿里集团在网络领域top1学术会议主会中的首次亮相。 时间总是过的很快。转眼间,我来阿里已经两年了,自金睛之后,又陆续参与了多个研究课题。在阿里的时间越久,就越能切身体会到学术界研究与工业界研究的不同。在阿里实习以来,我接触到的所有研究课题,都不是凭空“想”出来的空中楼阁,更不是靠别人论文“启发”出来的二手课题,而是源自于真实业务的现阶段瓶颈与下一阶段发展趋势——这一点是高校科研很难做到的。 这两年间,我对科研这件事的心态也发生了进一步的变化。2017年,来到阿里之前,我的论文达到了学校博士毕业的最低要求,相当于没有了毕业之忧,对科研的心态从“先拿到博士学位再说”,变成了“想要做出点什么,不想让自己的博士5年就这么水过去”;在来到阿里,接触到工业界的前沿课题之后,我对科研的心态再一次发生了转变,变成“因为认可一件事的价值,所以想要去做好”——这已经成为一种内在的驱动力,让我在认真工作的同时,享受研究带来的乐趣。 如果一切顺利的话,我将于2021年6月博士毕业。能在阿里巴巴度过专属实习生的“三年醇”,想必也是人生中的一大成就了! 【吴秉哲-北京大学- 吴师傅的博士研究课题:大数据时代的数据隐私研究方向初探】 加上本科的时间,不知不觉已经在燕园里面呆了八年了,明年不出意外应该就会离开学校去业界工作。准备最近以文章的形式梳理一下博士几年的研究以及生活的心路历程。由于内容比较分散,所以决定分为几个不同的部分。这次推送封面图片是16年骑行到加乌拉山口遥看喜马拉雅山脉的图片,而我在阿里的花名是风远,意为远处的风。希望多年之后,还有一颗少年的心,投入每天永不变。这次借着阿里内部一个活动的机会,写了今天的这篇稿子,为大家介绍一下我的thesis topic。 已经在蚂蚁实习了一年了,一年时光匆匆而过,而在蚂蚁金服度过的这段时光带给了我很多研究以及生活中的体验,这一年里学到的经验也将伴随着我之后的研究之路。 我本科四年是在数院度过,在研究生阶段决定转换方向到计算机系。博士的前两年一直在跌跌撞撞地寻找自己的研究方向,尝试过很多方向均以失败告终。终于在第三年的时候,误打误撞开始研究起机器学习的隐私保护问题并找到了很多灵感,开始沉淀了一些基本的研究工作。有一天我从一个朋友那里听到了她关于金服这边隐私保护机器学习的团队介绍,当时我就决定要到业界的前沿去看一看隐私保护的真实业界需求。在此之前,我已经在谷歌,IBM等公司有过多段实习的经历,但是在蚂蚁这一次实习经历,是与我自己研究方向最接近,也是时间最长的一次。借着这次约稿的机会,以此文简单总结一下自己过去两年在这一方向的研究。 隐私保护与共享学习 目前随着各种机器学习算法在集团的业务落地,许多隐私泄露与数据滥用的风险相继而来。 尤其是在蚂蚁金服这样一个拥有很多支付数据的企业,数据安全以及隐私保护的重要性更是不言而喻。站在商业合作的角度,如何实现不同公司或者部门之间的数据共享学习也是我所在的团队现在攻坚的一个问题。在这样一个研究背景下,我来到了蚂蚁金服的共享智能团队,开始和师兄师姐们从不同的维度对上述问题展开了深入的研究。 共享学习这样一个概念听起来很美好,但是实际落地起来却困难重重,需要考虑到上层软件算法的设计以及底层系统和硬件的优化,才有可能真正在实际的业务中兼顾效率和隐私保护强度。共享智能团队在这一方向上有着得天独厚的优势。一是领先的业务场景,在国际同行好多还停留在学术研究阶段时,我们团队已经和国内多家银行有了合作。另一个则是技术沉淀的领先。因为金服自身业务的特殊性,我们团队很早就开始了隐私保护机器学习和共享学习的布局,包括很多原始的技术沉淀,强大的工程团队以及学术预研团队。这些积累也使得我们能够很快地摸清最新的一些研究成果并能将其吸入到我们自己的系统当中。 我自己关于隐私保护机器学习的研究主要是围绕着三个层面展开,分别是理论,算法设计,以及系统和硬件优化。在理论层面,我主要针对现有的各种机器学习算法,建立相应的隐私泄露分析框架,比如我们在之前的工作中,针对一种常用的贝叶斯学习的算法根据雷尼差分隐私建立了隐私泄露的定量分析框架,我们进一步使用我们的框架和已有的一些泛化误差上界做了联系,从而能从多个角度去解释该算法的隐私泄露原因。在算法设计层面,我们针对各种已有的新兴算法以及场景,比如图神经网络,推荐系统建立了相应的共享学习算法,并利用我们的理论框架,对这些算法的隐私保护强度做了定量的评估。除开上层的理论和算法设计,底层的系统和硬件的优化同样是非常重要的一环。 在我们团队,我们主打基于硬件可信执行环境 (TEE)的机器学习serving系统,我针对我们当前这套服务系统,结合神经网络计算的一些特点,定制了该系统的一系列优化措施大大提升了整个系统的吞吐量。我也将其中一些措施注册了专利,并在前几天得到了内部的专利授权。除开上述介绍的学术研究方面的成果,我也参与了IEEE共享学习标准的制定会议,这也使得我从标准制定者的角度去更深地思考如何使用技术在未来社会中实现隐私与效率的兼顾。 总之,我自己很感谢能成为共享智能团队的一员,我在这里学到的最宝贵的经验就是详细地从上到下了解了这样一个大团队的合作与分工,学习他们是如何一步步从最初的需求分析,算法设计,到最后真正的业务落地。也很高兴和各位共享智能的同事度过自己博士生涯中很重要的一年。也非常感谢我的博士导师对我研究的无条件支持。回看博士这一路的艰辛,也是感慨万千。有点像自己之前高原骑行的经历,经历了爬到坡顶的缺氧与无力,终在转角处遇见了骑行途中最美的雪山风光。

游客bnlxddh3fwntw 2020-05-19 16:05:51 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SQL审核 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 人工智能 阿里云云栖号 云栖号案例 云栖号直播