• 关于

    可扩展并行处理有什么用

    的搜索结果

问题

比较Apache Hadoop生态系统中不同的文件格式和存储引擎的性能

anrui2016 2019-12-01 22:03:39 2706 浏览量 回答数 0

问题

【云端监控】

few 2019-12-01 21:40:31 6309 浏览量 回答数 0

问题

dubbo 负载均衡策略和集群容错策略都有哪些?动态代理策略呢?【Java问答学堂】49期

剑曼红尘 2020-07-02 17:35:03 17 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络

养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

问题

入侵防御系统怎样主宰网络安全市场金牌

elinks 2019-12-01 21:15:22 9640 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

如何分清云计算与虚拟化的关系

wyc_luck 2019-12-01 20:19:00 12823 浏览量 回答数 2

问题

盘点年度 Python 类库 Top 10

珍宝珠 2020-01-09 13:39:35 77 浏览量 回答数 1

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

问题

IHS性能优化调优建议

夏天的日子 2019-12-01 21:13:24 5138 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

回答

一、接口的默认方法 Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用 default关键字即可,这个特征又叫做扩展方法,示例如下: interface Formula { double calculate(int a); default double sqrt(int a) { return Math.sqrt(a); } } Formula接口在拥有calculate方法之外同时还定义了sqrt方法,实现了Formula接口的子类只需要实现一个calculate方法,默认方法sqrt将在子类上可以直接使用。 Formula formula = new Formula() { @Override public double calculate(int a) { return sqrt(a * 100); } }; formula.calculate(100); // 100.0 formula.sqrt(16); // 4.0 文中的formula被实现为一个匿名类的实例,该代码非常容易理解,6行代码实现了计算 sqrt(a * 100)。在下一节中,我们将会看到实现单方法接口的更简单的做法。 译者注: 在Java中只有单继承,如果要让一个类赋予新的特性,通常是使用接口来实现,在C++中支持多继承,允许一个子类同时具有多个父类的接口与功能,在其他语言中,让一个类同时具有其他的可复用代码的方法叫做mixin。新的Java 8 的这个特新在编译器实现的角度上来说更加接近Scala的trait。 在C#中也有名为扩展方法的概念,允许给已存在的类型扩展方法,和Java 8的这个在语义上有差别。 二、Lambda 表达式 首先看看在老版本的Java中是如何排列字符串的: List<String> names = Arrays.asList("peter", "anna", "mike", "xenia"); Collections.sort(names, new Comparator<String>() { @Override public int compare(String a, String b) { return b.compareTo(a); } }); 只需要给静态方法 Collections.sort 传入一个List对象以及一个比较器来按指定顺序排列。通常做法都是创建一个匿名的比较器对象然后将其传递给sort方法。 在Java 8 中你就没必要使用这种传统的匿名对象的方式了,Java 8提供了更简洁的语法,lambda表达式: Collections.sort(names, (String a, String b) -> { return b.compareTo(a); }); 看到了吧,代码变得更段且更具有可读性,但是实际上还可以写得更短: Collections.sort(names, (String a, String b) -> b.compareTo(a)); 对于函数体只有一行代码的,你可以去掉大括号{}以及return关键字,但是你还可以写得更短点: Collections.sort(names, (a, b) -> b.compareTo(a)); Java编译器可以自动推导出参数类型,所以你可以不用再写一次类型。接下来我们看看lambda表达式还能作出什么更方便的东西来 三、函数式接口 Lambda表达式是如何在java的类型系统中表示的呢?每一个lambda表达式都对应一个类型,通常是接口类型。而“函数式接口”是指仅仅只包含一个抽象方法的接口,每一个该类型的lambda表达式都会被匹配到这个抽象方法。因为 默认方法 不算抽象方法,所以你也可以给你的函数式接口添加默认方法。 我们可以将lambda表达式当作任意只包含一个抽象方法的接口类型,确保你的接口一定达到这个要求,你只需要给你的接口添加 @FunctionalInterface 注解,编译器如果发现你标注了这个注解的接口有多于一个抽象方法的时候会报错的。 @FunctionalInterface interface Converter<F, T> { T convert(F from); } Converter<String, Integer> converter = (from) -> Integer.valueOf(from); Integer converted = converter.convert("123"); System.out.println(converted); // 123 需要注意如果@FunctionalInterface如果没有指定,上面的代码也是对的。 译者注 将lambda表达式映射到一个单方法的接口上,这种做法在Java 8之前就有别的语言实现,比如Rhino JavaScript解释器,如果一个函数参数接收一个单方法的接口而你传递的是一个function,Rhino 解释器会自动做一个单接口的实例到function的适配器,典型的应用场景有 org.w3c.dom.events.EventTarget 的addEventListener 第二个参数 EventListener。 四、方法与构造函数引用 前一节中的代码还可以通过静态方法引用来表示: Converter<String, Integer> converter = Integer::valueOf; Integer converted = converter.convert("123"); System.out.println(converted); // 123 Java 8 允许你使用 :: 关键字来传递方法或者构造函数引用,上面的代码展示了如何引用一个静态方法,我们也可以引用一个对象的方法: converter = something::startsWith; String converted = converter.convert("Java"); System.out.println(converted); // "J" 接下来看看构造函数是如何使用::关键字来引用的,首先我们定义一个包含多个构造函数的简单类: class Person { String firstName; String lastName; Person() {} Person(String firstName, String lastName) { this.firstName = firstName; this.lastName = lastName; } } 接下来我们指定一个用来创建Person对象的对象工厂接口: interface PersonFactory<P extends Person> { P create(String firstName, String lastName); } 这里我们使用构造函数引用来将他们关联起来,而不是实现一个完整的工厂: PersonFactory<Person> personFactory = Person::new; Person person = personFactory.create("Peter", "Parker"); 我们只需要使用 Person::new 来获取Person类构造函数的引用,Java编译器会自动根据PersonFactory.create方法的签名来选择合适的构造函数。 五、Lambda 作用域 在lambda表达式中访问外层作用域和老版本的匿名对象中的方式很相似。你可以直接访问标记了final的外层局部变量,或者实例的字段以及静态变量。 六、访问局部变量 我们可以直接在lambda表达式中访问外层的局部变量: final int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); stringConverter.convert(2); // 3 但是和匿名对象不同的是,这里的变量num可以不用声明为final,该代码同样正确: int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); stringConverter.convert(2); // 3 不过这里的num必须不可被后面的代码修改(即隐性的具有final的语义),例如下面的就无法编译: int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); num = 3; 在lambda表达式中试图修改num同样是不允许的。 七、访问对象字段与静态变量 和本地变量不同的是,lambda内部对于实例的字段以及静态变量是即可读又可写。该行为和匿名对象是一致的: class Lambda4 { static int outerStaticNum; int outerNum; void testScopes() { Converter<Integer, String> stringConverter1 = (from) -> { outerNum = 23; return String.valueOf(from); }; Converter<Integer, String> stringConverter2 = (from) -> { outerStaticNum = 72; return String.valueOf(from); }; } } 八、访问接口的默认方法 还记得第一节中的formula例子么,接口Formula定义了一个默认方法sqrt可以直接被formula的实例包括匿名对象访问到,但是在lambda表达式中这个是不行的。 Lambda表达式中是无法访问到默认方法的,以下代码将无法编译: Formula formula = (a) -> sqrt( a * 100); Built-in Functional Interfaces JDK 1.8 API包含了很多内建的函数式接口,在老Java中常用到的比如Comparator或者Runnable接口,这些接口都增加了@FunctionalInterface注解以便能用在lambda上。 Java 8 API同样还提供了很多全新的函数式接口来让工作更加方便,有一些接口是来自Google Guava库里的,即便你对这些很熟悉了,还是有必要看看这些是如何扩展到lambda上使用的。 Predicate接口 Predicate 接口只有一个参数,返回boolean类型。该接口包含多种默认方法来将Predicate组合成其他复杂的逻辑(比如:与,或,非): Predicate<String> predicate = (s) -> s.length() > 0; predicate.test("foo"); // true predicate.negate().test("foo"); // false Predicate<Boolean> nonNull = Objects::nonNull; Predicate<Boolean> isNull = Objects::isNull; Predicate<String> isEmpty = String::isEmpty; Predicate<String> isNotEmpty = isEmpty.negate(); Function 接口 Function 接口有一个参数并且返回一个结果,并附带了一些可以和其他函数组合的默认方法(compose, andThen): Function<String, Integer> toInteger = Integer::valueOf; Function<String, String> backToString = toInteger.andThen(String::valueOf); backToString.apply("123"); // "123" Supplier 接口 Supplier 接口返回一个任意范型的值,和Function接口不同的是该接口没有任何参数 Supplier personSupplier = Person::new; personSupplier.get(); // new Person Consumer 接口 Consumer 接口表示执行在单个参数上的操作。 Consumer greeter = (p) -> System.out.println("Hello, " + p.firstName); greeter.accept(new Person("Luke", "Skywalker")); Comparator 接口 Comparator 是老Java中的经典接口, Java 8在此之上添加了多种默认方法: Comparator comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName); Person p1 = new Person("John", "Doe"); Person p2 = new Person("Alice", "Wonderland"); comparator.compare(p1, p2); // > 0 comparator.reversed().compare(p1, p2); // < 0 Optional 接口 Optional 不是函数是接口,这是个用来防止NullPointerException异常的辅助类型,这是下一届中将要用到的重要概念,现在先简单的看看这个接口能干什么: Optional 被定义为一个简单的容器,其值可能是null或者不是null。在Java 8之前一般某个函数应该返回非空对象但是偶尔却可能返回了null,而在Java 8中,不推荐你返回null而是返回Optional。 Optional optional = Optional.of("bam"); optional.isPresent(); // true optional.get(); // "bam" optional.orElse("fallback"); // "bam" optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b" Stream 接口 java.util.Stream 表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样你就可以将多个操作依次串起来。Stream 的创建需要指定一个数据源,比如 java.util.Collection的子类,List或者Set, Map不支持。Stream的操作可以串行执行或者并行执行。 首先看看Stream是怎么用,首先创建实例代码的用到的数据List: List stringCollection = new ArrayList<>(); stringCollection.add("ddd2"); stringCollection.add("aaa2"); stringCollection.add("bbb1"); stringCollection.add("aaa1"); stringCollection.add("bbb3"); stringCollection.add("ccc"); stringCollection.add("bbb2"); stringCollection.add("ddd1"); Java 8扩展了集合类,可以通过 Collection.stream() 或者 Collection.parallelStream() 来创建一个Stream。下面几节将详细解释常用的Stream操作: Filter 过滤 过滤通过一个predicate接口来过滤并只保留符合条件的元素,该操作属于中间操作,所以我们可以在过滤后的结果来应用其他Stream操作(比如forEach)。forEach需要一个函数来对过滤后的元素依次执行。forEach是一个最终操作,所以我们不能在forEach之后来执行其他Stream操作。 stringCollection .stream() .filter((s) -> s.startsWith("a")) .forEach(System.out::println); // "aaa2", "aaa1" Sort 排序 排序是一个中间操作,返回的是排序好后的Stream。如果你不指定一个自定义的Comparator则会使用默认排序。 stringCollection .stream() .sorted() .filter((s) -> s.startsWith("a")) .forEach(System.out::println); // "aaa1", "aaa2" 需要注意的是,排序只创建了一个排列好后的Stream,而不会影响原有的数据源,排序之后原数据stringCollection是不会被修改的。 System.out.println(stringCollection); // ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1 Map 映射 中间操作map会将元素根据指定的Function接口来依次将元素转成另外的对象,下面的示例展示了将字符串转换为大写字符串。你也可以通过map来讲对象转换成其他类型,map返回的Stream类型是根据你map传递进去的函数的返回值决定的。 stringCollection .stream() .map(String::toUpperCase) .sorted((a, b) -> b.compareTo(a)) .forEach(System.out::println); // "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1" Match 匹配 Stream提供了多种匹配操作,允许检测指定的Predicate是否匹配整个Stream。所有的匹配操作都是最终操作,并返回一个boolean类型的值。 boolean anyStartsWithA = stringCollection .stream() .anyMatch((s) -> s.startsWith("a")); System.out.println(anyStartsWithA); // true boolean allStartsWithA = stringCollection .stream() .allMatch((s) -> s.startsWith("a")); System.out.println(allStartsWithA); // false boolean noneStartsWithZ = stringCollection .stream() .noneMatch((s) -> s.startsWith("z")); System.out.println(noneStartsWithZ); // true Count 计数 计数是一个最终操作,返回Stream中元素的个数,返回值类型是long。 long startsWithB = stringCollection .stream() .filter((s) -> s.startsWith("b")) .count(); System.out.println(startsWithB); // 3 Reduce 规约 这是一个最终操作,允许通过指定的函数来讲stream中的多个元素规约为一个元素,规越后的结果是通过Optional接口表示的: Optional reduced = stringCollection .stream() .sorted() .reduce((s1, s2) -> s1 + "#" + s2); reduced.ifPresent(System.out::println); // "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2" 并行Streams 前面提到过Stream有串行和并行两种,串行Stream上的操作是在一个线程中依次完成,而并行Stream则是在多个线程上同时执行。 下面的例子展示了是如何通过并行Stream来提升性能: 首先我们创建一个没有重复元素的大表 int max = 1000000; List values = new ArrayList<>(max); for (int i = 0; i < max; i++) { UUID uuid = UUID.randomUUID(); values.add(uuid.toString()); } 然后我们计算一下排序这个Stream要耗时多久, 串行排序: long t0 = System.nanoTime(); long count = values.stream().sorted().count(); System.out.println(count); long t1 = System.nanoTime(); long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0); System.out.println(String.format("sequential sort took: %d ms", millis)); // 串行耗时: 899 ms 并行排序: long t0 = System.nanoTime(); long count = values.parallelStream().sorted().count(); System.out.println(count); long t1 = System.nanoTime(); long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0); System.out.println(String.format("parallel sort took: %d ms", millis)); // 并行排序耗时: 472 ms 上面两个代码几乎是一样的,但是并行版的快了50%之多,唯一需要做的改动就是将stream()改为parallelStream()。 Map 前面提到过,Map类型不支持stream,不过Map提供了一些新的有用的方法来处理一些日常任务。 Map<Integer, String> map = new HashMap<>(); for (int i = 0; i < 10; i++) { map.putIfAbsent(i, "val" + i); } map.forEach((id, val) -> System.out.println(val)); 以上代码很容易理解, putIfAbsent 不需要我们做额外的存在性检查,而forEach则接收一个Consumer接口来对map里的每一个键值对进行操作。 下面的例子展示了map上的其他有用的函数: map.computeIfPresent(3, (num, val) -> val + num); map.get(3); // val33 map.computeIfPresent(9, (num, val) -> null); map.containsKey(9); // false map.computeIfAbsent(23, num -> "val" + num); map.containsKey(23); // true map.computeIfAbsent(3, num -> "bam"); map.get(3); // val33 接下来展示如何在Map里删除一个键值全都匹配的项 map.remove(3, "val3"); map.get(3); // val33 map.remove(3, "val33"); map.get(3); // null 另外一个有用的方法 map.getOrDefault(42, "not found"); // not found 对Map的元素做合并也变得很容易了: map.merge(9, "val9", (value, newValue) -> value.concat(newValue)); map.get(9); // val9 map.merge(9, "concat", (value, newValue) -> value.concat(newValue)); map.get(9); // val9concat Merge做的事情是如果键名不存在则插入,否则则对原键对应的值做合并操作并重新插入到map中。 九、Date API Java 8 在包java.time下包含了一组全新的时间日期API。新的日期API和开源的Joda-Time库差不多,但又不完全一样,下面的例子展示了这组新API里最重要的一些部分: Clock 时钟 Clock类提供了访问当前日期和时间的方法,Clock是时区敏感的,可以用来取代 System.currentTimeMillis() 来获取当前的微秒数。某一个特定的时间点也可以使用Instant类来表示,Instant类也可以用来创建老的java.util.Date对象。 Clock clock = Clock.systemDefaultZone(); long millis = clock.millis(); Instant instant = clock.instant(); Date legacyDate = Date.from(instant); // legacy java.util.Date Timezones 时区 在新API中时区使用ZoneId来表示。时区可以很方便的使用静态方法of来获取到。 时区定义了到UTS时间的时间差,在Instant时间点对象到本地日期对象之间转换的时候是极其重要的。 System.out.println(ZoneId.getAvailableZoneIds()); // prints all available timezone ids ZoneId zone1 = ZoneId.of("Europe/Berlin"); ZoneId zone2 = ZoneId.of("Brazil/East"); System.out.println(zone1.getRules()); System.out.println(zone2.getRules()); // ZoneRules[currentStandardOffset=+01:00] // ZoneRules[currentStandardOffset=-03:00] LocalTime 本地时间 LocalTime 定义了一个没有时区信息的时间,例如 晚上10点,或者 17:30:15。下面的例子使用前面代码创建的时区创建了两个本地时间。之后比较时间并以小时和分钟为单位计算两个时间的时间差: LocalTime now1 = LocalTime.now(zone1); LocalTime now2 = LocalTime.now(zone2); System.out.println(now1.isBefore(now2)); // false long hoursBetween = ChronoUnit.HOURS.between(now1, now2); long minutesBetween = ChronoUnit.MINUTES.between(now1, now2); System.out.println(hoursBetween); // -3 System.out.println(minutesBetween); // -239 LocalTime 提供了多种工厂方法来简化对象的创建,包括解析时间字符串。 LocalTime late = LocalTime.of(23, 59, 59); System.out.println(late); // 23:59:59 DateTimeFormatter germanFormatter = DateTimeFormatter .ofLocalizedTime(FormatStyle.SHORT) .withLocale(Locale.GERMAN); LocalTime leetTime = LocalTime.parse("13:37", germanFormatter); System.out.println(leetTime); // 13:37 LocalDate 本地日期 LocalDate 表示了一个确切的日期,比如 2014-03-11。该对象值是不可变的,用起来和LocalTime基本一致。下面的例子展示了如何给Date对象加减天/月/年。另外要注意的是这些对象是不可变的,操作返回的总是一个新实例。 LocalDate today = LocalDate.now(); LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS); LocalDate yesterday = tomorrow.minusDays(2); LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4); DayOfWeek dayOfWeek = independenceDay.getDayOfWeek(); System.out.println(dayOfWeek); // FRIDAY 从字符串解析一个LocalDate类型和解析LocalTime一样简单: DateTimeFormatter germanFormatter = DateTimeFormatter .ofLocalizedDate(FormatStyle.MEDIUM) .withLocale(Locale.GERMAN); LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter); System.out.println(xmas); // 2014-12-24 LocalDateTime 本地日期时间 LocalDateTime 同时表示了时间和日期,相当于前两节内容合并到一个对象上了。LocalDateTime和LocalTime还有LocalDate一样,都是不可变的。LocalDateTime提供了一些能访问具体字段的方法。 LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59); DayOfWeek dayOfWeek = sylvester.getDayOfWeek(); System.out.println(dayOfWeek); // WEDNESDAY Month month = sylvester.getMonth(); System.out.println(month); // DECEMBER long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY); System.out.println(minuteOfDay); // 1439 只要附加上时区信息,就可以将其转换为一个时间点Instant对象,Instant时间点对象可以很容易的转换为老式的java.util.Date。 Instant instant = sylvester .atZone(ZoneId.systemDefault()) .toInstant(); Date legacyDate = Date.from(instant); System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014 格式化LocalDateTime和格式化时间和日期一样的,除了使用预定义好的格式外,我们也可以自己定义格式: DateTimeFormatter formatter = DateTimeFormatter .ofPattern("MMM dd, yyyy - HH:mm"); LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter); String string = formatter.format(parsed); System.out.println(string); // Nov 03, 2014 - 07:13 和java.text.NumberFormat不一样的是新版的DateTimeFormatter是不可变的,所以它是线程安全的。 关于时间日期格式的详细信息:http://download.java.net/jdk8/docs/api/java/time/format/DateTimeFormatter.html 十、Annotation 注解 在Java 8中支持多重注解了,先看个例子来理解一下是什么意思。 首先定义一个包装类Hints注解用来放置一组具体的Hint注解: @interface Hints { Hint[] value(); } @Repeatable(Hints.class) @interface Hint { String value(); } Java 8允许我们把同一个类型的注解使用多次,只需要给该注解标注一下@Repeatable即可。 例 1: 使用包装类当容器来存多个注解(老方法) @Hints({@Hint("hint1"), @Hint("hint2")}) class Person {} 例 2:使用多重注解(新方法) @Hint("hint1") @Hint("hint2") class Person {} 第二个例子里java编译器会隐性的帮你定义好@Hints注解,了解这一点有助于你用反射来获取这些信息: Hint hint = Person.class.getAnnotation(Hint.class); System.out.println(hint); // null Hints hints1 = Person.class.getAnnotation(Hints.class); System.out.println(hints1.value().length); // 2 Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class); System.out.println(hints2.length); // 2 即便我们没有在Person类上定义@Hints注解,我们还是可以通过 getAnnotation(Hints.class) 来获取 @Hints注解,更加方便的方法是使用 getAnnotationsByType 可以直接获取到所有的@Hint注解。 另外Java 8的注解还增加到两种新的target上了: @Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE}) @interface MyAnnotation {}

日你dady哟 2019-12-02 03:08:13 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅