• 关于

    同时多线程出现问题怎么解决

    的搜索结果

回答

关于线程和线程池的学习,我们可以从以下几个方面入手: 第一,什么是线程,线程和进程的区别是什么 第二,线程中的基本概念,线程的生命周期 第三,单线程和多线程 第四,线程池的原理解析 第五,常见的几种线程池的特点以及各自的应用场景 一、 线程,程序执行流的最小执行单位,是行程中的实际运作单位,经常容易和进程这个概念混淆。那么,线程和进程究竟有什么区别呢?首先,进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程,而线程,是运行中的实际的任务执行者。可以说,进程中包含了多个可以同时运行的线程。 二、 线程的生命周期,线程的生命周期可以利用以下的图解来更好的理解: 第一步,是用new Thread()的方法新建一个线程,在线程创建完成之后,线程就进入了就绪(Runnable)状态,此时创建出来的线程进入抢占CPU资源的状态,当线程抢到了CPU的执行权之后,线程就进入了运行状态(Running),当该线程的任务执行完成之后或者是非常态的调用的stop()方法之后,线程就进入了死亡状态。而我们在图解中可以看出,线程还具有一个则色的过程,这是怎么回事呢?当面对以下几种情况的时候,容易造成线程阻塞,第一种,当线程主动调用了sleep()方法时,线程会进入则阻塞状态,除此之外,当线程中主动调用了阻塞时的IO方法时,这个方法有一个返回参数,当参数返回之前,线程也会进入阻塞状态,还有一种情况,当线程进入正在等待某个通知时,会进入阻塞状态。那么,为什么会有阻塞状态出现呢?我们都知道,CPU的资源是十分宝贵的,所以,当线程正在进行某种不确定时长的任务时,Java就会收回CPU的执行权,从而合理应用CPU的资源。我们根据图可以看出,线程在阻塞过程结束之后,会重新进入就绪状态,重新抢夺CPU资源。这时候,我们可能会产生一个疑问,如何跳出阻塞过程呢?又以上几种可能造成线程阻塞的情况来看,都是存在一个时间限制的,当sleep()方法的睡眠时长过去后,线程就自动跳出了阻塞状态,第二种则是在返回了一个参数之后,在获取到了等待的通知时,就自动跳出了线程的阻塞过程 三、 什么是单线程和多线程? 单线程,顾名思义即是只有一条线程在执行任务,这种情况在我们日常的工作学习中很少遇到,所以我们只是简单做一下了解 多线程,创建多条线程同时执行任务,这种方式在我们的日常生活中比较常见。但是,在多线程的使用过程中,还有许多需要我们了解的概念。比如,在理解上并行和并发的区别,以及在实际应用的过程中多线程的安全问题,对此,我们需要进行详细的了解。 并行和并发:在我们看来,都是可以同时执行多种任务,那么,到底他们二者有什么区别呢? 并发,从宏观方面来说,并发就是同时进行多种时间,实际上,这几种时间,并不是同时进行的,而是交替进行的,而由于CPU的运算速度非常的快,会造成我们的一种错觉,就是在同一时间内进行了多种事情 而并发,则是真正意义上的同时进行多种事情。这种只可以在多核CPU的基础下完成。 还有就是多线程的安全问题?为什么会造成多线程的安全问题呢?我们可以想象一下,如果多个线程同时执行一个任务,name意味着他们共享同一种资源,由于线程CPU的资源不一定可以被谁抢占到,这是,第一条线程先抢占到CPU资源,他刚刚进行了第一次操作,而此时第二条线程抢占到了CPU的资源,name,共享资源还来不及发生变化,就同时有两条数据使用了同一条资源,具体请参考多线程买票问题。这个问题我们应该如何解决那?   有造成问题的原因我们可以看出,这个问题主要的矛盾在于,CPU的使用权抢占和资源的共享发生了冲突,解决时,我们只需要让一条线程战歌了CPU的资源时,阻止第二条线程同时抢占CPU的执行权,在代码中,我们只需要在方法中使用同步代码块即可。在这里,同步代码块不多进行赘述,可以自行了解。 四,线程池 又以上介绍我们可以看出,在一个应用程序中,我们需要多次使用线程,也就意味着,我们需要多次创建并销毁线程。而创建并销毁线程的过程势必会消耗内存。而在Java中,内存资源是及其宝贵的,所以,我们就提出了线程池的概念。 线程池:Java中开辟出了一种管理线程的概念,这个概念叫做线程池,从概念以及应用场景中,我们可以看出,线程池的好处,就是可以方便的管理线程,也可以减少内存的消耗。 那么,我们应该如何创建一个线程池那?Java中已经提供了创建线程池的一个类:Executor 而我们创建时,一般使用它的子类:ThreadPoolExecutor. public ThreadPoolExecutor(int corePoolSize,                                int maximumPoolSize,                                long keepAliveTime,                                TimeUnit unit,                                BlockingQueue workQueue,                                ThreadFactory threadFactory,                                RejectedExecutionHandler handler)这是其中最重要的一个构造方法,这个方法决定了创建出来的线程池的各种属性,下面依靠一张图来更好的理解线程池和这几个参数: 又图中,我们可以看出,线程池中的corePoolSize就是线程池中的核心线程数量,这几个核心线程,只是在没有用的时候,也不会被回收,maximumPoolSize就是线程池中可以容纳的最大线程的数量,而keepAliveTime,就是线程池中除了核心线程之外的其他的最长可以保留的时间,因为在线程池中,除了核心线程即使在无任务的情况下也不能被清除,其余的都是有存活时间的,意思就是非核心线程可以保留的最长的空闲时间,而util,就是计算这个时间的一个单位,workQueue,就是等待队列,任务可以储存在任务队列中等待被执行,执行的是FIFIO原则(先进先出)。threadFactory,就是创建线程的线程工厂,最后一个handler,是一种拒绝策略,我们可以在任务满了知乎,拒绝执行某些任务。 线程池的执行流程又是怎样的呢? 有图我们可以看出,任务进来时,首先执行判断,判断核心线程是否处于空闲状态,如果不是,核心线程就先就执行任务,如果核心线程已满,则判断任务队列是否有地方存放该任务,若果有,就将任务保存在任务队列中,等待执行,如果满了,在判断最大可容纳的线程数,如果没有超出这个数量,就开创非核心线程执行任务,如果超出了,就调用handler实现拒绝策略。 handler的拒绝策略: 有四种:第一种AbortPolicy:不执行新任务,直接抛出异常,提示线程池已满              第二种DisCardPolicy:不执行新任务,也不抛出异常              第三种DisCardOldSetPolicy:将消息队列中的第一个任务替换为当前新进来的任务执行              第四种CallerRunsPolicy:直接调用execute来执行当前任务 五,四种常见的线程池: CachedThreadPool:可缓存的线程池,该线程池中没有核心线程,非核心线程的数量为Integer.max_value,就是无限大,当有需要时创建线程来执行任务,没有需要时回收线程,适用于耗时少,任务量大的情况。 SecudleThreadPool:周期性执行任务的线程池,按照某种特定的计划执行线程中的任务,有核心线程,但也有非核心线程,非核心线程的大小也为无限大。适用于执行周期性的任务。 SingleThreadPool:只有一条线程来执行任务,适用于有顺序的任务的应用场景。 FixedThreadPool:定长的线程池,有核心线程,核心线程的即为最大的线程数量,没有非核心线程 作者:weixin_40271838 来源:CSDN 原文:https://blog.csdn.net/weixin_40271838/article/details/79998327 版权声明:本文为博主原创文章,转载请附上博文链接!
auto_answer 2019-12-02 01:56:43 0 浏览量 回答数 0

回答

1.第一个问题通过数据版本,也就是所谓的乐观锁解决。 2.先写日志log,然后ack机制。其实很多这种方式被很多应用所用到比如mysql。 3.用户注册本身这个功能不属于高频调用,所以性能上不需要考虑太多,直接悲观锁实现即可。而且这种可能性非常低,就算失败,那么返回给用户一个能理解的失败信息即可。######回复 @sixliu:谢谢回复靠谱的回答真不多我再等等看...######回复 @花歌:第二个可能没太理解你的场景######谢谢咯~1和3可以,我看看还有什么别的方案,差不多也就这么做了,2的话再考虑考虑吧感觉还是有点不适用场景###### 三个问题,其实就是同一个并发的问题,###### 都是并发中会出现的问题。 1说的在内存里的情况,就是2。 1说的在数据库中的情况,就是3。 在数据库中,数据库自己会有锁来解决这个问题,遇到这种情况会修改失败,程序中捕获这种异常做处理返回给前台就可以了。 在内存中,单机单进程单线程,会有顺序,因此没有问题。多机或多进程或多线程操作同一数据,会出现此问题。一种实现方式是加锁,相当于仿照数据库那样的实现,内存正在被修改时,其他的修改会被阻塞或者异常终止。另一种方式是通过队列实现顺序操作,所有的修改都发送到一个程序修改。######让我想想,嗯差不多,回答比较靠谱,谢了先其实...我用的是nodejs全异步操作,前面的数据库操作没完成,后面的也可以进入函数,如果网络延迟,就会造成执行完成顺序和开始执行顺序不一致...等等想一会再问你哈###### 1.是设计上的问题 两个操作如果有先后顺序 就得先后执行  一个操作完了之后再下一个操作 不可能明知道有一前一后却还要非得一起 2.这个就是非常典型的数据库事务 就是保证多个不相关的操作的原子性 只要其中一个出问题就全部回滚 不存在有的成功有的失败 事务还是个挺复杂的东西 mongodb都还不支持事务 多服务器之间分布式的事务也是有些麻烦的  3.同时的操作数据库自己会进行锁的处理 对数据库来说还是一前一后  如果某个字段设置了唯一索引 那后面的那个必然会出错 代码里正常处理就可以了 所以用户名不唯一的处理有两个地方 一个是在插入之前 一个是在插入时抛出唯一索引异常   当然也可以在新建用户这一整个操作上加锁 全局同时只能有一个用户在新建 不过这样可能效率不高 ######问题1现实情况就是这样用户以为他的操作有顺序但基于连接池算是并发操作即时不用池那也是异步操作不能保证顺序所以只能考虑数据库锁时间戳问题2还没到数据库呢...只考虑多个内存中的对象操作问题3现在就是这样处理的###### 1.加锁 2.加事务控制 3.异常捕获与处理 工作不满一年吧######不好意思...工作6年多了开发经验10多年问题1暂时用乐观锁解决了问题2事务控制个毛线问题你可能是没读清内存中的几个对象而已和数据库无关就是事务也得自己实现这话谁都会说我想听的是备忘录模式这种...到底怎么做能优雅点还是我从需求设计上可能有问题问题3靠数据库唯一约束出错返回太暴力现在就是这么做的也可以数据库加锁怕影响性能###### 1,updateusersetstatus=2wherestatus=3andid=1; 2,用户名设置唯一索引。###### 可以用现在拷贝上操作,再合并的方法解决。1、按顺序合并。2、按状态合并。3、按索引合并。
优选2 2020-06-09 10:36:32 0 浏览量 回答数 0

回答

1.第一个问题通过数据版本,也就是所谓的乐观锁解决。 2.先写日志log,然后ack机制。其实很多这种方式被很多应用所用到比如mysql。 3.用户注册本身这个功能不属于高频调用,所以性能上不需要考虑太多,直接悲观锁实现即可。而且这种可能性非常低,就算失败,那么返回给用户一个能理解的失败信息即可。######回复 @sixliu : 谢谢回复 靠谱的回答真不多 我再等等看...######回复 @花歌 : 第二个 可能没太理解你的场景######谢谢咯~ 1和3可以,我看看还有什么别的方案,差不多也就这么做了,2的话 再考虑考虑吧 感觉还是有点不适用场景###### 三个问题,其实就是同一个并发的问题,###### 都是并发中会出现的问题。 1说的在内存里的情况,就是2。 1说的在数据库中的情况,就是3。 在数据库中,数据库自己会有锁来解决这个问题,遇到这种情况会修改失败,程序中捕获这种异常做处理返回给前台就可以了。 在内存中,单机单进程单线程,会有顺序,因此没有问题。多机或多进程或多线程操作同一数据,会出现此问题。一种实现方式是加锁,相当于仿照数据库那样的实现,内存正在被修改时,其他的修改会被阻塞或者异常终止。另一种方式是通过队列实现顺序操作,所有的修改都发送到一个程序修改。######让我想想,嗯 差不多,回答比较靠谱,谢了先 其实...我用的是nodejs 全异步操作,前面的数据库操作没完成,后面的也可以进入函数,如果网络延迟,就会造成执行完成顺序和开始执行顺序不一致... 等等想一会再问你哈###### 1. 是设计上的问题  两个操作如果有先后顺序  就得先后执行   一个操作完了之后再下一个操作   不可能明知道有一前一后 却还要非得一起 2. 这个就是非常典型的数据库事务   就是保证多个不相关的操作的原子性  只要其中一个出问题就全部回滚  不存在有的成功有的失败  事务还是个挺复杂的东西   mongodb都还不支持事务  多服务器之间分布式的事务也是有些麻烦的   3. 同时的操作 数据库自己会进行锁的处理  对数据库来说还是一前一后    如果某个字段设置了唯一索引  那后面的那个必然会出错  代码里正常处理就可以了   所以用户名不唯一的处理有两个地方  一个是在插入之前  一个是在插入时抛出唯一索引异常      当然也可以在新建用户这一整个操作上加锁   全局同时只能有一个用户在新建  不过这样可能效率不高  ######问题1 现实情况就是这样 用户以为他的操作有顺序 但基于连接池 算是并发操作 即时不用池 那也是异步操作 不能保证顺序 所以只能考虑数据库锁 时间戳 问题2 还没到数据库呢... 只考虑多个内存中的对象操作 问题3 现在就是这样处理的###### 1.加锁 2.加事务控制 3.异常捕获与处理 工作不满一年吧######不好意思... 工作6年多了 开发经验10多年 问题1 暂时用乐观锁解决了 问题2 事务控制个毛线 问题你可能是没读清 内存中的几个对象而已 和数据库无关 就是事务也得自己实现 这话谁都会说 我想听的是 备忘录模式 这种... 到底怎么做能优雅点 还是我从需求设计上可能有问题 问题3 靠数据库唯一约束出错返回太暴力 现在就是这么做的 也可以数据库加锁 怕影响性能###### 1,update user set status=2 where status=3 and id=1; 2,用户名设置唯一索引。###### 可以用现在拷贝上操作,再合并的方法解决。1、按顺序合并。2、按状态合并。3、按索引合并。
爱吃鱼的程序员 2020-05-29 20:15:24 0 浏览量 回答数 0

问题

【教程免费下载】Redis开发与运维

前  言 Redis作为基于键值对的NoSQL数据库,具有高性能、丰富的数据结构、持久化、高可用、分布式等特性,同时Redis本身非常稳定,已经得到业界的广泛认可和使用。掌握Redis已经逐步成为...
知与谁同 2019-12-01 22:07:46 2741 浏览量 回答数 2

问题

【精品问答】大数据常见技术问题100问

大数据常见技术问题100问 1.如何检查namenode是否正常运行?重启namenode的命令是什么? 2.hdfs存储机制是怎样的? 3.hadoop中combiner的作用是什么? 4.hadoop中combiner的作用是什...
珍宝珠 2020-02-17 13:02:59 19 浏览量 回答数 1

问题

Hystrix 是什么?【Java问答学堂】60期

Hystrix 是什么? 在分布式系统中,每个服务都可能会调用很多其他服务,被调用的那些服务就是依赖服务,有的时候某些依赖服务出现故障也是很正常的。 Hystrix 可以让我们在分...
剑曼红尘 2020-07-20 12:49:25 2 浏览量 回答数 1

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 46087 浏览量 回答数 16

回答

你说的这种是并发量特别大吗?如果只是cache失效并发量不大,那很简单,query db -> put to cache就可以了,这样后续请求又被cache拦掉了,如果是瞬间请求很大,我们可以看一下,如服务器/容器 处理的线程数是多少,然后rt是多少,然后算出db tps/qps是多少,如果并不大,那很有可能是你数据库本身就设计的有问题,如果很大, 那么需要将cache的逻辑和db的逻辑切开,缓存更新异步化,所有请求都直接读cache,不读db就可以了,不过这会稍微有点复杂的,你需要考虑很多额外情况。######没人看吗- -######如果怕db压力大的话感觉可以在缓存不存在的时候加同步代码(再判断-读db或读cache)。同步的话不知道作为一个商业应用是不是太奢侈了,感觉延时应该不大。如果缓存不存在的话耗时就是读db的时间,对于进入第一个无缓存条件请求的响应时间是前一个读db+读cache。对于你说的情景在缓存失效时大量并发访问的话可以减小数据库压力的。######缓存时效错开######二级cache######能否在缓存失效操作时,取得最新数据再刷新缓存 如果数据库操作该同步串行操作的话可能会降低伸缩性######1. 控制失效时间,避免同时失效。比如写入时,过期时间在一个范围内随机     ---当然了,这样避免不了redis down机所造成的同时失效(避免down机又是怎么高可用的问题了) 2. 常规的缓存更新,可以加锁。 简单来说,就是当读取缓存失败需要去db读取时,通过加锁保证只有一个请求去db进行读取和更新,其它的请求可以直接返回或等待。 --这种加锁,解决的是某个key失效后,大量请求都同时读取该key的情况(比如全局的计数之类)。如果是上面提到的donw机的场景,那已经是一场”雪崩“了,就要根椐实际场景来操作了。。。 所以,如果是预案,既然是缓存,就要想尽办法,避免整体失效(因为一旦整体失效,而db又无法承受大量请求的话,则只能是降级服务了)######谢谢######用两个键值对的缓存代替之前的一个,将缓存时间( key-time),和缓存数据( key-data )分离 1.当缓存过期时,第一个线程发现 key-time 没有,则先更新 key-time, 2.然后去查询数据库(或任何比较耗时的数据查询方式),并更新 key-data 的值, 3.当后续线程来获取数据时,虽然第一个还没有从数据库查完并更新缓存,但发现 key-time 存在,会获取旧的数据。######回复 @东方游 : 存在以下几个问题: 1.你用标识的话可能会出现一直等待的问题。 2.其他线程你要设置等待多久合适?对不同的访问设置不同的等待时间?######现在想到的方案是如果缓存没有查询到,就向redis中存入一条标识,再进行查库,查库完成之后放到缓存并删除标识,出现大量请求时先去缓存中查询标识,如果查询到标识说明已经在进行数据库查询,这时便进行等待几百毫秒或者几秒,再进行查询 ,不知道这样是否可行######redis缓存存的哪方面的数据。######回复 @mickelfeng : 我题目的意思是缓存到期失效了,然后同时会有大量的请求查询干到数据库中,比如1000个相同的查询同时过来,数据库压力增大,现在是不相给数据库增加压力,又让缓存重新生效######变动很少的话不存在。######redis缓存过期了。一个请求query+cache,以后请求cache,不存在你说的问题######就是查询的数据列表######如果访问量真的到缓存实效都有大量连接同时进来,可以考虑使用redis当数据库用,数据做持久化存储用了。 redis要用备份服务,以确保主服务挂了,备服务提供只读模式降级服务。
kun坤 2020-05-30 22:57:52 0 浏览量 回答数 0

问题

阿里云-小程序云

阿里云-小程序云 设备重复收到消息,如何去重? 物联网平台是否会保存消息? 服务器端如何获取设备消息? 配置了MNS服务端订阅。但在控制台上发送消息,MNS的队列中并没...
问问小秘 2020-04-07 18:45:54 24 浏览量 回答数 1

回答

反复调试,发现同类问题:在进入列表页后,不操作,等待1分钟,再点击某项活动,无法加载数据和跳转。需多次点击或者等候5分钟才可展示。 同时,在Android浏览器和微信浏览器中输入活动链接,也出现此bug。 证明是链接的问题,可是在电脑浏览器中和ios中显示是正常。######03-13 18:08:10.519 27496-27545/com.yu.android.guan D/libc-netbsd: getaddrinfo: lh. guanrong.com get result from proxy >> 03-13 18:08:10.522 27496-27545/com.yu.android.guan I/System.out: propertyValue:false 03-13 18:08:10.522 27496-27545/com.yu.android.guan I/System.out: openConnection:1 03-13 18:08:10.522 27496-27545/com.yu.android.guan D/libc-netbsd: [getaddrinfo]: hostname=61.133.48.94; servname=(null); cache_mode=(null), netid=0; mark=0 03-13 18:08:10.522 27496-27545/com.yu.android.guan D/libc-netbsd: [getaddrinfo]: ai_addrlen=0; ai_canonname=(null); ai_flags=4; ai_family=0 03-13 18:08:10.531 27496-27545/com.yu.android.guan I/System.out: entering allowSendingEmail 03-13 18:08:10.531 27496-27545/com.yu.android.guan I/System.out: [CDS]connect[/61.133.48.94:443] tm:20 03-13 18:08:10.535 27496-27545/com.yu.android.guan E/Posix: [Posix_connect Debug]Process com.yu .android. guan :443 03-13 18:08:10.592 27496-27545/com.yu.android.guan I/System.out: gba_cipher_suite:TLS_RSA_WITH_AES_128_CBC_SHA 03-13 18:08:10.594 27496-27545/com.yu.android.guan I/System.out: snd buffer size:8192 03-13 18:08:10.595 27496-27545/com.yu.android.guan I/System.out: >doSendRequest 03-13 18:08:10.597 27496-27545/com.yu.android.guan I/System.out: <doSendRequest 03-13 18:08:10.690 27496-27496/com.yu.android.guan I/ guan: WebViewActivity onProgressChanged:showDialogtrue  progress:95 03-13 18:13:02.248 27496-6016/com.yu.android.guan D/libc-netbsd: [getaddrinfo]: hostname=wx-uat. guanrong.com; servname=(null); cache_mode=(null), netid=0; mark=0 03-13 18:13:02.248 27496-6016/com.yu.android.guan D/libc-netbsd: [getaddrinfo]: ai_addrlen=0; ai_canonname=(null); ai_flags=1024; ai_family=2 03-13 18:13:02.272 27496-6016/com.yu.android.guan D/libc-netbsd: getaddrinfo: wx-uat. guanjinrong.com get result from proxy >>###### 博主 你好 请问你后来这个问题怎么解决的呢######导致原因不清楚, 我觉得是 webview的初始化需要时间久,load的时候 初始化未完成, 我开启线程延长200毫秒后load解决了这个问题######不记得了,好像没解决。。。要是你解决了,在这博客下也回复下把。3Q######导致原因不清楚, 我觉得是 webview的初始化需要时间久,load的时候 初始化未完成, 我开启线程延长200毫秒后load解决了这个问题
kun坤 2020-05-30 13:58:24 0 浏览量 回答数 0

回答

nginx的静态页面都进不去的话应该是OS的TCP出了问题吧,要不看看你这个服务器当前的文件描述符数量`ulimit -n`。######回复 @snailkky : 解决了没?是这个原因吗?######回复 @口口口S口口口 : 真是太感谢你了! 我现在很怀疑就是这个原因造成的,我去试试看。######回复 @snailkky : :cold_sweat:我也只是知道这个东西,或许你可以写个测试用例试一下,用Jmeter定个6000进程访问看看######一般每个进程最多允许同时打开1024个文件,这1024个文件中还得除去每个进程必然打开的标准输入,标准输出,标准错误,服务器监听socket,进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就只有大概1024-10=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许同时1014个TCP并发连接。 是这个原因造成的吗?######65535###### 负载均衡,可以先开3个nginx,9个项目。######你这种就是性能不行, 上来就是分布式, 负载均衡。 明显几千连接,资源系统资源占用不高,是什么环节出了问题。 搞分布式,负载均衡就是掩耳盗铃######回复 @天空-sky : worker_connections 我配置了65535,另外worker_processes 我配置为8######nginx 还有worker_connections配置,可以了解下###### 密集IO情况下的Nginx调优方案: nginx进程数调到CPU核数的1.5倍,并且把每个进程平均绑到每个CPU上,多出来的让Linux自动调度到空闲CPU。 突然并发的情况下,Tomcat调优方法: 调成多进程+多线程运行模式,并且空闲时保留进程不少于CPU核数的一半。 nginx和tomcat采用fastcgi方式互交。###### 我简单看了一下,服务器很正确,监控正常,你的高峰瘫痪是指?######就是很多用户进不来,我自己也进不去,加载不出来,nginx部署的另一个静态页也无法访问###### 单机的配置降一降,拆分成多节点呗。###### 使用令牌桶做限流处理###### 我更好奇你这个监控是怎么看到的,为什么我的云监控没你的这么细######额,懂了,但是你好像是升级版的,我的是免费版的! 看了下升级版的,一个月都要1099:joy:######在云服务监控-云服务器ECS,你点进去,再点单个的监控,就可以显示这个图表了。###### 光看这个不太好分析,信息量太少。首先tomcat本身支持的并发就不高,到了6000肯定是没办法支持的,即使你将你的maxThread设置为2000,以你机器的性能也无法发挥线程的优势,反而增加了CPU线程切换的资源耗费。如果流量真的有这么大,那需要考虑做集群来承载。另外如果你的应用是IO型的,可以试试tomcat的NIO方式。######我是spring boot2,tomcat默认就是nio######高版本的tomcat好像默认都是nio,那如果是这样的话,高配服务器就发挥不了它的性能,感觉挺鸡肋的。######看症状貌似你的服务器是共享实例,积分用完之后cpu占用率不能超过20%######我这个是通用型实例 不是共享型###### 看下带宽######没有,因为我也怕是带宽的问题,然后我又升级到了60M,程序也没有变化。######回复 @snailkky : 出问题的那天,带宽使用情况怎么样?有没有出现不足######现在是5M带宽,但我那天临时升级到了20M
kun坤 2020-06-07 09:02:49 0 浏览量 回答数 0

问题

百问百答 《Java开发手册(嵩山版)》

从java命名标准来讲,代码中的命名需要注意什么? java中类名命名是用什么规则,有什么情形是例外的? POJO类中的布尔类型变量要不要加is前缀,为什么ÿ...
不语奈何 2021-03-25 13:30:32 28 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

Maven本地仓库配置报错:配置报错  GO语言配置什么的都没问题,但就是LiteIDE配置不好。。。:配置报错  Maven 配置nexus仓库 POM文件报错:配置报错  10个你可能从未用过的PHP函数:配置报错  QT...
问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。
剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

问题

【开源项目】Nacos问答集锦

nacos 如果注册到不同的命名空间下,如何相互调用呢使用nacos-server-1.0.0时出现日志不兼容情况,请问是什么原因导致的nacos-server 空配置报错,java.util.Co...
一人吃饱,全家不饿 2021-02-02 10:51:08 11 浏览量 回答数 0

回答

经常出现CPU占用100%的情况,主要问题可能发生在下面的某些方面: CPU占用率高 的九种可能 1、防杀毒软件造成 故障 由于新版的 KV 、金山、 瑞星 都加入了对网页、 插件 、邮件的随机监控,无疑增大了系统负担。处理方式:基本上没有合理的处理方式,尽量使用最少的监控服务吧,或者,升级你的硬件配备。 2、驱动没有经过认证,造成CPU资源占用100% 大量的测试版的驱动在网上泛滥,造成了难以发现的故障原因。 处理方式:尤其是 显卡驱动 特别要注意,建议使用 微软认证 的或由官方发布的驱动,并且严格核对型号、版本。 3、 病毒、木马 造成 大量的蠕虫病毒在系统内部迅速复制,造成CPU占用资源率据高不下。解决办法:用可靠的杀毒软件彻底清理系统内存和本地硬盘,并且打开系统设置软件,察看有无异常启动的程序。经常性更新升级杀毒软件和防火墙,加强防毒意识,掌握正确的防杀毒知识。 4、控制面板— 管理工具 —服务—RISING REALTIME MONITOR SERVICE 点鼠标右键,改为手动。 5、开始->运行->msconfig->启动,关闭不必要的启动项,重启。 6、查看“ svchost ”进程。 svchost . exe 是Windows XP系统 的一个核心进程。 svchost.exe 不单单只出现 在Window s XP中,在使用 NT 内核的 Windows系统 中都会有svchost.exe的存在。一般在 Windows 2000 中 svchost.exe进程 的数目为2个,而 在Windows XP中svchost.exe进程的数目就上升到了4个及4个以上。 7、查看 网络连接 。主要是网卡。 8、查看网络连接 当安装了Windows XP的计算机做服务器的时候,收到端口 445 上的连接请求时,它将分配内存和少量地调配 CPU资源来为这些连接提供服务。当负荷过重的时候,CPU占用率可能过高,这是因为在工作项的数目和响应能力之间存在固有的权衡关系。你要确定合适的 MaxWorkItems 设置以提高系统响应能力。如果设置的值不正确,服务器的响应能力可能会受到影响,或者某个用户独占太 多系统 资源。 要解决此问题,我们可以通过修改注册表来解决:在 注册表编辑器 中依次展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver ]分支,在右侧窗口中 新建 一个名为“maxworkitems”的 DWORD值 。然后双击该值,在打开的窗口中键入下列数值并保存退出: 如果计算机有512MB以上的内存,键入“1024”;如果计算机内存小于 512 MB,键入“256”。 9、看看是不是Windows XP使用鼠标右键引起CPU占用100% 前不久的报到说在资源管理器里面使用鼠标右键会导致CPU资源100%占用,我们来看看是怎么回事? 征兆: 在资源管理器里面,当你右键点击一个目录或一个文件,你将有可能出现下面所列问题: 任何文件的拷贝操作在那个时间将有可能停止相应 网络连接速度将显著性的降低 所有的流输入/输出操作例如使用Windows Media Player 听音乐将有可能是音乐失真成因: 当你在资源管理器里面右键点击一个文件或目录的时候,当快捷 菜单显示 的时候,CPU占用率将增加到100%,当你关闭快捷菜单的时候才返回正常水平。 解决方法: 方法一:关闭“为菜单和工具提示使用过渡效果” 1、点击“开始”--“控制面板” 2、在“控制面板”里面双击“显示” 3、在“显示”属性里面点击“外观”标签页 4、在“外观”标签页里面点击“效果” 5、在“效果”对话框里面,清除“为菜单和工具提示使用过渡效果”前面的复选框接着点击两次“确定”按钮。 方法二:在使用鼠标右键点击文件或目录的时候先使用鼠标左键选择你的目标文件或目录。然后再使用鼠标右键弹出快捷菜单。 CPU占用100%解决办法 一般情况下CPU占了100%的话我们的电脑总会慢下来,而很多时候我们是可以通过做 一点点 的改动就可以解决,而不必问那些大虾了。 当机器慢下来的时候,首先我们想到的当然是任务管理器了,看看到底是哪个程序占了较搞的比例,如果是某个大程序那还可以原谅,在关闭该程序后只要CPU正常了那就没问题;如果不是,那你就要看看是什幺程序了,当你查不出这个进程是什幺的时候就去google或者 baidu 搜。有时只结束是没用的,在 xp下 我们可以结合msconfig里的启动项,把一些不用的项给关掉。在2000下可以去下个winpatrol来用。 一些常用的软件,比如浏览器占用了很搞的CPU,那幺就要升级该软件或者干脆用别的同类软件代替,有时软件和系统会有点不兼容,当然我们可以试下xp系统下给我们的那个兼容项,右键点该. exe文件 选兼容性。 svchost.exe有时是比较头痛的,当你看到你的某个svchost.exe占用很大CPU时你可以去下个aports或者fport来检查其对应的程序路径,也就是什幺东西在掉用这个svchost.exe,如果不是c:\Windows\ system32 (xp)或c:\winnt\system32(2000)下的,那就可疑。升级杀毒软件杀毒吧。 右击 文件导致100%的CPU占用我们也会遇到,有时点右键停顿可能就是这个问题了。官方的解释:先点左键选中,再右键(不是很理解)。非官方:通过在桌面点右键-属性-外观-效果,取消”为菜单和工具提示使用下列过度效果(U)“来解决。还有某些杀毒软件对文件的监控也会有所影响,可以 关闭杀毒软件 的文件监控;还有就是对网页,插件,邮件的监控也是同样的道理。 一些驱动程序有时也可能出现这样的现象,最好是选择微软认证的或者是官方发布的驱动来装,有时可以适当的升级驱动,不过记得最新的不是最好的。 CPU降温软件 ,由于软件在运行时会利用所以的CPU空闲时间来进行降温,但Windows不能分辨普通的CPU占用和 降温软件 的降温指令 之间的区别 ,因此CPU始终显示100%,这个就不必担心了,不影响正常的系统运行。 在处理较大的 word文件 时由于word的拼写和语法检查会使得CPU累,只要打开word的工具-选项-拼写和语法把”检查拼写和检查语法“勾去掉。 单击 avi视频 文件后CPU占用率高是因为系统要先扫描该文件,并检查文件所有部分,并建立索引;解决办法:右击保存视频文件的文件夹-属性-常规-高级,去掉为了快速搜索,允许索引服务编制该文件夹的索引的勾。 CPU占用100%案例分析 1、 dllhost进程造成CPU使用率占用100% 特征:服务器正常CPU消耗应该在75%以下,而且CPU消耗应该是上下起伏的,出现这种问题的服务器,CPU会突然一直处100%的水平,而且不会下降。查看任务管理器,可以发现是DLLHOST.EXE消耗了所有的CPU空闲时间,管理员在这种情况下,只好重新启动IIS服务,奇怪的是,重新启动IIS服务后一切正常,但可能过了一段时间后,问题又再次出现了。 直接原因: 有一个或多个ACCESS数据库在多次读写过程中损坏,微软的 MDAC 系统在写入这个损坏的ACCESS文件时,ASP线程处于BLOCK状态,结果其它线程只能等待,IIS被死锁了,全部的CPU时间都消耗在DLLHOST中。 解决办法: 安装“一流信息监控拦截系统”,使用其中的“首席文件检查官IIS健康检查官”软件, 启用”查找死锁模块”,设置: --wblock=yes 监控的目录,请指定您的主机的文件所在目录: --wblockdir=d:\test 监控生成的日志的文件保存位置在安装目录的log目录中,文件名为:logblock.htm 停止IIS,再启动“首席文件检查官IIS健康检查官”,再启动IIS,“首席文件检查官IIS健康检查官”会在logblock.htm中记录下最后写入的ACCESS文件的。 过了一段时间后,当问题出来时,例如CPU会再次一直处100%的水平,可以停止IIS,检查logblock.htm所记录的最后的十个文件,注意,最有问题的往往是计数器类的ACCESS文件,例如:”COUNT. MDB ”,”COUNT.ASP”,可以先把最后十个文件或有所怀疑的文件删除到回收站中,再启动IIS,看看问题是否再次出现。我们相信,经过仔细的查找后,您肯定可以找到这个让您操心了一段时间的文件的。 找到这个文件后,可以删除它,或下载下来,用ACCESS2000修复它,问题就解决了。 2、 svchost.exe造成CPU使用率占用100% 在win.ini文件中,在[Windows]下面,“run=”和“load=”是可能加载“木马”程序的途径,必须仔细留心它们。一般情况下,它们的等号后面什幺都没有,如果发现后面跟有路径与文件名不是你熟悉的启动文件,你的计算机就可能中上“木马”了。当然你也得看清楚,因为好多“木马”,如“AOL Trojan木马”,它把自身伪装成command.exe文件,如果不注意可能不会发现它不是真正的系统启动文件。 在system.ini文件中,在[BOOT]下面有个“shell=文件名”。正确的文件名应该是“explorer.exe”,如果不是“explorer.exe”,而是“shell= explorer.exe 程序名”,那幺后面跟着的那个程序就是“木马”程序,就是说你已经中“木马”了。 在注册表中的情况最复杂,通过regedit命令打开注册表编辑器,在点击至:“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”目录下,查看键值中有没有自己不熟悉的自动启动文件,扩展名为EXE,这里切记:有的“木马”程序生成的文件很像系统自身文件,想通过伪装蒙混过关,如“Acid Battery v1.0木马”,它将注册表“HKEY-LOCAL-MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”下的Explorer 键值改为Explorer=“C:\Windows\expiorer.exe”,“木马”程序与真正的Explorer之间只有“i”与“l”的差别。当然在注册表中还有很多地方都可以隐藏“木马”程序,如:“HKEY-CURRENT-USER\Software\Microsoft\Windows\CurrentVersion\Run”、“HKEY-USERS*\Software\Microsoft\Windows\CurrentVersion\Run”的目录下都有可能,最好的办法就是在“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”下找到“木马该病毒也称为“Code Red II(红色代码2)”病毒,与早先在西方英文系统下流行“红色代码”病毒有点相反,在国际上被称为VirtualRoot(虚拟目录)病毒。该蠕虫病毒利用Microsoft已知的溢出漏洞,通过80端口来传播到其它的Web页服务器上。受感染的机器可由黑客们通过Http Get的请求运行scripts/root.exe来获得对受感染机器的完全控制权。 当感染一台服务器成功了以后,如果受感染的机器是中文的系统后,该程序会休眠2天,别的机器休眠1天。当休眠的时间到了以后,该蠕虫程序会使得机器重新启动。该蠕虫也会检查机器的月份是否是10月或者年份是否是2002年,如果是,受感染的服务器也会重新启动。当Windows NT系统启动时,NT系统会自动搜索C盘根目录下的文件explorer.exe,受该网络蠕虫程序感染的服务器上的文件explorer.exe也就是该网络蠕虫程序本身。该文件的大小是8192字节,VirtualRoot网络蠕虫程序就是通过该程序来执行的。同时,VirtualRoot网络蠕虫程序还将cmd.exe的文件从Windows NT的system目录拷贝到别的目录,给黑客的入侵敞开了大门。它还会修改系统的注册表项目,通过该注册表项目的修改,该蠕虫程序可以建立虚拟的目录C或者D,病毒名由此而来。值得一提的是,该网络蠕虫程序除了文件explorer.exe外,其余的操作不是基于文件的,而是直接在内存中来进行感染、传播的,这就给捕捉带来了较大难度。 ”程序的文件名,再在整个注册表中搜索即可。 我们先看看微软是怎样描述svchost.exe的。在微软知识库314056中对svchost.exe有如下描述:svchost.exe 是从动态链接库 (DLL) 中运行的服务的通用主机进程名称。 其实svchost.exe是Windows XP系统的一个核心进程。svchost.exe不单单只出现在Windows XP中,在使用NT内核的Windows系统中都会有svchost.exe的存在。一般在Windows 2000中svchost.exe进程的数目为2个,而在Windows XP中svchost.exe进程的数目就上升到了4个及4个以上。所以看到系统的进程列表中有几个svchost.exe不用那幺担心。 svchost.exe到底是做什幺用的呢? 首先我们要了解一点那就是Windows系统的中的进程分为:独立进程和共享进程这两种。由于Windows系统中的服务越来越多,为了节约有限的系统资源微软把很多的系统服务做成了共享模式。那svchost.exe在这中间是担任怎样一个角色呢? svchost.exe的工作就是作为这些服务的宿主,即由svchost.exe来启动这些服务。svchost.exe只是负责为这些服务提供启动的条件,其自身并不能实现任何服务的功能,也不能为用户提供任何服务。svchost.exe通过为这些系统服务调用动态链接库(DLL)的方式来启动系统服务。 svchost.exe是病毒这种说法是任何产生的呢? 因为svchost.exe可以作为服务的宿主来启动服务,所以病毒、木马的编写者也挖空心思的要利用svchost.exe的这个特性来迷惑用户达到入侵、破坏计算机的目的。 如何才能 辨别 哪些是正常的svchost.exe进程,而哪些是 病毒进程 呢? svchost.exe的键值是在“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Svchost”,如图1所示。图1中每个键值表示一个独立的svchost.exe组。 微软还为我们提供了一种察看系统正在运行在svchost.exe列表中的服务的方法。以Windows XP为例:在“运行”中输入:cmd,然后在命令行模式中输入:tasklist /svc。系统列出如图2所示的服务列表。图2中红框包围起来的区域就是svchost.exe启动的服务列表。如果使用的是Windows 2000系统则把前面的“tasklist /svc”命令替换为:“tlist -s”即可。如果你怀疑计算机有可能被病毒感染,svchost.exe的服务出现异常的话通过搜索 svchost.exe文件 就可以发现异常情况。一般只会找到一个在:“C:\Windows\System32”目录下的svchost.exe程序。如果你在其它目录下发现svchost.exe程序的话,那很可能就是中毒了。 还有一种确认svchost.exe是否中毒的方法是在任务管理器中察看进程的执行路径。但是由于在Windows系统自带的任务管理器不能察看进程路径,所以要使用第三方的进程察看工具。 上面简单的介绍了svchost.exe进程的相关情况。总而言之,svchost.exe是一个系统的核心进程,并不是病毒进程。但由于svchost.exe进程的特殊性,所以病毒也会千方百计的入侵svchost.exe。通过察看svchost.exe进程的执行路径可以确认是否中毒。 3、 Services.exe造成CPU使用率占用100% 症状 在基于 Windows 2000 的计算机上,Services.exe 中的 CPU 使用率可能间歇性地达到100 %,并且计算机可能停止响应(挂起)。出现此问题时,连接到该计算机(如果它是文件服务器或域控制器)的用户会被断开连接。您可能还需要重新启动计算机。如果 Esent.dll 错误地处理将文件刷新到磁盘的方式,则会出现此症状。 解决方案 Service Pack 信息 要解决此问题,请获取最新的 Microsoft Windows 2000 Service Pack。有关其它信息,请单击下面的文章编号,以查看 Microsoft 知识库中相应的文章: 260910 如何获取最新的 Windows 2000 Service Pack 修复程序信息 Microsoft 提供了受支持的修补程序,但该程序只是为了解决本文所介绍的问题。只有计算机遇到本文提到的特定问题时才可应用此修补程序。此修补程序可能还会接受其它一些测试。因此,如果这个问题没有对您造成严重的影响,Microsoft 建议您等待包含此修补程序的下一个 Windows 2000 Service Pack。 要立即解决此问题,请与“Microsoft 产品支持服务”联系,以获取此修补程序。有关“Microsoft 产品支持服务”电话号码和支持费用信息的完整列表,请访问 Microsoft Web 站点: 注意 :特殊情况下,如果 Microsoft 支持专业人员确定某个特定的更新程序能够解决您的问题,可免收通常情况下收取的电话支持服务费用。对于特定更新程序无法解决的其它支持问题和事项,将正常收取支持费用。 下表列出了此修补程序的全球版本的文件属性(或更新的属性)。这些文件的日期和时间按协调通用时间 (UTC) 列出。查看文件信息时,它将转换为本地时间。要了解 UTC 与本地时间之间的时差,请使用“控制面板”中的“日期和时间”工具中的 时区 选项卡。 状态 Microsoft 已经确认这是在本文开头列出的 Microsoft 产品中存在的问题。此问题最初是在 Microsoft Windows 2000 Service Pack 4 中更正的。 4、正常软件造成CPU使用率占用100% 首先,如果是从开机后就发生上述情况直到关机。那幺就有可能是由某个随系统同时登陆的软件造成的。可以通过运行输入“msconfig”打开“系统实用配置工具”,进入“启动”选项卡。接着,依次取消可疑选项前面的对钩,然后重新启动电脑。反复测试直到找到造成故障的软件。或者可以通过一些优化软件如“优化大师”达到上述目的。另:如果键盘内按键卡住也可能造成开机就出现上述问题。 如果是使用电脑途中出项这类问题,可以调出任务管理器(WINXP CTRL+ALT+DEL WIN2000 CTRL+SHIFT“ESC),进入”进程“选项卡,看”CPU“栏,从里面找到占用资源较高的程序(其中SYSTEM IDLE PROCESS是属于正常,它的值一般都很高,它的作用是告诉当前你可用的CPU资源是多少,所以它的值越高越好)通过搜索功能找到这个进程属于哪个软件。然后,可以通过升级、关闭、卸载这个软件或者干脆找个同类软件替换,问题即可得到解决。 5、病毒、木马、间谍软件造成CPU使用率占用100% 出现CPU占用率100% 的故障经常是因为病毒木马造成的,比如震荡波病毒。应该首先更新病毒库,对电脑进行全机扫描 。接着,在使用反间谍软件Ad—Aware,检查是否存在间谍软件。论坛上有不少朋友都遇到过svchost.exe占用CPU100%,这个往往是中毒的表现。 svchost.exe Windows中的系统服务是以动态链接库(DLL)的形式实现的,其中一些会把可执行程序指向svchost.exe,由它调用相应服务的动态链接库并加上相应参数来启动服务。正是因为它的特殊性和重要性,使它更容易成为了一些病毒木马的宿主。 6、 explorer.exe进程造成CPU使用率占用100% 在system.ini文件中,在[BOOT]下面有个“shell=文件名”。正确的文件名应该是“explorer.exe”,如果不是“explorer.exe”,而是“shell= explorer.exe 程序名”,那幺后面跟着的那个程序就是“木马”程序,就是说你已经中“木马”了。 在注册表中的情况最复杂,通过regedit命令打开注册表编辑器,在点击至:“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”目录下,查看键值中有没有自己不熟悉的自动启动文件,扩展名为EXE,这里切记:有的“木马”程序生成的文件很像系统自身文件,想通过伪装蒙混过关,如“Acid Battery v1.0木马”,它将注册表“HKEY-LOCAL-MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”下的 Explorer 键值改为Explorer=“C:\Windows\expiorer.exe”,“木马”程序与真正的Explorer之间只有“i”与“l”的差别。当然在注册表中还有很多地方都可以隐藏“木马”程序,如:“HKEY-CURRENT-USER\Software\Microsoft\Windows\CurrentVersion\Run”、“HKEY-USERS*\Software\Microsoft\Windows\CurrentVersion\Run”的目录下都有可能,最好的办法就是在“HKEY-LOCAL-MACHINE\Software\Microsoft\Windows\CurrentVersion\Run”下找到“木马”程序的文件名,再在整个注册表中搜索即可。 7、超线程导致CPU使用率占用100% 这类故障的共同原因就是都使用了具有超线程功能的P4 CPU。我查找了一些资料都没有明确的原因解释。据一些网友总结超线程似乎和天网防火墙有冲突,可以通过卸载天网并安装其它防火墙解决,也可以通过在BIOS中关闭超线程功能解决。 8、AVI视频文件造成CPU使用率占用100% 在Windows XP中,单击一个较大的AVI视频文件后,可能会出现系统假死现象,并且造成exploere.exe进程的使用率100%,这是因为系统要先扫描该文件,并检查文件所有部分,建立索引。如果文件较大就会需要较长时间并造成CPU占用率100%。解决方法:右键单击保存视频文件的文件夹,选择”属性—>常规—>高级“,去掉”为了快速搜索,允许索引服务编制该文件夹的索引“前面复选框的对钩即可。 9、杀毒软件CPU使用率占用100% 现在的杀毒软件一般都加入了,对网页、邮件、个人隐私的即时监空功能,这样无疑会加大系统的负担。比如:在玩游戏的时候,会非常缓慢。关闭该杀毒软件是解决得最直接办法。 10、处理较大的Word文件时CPU使用率过高 上述问题一般还会造成电脑假死,这些都是因为WORD的拼写和语法检查造成的,只要打开WORD的“工具—选项”,进入“拼写和语法”选项卡,将其中的“键入时检查拼写”和“键入时检查语法”两项前面的复选框中的钩去掉即可。 11、网络连接导致CPU使用率占用100% 当你的Windows2000/xp作为服务器时,收到来自端口445上的连接请求后,系统将分配内存和少量CPU资源来为这些连接提供服务,当负荷过重,就会出现上述情况。要解决这个问题可以通过修改注册表来解决,打开注册表,找到HKEY—LOCAL—MACHNE\SYSTEM\CurrentControlSet\Services\lanmanserver,在右面新建一个名为";maxworkitems";的DWORD值.然后双击该值,如果你的电脑有512以上内存,就设置为";1024";,如果小于512,就设置为256. 一些不完善的驱动程序也可以造成CPU使用率过高 经常使用待机功能,也会造成系统自动关闭硬盘DMA模式。这不仅会使系统性能大幅度下降,系统启动速度变慢,也会使是系统在运行一些大型软件和游戏时CPU使用率100%,产生停顿。 进程占用CPU 100%时可能中的病毒 system Idle Process 进程文件: [system process] or [system process] 进程名称: Windows内存处理系统进程 描 述: Windows页面内存管理进程,拥有0级优先。 介 绍:该进程作为单线程运行在每个处理器上,并在系统不处理其它线程的时候分派处理器的时间。它的CPU占用率越大表示可供分配的CPU资源越多,数字越小则表示CPU资源紧张。 Spoolsv.exe 进程文件: spoolsv or Spoolsv.exe 进程名称: Printer Spooler Service 描 述: Windows打印任务控制程序,用以打印机就绪。 介 绍:缓冲(spooler)服务是管理缓冲池中的打印和传真作业。 Spoolsv.exe→打印任务控制程序,一般会先加载以供列表机打印前的准备工作 Spoolsv.exe,如果常增高,有可能是病毒感染所致 目前常见的是: Backdoor/Byshell(又叫隐形大盗、隐形杀手、西门庆病毒) 危害程度:中 受影响的系统: Windows 2000, Windows XP, Windows Server 2003 未受影响的系统: Windows 95, Windows 98, Windows Me, Windows NT, Windows 3.x, Macintosh, Unix, Linux, 病毒危害: 1. 生成病毒文件 2. 插入正常系统文件中 3. 修改系统注册表 4. 可被黑客远程控制 5. 躲避反病毒软件的查杀 简单的后门木马,发作会删除自身程序,但将自身程序套入可执行程序内(如:exe),并与计算机的通口(TCP端口138)挂钩,监控计算机的信息、密码,甚至是键盘操作,作为回传的信息,并不时驱动端口,以等候传进的命令,由于该木马不能判别何者是正确的端口,所以负责输出的列表机也是其驱动对象,以致Spoolsv.exe的使用异常频繁...... Backdoor.Win32.Plutor 破坏方法:感染PE文件的后门程序 病毒采用VC编写。 病毒运行后有以下行为: 1、将病毒文件复制到%WINDIR%目录下,文件名为";Spoolsv.exe";,并该病毒文件运行。";Spoolsv.exe";文件运行后释放文件名为";mscheck.exe";的文件到%SYSDIR%目录下,该文件的主要功能是每次激活时运行";Spoolsv.exe";文件。如果所运行的文件是感染了正常文件的病毒文件,病毒将会把该文件恢复并将其运行。 2、修改注册表以下键值: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\Run 增加数据项:";Microsoft Script Checker"; 数据为:";MSCHECK.EXE /START"; 修改该项注册表使";MSCHECK.EXE";文件每次系统激活时都将被运行,而";MSCHECK.EXE";用于运行";Spoolsv.exe";文件,从而达到病毒自激活的目的。 3、创建一个线程用于感染C盘下的PE文件,但是文件路径中包含";winnt";、";Windows";字符串的文件不感染。另外,该病毒还会枚举局域网中的共享目录并试图对这些目录下的文件进行感染。该病毒感染文件方法比较简单,将正常文件的前0x16000个字节替换为病毒文件中的数据,并将原来0x16000个字节的数删除
游客2q7uranxketok 2021-02-22 13:26:20 0 浏览量 回答数 0

问题

如何保证缓存与数据库的双写一致性?【Java问答】38期

面试题 如何保证缓存与数据库的双写一致性? 面试官心理分析 你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解...
剑曼红尘 2020-06-16 12:58:57 36 浏览量 回答数 1

问题

【精品问答】前端开发必懂之JS技术二百问

1.document load 和 document ready 的区别 2.JavaScript 中如何检测一个变量是一个 String 类型? 3.请用 js 去除字符串空格? 4.js 是一门怎样的语言&#...
茶什i 2019-12-01 22:05:04 146 浏览量 回答数 0

回答

增加一个队列,多线程产生的消息都先入队急求顶<preclass="brush:java;toolbar:true;auto-links:false;">packagecom.tcp.mina.main;importjava.util.ArrayList;importjava.util.Collection;importjava.util.List;importjava.util.Map;importorg.apache.mina.core.IoUtil;importorg.apache.mina.core.service.IoHandlerAdapter;importorg.apache.mina.core.session.IdleStatus;importorg.apache.mina.core.session.IoSession;importcom.safe.model.Police;importcom.safe.model.User;importcom.safe.service.CenterService;importcom.safe.util.ConstantUtil;importcom.safe.util.DateUtil;importcom.tcp.mina.frame.Frame;importcom.tcp.mina.model.M_p_HandingAlarm;importcom.tcp.mina.model.M_p_Pant;importcom.tcp.mina.model.M_p_PeopleInfo;importcom.tcp.mina.model.M_q_GetPeopleInfo;importcom.tcp.mina.model.M_q_HandingAlarm;importcom.tcp.mina.model.M_q_Pant;importcom.tcp.mina.model.PoliceTask;importcom.tcp.mina.msgcoder.MsgCoder;importcom.tcp.mina.thread.AllPoliceCoordsThread;importcom.tcp.mina.thread.HotPoliceCoordsThread;importcom.tcp.mina.thread.UserCoordsThread;importcom.tcp.mina.util.TCPConstant;publicclassMyServerHandlerextendsIoHandlerAdapter{publicstaticMap<Long,IoSession>allIoSessions;CenterServiceservice;publicMyServerHandler(CenterServiceservice){super();this.service=service;}@OverridepublicvoidexceptionCaught(IoSessionsession,Throwablecause)throwsException{System.out.println("exceptionCaught");cause.printStackTrace();}@OverridepublicvoidmessageReceived(IoSessionsession,Objectmessage)throwsException{System.out.println("【server】messageReceived:"+message);Frameframe=null;if(messageinstanceofFrame){frame=(Frame)message;}else{return;}intmsgType=frame.getMsgType();switch(msgType){/*一收到心跳/caseTCPConstant.MSGTYPE_Q_PANT:M_q_Pantm_q_Pant=newMsgCoder<M_q_Pant>().readFrame(frame,M_q_Pant.class);System.out.println("请求消息-心跳请求:"+m_q_Pant);//响应心跳M_p_Pantp_Pant=newM_p_Pant();session.write(newMsgCoder<M_p_Pant>().readMsg(p_Pant));break;/*二获取人物信息请求/caseTCPConstant.MSGTYPE_Q_PEOPLEINFO:M_q_GetPeopleInfoq_GetPeopleMsg=newMsgCoder<M_q_GetPeopleInfo>().readFrame(frame,M_q_GetPeopleInfo.class);intpeopleType=q_GetPeopleMsg.getType();if(TCPConstant.PEOPLETYPE_POLICE==peopleType){//警员Policepolice=service.getPoliceByPoliceNo(q_GetPeopleMsg.getID().trim());StringbirthdayStr=DateUtil.fmtDateToStr(police.getDetails().getBirthday(),"yyyy-MM-dd");FramepoliceFrame=newMsgCoder<M_p_PeopleInfo>().readMsg(newM_p_PeopleInfo(police.getPoliceNo(),peopleType,police.getDetails().getName(),birthdayStr,police.getDetails().getTel(),police.getDetails().getAddress(),police.getDetails().getShenFenId(),police.getDetails().getPhoto()));session.write(policeFrame);}elseif(TCPConstant.PEOPLETYPE_USER==peopleType){//用户Useruser=service.getUserByLoginName(q_GetPeopleMsg.getID().trim());StringbirthdayStr=DateUtil.fmtDateToStr(user.getDetails().getBirthday(),"yyyy-MM-dd");FrameuserFrame=newMsgCoder<M_p_PeopleInfo>().readMsg(newM_p_PeopleInfo(user.getLoginName(),peopleType,user.getDetails().getName(),birthdayStr,user.getDetails().getTel(),user.getDetails().getAddress(),user.getDetails().getShenFenId(),user.getDetails().getPhoto()));session.write(userFrame);}break;/*三处理报警请求/caseTCPConstant.MSGTYPE_Q_HANDINGALARM://解析请求消息M_q_HandingAlarmq_handingMsg=newMsgCoder<M_q_HandingAlarm>().readFrame(frame,M_q_HandingAlarm.class);//操作派警intalarmId=q_handingMsg.getEventID();inttype=q_handingMsg.getType();if(type==ConstantUtil.ALARM_TYPE_TRUE){//真警则派发任务//派发任务List<PoliceTask>policeTasks=q_handingMsg.getTask();List<String>policeNos=newArrayList<String>();StringtaskContent="";for(PoliceTaskpoliceTask:policeTasks){policeNos.add(policeTask.getPoliceID());taskContent=policeTask.getTaskInfo();}service.sendTaskAndNotice(policeNos,taskContent,alarmId);}else{//不是真警则修改对应类型1假警2重复报警//修改报警类别service.updateAlarmStatus(alarmId,type);}/*响应该报警的最新状态///发送处理报警的响应消息1这里直接返回给所有客户端,2警员提交任务时发送给所有客户端//AlarmInfoalarmInfo=service.getAlarmById();//TODO假数据M_p_HandingAlarmmsg=newM_p_HandingAlarm(alarmId,2);FramepMsgframe=newMsgCoder<M_p_HandingAlarm>().readMsg(msg);//获取所有正在连接的IoSessionCollection<IoSession>sessions=session.getService().getManagedSessions().values();//将消息写到所有IoSessionIoUtil.broadcast(pMsgframe,sessions);break;default:System.out.println("TCP:TCPListenRequest未知的请求!~");break;}//session.write(message);}@OverridepublicvoidmessageSent(IoSessionsession,Objectmessage)throwsException{System.out.println("【server】messageSent:"+message);}@OverridepublicvoidsessionClosed(IoSessionsession)throwsException{System.out.println("【server】sessionClosed");System.out.println("有人关闭,当前客户数:"+allIoSessions.size());}@OverridepublicvoidsessionCreated(IoSessionsession)throwsException{System.out.println("【server】sessionCreated");}@OverridepublicvoidsessionIdle(IoSessionsession,IdleStatusstatus)throwsException{System.out.println("【server】sessionIdle");}@OverridepublicvoidsessionOpened(IoSessionsession)throwsException{System.out.println("【server】sessionOpenedID:"+session.getId());if(allIoSessions==null){allIoSessions=session.getService().getManagedSessions();}System.out.println("有人连接,当前客户数:"+allIoSessions.size());newThread(newAllPoliceCoordsThread(session,service)).start();newThread(newHotPoliceCoordsThread(session,service)).start();newThread(newUserCoordsThread(session,service)).start();}} handler的完整代码。结果很惨,同时在多个线程里收发消息就会出现消息错乱了 session加同步试试呗... 不负责的建议回复<aclass='referer'target='_blank'>@颖辉小居:那三个线程难道不是你写的?直接锁住IoSession这个对象不就行了回复<aclass='referer'target='_blank'>@maradona:如果是我自己的方法我加个锁没问题,可是发送消息的IOSession是引用包里的。获得它的地方是通过重写别人的方法,得到的回复<aclass='referer'target='_blank'>@颖辉小居:你都用多线程了...不知道怎么同步?IOSession没说是线程安全的吧..这个同步锁怎么加啊?发出消息都是session直接调用的write 时隔一年再看这个问题感触良多 packageyh.net.mina;importorg.apache.mina.core.session.IoSession;publicclassIoSender{publicstaticvoidnoticeMsg(IoSessionsession,Objectmsg){synchronized(session){session.write(msg);}}} 这样应该可以吧! 为了解决服务端主动持续的多线程的向同一个Iosession(客户端)发送消息
爱吃鱼的程序员 2020-06-10 15:06:54 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失
问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

回答

回顾2009年到如今,区块链技术的火热程度是逐年增加。各大行业巨头也在疯狂布局,势必要上演一场"群雄逐鹿"的商业大战。那这场好戏什么时候上演?有人说就在最近这两三年,还有人甚至说就在今年,2018年区块链将会出现井喷。当然,我们现在还无法做出准确的判断,但是我们可以先做好充足的准备。那么,问题又来了,区块链技术到底要怎么去弄?要用到哪些开发语言?在现在看来,这也许是很多从事区块链程序员的心声。下面整理了四种区块链技术比较主要的开发言语,希望对大家有所帮助。 JAVA开发语言(未来币) 定义:Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。 Java具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点 .Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。 C++开发语言(比特币、公正通、瑞波ripple) 定义:C++是C语言的继承,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的程序设计。C++擅长面向对象程序设计的同时,还可以进行基于过程的程序设计,因而C++就适应的问题规模而论,大小由之。 GO开发语言(以太坊、IBM) 定义:Go是一种新的语言,一种并发的、带垃圾回收的、快速编译的语言。它具有以下特点: 它可以在一台计算机上用几秒钟的时间编译一个大型的Go程序。Go为软件构造提供了一种模型,它使依赖分析更加容易,且避免了大部分C风格include文件与库的开头。Go是静态类型的语言,它的类型系统没有层级。因此用户不需要在定义类型之间的关系上花费时间,这样感觉起来比典型的面向对象语言更轻量级。Go完全是垃圾回收型的语言,并为并发执行与通信提供了基本的支持。按照其设计,Go打算为多核机器上系统软件的构造提供一种方法。 Go是一种编译型语言,它结合了解释型语言的游刃有余,动态类型语言的开发效率,以及静态类型的安全性。它也打算成为现代的,支持网络与多核计算的语言。要满足这些目标,需要解决一些语言上的问题:一个富有表达能力但轻量级的类型系统,并发与垃圾回收机制,严格的依赖规范等等。这些无法通过库或工具解决好,因此Go也就应运而生了。 Solidity开发语言(以太坊) 定义:Solidity是一种智能合约高级语言,运行在Ethereum虚拟机(EVM)之上。它的语法接近于Javascript,是一种面向对象的语言。但作为一种真正意义上运行在网络上的去中心合约,它又有很多的不同。 特别说明:以太坊具有四种专用语言:Serpent(Python启发),Solidity(javaScript启发),Mutan(GO启发)和LLL(Lisp启发),都是为面向合约编程而从底层开始设计的语言。Solidity是以太坊的首选语言,正处于紧张开发中,它内置了Serpent的所有特性,但是语法类似于JavaScript,JavaScript是web开发的常用语言。
问问小秘 2019-12-02 03:07:11 0 浏览量 回答数 0

回答

一、NGINX 502错误排查 NGINX 502 Bad Gateway错误是FastCGI有问题,造成NGINX 502错误的可能性比较多。将网上找到的一些和502 Bad Gateway错误有关的问题和排查方法列一下,先从FastCGI配置入手: 1.FastCGI进程是否已经启动 2.FastCGI worker进程数是否不够 运行 netstat -anpo | grep “php-cgi” | wc -l 判断是否接近FastCGI进程,接近配置文件中设置的数值,表明worker进程数设置太少 3.FastCGI执行时间过长 根据实际情况调高以下参数值 fastcgi_connect_timeout 300; fastcgi_send_timeout 300; fastcgi_read_timeout 300; 4.FastCGI Buffer不够 nginx和apache一样,有前端缓冲限制,可以调整缓冲参数 fastcgi_buffer_size 32k; fastcgi_buffers 8 32k; 5.Proxy Buffer不够 如果你用了Proxying,调整 proxy_buffer_size   16k; proxy_buffers    4 16k; 参见:http://www.server110.com 6.https转发配置错误 正确的配置方法 server_name www.mydomain.com; location /myproj/repos { set $fixed_destination $http_destination; if ( $http_destination ~* ^https(.*)$ ) { set $fixed_destination http$1; } proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header Destination $fixed_destination; proxy_pass http://subversion_hosts; } 当然,还要看你后端用的是哪种类型的FastCGI,我用过的有php-fpm,流量约为单台机器40万PV(动态页面), 现在基本上没有碰到502。 7.php脚本执行时间过长 将php-fpm.conf的<value name="request_terminate_timeout">0s</value>的0s改成一个时间 二、Nginx 413错误的排查:修改上传文件大小限制 在上传时nginx返回了413错误,查看log文件,显示的错误信息是:”413 Request Entity Too Large”, 于是在网上找了下“nginx 413错误”发现需要做以下设置: 在nginx.conf增加 client_max_body_size的相关设置, 这个值默认是1m,可以增加到8m以增加提高文件大小限制; 如果运行的是php,那么还要检查php.ini,这个大小client_max_body_size要和php.ini中的如下值的最大值一致或者稍大,这样就不会因为提交数据大小不一致出现的错误。 post_max_size = 8M upload_max_filesize = 2M 三、Nginx 400错误排查:HTTP头/Cookie过大 今天有人汇报nginx的HTTP400错误,而且这个HTTP400错误并不是每次都会出现的,查了一下发现nginx400错误是由于request header过大,通常是由于cookie中写入了较长的字符串所引起的。 解决方法是不要在cookie里记录过多数据,如果实在需要的话可以考虑调整在nginx.conf中的client_header_buffer_size(默认1k) 若cookie太大,可能还需要调整large_client_header_buffers(默认4k),该参数说明如下: 请求行如果超过buffer,就会报HTTP 414错误(URI Too Long) nginx接受最长的HTTP头部大小必须比其中一个buffer大,否则就会报400的HTTP错误(Bad Request)。 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// Nginx 502 Bad Gateway的含义是请求的PHP-CGI已经执行,但是由于某种原因(一般是读取资源的问题)没有执行完毕而导致PHP-CGI进程终止。 Nginx 504 Gateway Time-out的含义是所请求的网关没有请求到,简单来说就是没有请求到可以执行的PHP-CGI。 解决这两个问题其实是需要综合思考的,一般来说Nginx 502 Bad Gateway和php-fpm.conf的设置有关,而Nginx 504 Gateway Time-out则是与nginx.conf的设置有关。 而正确的设置需要考虑服务器自身的性能和访客的数量等多重因素。 以我目前的服务器为例子CPU是奔四1.5G的,内存1GB,CENTOS的系统,访客大概是50人左右同时在线。 但是在线的人大都需要请求PHP-CGI进行大量的信息处理,因此我将nginx.conf设置为: fastcgi_connect_timeout 300s; fastcgi_send_timeout 300s; fastcgi_read_timeout 300s; fastcgi_buffer_size 128k; fastcgi_buffers 8 128k;#8 128 fastcgi_busy_buffers_size 256k; fastcgi_temp_file_write_size 256k; fastcgi_intercept_errors on; 这里最主要的设置是前三条,即 fastcgi_connect_timeout 300s; fastcgi_send_timeout 300s; fastcgi_read_timeout 300s; 这里规定了PHP-CGI的连接、发送和读取的时间,300秒足够用了,因此我的服务器很少出现504 Gateway Time-out这个错误。最关键的是php-fpm.conf的设置,这个会直接导致502 Bad Gateway和504 Gateway Time-out。 下面我们来仔细分析一下php-fpm.conf几个重要的参数: php-fpm.conf有两个至关重要的参数,一个是”max_children”,另一个是”request_terminate_timeout” 我的两个设置的值一个是”40″,一个是”900″,但是这个值不是通用的,而是需要自己计算的。 计算的方式如下: 如果你的服务器性能足够好,且宽带资源足够充足,PHP脚本没有系循环或BUG的话你可以直接将”request_terminate_timeout”设置成0s。0s的含义是让PHP-CGI一直执行下去而没有时间限制。而如果你做不到这一点,也就是说你的PHP-CGI可能出现某个BUG,或者你的宽带不够充足或者其他的原因导致你的PHP-CGI能够假死那么就建议你给”request_terminate_timeout”赋一个值,这个值可以根据你服务器的性能进行设定。一般来说性能越好你可以设置越高,20分钟-30分钟都可以。由于我的服务器PHP脚本需要长时间运行,有的可能会超过10分钟因此我设置了900秒,这样不会导致PHP-CGI死掉而出现502 Bad gateway这个错误。 而”max_children”这个值又是怎么计算出来的呢?这个值原则上是越大越好,php-cgi的进程多了就会处理的很快,排队的请求就会很少。设置”max_children”也需要根据服务器的性能进行设定,一般来说一台服务器正常情况下每一个php-cgi所耗费的内存在20M左右,因此我的”max_children”我设置成40个,20M*40=800M也就是说在峰值的时候所有PHP-CGI所耗内存在800M以内,低于我的有效内存1Gb。而如果我的”max_children”设置的较小,比如5-10个,那么php-cgi就会“很累”,处理速度也很慢,等待的时间也较长。如果长时间没有得到处理的请求就会出现504 Gateway Time-out这个错误,而正在处理的很累的那几个php-cgi如果遇到了问题就会出现502 Bad gateway这个错误。 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// nginx中配置php fastcgi组解决莫名其妙的502 Bad Gateway错误 一般nginx搭配php都采用这样的方式: location ~ .php$ { proxy_pass        http://localhost:9000; fastcgi_param   SCRIPT_FILENAME   /data/_hongdou$fastcgi_script_name; include        fastcgi_params; } 这个方式只能连接到一组spawn-fcgi开启的fastcgi,在服务器负载稍高时常常出现502 bad gateway错误。 起先怀疑这是php-cgi的进程开得太少,增加后仍然有反映时常有错,偶然间发现php-cgi会报出这样的错误: zend_mm_heap corrupted 看来是php-cgi在执行某些代码时有问题,以致于该线程中止。 在服务器上可能还会看到php-cgi进程在不断变少,估计是出现错误的php-cgi的进程自动退出了。 php的问题总是不太容易能解决,所以在nginx方面想想办法,nginx的好处是它总是能爆出一些稀奇古怪的做法出来。 在nginx的proxy中,规避莫名其妙错误的办法无非是proxy到一个upstream的服务器组中,然后配置 proxy_next_upstream,让nginx遇到某种错误码时,自动跳到下一个后端上。这样,应用服务器即使不稳定,但是在nginx后面就变成了稳定服务。想到nginx的fastcgi和proxy是一路东西,所以proxy能用的经验,移植到fastcgi也能跑得起来。 照着这个思路,用spawn-fcgi多开同样一组php进程,所不同的仅仅是端口: spawn-fcgi -a 127.0.0.1 -p 9000 -u nobody -f php-cgi -C 100 spawn-fcgi -a 127.0.0.1 -p 9001 -u nobody -f php-cgi -C 100 然后把fastcgi的这段配置改成用upstream的方式: upstream backend { server 127.0.0.1:9000; server 127.0.0.1:9001; } location ~ .php$ { fastcgi_pass        backend; fastcgi_param   SCRIPT_FILENAME   /data/_hongdou$fastcgi_script_name; include        fastcgi_params; } 检查配置结果正确,能跑起来;同时在服务器上netstat -n|grep 9000和grep 9001都有记录,证明连接无误;在前台查阅页面,一切运行正常。 这个配置是最简单的配置,既然能连接上upstream,那么很显然upstream的一些东西都可以拿来用,比如ip_hash、weight、max_fails等。 这样的配置在单机下不知能不能共享session,没有测试,如果有问题,可以加上ip_hash,或者配置php把session存进memcached中。 然后就是fastcgi_next_upstream的配置,nginx wiki中没有介绍到这个配置,查了一下,在nginx的CHANGES中有提到,而且出生年月是和proxy_next_upstream一样的。既然如此,那就照proxy_next_upstream一样配吧。一般按默认的值error timeout就可以工作,因为php出现502错误的异常是返回的500错误,所以我把fastcgi_next_upstream定为: fastcgi_next_upstream error timeout invalid_header http_500; 通过这个配置,就可以基本杜绝任何时常性的500错误,出问题的几率会变小很多,如果客户反映仍然激烈,那么就多增加几组fastcgi进程。
sosyxg 2019-12-02 02:43:07 0 浏览量 回答数 0

问题

支付宝的性能测试

       一、性能测试支付宝场景介绍   2013年双11过程当中,促销开启的第一分钟内支付宝的交易总额就突破了一亿元,短时间内大量用户涌入的情况下,如何保证用户的支付顺畅,...
云效平台 2019-12-01 21:47:13 5472 浏览量 回答数 1

问题

【精品问答】Java必备核心知识1000+(附源码)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

问题

为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗?【Java问答学堂】46期

面试题 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗? 面试官心理分析 从这个问题开始就进行分布式系统环节了,现在出去面试分布式都成标配了,...
剑曼红尘 2020-06-29 16:39:00 6 浏览量 回答数 1

回答

 TTS</B>是Text To Speech的缩写,即“从文本到语音”。它是同时运用语言学和心理学的杰出之作,在内置芯片的支持之下,通过神经网络的设计,把文字智能地转化为自然语音流。TTS技术对文本文件进行实时转换,转换时间之短可以秒计算。在其特有智能语音控制器作用下,文本输出的语音音律流畅,使得听者在听取信息时感觉自然,毫无机器语音输出的冷漠与生涩感。TTS语音合成技术即将覆盖国标一、二级汉字,具有英文接口,自动识别中、英文,支持中英文混读。所有声音采用真人普通话为标准发音,实现了120-150个汉字/秒的快速语音合成,朗读速度达3-4个汉字/秒,使用户可以听到清晰悦耳的音质和连贯流畅的语调。现在有少部分MP3随身听具有了TTS功能。   TTS是语音合成应用的一种,它将储存于电脑中的文件,如帮助文件或者网页,转换成自然语音输出。TTS可以帮助有视觉障碍的人阅读计算机上的信息,或者只是简单的用来增加文本文档的可读性。现在的TTL应用包括语音驱动的邮件以及声音敏感系统。TTS经常与声音识别程序一起使用。现在有很多TTS的产品,包括Read Please 2000, Proverbe Speech Unit,以及Next Up Technology的TextAloud。朗讯、 Elan、以及 AT&T都有自己的语音合成产品。   除了TTS软件之外,很多商家还提供硬件产品,其中包括以色列WizCom Technologies公司的 Quick Link Pen,它是一个笔状的可以扫描也可以阅读文字的设备;还有Ostrich Software公司的Road Runner,一个手持的可以阅读ASCII文本的设备;另外还有美国DEC公司的DecTalk TTS,它是可以替代声卡的外部硬件设备,它包含一个内部软件设备,可以与个人电脑自己的声卡协同工作。 TTS文语转换用途很广,包括电子邮件的阅读、IVR系统的语音提示等等,目前IVR系统已广泛应用于各个行业(如电信、交通运输等)。   TTS所用的关键技术就是语音合成(SpeechSynthesis)。早期的TTS一般采用专用的芯片实现,如德州仪器公司的TMS50C10/TMS50C57、飞利浦的PH84H36等,但主要用在家用电器或儿童玩具中。   而基于微机应用的TTS一般用纯软件实现,主要包括以下几部分:   ●文本分析-对输入文本进行语言学分析,逐句进行词汇的、语法的和语义的分析,以确定句子的低层结构和每个字的音素的组成,包括文本的断句、字词切分、多音字的处理、数字的处理、缩略语的处理等。   ●语音合成-把处理好的文本所对应的单字或短语从语音合成库中提取,把语言学描述转化成言语波形。   ●韵律处理-合成音质(Qualityof Synthetic Speech)是指语音合成系统所输出的语音的质量,一般从清晰度(或可懂度)、自然度和连贯性等方面进行主观评价。清晰度是正确听辨有意义词语的百分率;自然度用来评价合成语音音质是否接近人说话的声音,合成词语的语调是否自然; 连贯性用来评价合成语句是否流畅。   要合成出高质量的语音,所采用的算法是极为复杂的,因此对机器的要求也非常高。算法的复杂度决定了目前微机并发进行多通道TTS的系统容量。 在一般的CTI应用系统中,都会有IVR(交互式语音应答系统)。IVR系统是呼叫中心的重要组成部分,通过IVR系统,用户可以利用音频按健电话输入信息,从系统中获得预先录制的数字或合成语音信息。具有TTS功能的IVR可以加快服务速度,节约服务成本,使IVR为呼叫者提供7*24小时的服务。   目前常见的IVR系统大都是通用的工控机平台上插入语音板卡组成,并支持中文语音合成TTS等技术。   一个典型的包含TTS服务的电话服务流程可分为:   用户电话拨入,系统IVR响应,获得用户按键等信息。   IVR根据用户的按键信息,向数据库服务器申请相关数据。   数据库服务器返回文本数据给IVR。   IVR通过其TCP通讯接口,将需要合成的文本信息发送给TTS服务器。   TTS服务器将用户文本合成的语音数据分段通过TCP通讯接口发送给IVR服务器。   IVR服务器把分段语音数据组装成为独立的语音文件。   IVR播放相应的语音文件给电话用户。   一般的公网接入(IVR)大都采用工控机+语音板卡,而合成的语音数据则通过局域网传给IVR。这种结构只适用于简单的应用场合。 包括中文语音处理和语音合成,利用中文韵律等相关知识对中文语句进行分词、词性判断、注音、数字符号转换,语音合成通过查询中文语音库得到语音。目前中文TTS系统,比较著名的有:IBM,Microsoft,Fujitsu,科大讯飞,捷通华声等研究的系统。目前比较关键的就是中文韵律处理、符号数字、多音字、构词方面有较多的问题,需要不断研究,使得中文语音合成的自然化程度较高。  CTI技术使电信和计算机相互融合,克服了传统电信和计算机服务相对单一的缺点,将两者完美结合了起来。其应用领域非常广泛,任何需要语音、数据通信,特别是那些希望把计算机网与通信网结合起来完成语音数据信息交换的系统都会用到CTI技术。   TTS即语音合成技术(Text To Speech),它涉及声学、语言学、数学信号处理技术、多媒体技术等多个学科技术,是中文信息处理领域的一项前沿技术,实现把计算机中任意出现的文字转换成自然流畅的语音输出。   TTS在CTI系统中可以应用在IVR(交互式语音应答)服务器上,以提供语音交互式平台,为用户电话来访提供语音提示,引导用户选择服务内容和输入电话事务所需的数据,并接受用户在电话拨号键盘上输入的信息,实现对计算机数据库等信息资料的交互式访问。   在IVR中应用TTS可以自动将文本信息转换为语音文件,或者实时地将文本信息合成语音并通过电话发布。实现文本与语音自动双向转换,以达到人与系统的自动交互,随时随地为客户服务。维护人员不必再人工录音,只须将电子文档引入系统中,系统可以自动将电子文档转换为语音信息播放给客户。数据库中存放的大量数据,无需事先进行录音,能够随时根据查询条件查出并合成语音进行播报,从而大大减少了座席人员的工作负担。   那么应如何将TTS功能附加到CTI应用中呢?某些比较先进的交换平台,已经在交换机的内部实现了TTS的功能,并作为标准接口的一部分对外提供,业务开发商只需要简单的调用他们即可以在业务中使用该功能。   对于未实现TTS功能的PBX,就需要业务开发商自己去选择合适的平台,在此基础上进行二次开发,即调用所选TTS平台提供的标准接口,实现语音合成功能。   目前CTI已经成为全球发展最为迅猛的产业之一,每年以50%的速度增长,CTI如同计算机产业一样是一个金字塔形的产业链,从上到下会以至少20倍的幅度增值。TTS作为一种诱人的新技术,如果能很好的嵌入到增值业务的应用中去,必将形成一个更好的应用前景。   杭州音通软件有限公司是由国家教育部和浙江省人民政府联办并依托浙江大学而成立的高新技术公司,音通公司主要致力于计算机语音技术的研发并逐步开拓语音识别、语音流媒体传输等其它语音领域的研究。其核心技术(Intone_TTS)是具有自主知识产权的中文语音合成技术,在由浙江省科技厅组织的鉴定中被专家一致鉴定为国内领先地位,并已申请多项国家专利。   Intone_TTS是一套把文本信息转换为语音信息的开发工具包,为系统集成商、软件开发商提供了完备的接口函数和编程示例,使用户能够灵活的进行调用,并集成到其它应用系统中。接口需要语音合成运行库的支持,适合多种开发环境。开发者可以根据具体的应用场合进行选择。   它能够对所有的汉字、英文、阿拉伯数字进行语音合成;   支持繁体字及多音字的编辑;   合成效果:自然、平滑;   规范的函数调用接口,同时支持微软SAPI的调用;支持同步调用和异步调用方式;   支持PCM Wave,uLaw/aLaw Wave,ADPCM,Dialogic Vox等多种语音格式;   支持GB2312码(简体中文)、BIG5码(繁体)、UNICODE码;   支持多路通道同时合成;   支持Dialogic、东进、三汇等主流语音板卡; TTS就是Text To Speech,文本转语音,文本朗读,差不多是一个意思。在语音系统开发中经常要用到。   目前市场上的TTS很多,实现方式也各式各样,有的很昂贵,如科大讯飞,据说当初得到863计划的资助,有很高的技术;有的相对便宜,如捷通华声, InfoTalk;也有免费的,如微软的TTS产品。   相对于ASR(Automatic Speech Recognition,自动语音识别)来说,实现一个TTS产品所需要的技术难度不算大,在我看来也就是个力气活。   要是让我们来做一个能够把汉语句子朗读出来的TTS,我们会怎么做呢?   有一种最简单的TTS,就是把每个字都念出来,你会问,岂不要录制6千多个汉字的语音?幸运的是,汉语的音节很少,很多同音字。我们最多只是需要录制: 声母数×韵母数×4,(其实不是每个读音都有4声),这样算来,最多只需要录制几百个语音就可以了。   在合成的时候需要一张汉字对应拼音的对照表,汉字拼音输入法也依赖这张表,可以在网上找到,不过通常没有4声音调,大不了自己加上,呵呵,要不怎么说是力气活呢。   这样做出来的TTS效果也还可以,特别是朗读一些没有特别含义的如姓名,家庭住址,股票代码等汉语句子,听起来足够清晰。这要归功于我们伟大的母语通常都是单音节,从古代的时候开始,每个汉字就有一个词,表达一个意思。而且汉字不同于英语,英语里面很多连读,音调节奏变化很大,汉字就简单多了。   当然,你仍然要处理一些细节,比如多音字,把“银行”读成“yin xing”就不对了;再比如,标点符号的处理,数字、字母的处理,这些问题对于写过很多程序的你,当然不难了。   国内的一些语音板卡带的TTS,不管是卖钱的还是免费的,大体都是这样做出来的,也就是这样的效果。   如果要把TTS的效果弄好一点,再来点力气活,把基本的词录制成语音,如常见的两字词,四字成语等,再做个词库和语音库的对照表,每次需要合成时到词库里面找。这样以词为单位,比以字为单位,效果自然是好多了。当然,这里面还是有个技术,就是分词的技术,要把复杂的句子断成合理的词序列,也有点技术。这也要怪新文化那些先驱们,当初倡导白话文,引进西文的横排格式、标点符号的时候,没有引进西文中的空格分词。不过即使分词算法那么不高效,不那么准确,也问题不大,如前面所说,汉字是单音节词,把声音合起来,大体上不会有错。   当然,科大讯飞的力气活又干的多了些,据说已经进化到以常用句子为单位来录音了,大家可以想像,这要耗费更多的力气,换来更好的效果。   至于增加一些衔接处的“词料”,弄一些修饰性的音调,我认为是无关紧要的,对整体的效果改进不是太大。   市面上商品化TTS一般还支持粤语,请个粤语播音员录音,把上面的力气活重做一遍就是了。   再说句题外话,很多人觉得录音最好找电台、电视台的播音员,其实找个你周围的女同事来录制,只要吐字清晰就可以了。在某种情况下,寻常声音比字正腔圆的新闻联播来得可爱。   再来说说文本的标识,对于复杂文本,某些内容程序没有办法处理,需要标识出来。比如,单纯的数字“128”,是应该念成“一百二十八”还是“一二八”?解决办法通常是加入XML标注,如微软的TTS:"<context ID = "number_cardinal">128</context>"念成“一百二十八”,"<context ID = "number_digit">128</context>"将念成“一二八”。TTS引擎可以去解释这些标注。遗憾的是,语音XML标注并没有形成大家都完全认可的标准,基本上是各自一套。   再说说TTS应用编程,微软的TTS编程接口叫SAPI,是COM接口,开发起来还是有点麻烦,还好MSDN的网站上资料很全面。微软的TTS虽然免费,但其中文角色目前是个男声,声音略嫌混浊,感觉不爽。   国内一般的厂家提供API调用接口,相对比较简单,可以方便地嵌入应用程序中去。   商品化的TTS还有个并发许可限制,就是限制同时合成的并发线程数,我觉得这个限制用处不大。无论哪种TTS,都可以将文本文件转换成语音文件,供语音卡播放。大部分应用句子比较短小,一般不会超过100个汉字,合成的时间是非常短的,弄个线程专门负责合成,其它应用向该线程请求就是了,万一句子很长,把它分解成多个短句子就是了,播放的速度总是比合成的速度慢。   也很多应用是脱机合成,没有实时性要求,就更不必买多个许可了。   更多情况下,我们甚至没有必要购买TTS,比如语音开发中常见的费用催缴,拨通后播放:“尊敬的客户,您本月的费用是:212元”,前面部分对所有客户都一样,录一个语音文件就是了,而数字的合成是很简单的,你只要录制好10个数字语音,再加上十,百,千,万,再加上金钱的单位“元”。   TTS(Training+Tool+Scheme)超越计划   针对目前成长型企业遇到的人力资源问题,立体化解决人力资源瓶颈、通过企业与专家共建、实现人才强企的人力资源方向的重大智业项目。为企业培养人力资源高级管理人才,提供先进人力资源管理工具,并协助企业建立现代人力资源战略规划。通过“培训(Training)+工具(Tool)+方案(Scheme)”的办法,为企业系统解决人力资源难点问题,进而搭建科学、完善的人力资源管理体系。   TTS TIANJIN TERMINAL SURCHARGE   天津港口附加费。09年从日韩经过的船所收的一个费用 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:05:12 0 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。
茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT