• 关于

    同时多线程有什么用

    的搜索结果

回答

关于线程和线程池的学习,我们可以从以下几个方面入手: 第一,什么是线程,线程和进程的区别是什么 第二,线程中的基本概念,线程的生命周期 第三,单线程和多线程 第四,线程池的原理解析 第五,常见的几种线程池的特点以及各自的应用场景 一、 线程,程序执行流的最小执行单位,是行程中的实际运作单位,经常容易和进程这个概念混淆。那么,线程和进程究竟有什么区别呢?首先,进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程,而线程,是运行中的实际的任务执行者。可以说,进程中包含了多个可以同时运行的线程。 二、 线程的生命周期,线程的生命周期可以利用以下的图解来更好的理解: 第一步,是用new Thread()的方法新建一个线程,在线程创建完成之后,线程就进入了就绪(Runnable)状态,此时创建出来的线程进入抢占CPU资源的状态,当线程抢到了CPU的执行权之后,线程就进入了运行状态(Running),当该线程的任务执行完成之后或者是非常态的调用的stop()方法之后,线程就进入了死亡状态。而我们在图解中可以看出,线程还具有一个则色的过程,这是怎么回事呢?当面对以下几种情况的时候,容易造成线程阻塞,第一种,当线程主动调用了sleep()方法时,线程会进入则阻塞状态,除此之外,当线程中主动调用了阻塞时的IO方法时,这个方法有一个返回参数,当参数返回之前,线程也会进入阻塞状态,还有一种情况,当线程进入正在等待某个通知时,会进入阻塞状态。那么,为什么会有阻塞状态出现呢?我们都知道,CPU的资源是十分宝贵的,所以,当线程正在进行某种不确定时长的任务时,Java就会收回CPU的执行权,从而合理应用CPU的资源。我们根据图可以看出,线程在阻塞过程结束之后,会重新进入就绪状态,重新抢夺CPU资源。这时候,我们可能会产生一个疑问,如何跳出阻塞过程呢?又以上几种可能造成线程阻塞的情况来看,都是存在一个时间限制的,当sleep()方法的睡眠时长过去后,线程就自动跳出了阻塞状态,第二种则是在返回了一个参数之后,在获取到了等待的通知时,就自动跳出了线程的阻塞过程 三、 什么是单线程和多线程? 单线程,顾名思义即是只有一条线程在执行任务,这种情况在我们日常的工作学习中很少遇到,所以我们只是简单做一下了解 多线程,创建多条线程同时执行任务,这种方式在我们的日常生活中比较常见。但是,在多线程的使用过程中,还有许多需要我们了解的概念。比如,在理解上并行和并发的区别,以及在实际应用的过程中多线程的安全问题,对此,我们需要进行详细的了解。 并行和并发:在我们看来,都是可以同时执行多种任务,那么,到底他们二者有什么区别呢? 并发,从宏观方面来说,并发就是同时进行多种时间,实际上,这几种时间,并不是同时进行的,而是交替进行的,而由于CPU的运算速度非常的快,会造成我们的一种错觉,就是在同一时间内进行了多种事情 而并发,则是真正意义上的同时进行多种事情。这种只可以在多核CPU的基础下完成。 还有就是多线程的安全问题?为什么会造成多线程的安全问题呢?我们可以想象一下,如果多个线程同时执行一个任务,name意味着他们共享同一种资源,由于线程CPU的资源不一定可以被谁抢占到,这是,第一条线程先抢占到CPU资源,他刚刚进行了第一次操作,而此时第二条线程抢占到了CPU的资源,name,共享资源还来不及发生变化,就同时有两条数据使用了同一条资源,具体请参考多线程买票问题。这个问题我们应该如何解决那?   有造成问题的原因我们可以看出,这个问题主要的矛盾在于,CPU的使用权抢占和资源的共享发生了冲突,解决时,我们只需要让一条线程战歌了CPU的资源时,阻止第二条线程同时抢占CPU的执行权,在代码中,我们只需要在方法中使用同步代码块即可。在这里,同步代码块不多进行赘述,可以自行了解。 四,线程池 又以上介绍我们可以看出,在一个应用程序中,我们需要多次使用线程,也就意味着,我们需要多次创建并销毁线程。而创建并销毁线程的过程势必会消耗内存。而在Java中,内存资源是及其宝贵的,所以,我们就提出了线程池的概念。 线程池:Java中开辟出了一种管理线程的概念,这个概念叫做线程池,从概念以及应用场景中,我们可以看出,线程池的好处,就是可以方便的管理线程,也可以减少内存的消耗。 那么,我们应该如何创建一个线程池那?Java中已经提供了创建线程池的一个类:Executor 而我们创建时,一般使用它的子类:ThreadPoolExecutor. public ThreadPoolExecutor(int corePoolSize,                                int maximumPoolSize,                                long keepAliveTime,                                TimeUnit unit,                                BlockingQueue workQueue,                                ThreadFactory threadFactory,                                RejectedExecutionHandler handler)这是其中最重要的一个构造方法,这个方法决定了创建出来的线程池的各种属性,下面依靠一张图来更好的理解线程池和这几个参数: 又图中,我们可以看出,线程池中的corePoolSize就是线程池中的核心线程数量,这几个核心线程,只是在没有用的时候,也不会被回收,maximumPoolSize就是线程池中可以容纳的最大线程的数量,而keepAliveTime,就是线程池中除了核心线程之外的其他的最长可以保留的时间,因为在线程池中,除了核心线程即使在无任务的情况下也不能被清除,其余的都是有存活时间的,意思就是非核心线程可以保留的最长的空闲时间,而util,就是计算这个时间的一个单位,workQueue,就是等待队列,任务可以储存在任务队列中等待被执行,执行的是FIFIO原则(先进先出)。threadFactory,就是创建线程的线程工厂,最后一个handler,是一种拒绝策略,我们可以在任务满了知乎,拒绝执行某些任务。 线程池的执行流程又是怎样的呢? 有图我们可以看出,任务进来时,首先执行判断,判断核心线程是否处于空闲状态,如果不是,核心线程就先就执行任务,如果核心线程已满,则判断任务队列是否有地方存放该任务,若果有,就将任务保存在任务队列中,等待执行,如果满了,在判断最大可容纳的线程数,如果没有超出这个数量,就开创非核心线程执行任务,如果超出了,就调用handler实现拒绝策略。 handler的拒绝策略: 有四种:第一种AbortPolicy:不执行新任务,直接抛出异常,提示线程池已满              第二种DisCardPolicy:不执行新任务,也不抛出异常              第三种DisCardOldSetPolicy:将消息队列中的第一个任务替换为当前新进来的任务执行              第四种CallerRunsPolicy:直接调用execute来执行当前任务 五,四种常见的线程池: CachedThreadPool:可缓存的线程池,该线程池中没有核心线程,非核心线程的数量为Integer.max_value,就是无限大,当有需要时创建线程来执行任务,没有需要时回收线程,适用于耗时少,任务量大的情况。 SecudleThreadPool:周期性执行任务的线程池,按照某种特定的计划执行线程中的任务,有核心线程,但也有非核心线程,非核心线程的大小也为无限大。适用于执行周期性的任务。 SingleThreadPool:只有一条线程来执行任务,适用于有顺序的任务的应用场景。 FixedThreadPool:定长的线程池,有核心线程,核心线程的即为最大的线程数量,没有非核心线程 作者:weixin_40271838 来源:CSDN 原文:https://blog.csdn.net/weixin_40271838/article/details/79998327 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:56:43 0 浏览量 回答数 0

回答

首先,你的代码没有问题,肯定是启动了3个线程来执行任务的。其次,分析下直接用main线程顺序执行三个操作,为什么比同时启动三个线程执行速度快呢?我认为这又可能跟操作系统处理IO的方式有关系,多线程并发处理IO时,操作系统底层响应IO的速度会影响线程的操作的。单线程环境下,顺序执行IO,操作系统可能不涉及到对IO请求的调用问题,但是多个线程同时发出IO请求命令时,操作系统底层的调度也有影响。你可以修正下你的测试内容,把Action中的Runnable的任务换成其他长时间计算任务,例如休眠操作,或者大数据计算操作,那么多线程的优势就体现出来了。修正测试内容: public void writeToTxt(String text) { int j=0; for(int i =0;i<1000000;i++){ j=i ; } System.out.println(Thread.currentThread().getName()+j); }最后,多线程提高效率体现在对整个功能完成时间上,是并行,而不会是纠结于单个任务完成过程中的处理时间;从理论上说,一个Runnable中执行完成的时间应该是差不多的,多线程的优势就是N个任务并行时,需要的总时间近似于完成一个任务的时间;而单线程时间则是N倍的单个任务的时间。而且多线程要考虑到线程池创建和调度的时间损耗,还是需要权衡的。像这种类似任务可以用java的线程池,可以免去线程创建和销毁的损耗。

蛮大人123 2019-12-02 02:39:56 0 浏览量 回答数 0

回答

多线程并发的处理,这里指的是服务器端,也就是 Java 的处理,与页面无关。 首先,当多个请求同时到达服务器时,服务器会分配线程来执行每个请求(如果请求数量太多,能用的线程有限,则会进行排队)。所以请求和请求之间首先是一个线程隔离的环境。 每个线程都会按照同样的顺序执行同样的代码(这里简单的不考虑分支),在执行代码的过程中,线程会访问和操作各种各样的对象和变量。所以这里就有一个问题:我怎么知道多个线程会不会访问到同一个对象,或者同一个变量呢?如果这样的事情发生了,可能会产生什么后果呢? 在详细解释这个问题之前,首先需要明确一个简单的原则:任何对象都可以被任意多个线程访问,这是代码的自由性决定的。但更重要的是,我们可以让对象主动掌控线程对自己的访问。 最简单的控制方式就是 synchronized,意即同时只允许一个线程访问,其它线程必须先等待。当 synchronized 用在方法上时,表示同一时间只允许一个线程执行这个方法。 那么是否意味着服务器上的所有方法都必须是synchronized的呢?不是。当一个方法执行时,所有的变量和参数都会保存在一个叫做堆栈的内存空间,这个内存空间是线程独享的,所以线程之间不会相互冲突。例如: public void hello(String name) { String greetings = "Hello, " + name; System.out.println(greetings); }当多个线程执行 hello() 方法时,每个线程都会在自己的堆栈中存放 name 参数和 greetings 变量。其中 greetings 变量是在方法内定义的,一个线程中的 greetings 变量与另一个线程中的 greetings 变量将是完全隔离的,不会相互影响。 堆栈是线程独享的,但是放入堆栈的内容则未必。像上面的例子,greetings 变量是线程自己创建的,所以其它线程访问不到,但 name 参数则未必,有可能多个线程在执行这个方法时,收到的 name 参数是同一个对象。这时候如果方法里面要修改这个对象,那就要小心了。

a123456678 2019-12-02 02:05:43 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

java是线程安全的,即对任何方法(包括静态方法)都可以不考虑线程冲突,但有一个前提,就是不能存在全局变量。如果存在全局变量,则需要使用同步机制。如下通过一组对比例子从头讲解:在多线程中使用静态方法会发生什么事?也就是说多线程访问同一个类的static静态方法会发生什么事?是否会发生线程安全问题?事实证明只要在静态函数中没有处理多线程共享数据,就不存在着多线程访问同一个静态方法会出现资源冲突的问题。下面看一个例子:实际执行的结果显示各个线程对静态方法的访问是交叉执行的,但是这并不影响各个线程静态方法print()中sum值的计算。也就是说,在此过程中没有使用全局变量的静态方法在多线程中是安全的,静态方法是否引起线程安全问题主要看该静态方法是否对全局变量(静态变量static member)进行修改操作。在多线程中使用同一个静态方法时,每个线程使用各自的实例字段(instance field)的副本,而共享一个静态字段(static field)。所以说,如果该静态方法不去操作一个静态成员,只在方法内部使用实例字段(instance field),不会引起安全性问题。但是,如果该静态方法操作了一个静态变量,则需要静态方法中采用互斥访问的方式进行安全处理。我们来看一下没有使用互斥访问的话会产生怎样的问题:实际运行结果显示i值为随机的数字。为了实现互斥访问,这时我们需要加入一个synchronized关键字。代码修改如下:运行结果则必然是100。加入synchronized关键字的静态方法称为同步静态方法。在访问同步静态方法时,会获取该类的“Class”对象,所以当一个线程进入同步的静态方法中时,线程监视器获取类本身的对象锁,其它线程不能进入这个类的任何静态同步方法。它不像实例方法,因为多个线程可以同时访问不同实例同步实例方法。这个其实就是操作系统中的用信号量实现进程的互斥与同步问题,如果涉及在同一个类中有多个静态方法中处理多线程共享数据的话,那就变成用信号量解决生产者-消费者问题。也就是说,静态方法是一份临界资源,对静态方法的访问属于进入临界区;对静态变量的修改是一份临界资源,对静态变量的修改属于进入临界区。

蛮大人123 2019-12-02 02:18:29 0 浏览量 回答数 0

回答

如果对什么是线程、什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内。 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现。说这个话其实只有一半对,因为反应“多角色”的程序代码,最起码每个角色要给他一个线程吧,否则连实际场景都无法模拟,当然也没法说能用单线程来实现:比如最常见的“生产者,消费者模型”。 很多人都对其中的一些概念不够明确,如同步、并发等等,让我们先建立一个数据字典,以免产生误会。 多线程:指的是这个程序(一个进程)运行时产生了不止一个线程 并行与并发: 并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。 并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。 并发与并行 线程安全:经常用来描绘一段代码。指在并发的情况之下,该代码经过多线程使用,线程的调度顺序不影响任何结果。这个时候使用多线程,我们只需要关注系统的内存,cpu是不是够用即可。反过来,线程不安全就意味着线程的调度顺序会影响最终结果,如不加事务的转账代码: void transferMoney(User from, User to, float amount){ to.setMoney(to.getBalance() + amount); from.setMoney(from.getBalance() - amount); } 同步:Java中的同步指的是通过人为的控制和调度,保证共享资源的多线程访问成为线程安全,来保证结果的准确。如上面的代码简单加入@synchronized关键字。在保证结果准确的同时,提高性能,才是优秀的程序。线程安全的优先级高于性能。 好了,让我们开始吧。我准备分成几部分来总结涉及到多线程的内容: 扎好马步:线程的状态 内功心法:每个对象都有的方法(机制) 太祖长拳:基本线程类 九阴真经:高级多线程控制类 扎好马步:线程的状态 先来两张图: 线程状态 线程状态转换 各种状态一目了然,值得一提的是"blocked"这个状态:线程在Running的过程中可能会遇到阻塞(Blocked)情况 调用join()和sleep()方法,sleep()时间结束或被打断,join()中断,IO完成都会回到Runnable状态,等待JVM的调度。 调用wait(),使该线程处于等待池(wait blocked pool),直到notify()/notifyAll(),线程被唤醒被放到锁定池(lock blocked pool ),释放同步锁使线程回到可运行状态(Runnable) 对Running状态的线程加同步锁(Synchronized)使其进入(lock blocked pool ),同步锁被释放进入可运行状态(Runnable)。 此外,在runnable状态的线程是处于被调度的线程,此时的调度顺序是不一定的。Thread类中的yield方法可以让一个running状态的线程转入runnable。内功心法:每个对象都有的方法(机制) synchronized, wait, notify 是任何对象都具有的同步工具。让我们先来了解他们 monitor 他们是应用于同步问题的人工线程调度工具。讲其本质,首先就要明确monitor的概念,Java中的每个对象都有一个监视器,来监测并发代码的重入。在非多线程编码时该监视器不发挥作用,反之如果在synchronized 范围内,监视器发挥作用。 wait/notify必须存在于synchronized块中。并且,这三个关键字针对的是同一个监视器(某对象的监视器)。这意味着wait之后,其他线程可以进入同步块执行。 当某代码并不持有监视器的使用权时(如图中5的状态,即脱离同步块)去wait或notify,会抛出java.lang.IllegalMonitorStateException。也包括在synchronized块中去调用另一个对象的wait/notify,因为不同对象的监视器不同,同样会抛出此异常。 再讲用法: synchronized单独使用: 代码块:如下,在多线程环境下,synchronized块中的方法获取了lock实例的monitor,如果实例相同,那么只有一个线程能执行该块内容 复制代码 public class Thread1 implements Runnable { Object lock; public void run() { synchronized(lock){ ..do something } } } 复制代码 直接用于方法: 相当于上面代码中用lock来锁定的效果,实际获取的是Thread1类的monitor。更进一步,如果修饰的是static方法,则锁定该类所有实例。 public class Thread1 implements Runnable { public synchronized void run() { ..do something } } synchronized, wait, notify结合:典型场景生产者消费者问题 复制代码 /** * 生产者生产出来的产品交给店员 */ public synchronized void produce() { if(this.product >= MAX_PRODUCT) { try { wait(); System.out.println("产品已满,请稍候再生产"); } catch(InterruptedException e) { e.printStackTrace(); } return; } this.product++; System.out.println("生产者生产第" + this.product + "个产品."); notifyAll(); //通知等待区的消费者可以取出产品了 } /** * 消费者从店员取产品 */ public synchronized void consume() { if(this.product <= MIN_PRODUCT) { try { wait(); System.out.println("缺货,稍候再取"); } catch (InterruptedException e) { e.printStackTrace(); } return; } System.out.println("消费者取走了第" + this.product + "个产品."); this.product--; notifyAll(); //通知等待去的生产者可以生产产品了 } 复制代码 volatile 多线程的内存模型:main memory(主存)、working memory(线程栈),在处理数据时,线程会把值从主存load到本地栈,完成操作后再save回去(volatile关键词的作用:每次针对该变量的操作都激发一次load and save)。 volatile 针对多线程使用的变量如果不是volatile或者final修饰的,很有可能产生不可预知的结果(另一个线程修改了这个值,但是之后在某线程看到的是修改之前的值)。其实道理上讲同一实例的同一属性本身只有一个副本。但是多线程是会缓存值的,本质上,volatile就是不去缓存,直接取值。在线程安全的情况下加volatile会牺牲性能。太祖长拳:基本线程类 基本线程类指的是Thread类,Runnable接口,Callable接口Thread 类实现了Runnable接口,启动一个线程的方法:  MyThread my = new MyThread();  my.start(); Thread类相关方法:复制代码 //当前线程可转让cpu控制权,让别的就绪状态线程运行(切换)public static Thread.yield() //暂停一段时间public static Thread.sleep() //在一个线程中调用other.join(),将等待other执行完后才继续本线程。    public join()//后两个函数皆可以被打断public interrupte() 复制代码 关于中断:它并不像stop方法那样会中断一个正在运行的线程。线程会不时地检测中断标识位,以判断线程是否应该被中断(中断标识值是否为true)。终端只会影响到wait状态、sleep状态和join状态。被打断的线程会抛出InterruptedException。Thread.interrupted()检查当前线程是否发生中断,返回booleansynchronized在获锁的过程中是不能被中断的。 中断是一个状态!interrupt()方法只是将这个状态置为true而已。所以说正常运行的程序不去检测状态,就不会终止,而wait等阻塞方法会去检查并抛出异常。如果在正常运行的程序中添加while(!Thread.interrupted()) ,则同样可以在中断后离开代码体 Thread类最佳实践:写的时候最好要设置线程名称 Thread.name,并设置线程组 ThreadGroup,目的是方便管理。在出现问题的时候,打印线程栈 (jstack -pid) 一眼就可以看出是哪个线程出的问题,这个线程是干什么的。 如何获取线程中的异常 不能用try,catch来获取线程中的异常Runnable 与Thread类似Callable future模式:并发模式的一种,可以有两种形式,即无阻塞和阻塞,分别是isDone和get。其中Future对象用来存放该线程的返回值以及状态 ExecutorService e = Executors.newFixedThreadPool(3); //submit方法有多重参数版本,及支持callable也能够支持runnable接口类型.Future future = e.submit(new myCallable());future.isDone() //return true,false 无阻塞future.get() // return 返回值,阻塞直到该线程运行结束 九阴真经:高级多线程控制类 以上都属于内功心法,接下来是实际项目中常用到的工具了,Java1.5提供了一个非常高效实用的多线程包:java.util.concurrent, 提供了大量高级工具,可以帮助开发者编写高效、易维护、结构清晰的Java多线程程序。1.ThreadLocal类 用处:保存线程的独立变量。对一个线程类(继承自Thread)当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。常用于用户登录控制,如记录session信息。 实现:每个Thread都持有一个TreadLocalMap类型的变量(该类是一个轻量级的Map,功能与map一样,区别是桶里放的是entry而不是entry的链表。功能还是一个map。)以本身为key,以目标为value。主要方法是get()和set(T a),set之后在map里维护一个threadLocal -> a,get时将a返回。ThreadLocal是一个特殊的容器。2.原子类(AtomicInteger、AtomicBoolean……) 如果使用atomic wrapper class如atomicInteger,或者使用自己保证原子的操作,则等同于synchronized //返回值为booleanAtomicInteger.compareAndSet(int expect,int update) 该方法可用于实现乐观锁,考虑文中最初提到的如下场景:a给b付款10元,a扣了10元,b要加10元。此时c给b2元,但是b的加十元代码约为:复制代码 if(b.value.compareAndSet(old, value)){ return ;}else{ //try again // if that fails, rollback and log} 复制代码 AtomicReference对于AtomicReference 来讲,也许对象会出现,属性丢失的情况,即oldObject == current,但是oldObject.getPropertyA != current.getPropertyA。这时候,AtomicStampedReference就派上用场了。这也是一个很常用的思路,即加上版本号3.Lock类  lock: 在java.util.concurrent包内。共有三个实现: ReentrantLockReentrantReadWriteLock.ReadLockReentrantReadWriteLock.WriteLock 主要目的是和synchronized一样, 两者都是为了解决同步问题,处理资源争端而产生的技术。功能类似但有一些区别。 区别如下:复制代码 lock更灵活,可以自由定义多把锁的枷锁解锁顺序(synchronized要按照先加的后解顺序)提供多种加锁方案,lock 阻塞式, trylock 无阻塞式, lockInterruptily 可打断式, 还有trylock的带超时时间版本。本质上和监视器锁(即synchronized是一样的)能力越大,责任越大,必须控制好加锁和解锁,否则会导致灾难。和Condition类的结合。性能更高,对比如下图: 复制代码 synchronized和Lock性能对比 ReentrantLock    可重入的意义在于持有锁的线程可以继续持有,并且要释放对等的次数后才真正释放该锁。使用方法是: 1.先new一个实例 static ReentrantLock r=new ReentrantLock(); 2.加锁       r.lock()或r.lockInterruptibly(); 此处也是个不同,后者可被打断。当a线程lock后,b线程阻塞,此时如果是lockInterruptibly,那么在调用b.interrupt()之后,b线程退出阻塞,并放弃对资源的争抢,进入catch块。(如果使用后者,必须throw interruptable exception 或catch)     3.释放锁    r.unlock() 必须做!何为必须做呢,要放在finally里面。以防止异常跳出了正常流程,导致灾难。这里补充一个小知识点,finally是可以信任的:经过测试,哪怕是发生了OutofMemoryError,finally块中的语句执行也能够得到保证。 ReentrantReadWriteLock 可重入读写锁(读写锁的一个实现)   ReentrantReadWriteLock lock = new ReentrantReadWriteLock()  ReadLock r = lock.readLock();  WriteLock w = lock.writeLock(); 两者都有lock,unlock方法。写写,写读互斥;读读不互斥。可以实现并发读的高效线程安全代码4.容器类 这里就讨论比较常用的两个: BlockingQueueConcurrentHashMap BlockingQueue阻塞队列。该类是java.util.concurrent包下的重要类,通过对Queue的学习可以得知,这个queue是单向队列,可以在队列头添加元素和在队尾删除或取出元素。类似于一个管  道,特别适用于先进先出策略的一些应用场景。普通的queue接口主要实现有PriorityQueue(优先队列),有兴趣可以研究 BlockingQueue在队列的基础上添加了多线程协作的功能: BlockingQueue 除了传统的queue功能(表格左边的两列)之外,还提供了阻塞接口put和take,带超时功能的阻塞接口offer和poll。put会在队列满的时候阻塞,直到有空间时被唤醒;take在队 列空的时候阻塞,直到有东西拿的时候才被唤醒。用于生产者-消费者模型尤其好用,堪称神器。 常见的阻塞队列有: ArrayListBlockingQueueLinkedListBlockingQueueDelayQueueSynchronousQueue ConcurrentHashMap高效的线程安全哈希map。请对比hashTable , concurrentHashMap, HashMap5.管理类 管理类的概念比较泛,用于管理线程,本身不是多线程的,但提供了一些机制来利用上述的工具做一些封装。了解到的值得一提的管理类:ThreadPoolExecutor和 JMX框架下的系统级管理类 ThreadMXBeanThreadPoolExecutor如果不了解这个类,应该了解前面提到的ExecutorService,开一个自己的线程池非常方便:复制代码 ExecutorService e = Executors.newCachedThreadPool(); ExecutorService e = Executors.newSingleThreadExecutor(); ExecutorService e = Executors.newFixedThreadPool(3); // 第一种是可变大小线程池,按照任务数来分配线程, // 第二种是单线程池,相当于FixedThreadPool(1) // 第三种是固定大小线程池。 // 然后运行 e.execute(new MyRunnableImpl()); 复制代码 该类内部是通过ThreadPoolExecutor实现的,掌握该类有助于理解线程池的管理,本质上,他们都是ThreadPoolExecutor类的各种实现版本。请参见javadoc: ThreadPoolExecutor参数解释 翻译一下:复制代码 corePoolSize:池内线程初始值与最小值,就算是空闲状态,也会保持该数量线程。maximumPoolSize:线程最大值,线程的增长始终不会超过该值。keepAliveTime:当池内线程数高于corePoolSize时,经过多少时间多余的空闲线程才会被回收。回收前处于wait状态unit:时间单位,可以使用TimeUnit的实例,如TimeUnit.MILLISECONDS workQueue:待入任务(Runnable)的等待场所,该参数主要影响调度策略,如公平与否,是否产生饿死(starving)threadFactory:线程工厂类,有默认实现,如果有自定义的需要则需要自己实现ThreadFactory接口并作为参数传入。 阿里云优惠券地址https://promotion.aliyun.com/ntms/yunparter/invite.html?userCode=nb3paa5b

景凌凯 2019-12-02 01:40:35 0 浏览量 回答数 0

回答

ExecutorService exec = Executors.newFixedThreadPool(rowList.size()) 放到FOR 的外边去,,  线程池 一个就行了 ######正解,几万行的话会有几万个线程池。神也扛不住啊。######1你代码exec作用范围错了 2你这样写估计都没有批量提交效率高,同时数据库链接容易堵塞。 3建议你用一个线程读取excel一定数量后放到集合里,另外一个线程从集合里取出一定量的数据然后提交数据到数据库######是等待线程吧 ###### 第一, 创建线程池为什么在for循环里面?  你现在的代码如果xsl里面有100条数据,那么将会创建100*100=10000个线程。。。oh my god! 第二, 并不是说有多少条数据就要创建多少个线程,如果xsl里面有10000条数据,难不成要创建10000个线程?  所以你这里线程池里线程个数不要太大,我觉得10个就够了吧 ######回复 @找点钱过日子 : 根据实际情况来考虑线程池的大小,比如xsl里的文件平均有多少条数据,系统的配置如何等。 一般来说线程越多,同时处理的数据就越多,总的处理时间会断,但是也会带来CPU利用率的提高和JVM内存占用提高,负荷增大。######那线程池的大小应该设为多少比较好合适呢?###### 线程池就是用来解决短线程过多的问题。一个线程完成了一项任务后,重新放回线程池,等待执行新的任务。 ######不死才怪###### ExecutorService exec = Executors.newFixedThreadPool(rowList.size()) 行上,alt+↑ 同时,把rowList.size()改成固定数字,10或20就行了。 ######CPU核数*2######学习了###### 主线程调用 CountDownLatch doneSignal = new CountDownLatch(rowList.size()); 子线程里边sql语句执行完成后调用doneSignal.countDown(); 主线程调下面方法,同步阻塞等待所有子线程都调用上面的countDown方法,设置超时时间5秒,防止主线程死等。 doneSignal.await(5, TimeUnit.SECONDS); 这样所有子线程都执行完成之后,主线程才会继续执行。

kun坤 2020-06-07 14:10:50 0 浏览量 回答数 0

回答

没看懂你搞个计数器干嘛用的######计数结束线程关闭###### 代码不贴全,搞得神神秘秘,谁知道哪出问题了######......######  CountDownLatch latch = new CountDownLatch(线程计数总数变量);  你为什么要加这个 这个会引起线程等待的  ###### 我不知道是因为什么。如果你知道答案了告诉我一下,我也想知道。。。###### 原因应该并发编程常见的问题!两个线程同时请求造成的。你也说了加了sleep(300)就正常了,sleep间接的给线程请求排序了,如果你的单次请求超过300,网络言辞什么的,依然会出现上面的问题。解决办法的哈,我记得是可以给线程排序的,让线程按顺序执行。。当然这样效率会低和你写sleep差不多,不过应该稍微快点,降低线程空闲时间。。菜鸟只能帮你到这,,你可以借鉴一下######谢谢,我想想######刚刚看了一下,上面的方法可能不妥,而且你的方法应该不对,如果控制线程的数量应该使用线程池######httpclient组件库有异步请求的方式,其内部就是用的多线程,没必要自己造轮子,当然能造好也是挺好的######好的,我去看看那个组件,谢谢###### 单线程顺序执行就是了。。。###### infoQueryThread类贴出来才能看懂

爱吃鱼的程序员 2020-06-03 16:38:46 0 浏览量 回答数 0

回答

分片,每个线程读取一个时间段内的。######对啊,当时懵了,时间分片是会趋向均匀的。。。######我也是分片的思路,但是总不能保证数据分片后的分布均匀性######每个线程分别读取ID为n*i(n为线程编号)的记录,这样对不?######回复 @creazyzh : 假设两个线程,线程1读取ID1,3,5。。线程2读取ID2,4,6。。不知道行不行######能具体讲一下思路吗######不知道考官什么意思。并发读太高返回影响性能,并发写就更影响性能了;同时,大批量读容易内存溢出,大批量写大大降低数据库性能。###### 楼主,我请教你个问题。哈。假设你有128条纪录,理想状态, 外部存储区,比如存储服务器相对计算服务器,硬盘相对内存,内存相对片内cache,他们都呈现一个特征, 如果你读一次连续的8条记录,那么用一个时间单位,如果你间隔8,读两条记录,他们需要用两个时间单位,原本你就一个进程,8个时间单位你能处理64条记录。结果你分成了8个进程,每1个时间单位,让一个进程运行,你觉得,多进程快了吗? 理论上他们的处理速度是一样的,实际上多进程更慢(这里说的和多进程多线程,没什么关系,只是linux下我真想不出有什么非要用多线程的地方,所以一直喜欢用多进程这个词而已)。哈。 说这个例子,无非是让你知道多线程下涉及性能优化,除了时序逻辑以外,还包括转储的成本,数据空间分布,以及数据调度的底层策略等方面的东西。 说这个如果你对底层,特别是os的一些机理不懂的话,并非说是唬你让你去了解,而是说,如果你的数据库工具中有对应功能,直接用就行了。注意他们的使用说明即可,他们可以帮你处理完毕。也即你的优化策略,和工具的特性有很大的关系。不要空谈策略。哈。 ######每次你一张嘴,就开始暴露你的无知。你越是长篇大论,就暴露得越彻底。######多线程,多进程在这里真的没优势.  

kun坤 2020-06-06 15:36:38 0 浏览量 回答数 0

问题

JAVA中多线程读取成员变量的重复问题

蛮大人123 2019-12-01 19:57:42 1200 浏览量 回答数 1

回答

首先你要知道redis除了持久化,几乎所有操作都是在操作内存,比如像简单的set get操作都非常快,具体多快我觉得你可以自己来做一个benchmark,并不难如果你关注新闻的话可以知道双11阿里的交易巅峰值是14w笔/s这基本已经是国内it界最高的并发了(那种几亿同时在线的不算),你再去想想操作内存的时间,不考虑事务,我只把14w条数据记下来看起来并不是什么难事对不对一台写不过来我十台总行了吧,所以除非你的set的value本身特别大,不用担心在操作时的等待时间,就算有1w个请求过来,你还是在操作内存,严格意义上说,redis本身应对的业务场景并不是一个高并发的场景,你看一下redis本身默认的连接数设置应该也就懂了应对这种场景,你用多线程+锁也没有什么问题(当然性能可能会差一点点),之前tim大神做过一个memcached和redis的性能对比,虽然年代久远,不过也可以说明一些问题,要知道memcached就是多线程+锁的模型,两者看起来差别也没有太过夸张。虽然结果是redis好一些。看到这里你是不是觉得单线程+io复用赢了?这可真不一定。。只是在这种场景下赢了而已,本身单线程io复用和多线程+锁其实只是两种编程模型,两种模型也都是为了解决问题,哪种优要看具体的业务场景,这里还是要说了,不服跑分啊go的goroutine本质是green threads,runtime来调度的用户态线程,其实这种概念在其他语言里也有,只是其他语言都是以第三方库来做这件事情,go把它集成在了语言内,并且不用你自己去管理调度的事情,go语言里的实现只是让你可以更方便地写而已,所以这东西并不是银弹,不用太过迷信,go所带来的更重要的是开发效率的提升,并没有解决什么具体的问题。关于epoll,go语言的net库底层也是用epoll来做io复用的(仅指linux平台),epoll这个东西只是linux下的一种io复用的实现,在其他的发行版里还有其他变种,而程序员们其实不太想关心你这些事情,他们希望在linux下写的程序去freebsd还能跑,所以libevent棒棒哒,当然你写go的话,这些事情不用操心。

a123456678 2019-12-02 02:57:25 0 浏览量 回答数 0

回答

java运行方式,自始至终都是main方法为入口,启动一个JVM进程。1、如果楼主只是运行一个简单java脚本,跟其他语言一样,都是main方法运行->结束,对象都销毁。2、如果是运行一个web,那我用tomcat+servlet的方式来解释和php+cgi的不一样:(1)对于一个web程序(用tomcat),java运行开始就是从tomcat启动的jvm,这个时候就是一个进程在运行,所有对象都在这个进程中。(2)当一个http请求过来,tomcat有专门一个对象会去接收请求之后会创建一个线程去加载对应的servlet或者jsp页面(它类似php),然后去执行和响应。 区别就是这里,php通过webserver+cgi是去启动一个进程执行php脚本直到运行结束,那么这次请求是没有任何对象还或者了。 但是java,由于tomcat一直没有关闭,所以整个进程是一直存活着。你访问一个jsp,如果它有全局变量,那么即便jsp脚本执行完响应结束,全局变量还是会留在tomcat这个启动的这个jvm内存中。“java难道是不同线程调用的还是同一个对象,那不就乱了?”关于这个疑问。就像我上面提到的那个专门对象是一样的。由它接收到个请求,然后再给每个请求分配一个线程去处理。 在并发的情况下,这个对象完全可能被多个线程在同时使用。那为什么可以是同一个对象处理,就是线程安全这块了。

蛮大人123 2019-12-02 01:54:44 0 浏览量 回答数 0

回答

第一种OutOfMemoryError: PermGen space发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。第二种OutOfMemoryError: Java heap space发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m第三种OutOfMemoryError:unable to create new native thread在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。那么是什么原因造成这种问题呢?每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。给出一个有关能够创建线程的最大个数的估算公式:(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads对于jdk1.5而言,假设操作系统保留120M内存:1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads对于栈大小为256KB的jdk1.4而言,1.5GB allocated to JVM: ~1520 threads1.0GB allocated to JVM: ~3520 threads 对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

蛮大人123 2019-12-02 02:27:59 0 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p

kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

回答

. 在编写一个类时,如果该类中的代码可能运行与多线程环境下,就要考虑同步问题了。 会同时被多个线程访问的资源,就是竞争资源,也称为竞争条件。对于多线程共享的资源我们必须进行同步,以避免一个线程的改动被另一个线程所覆盖。 synchronized 关键字有两种作用域: 1> 某个对象实例内,synchronized aMethod(){}关键字可以防止多个线程访问对象的synchronized方法(如果一个对象有多个synchronized方法,只要一个线程访问了其中的一个synchronized方法,其它线程不能同时访问这个对象中任何一个synchronized方法)。这时,不同的对象实例的synchronized方法是不相干扰的。也就是说,其它线程照样可以同时访问相同类的另一个对象实例中的synchronized方法. 2> 是某个类的范围,synchronized static aStaticMethod{}防止多个线程同时访问这个类中的synchronized static 方法。它可以对类的所有对象实例起作用。 synchronized关键字是不能继承的,也就是说,基类的方法synchronized f(){} 在继承类中并不自动是synchronized f(){},而是变成了f(){}。继承类需要你显式的指定它的某个方法为synchronized方法; Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。      一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。      二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。      三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。      四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部   分的访问都被暂时阻塞。      五、以上规则对其它对象锁同样适用. 2. synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。   synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如:   synchronized void accessVal(int newVal);   synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能 执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行 状态。这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有 一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized) 。  在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成 员变量的访问。  synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为 synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可 以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供 了更好的解决办法,那就是 synchronized 块。   synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下:  synchronized(syncObject) {   //允许访问控制的代码  }  synchronized 块是这样一个代码块,其中的代码必须获得对象 syncObject (如前所述,可以是类实例或类)的锁方能执行,具体机 制同前所述。由于可以针对任意代码块,且可任意指定上锁的对象,故灵活性较高。  对synchronized(this)的一些理解 一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线 程必须等待当前线程执行完这个代码块以后才能执行该代码块。  二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized (this)同步代码块。  三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this) 同步代码块的访问将被阻塞。  四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个 object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。  五、以上规则对其它对象锁同样适用 3.打个比方:一个object就像一个大房子,大门永远打开。房子里有 很多房间(也就是方法)。 这些房间有上锁的(synchronized方法), 和不上锁之分(普通方法)。房门口放着一把钥匙(key),这把钥匙可以打开所有上锁的房间。 另外我把所有想调用该对象方法的线程比喻成想进入这房子某个 房间的人。所有的东西就这么多了,下面我们看看这些东西之间如何作用的。 在此我们先来明确一下我们的前提条件。该对象至少有一个synchronized方法,否则这个key还有啥意义。当然也就不会有我们的这个主题了。 一个人想进入某间上了锁的房间,他来到房子门口,看见钥匙在那儿(说明暂时还没有其他人要使用上锁的 房间)。于是他走上去拿到了钥匙 ,并且按照自己 的计划使用那些房间。注意一点,他每次使用完一次上锁的房间后会马上把钥匙还回去。即使他要连续使用两间上锁的房间, 中间他也要把钥匙还回去,再取回来。 因此,普通情况下钥匙的使用原则是:“随用随借,用完即还。” 这时其他人可以不受限制的使用那些不上锁的房间,一个人用一间可以,两个人用一间也可以,没限制。但是如果当某个人想要进入上锁的房 间,他就要跑到大门口去看看了。有钥匙当然拿了就走,没有的话,就只能等了。 要是很多人在等这把钥匙,等钥匙还回来以后,谁会优先得到钥匙?Not guaranteed。象前面例子里那个想连续使用两个上锁房间的家伙,他 中间还钥匙的时候如果还有其他人在等钥匙,那么没有任何保证这家伙能再次拿到。 (JAVA规范在很多地方都明确说明不保证,象 Thread.sleep()休息后多久会返回运行,相同优先权的线程那个首先被执行,当要访问对象的锁被 释放后处于等待池的多个线程哪个会优先得 到,等等。我想最终的决定权是在JVM,之所以不保证,就是因为JVM在做出上述决定的时候,绝不是简简单单根据 一个条件来做出判断,而是 根据很多条。而由于判断条件太多,如果说出来可能会影响JAVA的推广,也可能是因为知识产权保护的原因吧。SUN给了个不保证 就混过去了 。无可厚非。但我相信这些不确定,并非完全不确定。因为计算机这东西本身就是按指令运行的。即使看起来很随机的现象,其实都是有规律 可寻。学过 计算机的都知道,计算机里随机数的学名是伪随机数,是人运用一定的方法写出来的,看上去随机罢了。另外,或许是因为要想弄 的确定太费事,也没多大意义,所 以不确定就不确定了吧。) 再来看看同步代码块。和同步方法有小小的不同。 1.从尺寸上讲,同步代码块比同步方法小。你可以把同步代码块看成是没上锁房间里的一块用带锁的屏风隔开的空间。 2.同步代码块还可以人为的指定获得某个其它对象的key。就像是指定用哪一把钥匙才能开这个屏风的锁,你可以用本房的钥匙;你也可以指定 用另一个房子的钥匙才能开,这样的话,你要跑到另一栋房子那儿把那个钥匙拿来,并用那个房子的钥匙来打开这个房子的带锁的屏风。          记住你获得的那另一栋房子的钥匙,并不影响其他人进入那栋房子没有锁的房间。          为什么要使用同步代码块呢?我想应该是这样的:首先对程序来讲同步的部分很影响运行效率,而一个方法通常是先创建一些局部变 量,再对这些变量做一些 操作,如运算,显示等等;而同步所覆盖的代码越多,对效率的影响就越严重。因此我们通常尽量缩小其影响范围。 如何做?同步代码块。我们只把一个方法中该同 步的地方同步,比如运算。          另外,同步代码块可以指定钥匙这一特点有个额外的好处,是可以在一定时期内霸占某个对象的key。还记得前面说过普通情况下钥 匙的使用原则吗。现在不是普通情况了。你所取得的那把钥匙不是永远不还,而是在退出同步代码块时才还。           还用前面那个想连续用两个上锁房间的家伙打比方。怎样才能在用完一间以后,继续使用另一间呢。用同步代码块吧。先创建另外 一个线程,做一个同步代码 块,把那个代码块的锁指向这个房子的钥匙。然后启动那个线程。只要你能在进入那个代码块时抓到这房子的钥匙 ,你就可以一直保留到退出那个代码块。也就是说 你甚至可以对本房内所有上锁的房间遍历,甚至再sleep(10601000),而房门口却还有 1000个线程在等这把钥匙呢。很过瘾吧。           在此对sleep()方法和钥匙的关联性讲一下。一个线程在拿到key后,且没有完成同步的内容时,如果被强制sleep()了,那key还一 直在 它那儿。直到它再次运行,做完所有同步内容,才会归还key。记住,那家伙只是干活干累了,去休息一下,他并没干完他要干的事。为 了避免别人进入那个房间 把里面搞的一团糟,即使在睡觉的时候他也要把那唯一的钥匙戴在身上。           最后,也许有人会问,为什么要一把钥匙通开,而不是一个钥匙一个门呢?我想这纯粹是因为复杂性问题。一个钥匙一个门当然更 安全,但是会牵扯好多问题。钥匙 的产生,保管,获得,归还等等。其复杂性有可能随同步方法的增加呈几何级数增加,严重影响效率。这也 算是一个权衡的问题吧。为了增加一点点安全性,导致效 率大大降低,是多么不可取啊。 synchronized的一个简单例子 public class TextThread { public static void main(String[] args) {    TxtThread tt = new TxtThread();    new Thread(tt).start();    new Thread(tt).start();    new Thread(tt).start();    new Thread(tt).start(); } } class TxtThread implements Runnable { int num = 100; String str = new String(); public void run() {    synchronized (str) {     while (num > 0) {      try {       Thread.sleep(1);      } catch (Exception e) {       e.getMessage();      }      System.out.println(Thread.currentThread().getName()        + "this is " + num--);     }    } } } 上面的例子中为了制造一个时间差,也就是出错的机会,使用了Thread.sleep(10) Java对多线程的支持与同步机制深受大家的喜爱,似乎看起来使用了synchronized关键字就可以轻松地解决多线程共享数据同步问题。到底如 何?――还得对synchronized关键字的作用进行深入了解才可定论。 总的说来,synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分类, synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。 在进一步阐述之前,我们需要明确几点: A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象,而不是把一段代码或函数当作锁――而且同步方法很可能还会被其 他线程的对象访问。 B.每个对象只有一个锁(lock)与之相关联。 C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。 接着来讨论synchronized用到不同地方对代码产生的影响: 假设P1、P2是同一个类的不同对象,这个类中定义了以下几种情况的同步块或同步方法,P1、P2就都可以调用它们。 1. 把synchronized当作函数修饰符时,示例代码如下: Public synchronized void methodAAA() { //…. } 这也就是同步方法,那这时synchronized锁定的是哪个对象呢?它锁定的是调用这个同步方法对象。也就是说,当一个对象P1在不同的线程中 执行这个同步方法时,它们之间会形成互斥,达到同步的效果。但是这个对象所属的Class所产生的另一对象P2却可以任意调用这个被加了 synchronized关键字的方法。 上边的示例代码等同于如下代码: public void methodAAA() { synchronized (this)      // (1) {        //….. } } (1)处的this指的是什么呢?它指的就是调用这个方法的对象,如P1。可见同步方法实质是将synchronized作用于object reference。――那个 拿到了P1对象锁的线程,才可以调用P1的同步方法,而对P2而言,P1这个锁与它毫不相干,程序也可能在这种情形下摆脱同步机制的控制,造 成数据混乱:( 2.同步块,示例代码如下: public void method3(SomeObject so) {     synchronized(so)     {        //…..     } } 这时,锁就是so这个对象,谁拿到这个锁谁就可以运行它所控制的那段代码。当有一个明确的对象作为锁时,就可以这样写程序,但当没有明 确的对象作为锁,只是想让一段代码同步时,可以创建一个特殊的instance变量(它得是一个对象)来充当锁: class Foo implements Runnable {         private byte[] lock = new byte[0]; // 特殊的instance变量         Public void methodA()         {            synchronized(lock) { //… }         }         //….. } 注:零长度的byte数组对象创建起来将比任何对象都经济――查看编译后的字节码:生成零长度的byte[]对象只需3条操作码,而Object lock = new Object()则需要7行操作码。 3.将synchronized作用于static 函数,示例代码如下: Class Foo {     public synchronized static void methodAAA()   // 同步的static 函数     {         //….     }     public void methodBBB()     {        synchronized(Foo.class)   // class literal(类名称字面常量)     } }    代码中的methodBBB()方法是把class literal作为锁的情况,它和同步的static函数产生的效果是一样的,取得的锁很特别,是当前调用这 个方法的对象所属的类(Class,而不再是由这个Class产生的某个具体对象了)。 记得在《Effective Java》一书中看到过将 Foo.class和 P1.getClass()用于作同步锁还不一样,不能用P1.getClass()来达到锁这个Class的 目的。P1指的是由Foo类产生的对象。 可以推断:如果一个类中定义了一个synchronized的static函数A,也定义了一个synchronized 的instance函数B,那么这个类的同一对象Obj 在多线程中分别访问A和B两个方法时,不会构成同步,因为它们的锁都不一样。A方法的锁是Obj这个对象,而B的锁是Obj所属的那个Class。 小结如下: 搞清楚synchronized锁定的是哪个对象,就能帮助我们设计更安全的多线程程序。 还有一些技巧可以让我们对共享资源的同步访问更加安全: 1. 定义private 的instance变量+它的 get方法,而不要定义public/protected的instance变量。如果将变量定义为public,对象在外界可以 绕过同步方法的控制而直接取得它,并改动它。这也是JavaBean的标准实现方式之一。 2. 如果instance变量是一个对象,如数组或ArrayList什么的,那上述方法仍然不安全,因为当外界对象通过get方法拿到这个instance对象 的引用后,又将其指向另一个对象,那么这个private变量也就变了,岂不是很危险。 这个时候就需要将get方法也加上synchronized同步,并 且,只返回这个private对象的clone()――这样,调用端得到的就是对象副本的引用了 作者:hanwei_java 来源:CSDN 原文:https://blog.csdn.net/hanwei_java/article/details/79738614 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:50:26 0 浏览量 回答数 0

回答

在Java5之前的版本,使用双重检查锁定创建单例Singleton时,如果多个线程试图同时创建Singleton实例,则可能有多个Singleton实例被创建。从Java5开始,使用Enum创建线程安全的Singleton很容易。但如果面试官坚持双重检查锁定,那么你必须为他们编写代码。记得使用volatile变量。 为什么枚举单例在Java中更好 枚举单例是使用一个实例在Java中实现单例模式的新方法。虽然Java中的单例模式存在很长时间,但枚举单例是相对较新的概念,在引入Enum作为关键字和功能之后,从Java5开始在实践中。本文与之前关于Singleton的内容有些相关,其中讨论了有关Singleton模式的面试中的常见问题,以及10个Java枚举示例,其中我们看到了如何通用枚举可以。这篇文章是关于为什么我们应该使用Eeame作为Java中的单例,它比传统的单例方法相比有什么好处等等。 Java枚举和单例模式 Java中的枚举单例模式是使用枚举在Java中实现单例模式。单例模式在Java中早有应用,但使用枚举类型创建单例模式时间却不长.如果感兴趣,你可以了解下构建者设计模式和装饰器设计模式。 1)枚举单例易于书写 这是迄今为止最大的优势,如果你在Java5之前一直在编写单例,你知道,即使双检查锁定,你仍可以有多个实例。虽然这个问题通过Java内存模型的改进已经解决了,从Java5开始的volatile类型变量提供了保证,但是对于许多初学者来说,编写起来仍然很棘手。与同步双检查锁定相比,枚举单例实在是太简单了。如果你不相信,那就比较一下下面的传统双检查锁定单例和枚举单例的代码: 在Java中使用枚举的单例 这是我们通常声明枚举的单例的方式,它可能包含实例变量和实例方法,但为了简单起见,我没有使用任何实例方法,只是要注意,如果你使用的实例方法且该方法能改变对象的状态的话,则需要确保该方法的线程安全。默认情况下,创建枚举实例是线程安全的,但Enum上的任何其他方法是否线程安全都是程序员的责任。 你可以通过EasySingleton.INSTANCE来处理它,这比在单例上调用getInstance()方法容易得多。 具有双检查锁定的单例示例 下面的代码是单例模式中双重检查锁定的示例,此处的getInstance()方法检查两次,以查看INSTANCE是否为空,这就是为什么它被称为双检查锁定模式,请记住,双检查锁定是代理之前Java5,但Java5内存模型中易失变量的干扰,它应该工作完美。 你可以调用DoubleCheckedLockingSingleton.getInstance()来获取此单例类的访问权限。 现在,只需查看创建延迟加载的线程安全的Singleton所需的代码量。使用枚举单例模式,你可以在一行中具有该模式,因为创建枚举实例是线程安全的,并且由JVM进行。 人们可能会争辩说,有更好的方法来编写Singleton而不是双检查锁定方法,但每种方法都有自己的优点和缺点,就像我最喜欢在类加载时创建的静态字段Singleton,如下面所示,但请记住,这不是一个延迟加载单例: 单例模式用静态工厂方法 这是我最喜欢的在Java中影响Singleton模式的方法之一,因为Singleton实例是静态的,并且最后一个变量在类首次加载到内存时初始化,因此实例的创建本质上是线程安全的。 你可以调用Singleton.getSingleton()来获取此类的访问权限。 2)枚举单例自行处理序列化 传统单例的另一个问题是,一旦实现可序列化接口,它们就不再是Singleton,因为readObject()方法总是返回一个新实例,就像Java中的构造函数一样。通过使用readResolve()方法,通过在以下示例中替换Singeton来避免这种情况: 如果Singleton类保持内部状态,这将变得更加复杂,因为你需要标记为transient(不被序列化),但使用枚举单例,序列化由JVM进行。 3)创建枚举实例是线程安全的 如第1点所述,因为Enum实例的创建在默认情况下是线程安全的,你无需担心是否要做双重检查锁定。 总之,在保证序列化和线程安全的情况下,使用两行代码枚举单例模式是在Java5以后的世界中创建Singleton的最佳方式。你仍然可以使用其他流行的方法,如你觉得更好,欢迎讨论。

珍宝珠 2020-02-07 16:58:59 0 浏览量 回答数 0

回答

Netty的worker线程只负责nio,在收到完整数据后将数据按要求封装并放入到业务数据队列;业务处理类负责从该队列中取出数据并处理。 这里的业务处理类现在是如何实现的?按你的说法,单线程和多线程 在这个类中都试验过,并且都没能解决问题,由此来看 可以得出2个结论:(1)需要再努力优化业务处理过程以节省处理时间;(2)提升服务器硬件性能。######回复 @阿森lin1991 : 我也是碰到这个问题,单位时间内大量客户端同时连接上来,服务端线程来不及处理。就大量堆积在队列里,请问有办法解决吗?######回复 @阿森lin1991 : 你netty什么版本?netty3和4的线程模型有不小区别,推荐infoq上李林峰写的《netty升级血泪史》######如果netty没有相应api接口的话,那就无解了。看看新版本中是否有,或者可以参考下######回复 @阿森lin1991 : 回复 @阿森lin1991 : 关键是netty接收消息队列消息时造成的阻塞;netty3.0中有ExecutionHandler可以使用(其实也是一个线程池,work执行到ExecutionHandler时直接返回执行下一个channel);我现在也遇到这样的问题,希望可以找到一起其他的解决办法,比如非阻塞接收消息队列消息。######2:接第1条...所以想把消息输出也放在nioEventLoopGroup(worker)线程中执行,即业务处理完后把输出消息压入输出队列,但是怎样才能调用nioEventLoopGroup(worker)线程去处理这个输出队列了?好像没有相关接口###### 1  netty本身的 worker线程的个数是根据CPU来的,直接在 worker线程里做业务逻辑处理不好么? 2 如果不想并发,修改源码,让worker线程个数为1,就没有并发了,这一点跟redis一样的,redis单线程的处理能力貌似也够用了,redis的作者是这么说的。 3 为啥要自定义多个业务逻辑线程?netty本身的worker线程拿到消息后就可以处理了啊 ######回复 @阿森lin1991 : 没必要为每个消息加业务逻辑处理线程,并发量多,线程自然多,这样跟IO模型就没区别了。收到数据后消息处理直接用worker线程,当你预估的业务逻辑实在是太费资源才开一个线程,这个线程中尽量不要有类变量已减少并发错误或人为加锁。实在不能满足需求,可以考虑用RMI把复杂逻辑放到另外的机器上做分布式处理######1.worker线程更多的负责读写网络数据,对于复杂或耗时的业务处理都交由自定义的逻辑线程处理,不然很可能阻塞nio线程,大大减少并发量。 2.我现在的情况不是worker线程并发有问题,而是自定义了逻辑线程并发有问题(阻塞情况比较严重) 3.同1 不过谢谢你...###### 你现在的问题跟Netty没有关系,主要是你的业务处理速度跟不上你所要求的请求速度,单线程也好,多线程也好,都没有关系。 处理不过来, 1,要不把超时的改掉或做优化处理 2,增强处理速度:找到瓶颈优化或者做请求分发到不同服务器处理 ######同意这种说法,最好是将业务线程能够优化######(2)提升服务器硬件以提高业务处理性能。######楼主你好,请问这个问题解决了吗?我先在也是遇到了这问题。######单机环境调优讲一种方法吧。 1. 明确你的优化目标(优化是永无止境的,但必须适可而止) 2. 分析你的硬件瓶颈(归根到底,还是你的硬件在执行软件代码), 比如你的核,内存,带宽(本例中注意下你的带宽拥挤是否延迟你的消息返回) 3. 根据你的目标调整Netty的BoosEventLoop, WorkEvnetLoop,Buffer大小。 4. 优化你的消息包,尽量在一个MTU大小,优化你的编解码工具类,比如使用Protobuffer(传输小,解码快)代替Json.  另外,特别注意Bytebuf转Message后,是否有被ReferenceCountUtil.release() 5. 消息的返回注意 chanel的write跟writeAndFlush的区别。一个是等缓冲区满了才返回,一个是立刻返回。 上面做完了,就跟netty没啥关系了。 针对你的 编解码Loop线程组 与 工作线程组 的优化 Netty WorkEvnetGroup = M,   BusinessWorkerGroup = N  ( M, N >1) 这种情况就是一个生产消费模型,M, N之间有一个ArrayBlockingQueue(必需限制上限)做消息缓存。 1. 为了减少锁竞争,可以使用 无锁队列 Disruptor代替 java的 ArrayBlockingQueue, 据说效率是后者的10倍 2.工作任务代码优化,可以全内存操作以及算法优化。######业务服务是否可以分析出单独微服务啊

kun坤 2020-06-08 19:18:03 0 浏览量 回答数 0

问题

【精品问答】100+ Java和JavaSE常用技术点

游客pklijor6gytpx 2020-03-29 23:26:40 1148 浏览量 回答数 1

问题

性能优化总结:CPU和Load、NIO以及多线程:报错

kun坤 2020-06-07 21:31:24 0 浏览量 回答数 1

回答

1.阻塞与同步2.BIO与NIO对比3.NIO简介4.缓冲区Buffer5.通道Channel6.反应堆7.选择器8.NIO源码分析9.AIO1.阻塞与同步1)阻塞(Block)和非租塞(NonBlock):阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候阻塞:往往需要等待缞冲区中的数据准备好过后才处理其他的事情,否則一直等待在那里。非阻塞:当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回2)同步(Synchronization)和异步(Async)的方式:同步和异步都是基于应用程序私操作系统处理IO事件所采用的方式,比如同步:是应用程序要直接参与IO读写的操作。异步:所有的IO读写交给搡作系统去处理,应用程序只需要等待通知。同步方式在处理IO事件的时候,必须阻塞在某个方法上靣等待我们的IO事件完成(阻塞IO事件或者通过轮询IO事件的方式).对于异步来说,所有的IO读写都交给了搡作系统。这个时候,我们可以去做其他的事情,并不拓要去完成真正的IO搡作,当搡作完成IO后.会给我们的应用程序一个通知同步:阻塞到IO事件,阻塞到read成则write。这个时候我们就完全不能做自己的事情,让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大,参考:https://blog.csdn.net/CharJay_Lin/article/details/812598802.BIO与NIO对比block IO与Non-block IO1)区别IO模型 IO NIO方式 从硬盘到内存 从内存到硬盘通信 面向流(乡村公路) 面向缓存(高速公路,多路复用技术)处理 阻塞IO(多线程) 非阻塞IO(反应堆Reactor)触发 无 选择器(轮询机制)2)面向流与面向缓冲Java NIO和IO之间第一个最大的区别是,IO是面向流的.NIO是面向缓冲区的。Java IO面向流意味着毎次从流中读一个成多个字节,直至读取所有字节,它们没有被缓存在任何地方,此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的教据,需要先将它缓存到一个缓冲区。Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,霱要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数裾。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。3)阻塞与非阻塞Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。4)选择器(Selector)Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择"通道:这些通里已经有可以处理的褕入,或者选择已准备写入的通道。这选怿机制,使得一个单独的线程很容易来管理多个通道。5)NIO和BIO读取文件BIO读取文件:链接BIO从一个阻塞的流中一行一行的读取数据image | left | 469x426NIO读取文件:链接通道是数据的载体,buffer是存储数据的地方,线程每次从buffer检查数据通知给通道image | left | 559x3946)处理数据的线程数NIO:一个线程管理多个连接BIO:一个线程管理一个连接3.NIO简介在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。参考:链接image2.png | center | 851x3834.缓冲区Buffer缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:image3.png | center | 650x3681)其中的四个属性的含义分别如下:容量(Capacity):缓冲区能够容纳的数据元素的最大数量。这一个容量在缓冲区创建时被设定,并且永远不能改变。上界(Limit):缓冲区的第一个不能被读或写的元素。或者说,缓冲区中现存元素的计数。位置(Position):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。标记(Mark):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。2)Buffer的常见方法如下所示:flip(): 写模式转换成读模式rewind():将 position 重置为 0 ,一般用于重复读。clear() :compact(): 将未读取的数据拷贝到 buffer 的头部位。mark(): reset():mark 可以标记一个位置, reset 可以重置到该位置。Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、 IntBuffer 、 LongBuffer 、 ShortBuffer 。3)基本操作Buffer基础操作: 链接缓冲区分片,缓冲区分配,直接缓存区,缓存区映射,缓存区只读:链接4)缓冲区存取数据流程存数据时position会++,当停止数据读取的时候调用flip(),此时limit=position,position=0读取数据时position++,一直读取到limitclear() 清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。5.通道Channel通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。image4.png | center | 368x191在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:image5.png | center | 650x5171)使用NIO读取数据在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel读取到Buffer中 例子:链接 2)使用NIO写入数据使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel写入到Buffer中 例子:链接 6.反应堆1)阻塞IO模型在老的IO包中,serverSocket和socket都是阻塞式的,因此一旦有大规模的并发行为,而每一个访问都会开启一个新线程。这时会有大规模的线程上下文切换操作(因为都在等待,所以资源全都被已有的线程吃掉了),这时无论是等待的线程还是正在处理的线程,响应率都会下降,并且会影响新的线程。image6.png | center | 739x3362)NIOJava NIO是在jdk1.4开始使用的,它既可以说成“新IO”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:1.由一个专门的线程来处理所有的IO事件,并负责分发。2.事件驱动机制:事件到的时候触发,而不是同步的去监视事件。3.线程通讯:线程之间通过wait,notify等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。image7.png | center | 689x251注:每个线程的处理流程大概都是读取数据,解码,计算处理,编码,发送响应。7.选择器传统的 server / client 模式会基于 TPR ( Thread per Request ) .服务器会为每个客户端请求建立一个线程.由该线程单独负贵处理一个客户请求。这种模式带未的一个问题就是线程数是的剧增.大量的线程会增大服务器的开销,大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池线程的最大数量,这又带来了新的问题,如果线程池中有 200 个线程,而有 200 个用户都在进行大文件下载,会导致第 201 个用户的请求无法及时处理,即便第 201 个用户只想请求一个几 KB 大小的页面。传统的 Sorvor / Client 模式如下围所示:image8.png | center | 597x286NIO 中非阻塞IO采用了基于Reactor模式的工作方式,IO调用不会被阻塞,相反是注册感兴趣的特点IO事件,如可读数据到达,新的套接字等等,在发生持定率件时,系统再通知我们。 NlO中实现非阻塞IO的核心设计Selector,Selector就是注册各种IO事件的地方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件。image9.png | center | 462x408当有读或者写等任何注册的事件发生时,可以从Selector中获得相应的SelectionKey,同时从SelectionKey中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。使用NIO中非阻塞IO编写服务器处理程序,有三个步骤1.向Selector对象注册感兴趣的事件2.从Selector中获取感兴趣的事件3.根据不同事件进行相应的处理8.NIO源码分析Selector是NIO的核心epool模型1)SelectorSelector的open()方法:链接2)ServerSocketChannelServerSocketChannel.open() 链接9.AIOAsynchronous IO异步非阻塞IOBIO ServerSocketNIO ServerSocketChannelAIO AsynchronousServerSocketChannel

wangccsy 2019-12-02 01:46:51 0 浏览量 回答数 0

回答

while没有问题吧,只是在b队列满的时候,能否挂起?? 这个是典型的生产者消费者问题吧。。 ######回复 @ItBoyWEI : 那你这样迟早会溢出的。。 要不就增加A的能力,比如增加一个处理A的进程或者实例。######是典型的生产者消费者问题,但是生产者过剩,消费者太慢!程序还不能挂起!######可以反过来做吧,不要A主动去放入b。由b去取######不要while循环 那样即使单线程 cpu也挂###### @ItBoyWEI 难道不用线程池?######回复 @iehyou : 就是是B队列到A队列中去取,也需要while循环实现呀!不然我们怎么源源不断从A中取数据呢!每次向服务器发送请求都会往A中添加数据!######回复 @iehyou : 这样呀!好我们测试下!看看内存能否下来!######回复 @ItBoyWEI : 。。 b到A取 ,根本不需要死循环######我们会让线程执行sleep方法######A放慢一点 B读快一点 不就ok了 ######A的速度没法放慢!###### 现在不停的往A中放对象 -- 谁不停放进去? 目前就是20个线程仍然不能处理过来 -- 你怎么知道处理不过来? cpu消耗在哪?队列有多长?20个线程平均每s能处理多少,减少线程或增加线程吞吐量会有变化么?多少个cpu,多少核,多少内存? -- 你什么统计数据都没有? 只是简单描述了现象而已,没有任何指导意义,都是白搭。 ######回复 @ItBoyWEI : 测试一下吞吐量是多少。如果吞吐量较大,尝试加大阻塞队列长度试试。 你用个无限队列,通常都是塞得比处理的快,内存岂不是越来越多,这不是很合理哦。######回复 @优雅先生 : 基本每次往服务器上发送请求都会进行添加操作!######回复 @ItBoyWEI : 确实。另外不停地往A中放对象,放的频率是多少呢?######因为目前我们做压力测试,就是由于不停的往A队列中添加数据。然后通过while循环再将A队列中的数据放到B队列中,20个线程去处理B队列。由于处理不过来,导致内存偏大。A用的是ConcurrentLinkedQueue,B用的是BlockingQueue,B限制的是50.######不知道是哪种语言,不过如果是golang,原生的channel就可以轻松解决######Java实现的######在多线程的问题处理上,可根据需要挂起程序,当承载量过大的时候也可通过延时处理的方式减缓cpu的压力######应为系统是实时的。所以无法挂起程序###### 处理对象是计算密集型吗,如果是的话,创建过多的线程并不会带来性能的提示,反而会下降。 b队列应该是一个blockingQueue吧 ######是的!######处理不过来是什么意思,处理不过来会造成什么影响?######回复 @ItBoyWEI : 那问题就出在那个无限制的队列,向里面投递过快才会导致内存过大,因为来不及处理。你要控制外部投递。 当然如果是因为你20个线程同时处理导致内存过大,那就要考虑设计问题。(比如不开20个线程就会处理过慢,而开了20个线程则内存占用过大)######导致内存过大!但是这些数据还是必须要处理的!######可否 直接 处理 A 队列 中 的 对象 么?  为什么 要把 对象从 A 队列 移入 B 队列 ?

kun坤 2020-06-07 13:46:51 0 浏览量 回答数 0

问题

求教PHP是如何处理多任务并发的?

小旋风柴进 2019-12-01 19:50:14 998 浏览量 回答数 1

回答

如果你说的"处理",只是把接收到的数据写入某个表,那就没什么好讨论的,解决方法如下: 设计线程A专门用于接收客户端的zip包,并对其解压到服务器本地目录。 设计线程B专门读取解压后的数据文件,每读取一批(比如10000条),就调用线程C以异步的方式批量写入数据库。 即,一边读文件,一边写数据库。 对于你说”这张表天天在变大”,那就按时间建分区表,比如按月建分区。 ######回复 @breeder : 是个新手,不是很懂处理并发######回复 @林中漫步 : 主要是php没有 实际的多线程 而且php需要被动触发######回复 @breeder : 防重复写入,那你要先在业务层面定规则了, 即怎么才算重复?然道客户端会发重复的?######回复 @breeder : 采用nio或mina框架,一边发一边接。 php我不会,java还行。######回复 @breeder : zip包,你这个解压之后的东西怎么处理,我现在是客户端发一个我接一个解压读完之后就删除,就是不知道这个可不可处理并发###### php没有处理并发但是服务器一般都是支持高并发的,服务器会多线程操作,php脚本可以同时有多个线程再跑,数据多少重点是看服务器能不能支持,有时候我们其实还是应该思考高并发造成的数据不完整,没有正确的完成数据库的操作。也就是说你数据再多,服务器可以支持就没有问题,数据觉得太多处理不及时,或者服务器使用率不均匀,可以考虑使用队列。 其他问题参照楼上 ######谢谢!我去学习下###### @breeder 方法还是比较多的,比如你把任务写成脚本或者存在数据库,再通过脚本定时检测是否有任务,有就执行,没有就还是定时检测,建议任务脚本用php的,定时器用linux脚本,至于php脚本就是正常的代码,请求啥的,定时器不好意思我也写不了,我知道mysql也有定时器,建议自己百度学习######回复 @breeder : 先谢谢你回答######可以说具体点么,服务器用的apach2,怎么实现消息队列

爱吃鱼的程序员 2020-06-02 11:57:44 0 浏览量 回答数 0

回答

如果你说的"处理",只是把接收到的数据写入某个表,那就没什么好讨论的,解决方法如下: 设计线程A专门用于接收客户端的zip包,并对其解压到服务器本地目录。 设计线程B专门读取解压后的数据文件,每读取一批(比如10000条),就调用线程C以异步的方式批量写入数据库。 即,一边读文件,一边写数据库。 对于你说”这张表天天在变大”,那就按时间建分区表,比如按月建分区。 ######回复 @breeder : 是个新手,不是很懂处理并发######回复 @林中漫步 : 主要是php没有 实际的多线程 而且php需要被动触发######回复 @breeder : 防重复写入,那你要先在业务层面定规则了, 即怎么才算重复?然道客户端会发重复的?######回复 @breeder : 采用nio或mina框架,一边发一边接。 php我不会,java还行。######回复 @breeder : zip包,你这个解压之后的东西怎么处理,我现在是客户端发一个我接一个解压读完之后就删除,就是不知道这个可不可处理并发###### php没有处理并发但是服务器一般都是支持高并发的,服务器会多线程操作,php脚本可以同时有多个线程再跑,数据多少重点是看服务器能不能支持,有时候我们其实还是应该思考高并发造成的数据不完整,没有正确的完成数据库的操作。也就是说你数据再多,服务器可以支持就没有问题,数据觉得太多处理不及时,或者服务器使用率不均匀,可以考虑使用队列。 其他问题参照楼上 ######谢谢!我去学习下###### @breeder 方法还是比较多的,比如你把任务写成脚本或者存在数据库,再通过脚本定时检测是否有任务,有就执行,没有就还是定时检测,建议任务脚本用php的,定时器用linux脚本,至于php脚本就是正常的代码,请求啥的,定时器不好意思我也写不了,我知道mysql也有定时器,建议自己百度学习######回复 @breeder : 先谢谢你回答######可以说具体点么,服务器用的apach2,怎么实现消息队列

优选2 2020-06-05 13:11:34 0 浏览量 回答数 0

回答

如果你说的"处理",只是把接收到的数据写入某个表,那就没什么好讨论的,解决方法如下: 设计线程A专门用于接收客户端的zip包,并对其解压到服务器本地目录。 设计线程B专门读取解压后的数据文件,每读取一批(比如10000条),就调用线程C以异步的方式批量写入数据库。 即,一边读文件,一边写数据库。 对于你说”这张表天天在变大”,那就按时间建分区表,比如按月建分区。 ######回复 @breeder : 是个新手,不是很懂处理并发######回复 @林中漫步 : 主要是php没有 实际的多线程 而且php需要被动触发######回复 @breeder : 防重复写入,那你要先在业务层面定规则了, 即怎么才算重复?然道客户端会发重复的?######回复 @breeder : 采用nio或mina框架,一边发一边接。 php我不会,java还行。######回复 @breeder : zip包,你这个解压之后的东西怎么处理,我现在是客户端发一个我接一个解压读完之后就删除,就是不知道这个可不可处理并发###### php没有处理并发但是服务器一般都是支持高并发的,服务器会多线程操作,php脚本可以同时有多个线程再跑,数据多少重点是看服务器能不能支持,有时候我们其实还是应该思考高并发造成的数据不完整,没有正确的完成数据库的操作。也就是说你数据再多,服务器可以支持就没有问题,数据觉得太多处理不及时,或者服务器使用率不均匀,可以考虑使用队列。 其他问题参照楼上 ######谢谢!我去学习下###### @breeder 方法还是比较多的,比如你把任务写成脚本或者存在数据库,再通过脚本定时检测是否有任务,有就执行,没有就还是定时检测,建议任务脚本用php的,定时器用linux脚本,至于php脚本就是正常的代码,请求啥的,定时器不好意思我也写不了,我知道mysql也有定时器,建议自己百度学习######回复 @breeder : 先谢谢你回答######可以说具体点么,服务器用的apach2,怎么实现消息队列

爱吃鱼的程序员 2020-05-29 17:52:00 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:Linux的进程、线程、文件描述符是什么?

游客ih62co2qqq5ww 2020-05-09 11:28:57 0 浏览量 回答数 0

问题

【Java问答学堂】13期 redis 和 memcached 有什么区别?

剑曼红尘 2020-05-06 14:37:41 0 浏览量 回答数 1

回答

【Java问答学堂】13期 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理和特点,就是 redis 实际上是个单线程工作模型,你要是这个都不知道,那后面玩儿 redis 的时候,出了问题岂不是什么都不知道? 还有可能面试官会问问你 redis 和 memcached 的区别,但是 memcached 是早些年各大互联网公司常用的缓存方案,但是现在近几年基本都是 redis,没什么公司用 memcached 了。 面试题剖析 redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作。如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择。 redis 原生支持集群模式 在 redis3.x 版本中,便能支持 cluster 模式,而 memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据。 性能对比 由于 redis 只使用单核,而 memcached 可以使用多核,所以平均每一个核上 redis 在存储小数据时比 memcached 性能更高。而在 100k 以上的数据中,memcached 性能要高于 redis。虽然 redis 最近也在存储大数据的性能上进行优化,但是比起 memcached,还是稍有逊色。 redis 的线程模型 redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。 文件事件处理器的结构包含 4 个部分: 多个 socketIO 多路复用程序文件事件分派器事件处理器(连接应答处理器、命令请求处理器、命令回复处理器) 多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。 来看客户端与 redis 的一次通信过程: 要明白,通信是通过 socket 来完成的,不懂的同学可以先去看一看 socket 网络编程。 首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。 客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。 假设此时客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。 如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。 这样便完成了一次通信。关于 Redis 的一次通信过程,推荐读者阅读《Redis 设计与实现——黄健宏》进行系统学习。 为啥 redis 单线程模型也能效率这么高? 纯内存操作。核心是基于非阻塞的 IO 多路复用机制。C 语言实现,一般来说,C 语言实现的程序“距离”操作系统更近,执行速度相对会更快。单线程反而避免了多线程的频繁上下文切换问题,预防了多线程可能产生的竞争问题。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?

剑曼红尘 2020-05-06 14:37:53 0 浏览量 回答数 0

回答

在批评Python的讨论中,常常说起Python多线程是多么的难用。还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行。因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行。必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情。如果你还没看过的话,我建议你看看Eqbal Quran的文章《Ruby中的并发和并行》。 在本文中,我们将会写一个小的Python脚本,用于下载Imgur上最热门的图片。我们将会从一个按顺序下载图片的版本开始做起,即一个一个地下载。在那之前,你得注册一个Imgur上的应用。如果你还没有Imgur账户,请先注册一个。 本文中的脚本在Python3.4.2中测试通过。稍微改一下,应该也能在Python2中运行——urllib是两个版本中区别最大的部分。 1、开始动手让我们从创建一个叫“download.py”的Python模块开始。这个文件包含了获取图片列表以及下载这些图片所需的所有函数。我们将这些功能分成三个单独的函数: get_links download_link setup_download_dir 第三个函数,“setup_download_dir”,用于创建下载的目标目录(如果不存在的话)。 Imgur的API要求HTTP请求能支持带有client ID的“Authorization”头部。你可以从你注册的Imgur应用的面板上找到这个client ID,而响应会以JSON进行编码。我们可以使用Python的标准JSON库去解码。下载图片更简单,你只需要根据它们的URL获取图片,然后写入到一个文件即可。 代码如下: import jsonimport loggingimport osfrom pathlib import Pathfrom urllib.request import urlopen, Request logger = logging.getLogger(__name__) def get_links(client_id): headers = {'Authorization': 'Client-ID {}'.format(client_id)} req = Request('https://api.imgur.com/3/gallery/', headers=headers, method='GET') with urlopen(req) as resp: data = json.loads(resp.readall().decode('utf-8')) return map(lambda item: item['link'], data['data']) def download_link(directory, link): logger.info('Downloading %s', link) download_path = directory / os.path.basename(link) with urlopen(link) as image, download_path.open('wb') as f: f.write(image.readall()) def setup_download_dir(): download_dir = Path('images') if not download_dir.exists(): download_dir.mkdir() return download_dir接下来,你需要写一个模块,利用这些函数去逐个下载图片。我们给它命名为“single.py”。它包含了我们最原始版本的Imgur图片下载器的主要函数。这个模块将会通过环境变量“IMGUR_CLIENT_ID”去获取Imgur的client ID。它将会调用“setup_download_dir”去创建下载目录。最后,使用get_links函数去获取图片的列表,过滤掉所有的GIF和专辑URL,然后用“download_link”去将图片下载并保存在磁盘中。下面是“single.py”的代码: import loggingimport osfrom time import time from download import setup_download_dir, get_links, download_link logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')logging.getLogger('requests').setLevel(logging.CRITICAL)logger = logging.getLogger(__name__) def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] for link in links: download_link(download_dir, link) print('Took {}s'.format(time() - ts)) if name == '__main__': main()注:为了测试方便,上面两段代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from time import sleep, timeimport sys, threading reload(sys)sys.setdefaultencoding('utf-8') def getNums(N): return xrange(N) def processNum(num): num_add = num + 1 sleep(1) print str(threading.current_thread()) + ": " + str(num) + " → " + str(num_add) if name == "__main__": t1 = time() for i in getNums(3): processNum(i) print "cost time is: {:.2f}s".format(time() - t1) 结果: <_MainThread(MainThread, started 4436)>: 0 → 1<_MainThread(MainThread, started 4436)>: 1 → 2<_MainThread(MainThread, started 4436)>: 2 → 3cost time is: 3.00s在我的笔记本上,这个脚本花了19.4秒去下载91张图片。请注意这些数字在不同的网络上也会有所不同。19.4秒并不是非常的长,但是如果我们要下载更多的图片怎么办呢?或许是900张而不是90张。平均下载一张图片要0.2秒,900张的话大概需要3分钟。那么9000张图片将会花掉30分钟。好消息是使用了并发或者并行后,我们可以将这个速度显著地提高。 接下来的代码示例将只会显示导入特有模块和新模块的import语句。所有相关的Python脚本都可以在这方便地找到this GitHub repository。 2、使用线程线程是最出名的实现并发和并行的方式之一。操作系统一般提供了线程的特性。线程比进程要小,而且共享同一块内存空间。 在这里,我们将写一个替代“single.py”的新模块。它将创建一个有八个线程的池,加上主线程的话总共就是九个线程。之所以是八个线程,是因为我的电脑有8个CPU内核,而一个工作线程对应一个内核看起来还不错。在实践中,线程的数量是仔细考究的,需要考虑到其他的因素,比如在同一台机器上跑的的其他应用和服务。 下面的脚本几乎跟之前的一样,除了我们现在有个新的类,DownloadWorker,一个Thread类的子类。运行无限循环的run方法已经被重写。在每次迭代时,它调用“self.queue.get()”试图从一个线程安全的队列里获取一个URL。它将会一直堵塞,直到队列中出现一个要处理元素。一旦工作线程从队列中得到一个元素,它将会调用之前脚本中用来下载图片到目录中所用到的“download_link”方法。下载完成之后,工作线程向队列发送任务完成的信号。这非常重要,因为队列一直在跟踪队列中的任务数。如果工作线程没有发出任务完成的信号,“queue.join()”的调用将会令整个主线程都在阻塞状态。 from queue import Queuefrom threading import Thread class DownloadWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue and expand the tuple # 从队列中获取任务并扩展tuple directory, link = self.queue.get() download_link(directory, link) self.queue.task_done() def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] # Create a queue to communicate with the worker threads queue = Queue() # Create 8 worker threads # 创建八个工作线程 for x in range(8): worker = DownloadWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue as a tuple # 将任务以tuple的形式放入队列中 for link in links: logger.info('Queueing {}'.format(link)) queue.put((download_dir, link)) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print('Took {}'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from Queue import Queuefrom threading import Threadfrom single import *import sys reload(sys)sys.setdefaultencoding('utf-8') class ProcessWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue num = self.queue.get() processNum(num) self.queue.task_done() def main(): ts = time() nums = getNums(4) # Create a queue to communicate with the worker threads queue = Queue() # Create 4 worker threads # 创建四个工作线程 for x in range(4): worker = ProcessWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue for num in nums: queue.put(num) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: : 3 → 4: 2 → 3: 1 → 2 : 0 → 1cost time is: 1.01s在同一个机器上运行这个脚本,下载时间变成了4.1秒!即比之前的例子快4.7倍。虽然这快了很多,但还是要提一下,由于GIL的缘故,在这个进程中同一时间只有一个线程在运行。因此,这段代码是并发的但不是并行的。而它仍然变快的原因是这是一个IO密集型的任务。进程下载图片时根本毫不费力,而主要的时间都花在了等待网络上。这就是为什么线程可以提供很大的速度提升。每当线程中的一个准备工作时,进程可以不断转换线程。使用Python或其他有GIL的解释型语言中的线程模块实际上会降低性能。如果你的代码执行的是CPU密集型的任务,例如解压gzip文件,使用线程模块将会导致执行时间变长。对于CPU密集型任务和真正的并行执行,我们可以使用多进程(multiprocessing)模块。 官方的Python实现——CPython——带有GIL,但不是所有的Python实现都是这样的。比如,IronPython,使用.NET框架实现的Python就没有GIL,基于Java实现的Jython也同样没有。你可以点这查看现有的Python实现。 3、生成多进程多进程模块比线程模块更易使用,因为我们不需要像线程示例那样新增一个类。我们唯一需要做的改变在主函数中。 为了使用多进程,我们得建立一个多进程池。通过它提供的map方法,我们把URL列表传给池,然后8个新进程就会生成,它们将并行地去下载图片。这就是真正的并行,不过这是有代价的。整个脚本的内存将会被拷贝到各个子进程中。在我们的例子中这不算什么,但是在大型程序中它很容易导致严重的问题。 from functools import partialfrom multiprocessing.pool import Pool def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] download = partial(download_link, download_dir) with Pool(8) as p: p.map(download, links) print('Took {}s'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from functools import partialfrom multiprocessing.pool import Poolfrom single import *from time import time import sys reload(sys)sys.setdefaultencoding('utf-8') def main(): ts = time() nums = getNums(4) p = Pool(4) p.map(processNum, nums) print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: <_MainThread(MainThread, started 6188)>: 0 → 1<_MainThread(MainThread, started 3584)>: 1 → 2<_MainThread(MainThread, started 2572)>: 3 → 4<_MainThread(MainThread, started 4692)>: 2 → 3 cost time is: 1.21s4、分布式任务你已经知道了线程和多进程模块可以给你自己的电脑跑脚本时提供很大的帮助,那么在你想要在不同的机器上执行任务,或者在你需要扩大规模而超过一台机器的的能力范围时,你该怎么办呢?一个很好的使用案例是网络应用的长时间后台任务。如果你有一些很耗时的任务,你不会希望在同一台机器上占用一些其他的应用代码所需要的子进程或线程。这将会使你的应用的性能下降,影响到你的用户们。如果能在另外一台甚至很多台其他的机器上跑这些任务就好了。 Python库RQ非常适用于这类任务。它是一个简单却很强大的库。首先将一个函数和它的参数放入队列中。它将函数调用的表示序列化(pickle),然后将这些表示添加到一个Redis列表中。任务进入队列只是第一步,什么都还没有做。我们至少还需要一个能去监听任务队列的worker(工作线程)。 第一步是在你的电脑上安装和使用Redis服务器,或是拥有一台能正常的使用的Redis服务器的使用权。接着,对于现有的代码只需要一些小小的改动。先创建一个RQ队列的实例并通过redis-py 库传给一台Redis服务器。然后,我们执行“q.enqueue(download_link, download_dir, link)”,而不只是调用“download_link” 。enqueue方法的第一个参数是一个函数,当任务真正执行时,其他的参数或关键字参数将会传给该函数。 最后一步是启动一些worker。RQ提供了方便的脚本,可以在默认队列上运行起worker。只要在终端窗口中执行“rqworker”,就可以开始监听默认队列了。请确认你当前的工作目录与脚本所在的是同一个。如果你想监听别的队列,你可以执行“rqworker queue_name”,然后将会开始执行名为queue_name的队列。RQ的一个很好的点就是,只要你可以连接到Redis,你就可以在任意数量上的机器上跑起任意数量的worker;因此,它可以让你的应用扩展性得到提升。下面是RQ版本的代码: from redis import Redisfrom rq import Queue def main(): client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] q = Queue(connection=Redis(host='localhost', port=6379)) for link in links: q.enqueue(download_link, download_dir, link) 然而RQ并不是Python任务队列的唯一解决方案。RQ确实易用并且能在简单的案例中起到很大的作用,但是如果有更高级的需求,我们可以使用其他的解决方案(例如 Celery)。 5、总结如果你的代码是IO密集型的,线程和多进程可以帮到你。多进程比线程更易用,但是消耗更多的内存。如果你的代码是CPU密集型的,多进程就明显是更好的选择——特别是所使用的机器是多核或多CPU的。对于网络应用,在你需要扩展到多台机器上执行任务,RQ是更好的选择。 6、注:关于并发、并行区别与联系并发是指,程序在运行的过程中存在多于一个的执行上下文。这些执行上下文一般对应着不同的调用栈。 在单处理器上,并发程序虽然有多个上下文运行环境,但某一个时刻只有一个任务在运行。 但在多处理器上,因为有了多个执行单元,就可以同时有数个任务在跑。 这种物理上同一时刻有多个任务同时运行的方式就是并行。 和并发相比,并行更加强调多个任务同时在运行。 而且并行还有一个层次问题,比如是指令间的并行还是任务间的并行。

xuning715 2019-12-02 01:10:11 0 浏览量 回答数 0

回答

在批评Python的讨论中,常常说起Python多线程是多么的难用。还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行。因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行。必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情。如果你还没看过的话,我建议你看看Eqbal Quran的文章《Ruby中的并发和并行》。 在本文中,我们将会写一个小的Python脚本,用于下载Imgur上最热门的图片。我们将会从一个按顺序下载图片的版本开始做起,即一个一个地下载。在那之前,你得注册一个Imgur上的应用。如果你还没有Imgur账户,请先注册一个。 本文中的脚本在Python3.4.2中测试通过。稍微改一下,应该也能在Python2中运行——urllib是两个版本中区别最大的部分。 1、开始动手让我们从创建一个叫“download.py”的Python模块开始。这个文件包含了获取图片列表以及下载这些图片所需的所有函数。我们将这些功能分成三个单独的函数: get_links download_link setup_download_dir 第三个函数,“setup_download_dir”,用于创建下载的目标目录(如果不存在的话)。 Imgur的API要求HTTP请求能支持带有client ID的“Authorization”头部。你可以从你注册的Imgur应用的面板上找到这个client ID,而响应会以JSON进行编码。我们可以使用Python的标准JSON库去解码。下载图片更简单,你只需要根据它们的URL获取图片,然后写入到一个文件即可。 代码如下: import jsonimport loggingimport osfrom pathlib import Pathfrom urllib.request import urlopen, Request logger = logging.getLogger(__name__) def get_links(client_id): headers = {'Authorization': 'Client-ID {}'.format(client_id)} req = Request('https://api.imgur.com/3/gallery/', headers=headers, method='GET') with urlopen(req) as resp: data = json.loads(resp.readall().decode('utf-8')) return map(lambda item: item['link'], data['data']) def download_link(directory, link): logger.info('Downloading %s', link) download_path = directory / os.path.basename(link) with urlopen(link) as image, download_path.open('wb') as f: f.write(image.readall()) def setup_download_dir(): download_dir = Path('images') if not download_dir.exists(): download_dir.mkdir() return download_dir接下来,你需要写一个模块,利用这些函数去逐个下载图片。我们给它命名为“single.py”。它包含了我们最原始版本的Imgur图片下载器的主要函数。这个模块将会通过环境变量“IMGUR_CLIENT_ID”去获取Imgur的client ID。它将会调用“setup_download_dir”去创建下载目录。最后,使用get_links函数去获取图片的列表,过滤掉所有的GIF和专辑URL,然后用“download_link”去将图片下载并保存在磁盘中。下面是“single.py”的代码: import loggingimport osfrom time import time from download import setup_download_dir, get_links, download_link logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')logging.getLogger('requests').setLevel(logging.CRITICAL)logger = logging.getLogger(__name__) def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] for link in links: download_link(download_dir, link) print('Took {}s'.format(time() - ts)) if name == '__main__': main()注:为了测试方便,上面两段代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from time import sleep, timeimport sys, threading reload(sys)sys.setdefaultencoding('utf-8') def getNums(N): return xrange(N) def processNum(num): num_add = num + 1 sleep(1) print str(threading.current_thread()) + ": " + str(num) + " → " + str(num_add) if name == "__main__": t1 = time() for i in getNums(3): processNum(i) print "cost time is: {:.2f}s".format(time() - t1) 结果: <_MainThread(MainThread, started 4436)>: 0 → 1<_MainThread(MainThread, started 4436)>: 1 → 2<_MainThread(MainThread, started 4436)>: 2 → 3cost time is: 3.00s在我的笔记本上,这个脚本花了19.4秒去下载91张图片。请注意这些数字在不同的网络上也会有所不同。19.4秒并不是非常的长,但是如果我们要下载更多的图片怎么办呢?或许是900张而不是90张。平均下载一张图片要0.2秒,900张的话大概需要3分钟。那么9000张图片将会花掉30分钟。好消息是使用了并发或者并行后,我们可以将这个速度显著地提高。 接下来的代码示例将只会显示导入特有模块和新模块的import语句。所有相关的Python脚本都可以在这方便地找到this GitHub repository。 2、使用线程线程是最出名的实现并发和并行的方式之一。操作系统一般提供了线程的特性。线程比进程要小,而且共享同一块内存空间。 在这里,我们将写一个替代“single.py”的新模块。它将创建一个有八个线程的池,加上主线程的话总共就是九个线程。之所以是八个线程,是因为我的电脑有8个CPU内核,而一个工作线程对应一个内核看起来还不错。在实践中,线程的数量是仔细考究的,需要考虑到其他的因素,比如在同一台机器上跑的的其他应用和服务。 下面的脚本几乎跟之前的一样,除了我们现在有个新的类,DownloadWorker,一个Thread类的子类。运行无限循环的run方法已经被重写。在每次迭代时,它调用“self.queue.get()”试图从一个线程安全的队列里获取一个URL。它将会一直堵塞,直到队列中出现一个要处理元素。一旦工作线程从队列中得到一个元素,它将会调用之前脚本中用来下载图片到目录中所用到的“download_link”方法。下载完成之后,工作线程向队列发送任务完成的信号。这非常重要,因为队列一直在跟踪队列中的任务数。如果工作线程没有发出任务完成的信号,“queue.join()”的调用将会令整个主线程都在阻塞状态。 from queue import Queuefrom threading import Thread class DownloadWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue and expand the tuple # 从队列中获取任务并扩展tuple directory, link = self.queue.get() download_link(directory, link) self.queue.task_done() def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] # Create a queue to communicate with the worker threads queue = Queue() # Create 8 worker threads # 创建八个工作线程 for x in range(8): worker = DownloadWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue as a tuple # 将任务以tuple的形式放入队列中 for link in links: logger.info('Queueing {}'.format(link)) queue.put((download_dir, link)) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print('Took {}'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from Queue import Queuefrom threading import Threadfrom single import *import sys reload(sys)sys.setdefaultencoding('utf-8') class ProcessWorker(Thread): def __init__(self, queue): Thread.__init__(self) self.queue = queue def run(self): while True: # Get the work from the queue num = self.queue.get() processNum(num) self.queue.task_done() def main(): ts = time() nums = getNums(4) # Create a queue to communicate with the worker threads queue = Queue() # Create 4 worker threads # 创建四个工作线程 for x in range(4): worker = ProcessWorker(queue) # Setting daemon to True will let the main thread exit even though the workers are blocking # 将daemon设置为True将会使主线程退出,即使worker都阻塞了 worker.daemon = True worker.start() # Put the tasks into the queue for num in nums: queue.put(num) # Causes the main thread to wait for the queue to finish processing all the tasks # 让主线程等待队列完成所有的任务 queue.join() print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: : 3 → 4: 2 → 3: 1 → 2 : 0 → 1cost time is: 1.01s在同一个机器上运行这个脚本,下载时间变成了4.1秒!即比之前的例子快4.7倍。虽然这快了很多,但还是要提一下,由于GIL的缘故,在这个进程中同一时间只有一个线程在运行。因此,这段代码是并发的但不是并行的。而它仍然变快的原因是这是一个IO密集型的任务。进程下载图片时根本毫不费力,而主要的时间都花在了等待网络上。这就是为什么线程可以提供很大的速度提升。每当线程中的一个准备工作时,进程可以不断转换线程。使用Python或其他有GIL的解释型语言中的线程模块实际上会降低性能。如果你的代码执行的是CPU密集型的任务,例如解压gzip文件,使用线程模块将会导致执行时间变长。对于CPU密集型任务和真正的并行执行,我们可以使用多进程(multiprocessing)模块。 官方的Python实现——CPython——带有GIL,但不是所有的Python实现都是这样的。比如,IronPython,使用.NET框架实现的Python就没有GIL,基于Java实现的Jython也同样没有。你可以点这查看现有的Python实现。 3、生成多进程多进程模块比线程模块更易使用,因为我们不需要像线程示例那样新增一个类。我们唯一需要做的改变在主函数中。 为了使用多进程,我们得建立一个多进程池。通过它提供的map方法,我们把URL列表传给池,然后8个新进程就会生成,它们将并行地去下载图片。这就是真正的并行,不过这是有代价的。整个脚本的内存将会被拷贝到各个子进程中。在我们的例子中这不算什么,但是在大型程序中它很容易导致严重的问题。 from functools import partialfrom multiprocessing.pool import Pool def main(): ts = time() client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] download = partial(download_link, download_dir) with Pool(8) as p: p.map(download, links) print('Took {}s'.format(time() - ts))注:为了测试方便,上面的代码可以用如下代码替代演示: coding=utf-8 测试utf-8编码 from functools import partialfrom multiprocessing.pool import Poolfrom single import *from time import time import sys reload(sys)sys.setdefaultencoding('utf-8') def main(): ts = time() nums = getNums(4) p = Pool(4) p.map(processNum, nums) print("cost time is: {:.2f}s".format(time() - ts)) if name == "__main__": main() 结果: <_MainThread(MainThread, started 6188)>: 0 → 1<_MainThread(MainThread, started 3584)>: 1 → 2<_MainThread(MainThread, started 2572)>: 3 → 4<_MainThread(MainThread, started 4692)>: 2 → 3 cost time is: 1.21s4、分布式任务你已经知道了线程和多进程模块可以给你自己的电脑跑脚本时提供很大的帮助,那么在你想要在不同的机器上执行任务,或者在你需要扩大规模而超过一台机器的的能力范围时,你该怎么办呢?一个很好的使用案例是网络应用的长时间后台任务。如果你有一些很耗时的任务,你不会希望在同一台机器上占用一些其他的应用代码所需要的子进程或线程。这将会使你的应用的性能下降,影响到你的用户们。如果能在另外一台甚至很多台其他的机器上跑这些任务就好了。 Python库RQ非常适用于这类任务。它是一个简单却很强大的库。首先将一个函数和它的参数放入队列中。它将函数调用的表示序列化(pickle),然后将这些表示添加到一个Redis列表中。任务进入队列只是第一步,什么都还没有做。我们至少还需要一个能去监听任务队列的worker(工作线程)。 第一步是在你的电脑上安装和使用Redis服务器,或是拥有一台能正常的使用的Redis服务器的使用权。接着,对于现有的代码只需要一些小小的改动。先创建一个RQ队列的实例并通过redis-py 库传给一台Redis服务器。然后,我们执行“q.enqueue(download_link, download_dir, link)”,而不只是调用“download_link” 。enqueue方法的第一个参数是一个函数,当任务真正执行时,其他的参数或关键字参数将会传给该函数。 最后一步是启动一些worker。RQ提供了方便的脚本,可以在默认队列上运行起worker。只要在终端窗口中执行“rqworker”,就可以开始监听默认队列了。请确认你当前的工作目录与脚本所在的是同一个。如果你想监听别的队列,你可以执行“rqworker queue_name”,然后将会开始执行名为queue_name的队列。RQ的一个很好的点就是,只要你可以连接到Redis,你就可以在任意数量上的机器上跑起任意数量的worker;因此,它可以让你的应用扩展性得到提升。下面是RQ版本的代码: from redis import Redisfrom rq import Queue def main(): client_id = os.getenv('IMGUR_CLIENT_ID') if not client_id: raise Exception("Couldn't find IMGUR_CLIENT_ID environment variable!") download_dir = setup_download_dir() links = [l for l in get_links(client_id) if l.endswith('.jpg')] q = Queue(connection=Redis(host='localhost', port=6379)) for link in links: q.enqueue(download_link, download_dir, link) 然而RQ并不是Python任务队列的唯一解决方案。RQ确实易用并且能在简单的案例中起到很大的作用,但是如果有更高级的需求,我们可以使用其他的解决方案(例如 Celery)。 5、总结如果你的代码是IO密集型的,线程和多进程可以帮到你。多进程比线程更易用,但是消耗更多的内存。如果你的代码是CPU密集型的,多进程就明显是更好的选择——特别是所使用的机器是多核或多CPU的。对于网络应用,在你需要扩展到多台机器上执行任务,RQ是更好的选择。 6、注:关于并发、并行区别与联系并发是指,程序在运行的过程中存在多于一个的执行上下文。这些执行上下文一般对应着不同的调用栈。 在单处理器上,并发程序虽然有多个上下文运行环境,但某一个时刻只有一个任务在运行。 但在多处理器上,因为有了多个执行单元,就可以同时有数个任务在跑。 这种物理上同一时刻有多个任务同时运行的方式就是并行。 和并发相比,并行更加强调多个任务同时在运行。 而且并行还有一个层次问题,比如是指令间的并行还是任务间的并行。

xuning715 2019-12-02 01:10:10 0 浏览量 回答数 0

问题

终于开始没日没夜加班了,可是笑不出来了。。。啊哈哈哈哈哈哈 400 请求报错 

kun坤 2020-05-30 14:23:06 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站