• 关于

    工程数据处理可以做什么

    的搜索结果

回答

必须是C语言 C++的也勉强。 其它的就不行了 比如java是不被接受的 1、既然会C++了,基本等于掌握了C。 C++已经包含了C的。可以说C++只是在C的基础上增加了对象的概念! 如果果求不用C++,只要使用C++面向对象的编程思想就可以了(也就是C了,什么cin,cout都换成C常用的输入输出就可以了)。 2、计算机专业有:计算机系统结构,计算机软件与理论,计算机应用技术,计算机科学与技术,(专业学位)计算机技术,模式识别与智能系统。 方向是由导师决定的,导师研究什么就学什么。像什么数据挖掘,信息安全,图形图像处理,经济信息处理与仿真,数据库技术及其应用,计算机网络,多媒体信息处理,企业信息化,软件工程,计算智能,信息检索与自然语言处理等很多,在报名的时候可以看到。 还有就是计算机专业研究生毕业,别人不会问是计算机什么方向的,只会在乎做了什么项目,有什么样的经验。在毕业证上也只有专业名称(如计算机应用技术)没有什么方向。
liujae 2019-12-02 01:22:24 0 浏览量 回答数 0

回答

1 一般情况下集群提供对外统一接口,如Oracle RAC、MySQL Cluster这种客户端是不知道数据库服务器如何配置的。但是有些集群方案并没有提供对外统一接口,需要你知道哪个服务器是做什么的。2 随着数据处理量的增加,添加服务器一般可以获得接近线性的性能提高,但是也要注意这仅仅是理想情况下。3 目前一条SQL分拆给多个服务器执行不太现实。性能瓶颈如何解决是一个系统工程,哪怕只限定到数据库这部分也不是单纯只添加服务器就可以解决的。
落地花开啦 2019-12-02 01:47:24 0 浏览量 回答数 0

问题

关于Android JNI 可以不用NDK吗?另外,原有的SDK工程移到NDK环境下是否依然可以跑通

原有的SDK 环境下的Android工程需要引入底层的一些dll库来做数据处理分析等需要通过JNI调用的方式调用这些dll库,当前有以下两种解决方方法:一种是和JAVA一样的JNI调用方式,另一种是通过NDK进行调用。 关于第一种直接用类似...
爵霸 2019-12-01 20:28:33 949 浏览量 回答数 1

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; ###### 引用来自“vvtf”的评论 当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的 ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; 临时表方案靠谱。###### 首先,判断重复用数据库的uniq来做(程序里处理uniq的报错),而不是自己写代码另外去判断。 大数据量的导入建议用csv,读一行导一行,内存占用小。如果非要用excel,记得服务器内存要设置大点。 ######你说的那两个字段加入唯一约束 . 然后开启事务,循环插入,如果插入失败,则改为更新(或你自己的逻辑). 这样快,但肯定很消耗CPU. ######为什么不在list里面去重,再一次导入######这样数据库只需要批量插入的时候维护一次索引,如果修改的其他字段没建索引,那么update是不需要维护索引的######看能不能插入之前拆出2个list,一个是重复的,一个是不重复的(这样拆之前需要select……for update,防止其他事务修改数据)###### 引用来自“death_rider”的评论 为什么不在list里面去重,再一次导入 赞同。具体设计问题不明确不好给意见。不过系统和算法设计中有点是可以肯定的:逻辑处理和数据载入尽量分开。 在单纯的算法设计中,往往不会去考虑数据迁移的成本,这是比较理科的分析方式,而在系统开发过程中,数据迁移的成本是必须要考虑的,这是工程化的必然。 数据迁移,这里是广义上的,包括,数据的转移,从磁盘到外部存储(主板上所谓的内存),从外部存储到片内存储(soc,cpu的内部cache,差异在于无需外部总线);也包括,通过网络在不同处理设备之间的转移;同时还包括数据的结构调整,如数据清洗在逻辑层面的工作。 楼主应该考虑数据的预清洗或后处理。当然具体用哪种更合适,还要自己根据数据的来源,数据之间的关联性,数据处理的实时性等要求来判断。 哈,反正是个系统设计层面的工作。不是工具选择层面的事务。 ######回复 @首席打酱油 : 把需要比对的,做md5等散列数据,可把大概率数据测出来。只有命中时才进行比对。这些工作,需要额外的数据组织,同时需要额外的编程。这些数据过滤的算法,如果用c我看不出有啥太大计算量。######目测楼主说的不能重复不仅是指Excle中的数据不能重复,而且还要Excel中的数据和现有数据库中的数据不能重复,所以不能单纯的把Excle中的数据加载到List中内存去重###### 引用来自“vvtf”的评论 当然要批量导入啊。 excel转换成特定SQL文件然后导入数据库。 这里去重,可以考虑一张临时表。 然后插入数据可以使用如mysql的 ignore : insert ignore into table_main(id,phone,other)  select id,phone,other from table_temp_uuid; 一般怎么把EXCEL转换成SQL文件呢?######如果你的excel本来就是符合load data infile的文件格式, 都不需要解析的。######就是解析excel啊。所以这个方案的耗时也就是解析excel这里。当然这可能也浪费不了多少时间的。 我这里是对MySQL的方案。 解析成对应的MySQL能解析的。比如load data infile。 或者批量insert也行。 然后source。6W条瞬间插入的。######数据直接用com接口导出(服务器处理),分布式处理也行,但是不做任何处理,极限速度,10w体积很小的,1m?连1个高清png的大小都没有,数据也是可以压缩的,重复的数据会压缩很多,上传和带宽不是瓶颈,主要是数据逻辑处理和数据库瓶颈,你处理的时候解析到内存,一个瓶颈,倒入数据库又temp table,还是内存,数据库的内存,又一个瓶颈######你要懂服务器编程才行啊,很多处理单机导出数据还可以,服务器就不这么处理了,还有就是数据库,知道temp table,stor procedure,导入导出,那是数据库初级而已######主要问题在“ Excel文档转List花费4m”,只能异步了。
kun坤 2020-06-08 19:23:25 0 浏览量 回答数 0

回答

“程序设计 = 算法 + 数据结构”是瑞士计算机科学家Niklaus Wirth于1976年出版的一本书的书名,很快就成了在计算机工作者之间流传的一句名言。斗转星移,尽管新技术方法不断涌现,这句名言依然焕发着无限的生命力,它借助面向对象知识的普及,使数据结构技术更加完善和易于使用。由此,也说明了数据结构在计算机学科中的地位和不可替代的独特作用。 然而,在可视化程序设计的今天,借助于集成开发环境我们可以很方便、快捷地开发部署应用程序,程序设计似乎不再只是计算机专业的人员的专利,很多人以为,只要掌握了几种开发工具就可以成为编程高手了,其实这是一个误区。纵然,我们可以很熟练地掌握一门程序设计语言、熟练地运用各种IDE开发应用程序,但是我们写出的代码是否是优良的。我们的设计是否合理。代码执行是否是高效的。代码风格是否是有美感的。更甚的说我们所写出代码的是否是艺术。 在长达几年的时间内,我总是陷在了一个误区里面:即认为工程能力和算法能力是不相干的两回事,我们似乎可以很轻松地完成一个工程项目,至少我在做一些MIS系统的时候一直都是这么认为的,甚至觉得根本不需要所谓的算法或数据结构。当时一直想不通的是为什么Google、百度这样牛的公司却对ACMer们如此青睐,对于这种招聘的标准感到疑惑不解。为什么他们不在技术(多线程、网络编程、分布式系统等)上做要求,却偏偏只关注这么一小块的算法设计。 我曾经反复地告诉自己“程序设计 = 算法 + 数据结构”在70年代提出是受限于计算机硬件,当时的内存不足、计算能力不强,程序需要设计足够精巧细致。再看当前主流的计算机配置,比70年代的大型机运算能力还要强大,我们好像完全不用担心算法设计的问题。报着这样的想法,我向来都不太重视算法,而且工程中对算法的需求并不多。 只是有一天,我突然发现我只是片面地关注其中一个方面,硬件能力是提升了,但同时人们所面对的信息、数据、运算任务的规模也是极大的膨胀了,而且膨胀的规模比硬件本身运算能力提升的规模还要大很多。算法和数据结构不仅没有贬值,反而比之前那个时代显得更为重要。试想,在互联网迅猛发展的今天,一个中等规模的企业每天所产生的数据量能达到GB级甚至TB级。要处理这样的海量数据不是说单纯的硬件运算能力上来就解决了的,设计优良的算法和数据结构设计能够在1分钟之内完成任务,而一个糟糕的设计则可能需要1个小时的运行。 一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的,这种对数据元素间逻辑关系的描述称为数据结构。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。当然,有些情况下事情也会反过来,我们根据特定算法来选择数据结构与之适应。算法则可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 总的来说,数据结构和算法并不是一门教你编程的课,它们可以脱离任何的计算机程序设计语言,而只需要从抽象意义上去概括描述。说的简单一点,数据结构是一门告诉你数据在计算机里如何组织的课程,而算法是一门告诉你数据在计算机里如何运算的课程,前者是结构学、后者是数学。程序设计就像盖房子,数据结构是砖、瓦,而算法则是设计图纸。你若想盖房子首先必须要有原材料(数据结构),但这些原材料并不能自动地盖起你想要的房子,你必须按照设计图纸(算法)一砖一瓦地去砌,这样你才能拥有你想要的房子。数据结构是程序设计这座大厦的基础,没有基础,无论设计有多么高明,这座大厦不可能建造起来。算法则是程序设计之灵魂,它是程序设计的思想所在,没有灵魂没有思想那不叫程序,只是一堆杂乱无章的符号而已。在程序设计中,数据结构就像物质,而算法则是意识,这在哲学上可以理解为:意识是依赖与物质而存在的,物质是由意识而发展的。双方相互依赖,缺一不可。 当然最经典的数据结构是有限的,包括线性表、栈、队列、串、数组、二叉树、树、图、查找表等,而算法则是琳琅满目的,多种多样的。就好像数据结构是人体的各种组织、器官,算法则是人的思想。你可以用自己的思想去支配你的身体各个可以运动的器官随意运动。如果你想吃苹果,你可以削皮吃,可以带皮吃,只要你愿意,甚至你可以不洗就吃。但无论如何,你的器官还是你的器官,就那么几样,目的只有一个就是吃苹果,而方式却是随心所欲的。这就是算法的灵活性、不固定性。因此可以这样说:数据结构是死的,而算法是活的。 我花了四年时间才走出这个误区,值得庆幸的是不算太晚,而我的梦想是要做一名优秀的架构师,缺乏数据结构和算法的深厚功底,很难设计出高水平的具有专业水准的架构和应用,数据结构和算法则是我实现梦想最坚实的基石。现在,也正是我需要开始沉淀的时刻。程序设计这项伟大的工程,教授于我的将不仅仅是技术这么简单,我期待它能给我以更深的思考与感悟,激发我对生命的热爱,对理想的执着,对卓越的追求。
琴瑟 2019-12-02 01:22:02 0 浏览量 回答数 0

回答

有编程能力和数据挖掘能力的工程师最火,包括:数据挖掘工程师、机器学习工程师,算法工程师。 今年3月份时,谷歌开发的人工智能AlphaGo打败了全球最顶尖的围棋高手,轰动全世界,AI时代正式拉开序幕。实际上,人工智能这一概念早在上世纪一大批科幻小说陆续发表时,就已被人们接受,而随着科技的发展,人工智能的发展前景更是日益清晰。一个人工智能的诞生需要无数个工程师挥洒汗水。其中,负责开发学习算法、使机器能像人类一样思考问题的数据挖掘工程师更是无比重要。什么人能完成人工智能的开发任务呢。必须指出,人工智能和一般的计算机程序有极大的差别,它应当具有“能够自主学习知识”这一特点,这一特点也被称为“机器学习”。而自学习模型(或者说机器学习能力开发)正是数据挖掘工程师的强项,人工智能的诞生和普及需要一大批数据挖掘工程师。  那么在AI时代,如何才能掌握相关的技能,成为企业需要的数据挖掘人才呢。 第一个门槛是数学 首先,机器学习的第一个门槛是数学知识。机器学习算法需要的数学知识集中在微积分、线性代数和概率与统计当中,具有本科理工科专业的同学对这些知识应该不陌生,如果你已经还给了老师,我还是建议你通过自学或大数据学习社区补充相关知识。所幸的是如果只是想合理应用机器学习算法,而不是做相关方向高精尖的研究,需要的数学知识啃一啃教科书还是基本能理解下来的。 第二个门槛是编程 跨过了第一步,就是如何动手解决问题。所谓工欲善其事必先利其器,如果没有工具,那么所有的材料和框架、逻辑、思路都给你,也寸步难行。因此我们还是得需要合适的编程语言、工具和环境帮助自己在数据集上应用机器学习算法。对于有计算机编程基础的初学者而言,Python是很好的入门语言,很容易上手,同时又活跃的社区支持,丰富的工具包帮助我们完成想法。没有编程基础的同学掌握R或者平台自带的一些脚本语言也是不错的选择。 Make your hands dirty 接下来就是了解机器学习的工作流程和掌握常见的算法。一般机器学习步骤包括: 数据建模:将业务问题抽象为数学问题; 数据获取:获取有代表性的数据,如果数据量太大,需要考虑分布式存储和管理; 特征工程:包括特征预处理与特征选择两个核心步骤,前者主要是做数据清洗,好的数据清洗过程可以使算法的效果和性能得到显著提高,这一步体力活多一些,也比较耗时,但也是非常关键的一个步骤。特征选择对业务理解有一定要求,好的特征工程会降低对算法和数据量的依赖。 模型调优:所谓的训练数据都是在这个环节处理的,简单的说就是通过迭代分析和参数优化使上述所建立的特征工程是最优的。 这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的一个流程,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。 翻过了数学和编程两座大山,就是如何实践的问题,其中一个捷径就是积极参加国内外各种数据挖掘竞赛。国外的Kaggle和国内的阿里天池比赛都是很好的平台,你可以在上面获取真实的数据和队友们一起学习和进行竞赛,尝试使用已经学过的所有知识来完成这个比赛本身也是一件很有乐趣的事情。 另外就是企业实习,可以先从简单的统计分析和数据清洗开始做起,积累自己对数据的感觉,同时了解企业的业务需求和生产环境。我们通常讲从事数据科学的要”Make your hands dirty”,就是说要通过多接触数据加深对数据和业务的理解,好厨子都是食材方面的专家,你不和你的“料”打交道,怎么能谈的上去应用好它。 摆脱学习的误区 初学机器学习可能有一个误区,就是一上来就陷入到对各种高大上算法的追逐当中。动不动就讨论我能不能用深度学习去解决这个问题啊。实际上脱离业务和数据的算法讨论是毫无意义的。上文中已经提到,好的特征工程会大大降低对算法和数据量的依赖,与其研究算法,不如先厘清业务问题。任何一个问题都可以用最传统的的算法,先完整的走完机器学习的整个工作流程,不断尝试各种算法深挖这些数据的价值,在运用过程中把数据、特征和算法搞透。真正积累出项目经验才是最快、最靠谱的学习路径。 自学还是培训 很多人在自学还是参加培训上比较纠结。我是这么理解的,上述过程中数学知识需要在本科及研究生阶段完成,离开学校的话基本上要靠自学才能补充这方面的知识,所以建议那些还在学校里读书并且有志于从事数据挖掘工作的同学在学校把数学基础打好,书到用时方恨少,希望大家珍惜在学校的学习时间。 除了数学以外,很多知识的确可以通过网络搜索的方式自学,但前提是你是否拥有超强的自主学习能力,通常拥有这种能力的多半是学霸,他们能够跟据自己的情况,找到最合适的学习资料和最快学习成长路径。如果你不属于这一类人,那么参加职业培训也许是个不错的选择,在老师的带领下可以走少很多弯路。另外任何学习不可能没有困难,也就是学习道路上的各种沟沟坎坎,通过老师的答疑解惑,可以让你轻松迈过这些障碍,尽快实现你的“小”目标。 机器学习这个领域想速成是不太可能的,但是就入门来说,如果能有人指点一二还是可以在短期内把这些经典算法都过一遍,这番学习可以对机器学习的整体有个基本的理解,从而尽快进入到这个领域。师傅领进门,修行靠个人,接下来就是如何钻进去了,好在现在很多开源库给我们提供了实现的方法,我们只需要构造基本的算法框架就可以了,大家在学习过程中应当尽可能广的学习机器学习的经典算法。 学习资料 至于机器学习的资料网上很多,大家可以找一下,我个人推荐李航老师的《统计机器学习》和周志华老师的《机器学习》这两门书,前者理论性较强,适合数学专业的同学,后者读起来相对轻松一些,适合大多数理工科专业的同学。
管理贝贝 2019-12-02 01:21:46 0 浏览量 回答数 0

回答

      jfinal 从第一个版本开始就已经支持楼主的需求了,jfinal 提供了 Db + Record 模式,可以极度方便地解决你的问题,Record 可以对应所有的表,也无需添加映射,她相当于一个通用的 Model,对数据库操作直接调用 Db 中的API 或者直接 Db.xxx(sql, p) 即可。      以上解决了楼主提出的 Model 多或者重复的问题(其实也没多少重复,因为一个Model就一行代码而已:class MyModel extends Model)。至于楼主说的 Controller 很多,可以使用一个通用的 controller,然后前端通过传参将 tableName 传送过来,这样就可以使用这同一个 controller 利用 Db + Record 模式对任意的 table 进行 CRUD 操作了。      对于页面来说,如果用一些只需 json 数据的前端解决方案来说,只接 renderJson() 即可,其它情况可以使用 Freemarker 模板,仅仅使用四五个页面即可解决任意数据表的 CRUD。      总结一下,JFinal 提供了一个极简的基本框架供工程师使用,具体怎么用要看工程师各自的发挥了。 ###### 表和controller 有什么关系呢?不是所有的表都要去做一个model,我很多关系比较弱的表直接用Record来操作 ######为何不搞通用类呢?坏处在哪里?什么叫关系弱?###### 你这考虑的就不对啊 难道所有人都用extjs? ######这是做后台,不重复的就生成吧###### 多谢指教。对于freemarker我还是持保留意见,它是服务器端的模板引擎,不可能满足前端用户的各种需求。还不如直接由json把数据交给前端的js框架,客户要怎么展示就怎么展示。Db + Record 模式不知道是不是少了一次java对前端数据的检查,而是把数据直接交给数据库检查?有了DB+Record为什么还要model?model模式是不是操作数据库前要从数据库里调用一下各个字段的属性对数据进行检查,然后再把数据传给数据库crud?这种模式也会增加数据库的一些负担。 ######我对你的观点理解是:你想让JFinal完全支持只用极少代码来实现CRUD这种情况。 如果我猜想说得对,那么,我想说,人生不止是衣食住行,还有娱乐、结婚生子等。而JFinal不仅让你可以衣食住行,还能让你有娱乐并结婚生子。并且让你自己可以创造各种衣食住行、娱乐、结婚生子的方式,而不是通过限制,让所有人只存在一种衣食住行、娱乐、结婚生子的方式。######对于model来说,如果能少写几行代码更好。###### 个人拙见: 1. freemarker是一个插件(但是是default的render),但是如果你手动调用renderJson() 就会返回json。一般做服务的时候,我也是不用freemarker的。 2. 我感觉Db + Record 模式应该和前端没有关系的,看你怎么在前端把数据给后端处理 3. 有了DB+Record为什么还要model: DB+Record是一个通用的工具,如果用model,你可以定义自己的object。如果系统比较复杂,通过定义,处理自己的类来实现更复杂的功能。 4. 最后一个问题,我不太清楚,感觉数据检测是在java端做的?@jfinal ######JFINAL在处理页面上传来大量错误的数据时(在遭到js脚本攻击时)究竟做了什么?如果我不写检查代码的话,承受这种攻击的是应用服务器还是数据库服务器?在受错误数据攻击时,使用model和使用DB+recorder模式有什么区别?(注意:是程序员在java中没有写数据类型的检查代码时。)######每多写一行重复的代码都是犯罪。
爱吃鱼的程序员 2020-05-31 00:40:00 0 浏览量 回答数 0

问题

【精品问答】大数据技术、大数据计算五十问第一期

我们为大家为大家准备了【精品问答】大数据五十问第一期,大数据时代,大家需要更加了解大数据,以下是小秘整理的大数据五十问: 大数据 考研or自学? 【大咖问答】对话《深入浅出 Nod...
问问小秘 2019-12-01 21:51:57 100 浏览量 回答数 1

问题

[精品问答]Java一百问第一期

java之父高斯林,Java的缔造者。 而Java发展至今,使用者已占领市场七成。 动心者仍在观望,使用者“爱恨交加” 以下是为每一个java使用者整理的灵魂百问,大部分都是踩坑经验...
问问小秘 2019-12-01 21:51:20 791 浏览量 回答数 1

问题

比赛_快速入门_4_19_update_仅供参考,思维不要受局限

【这里只讲快速入门——即破题,正负样本不平衡、特征数量等问题就自己多看论文或者其他资料吧~~如果还有数据挖掘相关基础知识不了解的,建议看看《数据挖掘导论》】 【以下是理解错误案例】:错误的根本...
小斯never 2019-12-01 21:43:08 30563 浏览量 回答数 24

问题

百问百答《文娱智能算法》

UPGC 视频来源主要有哪些? 由正片切条产生的短小视频经用户上传的UPGC 视频问题有哪些? 由用户拍摄上传的UPGC 视频问题有哪些? UPGC 视频和图像质量面临的挑战有哪些࿱...
不语奈何 2021-03-25 13:32:31 19 浏览量 回答数 1

问题

如何构建机器学习算法?

前言 本系列文章为《Deep Learning》读书笔记,可以参看原书一起阅读,效果更佳。我们前面也介绍了一些构建机器学习或深度学习的一些内容,理解了其中部分原理和这么做的原因,接下...
问问小秘 2020-04-15 14:07:23 0 浏览量 回答数 1

问题

【教程免费下载】大数据系统构建

前言   当第一次进入大数据的世界时,我仿佛置身于软件开发的美国西部荒原。许多人放弃了关系型数据库,转而选择带有高度受限模型的NoSQL数据库,主要是因为其使用体验良好、熟悉度较高且这种数据库可以扩展到成...
玄学酱 2019-12-01 22:07:49 995 浏览量 回答数 1

回答

你缓存的目的是干什么?我感觉你是好几个场景。######回复 @foodon : 上面那只是一个简单的举例而已 主要问题就是在查询列表!######回复 @SandKing : 缓存是为了加快常用功能的速度,但你这几个加到缓存的内容我没弄清作用。我猜想:1、以uid为key缓存用户是为了经需要用户的信息;2、以username为key缓存password是为了登陆;3、这就弄不懂是什么场景了。######缓存的目的 但然是让查询更快啊######没有人么  这么快 就要沉了。。。###### 是这个样子的 缓存的确是要让查询更快,但是缓存主要是为了多次查询的某一条记录做的 比如说99%的用户需要查询第99条记录,那么把这条记录写入缓存是比较好的方案 但是缓存是有局限性的,像你要统计全表有多少的2类用户,这不可以用缓存来做的,因为这里涉及到的记录是全表中的记录,所以你的问题2是不合适的,因为如果要实现这个功能就不要用缓存做 再一个一般缓存应该不是用时间触发超时的,一般是在每次你向缓存中插入一条记录的时候统计当前缓存中的记录条数,如果达到了缓存大小的极限,那么会用一种选择算法把其中的一条记录去掉。记住这里是向缓存中插入记录,不是所有插入记录的情况。对数据库写操作的时候要直接操作数据库的,只有读操作才经过缓存,而且如果是update的话要判断是不是某条记录与缓存中记录不一样了,那样要修改缓存中的记录。其实对于哪些记录要进缓存也是要用算法判断的,选择大多数用户会查询而且一般不修改的是比较好的可以进缓存的记录。 加缓存的问题很多的,建议查oracle数据库缓存的原理。数据库也是有缓存的,一般不用我们来在程序内设置缓存,如果你想要这方面的知识那么看看oracle缓存一些基本的原理吧。 ######如果一个玩家上线 要保证他的所有请求都比较快,所有的请求都不能超过20毫秒 20毫秒中要包括你的业务逻辑+数据查询等等######你说的这种是对要求不是特别高的情况,我们在做游戏的时候你更具用户要查询一个用户的列表什么的。对查询速度要求比较高! 我要做的是查询 全查询缓存 ,插入 更新 同时修改缓存和数据库###### 不建议用缓存,根本就是根据索引查对象。。 没有达到缓存的基本要求。。 ######这样做 比你查询库 快太多太多了######你是做的缓存吗?怎么这么复杂?缓存一个对象不可以吗?不太理解你的需求。###### 你这等于就是把缓存做数据库来用,所以那个超时移除可以去掉了. 至于那些不常用的数据,可以想办法做到要用到时加载,不用时剔除,这块才是你需要设计的地方,比如说针对这种数据启用超时. ######基本上就是这个意思! 用的时候加载OK没问题,不用时剔除这个就会出现我上面说的这个情况了!###### 引用来自“李三乎”的答案 是这个样子的 缓存的确是要让查询更快,但是缓存主要是为了多次查询的某一条记录做的 比如说99%的用户需要查询第99条记录,那么把这条记录写入缓存是比较好的方案 但是缓存是有局限性的,像你要统计全表有多少的2类用户,这不可以用缓存来做的,因为这里涉及到的记录是全表中的记录,所以你的问题2是不合适的,因为如果要实现这个功能就不要用缓存做 再一个一般缓存应该不是用时间触发超时的,一般是在每次你向缓存中插入一条记录的时候统计当前缓存中的记录条数,如果达到了缓存大小的极限,那么会用一种选择算法把其中的一条记录去掉。记住这里是向缓存中插入记录,不是所有插入记录的情况。对数据库写操作的时候要直接操作数据库的,只有读操作才经过缓存,而且如果是update的话要判断是不是某条记录与缓存中记录不一样了,那样要修改缓存中的记录。其实对于哪些记录要进缓存也是要用算法判断的,选择大多数用户会查询而且一般不修改的是比较好的可以进缓存的记录。 加缓存的问题很多的,建议查oracle数据库缓存的原理。数据库也是有缓存的,一般不用我们来在程序内设置缓存,如果你想要这方面的知识那么看看oracle缓存一些基本的原理吧。 呃,你现在做的都是数据库要做的功能啊。数据库本身是有缓存功能的。你们没有数据库工程师么,这些不应该是代码里要考虑的内容啊。你的总的要求就是要快速的进行数据查询,这应该是数据库里存储过程的功能啊。 平时用代码写的话做个小的缓存自己用还可以,要这样大型的用数据库自己来处理是最好的。 如果非要自己做的话,可以借鉴memDB的思路,我们可以在内存中虚拟一个数据库,按照jdbc driver的接口实现存储在内存中的数据库,你可以让一个专门的服务器用来定期把修改写入本地数据库。 这种情况真心不建议自己做缓存
kun坤 2020-06-11 14:01:26 0 浏览量 回答数 0

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。
小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

问题

荆门开诊断证明-scc

(微)电〗【186-6605-3854〗号【精品问答】Java技术1000问(1) 问问小秘 2019-11-15 11:24:15 9099 为了方便Java开发者快速找到相关技术问题和答案,开发...
游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

为了方便大数据开发者快速找到相关技术问题和答案,开发者社区策划了大数据计算技术1000问内容,包含Flink、Spark等流式计算(实时计算)、离线计算、Hbase等实践中遇到的技术问...
问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

问题

【百问百答】《2021前端热门技术解读》

1、前端安全生产水位远远满足不了当前的诉求,发展上颇显迟钝,这背后这背后反应了哪3个问题? 2、前端可用性的困局有哪些? 3、什么是混沌工程? 4、混沌工程强调了哪五大要素࿱...
6rmarpmlfunbi 2021-03-25 20:32:34 37 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p
kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

问题

试用关系型数据库SQLServer的个人感受

试用了2天阿里云的关系型数据库SQL Server,总的来说是很实用的,方便中小企业的各种互联网业务应用,节约了购买数据库版权和聘请专业DBA人才的成本,其操作与本地数据库基本没什么太...
kazake 2019-12-01 21:05:44 8519 浏览量 回答数 1

回答

首先你要明确你的定位,不能什么都会一点,也没必要什么都学。请记住一点:什么都会,到了大公司,可能就变成了什么都不会了。如果你想搞前端,html+css?并不能说明什么,其实这是最基本的,也是不需要刻意去学习的,真正的前端工程师是js+css+后端,而且js是非常熟悉才行,需要了解各种流行的框架react、angular、jquery、kissy、nodejs,熟悉他们的源码和实现原理,这只是前端最基本的技能。。对于后端的话,水就比较深了,java、php、cc++等每种语言都有自己的优缺点和适用场景,没有一家独大的,既然创造了这种语言,就有它存在的价值。java是阿里巴巴比较常用的后端语言,包括很多框架都是基于java的。php百度用的比较多、腾讯也在用,而且php适合小型企业使用快速开发。c/c++贴近操作系统,适合用来做基础设施,比较同意出一些高大上的东西,每个大公司应该都有在用的。其实,语言只是一种工具,真正有用的是你可以用这种工具来干什么。比如你可以设计一种大数据处理的框架,然后用某种语言来实现;你还可以想出一种很牛逼的算法,然后用某种语言实现;当然你也可以设计一个很fansy的消息中间件或RPC框架等等。如果你只是会某种语言,对不起,你只能做一个码农。
名字不能长 2019-12-01 23:32:22 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

云时代软件服务

云时代软件服务 aliyun移动云:刘子祥 一、云时代特点 在我看来云计算就是两个词,一个是大计算,另外一个大存储。从技术角度讲我们认为云计算这样的技术,把所有...
笑傲江虎 2019-12-01 21:59:08 11432 浏览量 回答数 1

回答

API(Application Programming Interface,应用程序编程接口)是一套用来控制Windows的各个部件(从桌面的外观到为一个新进程分配的内存)的外观和行为的一套预先定义的Windows函数.用户的每个动作都会引发一个或几个函数的运行以告诉Windows发生了什么. 这在某种程度上很象Windows的天然代码.其他的语言只是提供一种能自动而且更容易的访问API的方法.VB在这方面作了很多工作.它完全隐藏了API并且提供了在Windows环境下编程的一种完全不同的方法. 这也就是说,你用VB写出的每行代码都会被VB转换为API函数传递给Windows.例如,Form1.Print...VB 将会以一定的参数(你的代码中提供的,或是默认参数)调用TextOut 这个API函数. 。同样,当你点击窗体上的一个按钮时,Windows会发送一个消息给窗体(这对于你来说是隐藏的),VB获取这个调用并经过分析后生成一个特定事件(Button_Click). API函数包含在Windows系统目录下的动态连接库文件中(如User32.dll,GDI32.dll,Shell32.dll...). API 声明 正如在"什么是API"中所说,API函数包含在位于系统目录下的DLL文件中.你可以自己输入API函数的声明,但VB提供了一种更简单的方法,即使用API Text Viewer. 要想在你的工程中声明API函数,只需运行API Text Viewer,打开Win32api.txt(或.MDB如果你已经把它转换成了数据库的话,这样可以加快速度.注:微软的这个文件有很多的不足,你可以试一下本站提供下载的api32.txt),选择"声明",找到所需函数,点击"添加(Add)"并"复制(Copy)",然后粘贴(Paste)到你的工程里.使用预定义的常量和类型也是同样的方法. 你将会遇到一些问题: 假设你想在你的窗体模块中声明一个函数.粘贴然后运行,VB会告诉你:编译错误...Declare 语句不允许作为类或对象模块中的 Public 成员...看起来很糟糕,其实你需要做的只是在声明前面添加一个Private(如 Private Declare Function...).--不要忘了,可是这将使该函数只在该窗体模块可用. 在有些情况下,你会得到"不明确的名称"这样的提示,这是因为函数.常量或其他的什么东西共用了一个名称.由于绝大多数的函数(也可能是全部,我没有验证过)都进行了别名化,亦即意味着你可以通过Alias子句使用其它的而不是他们原有的名称,你只需简单地改变一下函数名称而它仍然可以正常运行. API 分为四种类型: 远程过程调用(RPC):通过作用在共享数据缓存器上的过程(或任务)实现程序间的通信。 标准查询语言(SQL):是标准的访问数据的查询语言,通过通用数据库实现应用程序间的数据共享。 文件传输:文件传输通过发送格式化文件实现应用程序间数据共享。 信息交付:指松耦合或紧耦合应用程序间的小型格式化信息,通过程序间的直接通信实现数据共享。 当前应用于 API 的标准包括 ANSI 标准 SQL API。另外还有一些应用于其它类型的标准尚在制定之中。API 可以应用于所有计算机平台和操作系统。这些 API 以不同的格式连接数据(如共享数据缓存器、数据库结构、文件框架)。每种数据格式要求以不同的数据命令和参数实现正确的数据通信,但同时也会产生不同类型的错误。因此,除了具备执行数据共享任务所需的知识以外,这些类型的 API 还必须解决很多网络参数问题和可能的差错条件,即每个应用程序都必须清楚自身是否有强大的性能支持程序间通信。相反由于这种 API 只处理一种信息格式,所以该情形下的信息交付 API 只提供较小的命令、网络参数以及差错条件子集。正因为如此,交付 API 方式大大降低了系统复杂性,所以当应用程序需要通过多个平台实现数据共享时,采用信息交付 API 类型是比较理想的选择。 API 与图形用户接口(GUI)或命令接口有着鲜明的差别: API 接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。 有时公司会将 API 作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式 API。 da'an'lai'yu'na'w'n答案来源网络,供您参考
问问小秘 2019-12-02 02:13:03 0 浏览量 回答数 0

回答

append, map, len不是关键字 他们其实还是类库功能, 都在builtin包里的, 系统默认给你做了个 import( . "builtin" ) 将builtin的包内容都映射到全局而已, 其实你也可以用自己的包这么做 打印的另一种写法 想跟脚本一样调试打印数据么? println("hello world") 无需包含任何包, 因为它在builtin包里 iota不是黑科技 这是在builtin包里的定义 // iota is a predeclared identifier representing the untyped integer ordinal // number of the current const specification in a (usually parenthesized) // const declaration. It is zero-indexed. const iota = 0 // Untyped int. 其实go是有泛型概念的 想想map和数组的定义 只是泛型没有开放给用户用而已(只许XX放火,不许XX点灯) map是支持多个key的, 而且很方便 还在为多个key转id的复杂算法而头疼么? type myKey struct{ number int str string } func main(){ t := map[ myKey] int { myKey{ 2, "world"}: 1, } fmt.Println(t[myKey{2, "world"}]) } 输出: 1 枚举是可以转成string的 默认定义一个枚举 type MyConst int const ( MyConst_A MyConst = iota MyConst_B MyConst = iota ) func main(){ fmt.Println(MyConst_A) } 输出: 0 如果我们想自动化输出MyConst_A字符串时 就需要使用golang的一个工具链:http://golang.org/x/tools/cmd/stringer 将其下载, 编译成可执行工具后, 对代码进行生成 生成的代码会多出一个xx_string.go 里面就是枚举的String()string 函数 临时转换一个接口并调用的方法 type love struct{ } func (self*love)foo(){ fmt.Println("love") } func main(){ var chaos interface{} = new(love) chaos.(interface{ foo() }).foo() } Golang的receiver实际上就是this的变种实现 func( self*MyStruct) foo( p int ){ } 写不惯receiver的写法? 如果这样改下呢? func foo( self *MyStruct, p int ){ } 所以为什么说Golang还是一个C语言嘛 关于内存分配… new 传入Type类型, 返回*Type类型 make 可以在分配数组时设置预分配大小, new不可以 make 能分配数组,map, 但不能分配结构体和原始类型 new 能分配数组, map, 结构体和原始类型等的所有类型 &Type等效于new 切片不需要分配内存(make,new), 直接声明就可以了… Golang的反射无法通过一个类型名, 创建其实例 C#有Assembly概念, 可以在一个Assembly里搜索, 创建实例 Golang是静态类型语言, 如果需要, 只能注册你需要创建的结构体, 然后将注册好的map用于创建 Golang可以替换Python来进行复杂的工具流程处理 如果你需要跨平台的工具流程处理, 对Python不熟悉, 可以使用 go run yourcode.go 参数1 参数2 方式来进行工具处理 觉得慢, 可以编译成可执行文件 这样做的好处: 如果有些类库本身就是go写的, Python想使用是很麻烦的, 而Golang来写则轻而易举 例子: 通过go的protobuf库, 对一些文件进行处理 Golang可以自动持有方法的接收者实例 type myType struct{ } func (self*myType) foo( p int){ fmt.Println("hello", p ) } func main(){ var callback func( int ) ins := new(myType) callback = ins.foo callback( 100 ) } 做过lua的C++代码绑定的童鞋都清楚: lua只支持外部静态或者全局函数调用 如果要进行C++类成员函数调用时, 要自己处理this和成员函数 这种技巧因为早起编译器的虚表不同平台实现细节不统一需要专门处理 后面跨平台虚表统一后, 类成员函数的调用写法也是很恶心复杂的 但是Golang的小白式用法, 直接吊打C++, 甚至C#复杂的delegate LiteIDE篇: 多开秘籍 找到 菜单->查看->选项->通用->存储->存储设置到本地ini文件 关闭LiteIDE 复制LiteIDE整个目录, 命名文件夹为你的工程名 每个工程所在的LiteIDE的配置将是独立的, 不会互相干扰 LiteIDE篇: 测试程序也是可以调试的 别以为程序一定要是main开始的才可以调试 Golang的测试程序虽然都是一个个Test开头的函数,但执行go test时, 还是有main入口 在LiteIDE中, 可以在 调试->开始调试测试程序里进行测试程序调试
游客2q7uranxketok 2021-02-08 23:32:24 0 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】
行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

Blink计算引擎 【精品问答集锦】

本期请到了阿里搜索事业部资深搜索专家蒋晓伟 (量仔)为社区用户直播讲解Blink计算引擎 蒋晓伟2014年底加入阿里,现在负责搜索工程的数据团队。在加入阿里前曾经就职于西雅图的脸书。负责过调度系统,Timeline Infra和Messen...
管理贝贝 2019-12-01 20:28:13 18841 浏览量 回答数 2

问题

原创文章:云时代软件服务

云时代软件服务 一、云时代特点 在我看来云计算就是两个词,一个是大计算,另外一个大存储。从技术角度讲我们认为云计算这样的技术,把所有独立的服务器...
domen 2019-12-01 21:59:08 9189 浏览量 回答数 0

问题

【百问百答】《5G+AI 智慧文娱前沿技术解读》

注:问题中对回答答案及问题有疑问欢迎指出,我会尽快修改!!!——————————————————————————— 如何用技术带给用户更加流畅且个性化的体验,...
Pony马 2021-03-12 18:06:04 101 浏览量 回答数 0

回答

成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能力,这些能力中的每一项掌握起来都需要足够的努力和经验。而要成为一名合格的机器学习算法工程师(以下简称算法工程师)更是难上加难,因为在掌握工程师的通用技能以外,还需要掌握一张不算小的机器学习算法知识网络。 下面我们就将成为一名合格的算法工程师所需的技能进行拆分,一起来看一下究竟需要掌握哪些技能才能算是一名合格的算法工程师。 1.基础开发能力 所谓算法工程师,首先需要是一名工程师,那么就要掌握所有开发工程师都需要掌握的一些能力。 有些同学对于这一点存在一些误解,认为所谓算法工程师就只需要思考和设计算法,不用在乎这些算法如何实现,而且会有人帮你来实现你想出来的算法方案。这种思想是错误的,在大多数企业的大多数职位中,算法工程师需要负责从算法设计到算法实现再到算法上线这一个全流程的工作。 笔者曾经见过一些企业实行过算法设计与算法实现相分离的组织架构,但是在这种架构下,说不清楚谁该为算法效果负责,算法设计者和算法开发者都有一肚子的苦水,具体原因不在本文的讨论范畴中,但希望大家记住的是,基础的开发技能是所有算法工程师都需要掌握的。 2.概率和统计基础 概率和统计可以说是机器学习领域的基石之一,从某个角度来看,机器学习可以看做是建立在概率思维之上的一种对不确定世界的系统性思考和认知方式。学会用概率的视角看待问题,用概率的语言描述问题,是深入理解和熟练运用机器学习技术的最重要基础之一。 概率论内容很多,但都是以具体的一个个分布为具体表现载体体现出来的,所以学好常用的概率分布及其各种性质对于学好概率非常重要。 对于离散数据,伯努利分布、二项分布、多项分布、Beta分布、狄里克莱分布以及泊松分布都是需要理解掌握的内容; 对于离线数据,高斯分布和指数分布族是比较重要的分布。这些分布贯穿着机器学习的各种模型之中,也存在于互联网和真实世界的各种数据之中,理解了数据的分布,才能知道该对它们做什么样的处理。 此外,假设检验的相关理论也需要掌握。在这个所谓的大数据时代,最能骗人的大概就是数据了,掌握了假设检验和置信区间等相关理论,才能具备分辨数据结论真伪的能力。例如两组数据是否真的存在差异,上线一个策略之后指标是否真的有提升等等。这种问题在实际工作中非常常见,不掌握相关能力的话相当于就是大数据时代的睁眼瞎。 在统计方面,一些常用的参数估计方法也需要掌握,典型的如最大似然估计、最大后验估计、EM算法等。这些理论和最优化理论一样,都是可以应用于所有模型的理论,是基础中的基础。 3.机器学习理论 虽然现在开箱即用的开源工具包越来越多,但并不意味着算法工程师就可以忽略机器学习基础理论的学习和掌握。这样做主要有两方面的意义: 掌握理论才能对各种工具、技巧灵活应用,而不是只会照搬套用。只有在这个基础上才能够真正具备搭建一套机器学习系统的能力,并对其进行持续优化。否则只能算是机器学习搬砖工人,算不得合格的工程师。出了问题也不会解决,更谈不上对系统做优化。 学习机器学习的基础理论的目的不仅仅是学会如何构建机器学习系统,更重要的是,这些基础理论里面体现的是一套思想和思维模式,其内涵包括概率性思维、矩阵化思维、最优化思维等多个子领域,这一套思维模式对于在当今这个大数据时代做数据的处理、分析和建模是非常有帮助的。如果你脑子里没有这套思维,面对大数据环境还在用老一套非概率的、标量式的思维去思考问题,那么思考的效率和深度都会非常受限。 机器学习的理论内涵和外延非常之广,绝非一篇文章可以穷尽,所以在这里我列举了一些比较核心,同时对于实际工作比较有帮助的内容进行介绍,大家可在掌握了这些基础内容之后,再不断探索学习。 4.开发语言和开发工具 掌握了足够的理论知识,还需要足够的工具来将这些理论落地,这部分我们介绍一些常用的语言和工具。 5.架构设计 最后我们花一些篇幅来谈一下机器学习系统的架构设计。 所谓机器学习系统的架构,指的是一套能够支持机器学习训练、预测、服务稳定高效运行的整体系统以及他们之间的关系。 在业务规模和复杂度发展到一定程度的时候,机器学习一定会走向系统化、平台化这个方向。这个时候就需要根据业务特点以及机器学习本身的特点来设计一套整体架构,这里面包括上游数据仓库和数据流的架构设计,以及模型训练的架构,还有线上服务的架构等等。这一套架构的学习就不像前面的内容那么简单了,没有太多现成教材可以学习,更多的是在大量实践的基础上进行抽象总结,对当前系统不断进行演化和改进。但这无疑是算法工程师职业道路上最值得为之奋斗的工作。在这里能给的建议就是多实践,多总结,多抽象,多迭代。 6.机器学习算法工程师领域现状 现在可以说是机器学习算法工程师最好的时代,各行各业对这类人才的需求都非常旺盛。典型的包括以下一些细分行业: 推荐系统。推荐系统解决的是海量数据场景下信息高效匹配分发的问题,在这个过程中,无论是候选集召回,还是结果排序,以及用户画像等等方面,机器学习都起着重要的作用。 广告系统。广告系统和推荐系统有很多类似的地方,但也有着很显著的差异,需要在考虑平台和用户之外同时考虑广告主的利益,两方变成了三方,使得一些问题变复杂了很多。它在对机器学习的利用方面也和推荐类似。 搜索系统。搜索系统的很多基础建设和上层排序方面都大量使用了机器学习技术,而且在很多网站和App中,搜索都是非常重要的流量入口,机器学习对搜索系统的优化会直接影响到整个网站的效率。 风控系统。风控,尤其是互联网金融风控是近年来兴起的机器学习的又一重要战场。不夸张地说,运用机器学习的能力可以很大程度上决定一家互联网金融企业的风控能力,而风控能力本身又是这些企业业务保障的核心竞争力,这其中的关系大家可以感受一下。 但是所谓“工资越高,责任越大”,企业对于算法工程师的要求也在逐渐提高。整体来说,一名高级别的算法工程师应该能够处理“数据获取数据分析模型训练调优模型上线”这一完整流程,并对流程中的各种环节做不断优化。一名工程师入门时可能会从上面流程中的某一个环节做起,不断扩大自己的能力范围。 除了上面列出的领域以外,还有很多传统行业也在不断挖掘机器学习解决传统问题的能力,行业的未来可谓潜力巨大。
寒凝雪 2019-12-02 01:21:12 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT