• 关于

    区域表示是干嘛的

    的搜索结果

回答

回 2楼(阿king) 的帖子 文档这块我们正在尝试改进。如果在查看文档时有任何的疑问,非常欢迎在文档中心填写意见反馈,或者直接在工单中指出问题,我们会及时对文档中的问题进行修正。希望有大家的帮助,让OSS更加方便简单。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第6楼真的小白于2015-03-23 11:12发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我一直没搞懂那个 跨域资源共享  貌似在控制台叫cros设置   这个功能是干嘛的啊 ? 跨域资源共享(Cors)是Html5协议解决ajax跨域资源调用问题的功能。如您的程序为Web站点或基于Html5开发的APP应用可以通过跨域资源共享解决这个问题,其他使用场景用不到这个功能。   由于ajax等的同源策略 ,会禁止获取其他域名的资源。 比如,这样的操作是被禁止的。 xhr.open("GET", "http://www.taobao.com/pic.jpg", true);   以前要实现跨域访问,可以通过JSONP、Flash或者服务器中转的方式来实现,但是现在我们有了CORS。 现在大部分浏览器都可通过名为Cross-Origin Resource Sharing(CORS)的协议支持ajax跨域调用。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第5楼宝宝助手于2015-03-23 11:11发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我最近上传的时候都返回地址了。但是用地址访问内容时却是 0KB 没有上传成功? 用的php SDKV2          pubObject 的时候偶尔就会这样! 到底怎么回事!!我都想转到七牛去了。前几天七牛的人才来拿服务比较 人家还上传下载双向CDN    如果上传后返回了200,表示这次上传是成功的。并且可以在上传时带入数据的MD5值,服务器端会帮用户做校验,防止网络传输中出现数据丢失。 有其他的可能的类似问题,可以提交工单,客服同学会帮你仔细排查问题。 同时,建议使用php sdk v1版本。v2版本已不再维护增加新功能。 如果使用OSS中任何困扰,欢迎使用工单,论坛等方式告知我们,我们需要你的声音。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第14楼我是菜鸟2于2015-03-23 12:32发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx 问题1  【Signature代表什么 】 问题2 【如何向这个地址(oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx)上传文件】 ....... 这段url表示使用url签名的方式来直接访问OSS资源,主要针对 【客户端/服务器端】 这样的用户场景: Access key 存储在服务器端,客户端想访问一个OSS资源没有权限,需要先向服务器端发送操作信息(包括操作哪个资源,完成什么操作等)。服务器端根据信息与Access key生成Signature(签名信息),并以一个url的形式传给客户端。客户端使用该url完成之前约定的操作。 问题1  【Signature代表什么 】 签名(Signature)信息是用户的服务器端生成的身份签名,用户的客户端使用该签名来完成操作。OSS根据这个签名来判断操作是否合法。 问题2 【如何向这个地址(oss-example.oss-cn-hangzhou.aliyuncs.com/oss-api.pdf?OSSAccessKeyId=xxx&Expires=xxx&Signature=xxx)上传文件】 该url只能完成特定的操作,比如控制台上生成的签名url是用于用户发送get请求,获取object。用户如果要生成put操作的签名url,可以参考JAVA SDK中的实现: 点击这里 。 对于想参考实现签名算法,这里给一些建议: 1. OSS api 接口基于标准的http协议规范,签名是通过对请求的方法,资源位置,请求头等以AccessKeySecret为秘钥按照统一方法加密生成的。具体方法可以参考API文档: 点击这里 2. 论坛中提供了一个可视化签名demo,希望能对你有所帮助: 点击这里 3. 各个SDK版本都已开源的,可以尝试参考一下。后续也会推出更多语言的SDK。 4. 如果对签名还有疑惑与困难,告知我们,后续会考虑推出更多帮助文档以及demo来帮助用户 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第19楼老陈小安于2015-03-24 13:19发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 我想问几个问题: 1、OSS选定存储区域后,在这个区域里有什么数据可靠性措施?比如一般的存3份? 2、OSS选定存储区域后,可以跨区域存储吗?比如我觉得只存在杭州一个区域不安全,我希望在北京存储区域再放一份,可以实现吗? 3、OSS能提版本控制功能吗?一个文件,我在下载到本地修改后,再上传,能提供上一次的版本控制吗? 4、OSS只有官方推荐第三方管理软件,有没有官方自己的管理软件? ....... 【问题】 OSS选定存储区域后,可以跨区域存储吗?比如我觉得只存在杭州一个区域不安全,我希望在北京存储区域再放一份,可以实现吗? 暂时不支持此功能,因为OSS底层已经实现了3分数据备份,所以您大可以放心您的数据安全。且如果您的数据很多,多存一份也会增加您的存储成本。 【问题】 OSS能提版本控制功能吗?一个文件,我在下载到本地修改后,再上传,能提供上一次的版本控制吗? 不支持版本控制 上传相同名的object在OSS端是覆盖原有信息。 OSS只有官方推荐第三方管理软件,有没有官方自己的管理软件? 官方推出过命令行工具,OSSCMD。 官方推荐的客户端工具是经过我们安全部门认证审核的,保证安全性与质量。 同时我们会推动我们的合作伙伴服务商推出更多工具。 【问题】 OSS的API与其他厂商的兼容吗?比如和X牛? 不支持 【问题】 OSS后续有什么新功能设计?比如音视频转码? 新功能的上线尽请期待我们的官网公告。 音视频转码服务主要通过阿里云其他云产品支持,比如可以使用MTS做视频转码。 【问题】 OSS存储计费,是用阶梯方式计费吗?还是按传统的,我用了600G,就按600G范围的单价计算?,如果是按阶梯计费方式,这有什么优势呢? 存储和流量都是按照阶梯计费的。采用的是类似计税使用的超额累进的方式,将你使用的资源量切分成不同段,按不同价格计费。 比如600T的存储费用=(50-0)*价格1+(500-50)*价格2+(600-500)*价格3 采用这样的方式,对用户来说使用资源量越大,价格会越便宜。 【问题】 最后,能说说OSS的定位是什么?面向服务商的,还是面向最终客户的? OSS的最终面向用户是开发者用户,为有存储需求的用户提供海量,安全,高可靠,支持高并发的企业级云存储服务。 ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第29楼fds-em于2015-03-25 20:45发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 域名绑定。CNAME跟我网站的A记录冲突怎么解决啊?而且子域名先认证文件然后把A记录删除后。然后再用CNAME。那么访问也是没用啊 参考下这个教程 http://docs.aliyun.com/#/oss/getting-started/bucket-attributes&cname 注意核对您的区域(您的Bucket所在区域不同cname地址也不同) ------------------------- Re:ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) 引用第38楼金龟于2015-03-26 13:01发表的 ReOSS大学堂OSS产品技术互动第一期OSS的介绍及控制台操作(3.23-3.27) : 为什么没有 批量转移目录,全选等功能 您可以使用这个客户端工具解决您的需求 http://bbs.aliyun.com/read/231195.html   ------------------------- 回 18楼(渴望更高) 的帖子 您可以使用移动端的SDK,直接通过手机上传图片到OSS, SDK文档: android-sdk http://docs.aliyun.com/#/oss/sdk/android-sdk ios-sdk http://docs.aliyun.com/#/oss/sdk/ios-sdk ------------------------- 回 17楼(寂寞先生) 的帖子 您可以参考下这个帖子 http://bbs.aliyun.com/read/233791.html

ossbaymax 2019-12-02 01:54:17 0 浏览量 回答数 0

回答

struct 模块可被用来编码/解码几乎所有类型的二进制的数据结构。为了解释清楚这种数据,假设你用下面的Python数据结构 来表示一个组成一系列多边形的点的集合: polys = [ [ (1.0, 2.5), (3.5, 4.0), (2.5, 1.5) ], [ (7.0, 1.2), (5.1, 3.0), (0.5, 7.5), (0.8, 9.0) ], [ (3.4, 6.3), (1.2, 0.5), (4.6, 9.2) ], ] 现在假设这个数据被编码到一个以下列头部开始的二进制文件中去了: +------+--------+------------------------------------+ |Byte | Type | Description | +======+========+====================================+ |0 | int | 文件代码(0x1234,小端) | +------+--------+------------------------------------+ |4 | double | x 的最小值(小端) | +------+--------+------------------------------------+ |12 | double | y 的最小值(小端) | +------+--------+------------------------------------+ |20 | double | x 的最大值(小端) | +------+--------+------------------------------------+ |28 | double | y 的最大值(小端) | +------+--------+------------------------------------+ |36 | int | 三角形数量(小端) | +------+--------+------------------------------------+ 紧跟着头部是一系列的多边形记录,编码格式如下: +------+--------+-------------------------------------------+ |Byte | Type | Description | +======+========+===========================================+ |0 | int | 记录长度(N字节) | +------+--------+-------------------------------------------+ |4-N | Points | (X,Y) 坐标,以浮点数表示 | +------+--------+-------------------------------------------+ 为了写这样的文件,你可以使用如下的Python代码: import struct import itertools def write_polys(filename, polys): # Determine bounding box flattened = list(itertools.chain(*polys)) min_x = min(x for x, y in flattened) max_x = max(x for x, y in flattened) min_y = min(y for x, y in flattened) max_y = max(y for x, y in flattened) with open(filename, 'wb') as f: f.write(struct.pack('<iddddi', 0x1234, min_x, min_y, max_x, max_y, len(polys))) for poly in polys: size = len(poly) * struct.calcsize('<dd') f.write(struct.pack('<i', size + 4)) for pt in poly: f.write(struct.pack('<dd', *pt)) 将数据读取回来的时候,可以利用函数 struct.unpack() ,代码很相似,基本就是上面写操作的逆序。如下: def read_polys(filename): with open(filename, 'rb') as f: # Read the header header = f.read(40) file_code, min_x, min_y, max_x, max_y, num_polys = \ struct.unpack('<iddddi', header) polys = [] for n in range(num_polys): pbytes, = struct.unpack('<i', f.read(4)) poly = [] for m in range(pbytes // 16): pt = struct.unpack('<dd', f.read(16)) poly.append(pt) polys.append(poly) return polys 尽管这个代码可以工作,但是里面混杂了很多读取、解包数据结构和其他细节的代码。如果用这样的代码来处理真实的数据文件, 那未免也太繁杂了点。因此很显然应该有另一种解决方法可以简化这些步骤,让程序员只关注自最重要的事情。 在本小节接下来的部分,我会逐步演示一个更加优秀的解析字节数据的方案。 目标是可以给程序员提供一个高级的文件格式化方法,并简化读取和解包数据的细节。但是我要先提醒你, 本小节接下来的部分代码应该是整本书中最复杂最高级的例子,使用了大量的面向对象编程和元编程技术。 一定要仔细的阅读我们的讨论部分,另外也要参考下其他章节内容。 首先,当读取字节数据的时候,通常在文件开始部分会包含文件头和其他的数据结构。 尽管struct模块可以解包这些数据到一个元组中去,另外一种表示这种信息的方式就是使用一个类。 就像下面这样: import struct class StructField: ''' Descriptor representing a simple structure field ''' def __init__(self, format, offset): self.format = format self.offset = offset def __get__(self, instance, cls): if instance is None: return self else: r = struct.unpack_from(self.format, instance._buffer, self.offset) return r[0] if len(r) == 1 else r class Structure: def __init__(self, bytedata): self._buffer = memoryview(bytedata) 这里我们使用了一个描述器来表示每个结构字段,每个描述器包含一个结构兼容格式的代码以及一个字节偏移量, 存储在内部的内存缓冲中。在 __get__() 方法中,struct.unpack_from() 函数被用来从缓冲中解包一个值,省去了额外的分片或复制操作步骤。 Structure 类就是一个基础类,接受字节数据并存储在内部的内存缓冲中,并被 StructField 描述器使用。 这里使用了 memoryview() ,我们会在后面详细讲解它是用来干嘛的。 使用这个代码,你现在就能定义一个高层次的结构对象来表示上面表格信息所期望的文件格式。例如: class PolyHeader(Structure): file_code = StructField('<i', 0) min_x = StructField('<d', 4) min_y = StructField('<d', 12) max_x = StructField('<d', 20) max_y = StructField('<d', 28) num_polys = StructField('<i', 36) 下面的例子利用这个类来读取之前我们写入的多边形数据的头部数据: >>> f = open('polys.bin', 'rb') >>> phead = PolyHeader(f.read(40)) >>> phead.file_code == 0x1234 True >>> phead.min_x 0.5 >>> phead.min_y 0.5 >>> phead.max_x 7.0 >>> phead.max_y 9.2 >>> phead.num_polys 3 >>> 这个很有趣,不过这种方式还是有一些烦人的地方。首先,尽管你获得了一个类接口的便利, 但是这个代码还是有点臃肿,还需要使用者指定很多底层的细节(比如重复使用 StructField ,指定偏移量等)。 另外,返回的结果类同样确实一些便利的方法来计算结构的总数。 任何时候只要你遇到了像这样冗余的类定义,你应该考虑下使用类装饰器或元类。 元类有一个特性就是它能够被用来填充许多低层的实现细节,从而释放使用者的负担。 下面我来举个例子,使用元类稍微改造下我们的 Structure 类: class StructureMeta(type): ''' Metaclass that automatically creates StructField descriptors ''' def __init__(self, clsname, bases, clsdict): fields = getattr(self, '_fields_', []) byte_order = '' offset = 0 for format, fieldname in fields: if format.startswith(('<','>','!','@')): byte_order = format[0] format = format[1:] format = byte_order + format setattr(self, fieldname, StructField(format, offset)) offset += struct.calcsize(format) setattr(self, 'struct_size', offset) class Structure(metaclass=StructureMeta): def __init__(self, bytedata): self._buffer = bytedata @classmethod def from_file(cls, f): return cls(f.read(cls.struct_size)) 使用新的 Structure 类,你可以像下面这样定义一个结构: class PolyHeader(Structure): _fields_ = [ ('<i', 'file_code'), ('d', 'min_x'), ('d', 'min_y'), ('d', 'max_x'), ('d', 'max_y'), ('i', 'num_polys') ] 正如你所见,这样写就简单多了。我们添加的类方法 from_file() 让我们在不需要知道任何数据的大小和结构的情况下就能轻松的从文件中读取数据。比如: >>> f = open('polys.bin', 'rb') >>> phead = PolyHeader.from_file(f) >>> phead.file_code == 0x1234 True >>> phead.min_x 0.5 >>> phead.min_y 0.5 >>> phead.max_x 7.0 >>> phead.max_y 9.2 >>> phead.num_polys 3 >>> 一旦你开始使用了元类,你就可以让它变得更加智能。例如,假设你还想支持嵌套的字节结构, 下面是对前面元类的一个小的改进,提供了一个新的辅助描述器来达到想要的效果: class NestedStruct: ''' Descriptor representing a nested structure ''' def __init__(self, name, struct_type, offset): self.name = name self.struct_type = struct_type self.offset = offset def __get__(self, instance, cls): if instance is None: return self else: data = instance._buffer[self.offset: self.offset+self.struct_type.struct_size] result = self.struct_type(data) # Save resulting structure back on instance to avoid # further recomputation of this step setattr(instance, self.name, result) return result class StructureMeta(type): ''' Metaclass that automatically creates StructField descriptors ''' def __init__(self, clsname, bases, clsdict): fields = getattr(self, '_fields_', []) byte_order = '' offset = 0 for format, fieldname in fields: if isinstance(format, StructureMeta): setattr(self, fieldname, NestedStruct(fieldname, format, offset)) offset += format.struct_size else: if format.startswith(('<','>','!','@')): byte_order = format[0] format = format[1:] format = byte_order + format setattr(self, fieldname, StructField(format, offset)) offset += struct.calcsize(format) setattr(self, 'struct_size', offset) 在这段代码中,NestedStruct 描述器被用来叠加另外一个定义在某个内存区域上的结构。 它通过将原始内存缓冲进行切片操作后实例化给定的结构类型。由于底层的内存缓冲区是通过一个内存视图初始化的, 所以这种切片操作不会引发任何的额外的内存复制。相反,它仅仅就是之前的内存的一个叠加而已。 另外,为了防止重复实例化,通过使用和8.10小节同样的技术,描述器保存了该实例中的内部结构对象。 使用这个新的修正版,你就可以像下面这样编写: class Point(Structure): _fields_ = [ ('<d', 'x'), ('d', 'y') ] class PolyHeader(Structure): _fields_ = [ ('<i', 'file_code'), (Point, 'min'), # nested struct (Point, 'max'), # nested struct ('i', 'num_polys') ] 令人惊讶的是,它也能按照预期的正常工作,我们实际操作下: >>> f = open('polys.bin', 'rb') >>> phead = PolyHeader.from_file(f) >>> phead.file_code == 0x1234 True >>> phead.min # Nested structure <__main__.Point object at 0x1006a48d0> >>> phead.min.x 0.5 >>> phead.min.y 0.5 >>> phead.max.x 7.0 >>> phead.max.y 9.2 >>> phead.num_polys 3 >>> 到目前为止,一个处理定长记录的框架已经写好了。但是如果组件记录是变长的呢? 比如,多边形文件包含变长的部分。 一种方案是写一个类来表示字节数据,同时写一个工具函数来通过多少方式解析内容。跟6.11小节的代码很类似: class SizedRecord: def __init__(self, bytedata): self._buffer = memoryview(bytedata) @classmethod def from_file(cls, f, size_fmt, includes_size=True): sz_nbytes = struct.calcsize(size_fmt) sz_bytes = f.read(sz_nbytes) sz, = struct.unpack(size_fmt, sz_bytes) buf = f.read(sz - includes_size * sz_nbytes) return cls(buf) def iter_as(self, code): if isinstance(code, str): s = struct.Struct(code) for off in range(0, len(self._buffer), s.size): yield s.unpack_from(self._buffer, off) elif isinstance(code, StructureMeta): size = code.struct_size for off in range(0, len(self._buffer), size): data = self._buffer[off:off+size] yield code(data) 类方法 SizedRecord.from_file() 是一个工具,用来从一个文件中读取带大小前缀的数据块, 这也是很多文件格式常用的方式。作为输入,它接受一个包含大小编码的结构格式编码,并且也是自己形式。 可选的 includes_size 参数指定了字节数是否包含头部大小。 下面是一个例子教你怎样使用从多边形文件中读取单独的多边形数据: >>> f = open('polys.bin', 'rb') >>> phead = PolyHeader.from_file(f) >>> phead.num_polys 3 >>> polydata = [ SizedRecord.from_file(f, '<i') ... for n in range(phead.num_polys) ] >>> polydata [<__main__.SizedRecord object at 0x1006a4d50>, <__main__.SizedRecord object at 0x1006a4f50>, <__main__.SizedRecord object at 0x10070da90>] >>> 可以看出,SizedRecord 实例的内容还没有被解析出来。 可以使用 iter_as() 方法来达到目的,这个方法接受一个结构格式化编码或者是 Structure 类作为输入。 这样子可以很灵活的去解析数据,例如: >>> for n, poly in enumerate(polydata): ... print('Polygon', n) ... for p in poly.iter_as('<dd'): ... print(p) ... Polygon 0 (1.0, 2.5) (3.5, 4.0) (2.5, 1.5) Polygon 1 (7.0, 1.2) (5.1, 3.0) (0.5, 7.5) (0.8, 9.0) Polygon 2 (3.4, 6.3) (1.2, 0.5) (4.6, 9.2) >>> >>> for n, poly in enumerate(polydata): ... print('Polygon', n) ... for p in poly.iter_as(Point): ... print(p.x, p.y) ... Polygon 0 1.0 2.5 3.5 4.0 2.5 1.5 Polygon 1 7.0 1.2 5.1 3.0 0.5 7.5 0.8 9.0 Polygon 2 3.4 6.3 1.2 0.5 4.6 9.2 >>> 将所有这些结合起来,下面是一个 read_polys() 函数的另外一个修正版: class Point(Structure): _fields_ = [ ('<d', 'x'), ('d', 'y') ] class PolyHeader(Structure): _fields_ = [ ('<i', 'file_code'), (Point, 'min'), (Point, 'max'), ('i', 'num_polys') ] def read_polys(filename): polys = [] with open(filename, 'rb') as f: phead = PolyHeader.from_file(f) for n in range(phead.num_polys): rec = SizedRecord.from_file(f, '<i') poly = [ (p.x, p.y) for p in rec.iter_as(Point) ] polys.append(poly) return polys

哦哦喔 2020-04-17 13:26:19 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅