• 关于

    地址计数器有什么用

    的搜索结果

问题

C语言数组 【问答合集】

马铭芳 2019-12-01 20:09:44 970 浏览量 回答数 1

回答

一。zval、引用计数、变量分离、写时拷贝我们一步步来理解1、php语言特性PHP是脚本语言,所谓脚本语言,就是说PHP并不是独立运行的,要运行PHP代码需要PHP解析器,用户编写的PHP代码最终都会被PHP解析器解析执行PHP的执行是通过Zend engine(ZE, Zend引擎),ZE是用C编写的用户编写的PHP代码最终都会被翻译成PHP的虚拟机ZE的虚拟指令(OPCODES)来执行也就说最终会被翻译成一条条的指令既然这样,有什么结果和你预想的不一样,查看php源码是最直接最有效的 2、php变量的存储结构在PHP中,所有的变量都是用一个结构zval结构来保存的,在Zend/zend.h中可以看到zval的定义:zval结构包括:① value —— 值,是真正保存数据的关键部分,定义为一个联合体(union)② type —— 用来储存变量的类型 ③ is_ref —— 下面介绍④ refcount —— 下面介绍 声明一个变量$addr="北京";PHP内部都是使用zval来表示变量的,那对于上面的脚本,ZE是如何把addr和内部的zval结构联系起来的呢?变量都是有名字的(本例中变量名为addr)而zval中并没有相应的字段来体现变量名。PHP内部肯定有一个机制,来实现变量名到zval的映射在PHP中,所有的变量都会存储在一个数组中(确切的说是hash table)当你创建一个变量的时候,PHP会为这个变量分配一个zval,填入相应的信息,然后将这个变量的名字和指向这个zval的指针填入一个数组中。当你获取这个变量的时候,PHP会通过查找这个数组,取得对应的zval 注意:数组和对象这类复合类型在生成zval时,会为每个单元生成一个zval3、我们经常说每个变量都有一个内存地址,那这个zval和变量的内存地址,这俩有什么关系吗?定义一个变量会开辟一块内存,这块内存好比一个盒子,盒子里放了zval,zval里保存了变量的相关信息,需要开辟多大的内存,是由zval所占空间大小决定的zval是内存对象,垃圾回收的时候会把zval和内存地址(盒子)分别释放掉 4、引用计数、变量分离、写时拷贝zval中的refcount和is_ref还没有介绍,我们知道PHP是一个长时间运行的服务器端脚本。那么对于它来说,效率和资源占用率是一个很重要的衡量标准,也就是说,PHP必须尽量减少内存占用率。考虑下面这段代码:第一行代码创建了一个字符串变量,申请了一个大小为9字节的内存,保存了字符串“laruence”和一个NULL(0)的结尾第二行定义了一个新的字符串变量,并将变量var的值“复制”给这个新的变量第三行unset了变量var 这样的代码是很常见的,如果PHP对于每一个变量赋值都重新分配内存,copy数据的话,那么上面的这段代码就要申请18个字节的内存空间,为了申请新的内存,还需要cpu执行某些计算,这当然会加重cpu的负载而我们也很容易看出来,上面的代码其实根本没有必要申请两份空间,当第三句执行后,$var被释放了,我们刚才的设想(申请18个字节内存空间)突然变的很滑稽,这次复制显得好多余。如果早知道$var不用了,直接让$var_dup用$var的内存不就行了,还复制干嘛?如果你觉得9个字节没什么,那设想下如果$var是个10M的文件内容,或者20M,是不是我们的计算机资源消耗的有点冤枉呢?呵呵,PHP的开发者也看出来了: 刚才说了,PHP中的变量是用一个存储在symbol_table中的符号名,对应一个zval来实现的,比如对于上面的第一行代码,会在symbol_table中存储一个值“var”,对应的有一个指针指向一个zval结构,变量值“laruence”保存在这个zval中,所以不难想象,对于上面的代码来说,我们完全可以让“var”和“var_dup”对应的指针都指向同一个zval就可以了(额,鸟哥一会说hash table,一会说symbol_table,暂且理解为symbol_table是hash table的子集) PHP也是这样做的,这个时候就需要介绍一下zval结构中的refcount字段了refcount,引用计数,记录了当前的zval被引用的次数(这里的引用并不是真正的 & ,而是有几个变量指向它)比如对于代码:第一行,创建了一个整形变量,变量值是1。 此时保存整形1的这个zval的refcount为1第二行,创建了一个新的整形变量(通过赋值的方式),变量也指向刚才创建的zval,并将这个zval的refcount加1,此时这个zval的refcount为2所以,这个时候(通过值传递的方式赋值给别的变量),并没有产生新的zval,两个变量指向同一zval,通过一个计数器来共用zval及内存地址,以达到节省内存空间的目的当一个变量被第一次创建的时候,它对应的zval结构的refcount的值会被初始化为1,因为只有这一个变量在用它。但是当你把这个变量赋值给别的变量时,refcount属性便会加1变成2,因为现在有两个变量在用这个zval结构了 PHP提供了一个函数可以帮助我们了解这个过程debug_zval_dump输出:long(1) refcount(2)long(1) refcount(3)如果你奇怪 ,var的refcount应该是1啊?我们知道,对于简单变量,PHP是以传值的形式传参数的。也就是说,当执行debug_zval_dump($var)的时候,$var会以传值的方式传递给debug_zval_dump,也就是会导致var的refcount加1,所以只要能看到,当变量赋值给一个变量以后,能导致zval的refcount加1这个结果即可现在我们回头看上面的代码, 当执行了最后一行unset($var)以后,会发生什么呢?unset($var)的时候,它删除符号表里的$var的信息,准备清理它对应的zval及内存空间,这时它发现$var对应的zval结构的refcount值是2,也就是说,还有另外一个变量在一起用着这个zval,所以unset只需把这个zval的refcount减去1就行了上代码:输出:string(8) "laruence" refcount(2) 但是,对于下面的代码呢?很明显在这段代码执行以后,$var_dup的值应该还是“laruence”,那么这又是怎么实现的呢?这就是PHP的copy on write机制(简称COW):PHP在修改一个变量以前,会首先查看这个变量的refcount,如果refcount大于1,PHP就会执行一个分离的过程(在Zend引擎中,分离是破坏一个引用对的过程)对于上面的代码,当执行到第三行的时候,PHP发现$var想要改变,并且它指向的zval的refcount大于1,那么PHP就会复制一个新的zval出来,改变其值,将改变的变量指向新的zval(哪个变量指向新复制的zval其实已经无所谓了),并将原zval的refcount减1,并修改symbol_table里该变量的指针,使得$var和$var_dup分离(Separation)。这个机制就是所谓的copy on write(写时复制,这里的写包括普通变量的修改及数组对象里的增加、删除单元操作)如果了解了is_ref之后,上面说的并不严谨 上代码测试:输出:long(1) refcount(2)string(8) "laruence" refcount(2) 现在我们知道,当使用变量复制的时候 ,PHP内部并不是真正的复制,而是采用指向相同的zval结构来节约开销。那么,对于PHP中的引用,又是如何实现呢?这段代码结束以后,$var也会被间接的修改为1,这个过程称作(change on write:写时改变)那么ZE是怎么知道,这次的复制不需要Separation呢?这个时候就要用到zval中的is_ref字段了:对于上面的代码,当第二行执行以后,$var所代表的zval的refcount变为2,并且设置is_ref为1到第三行的时候,PHP先检查var_ref对应的zval的is_ref字段(is_ref 表示该zval是否被&引用,仅表示真或假,就像开关的开与关一样,zval的初始化情况下为0,即非引用),如果为1,则不分离,直接更改(否则需要执行刚刚提到的zval分离),更改共享的zval实际上也间接更改了$var的值,因为引擎想所有的引用变量都看到这一改变php源码做了这样一个判断,大体逻辑示意如下:如果这个zval中的if_ref为1(即被引用),或者该zval引用计数小于2任何一种方式:都不会进行分离 尽管已经存在写时复制和写时改变,但仍然还存在一些不能通过is_ref和refcount来解决的问题对于如下的代码,又会怎样呢?这里$var、$var_dup、$var_ref三个变量将共用一个zval结构(其实这是不可能的,一个zval不可能既被&,又被指向),有两个属于change-on-write组合($var和$var_ref),有两个属于copy-on-write组合($var和$var_dup),那is_ref和refcount该怎样工作,才能正确的处理好这段复杂的关系呢?答案是不可能!在这种情况下,变量的值必须分离成两份完全独立的存在当执行第二行代码的时候,和前面讲过的一样,$var_dup 和 $var 指向相同的zval, refcount为2当执行第三行的时候,PHP发现要操作的zval的refcount大于1,则PHP会执行Separation(也就是说php将一个zval的is_ref从0设为1 之前,当然此时refcount还没有增加,会看该zval的refcount,如果refcount>1,则会分离), 将$var_dup分离出去,并将$var和$var_ref做change on write关联。也就是,refcount=2, is_ref=1;所以内存会给变量var_dup 分配出一个新的zval,类型与值同 $var和$var_ref指向的zval一样,是新分配出来的,尽管他们拥有同样的值,但是必须通过两个zval来实现。试想一下,如果三者指向同一个zval的话,改边 $var_dup 的值,那么 $var和$var_ref 也会受到影响,这样就乱套了图解:下面的这段代码在内核中同样会产生歧义,所以需要强制复制!也就是说一个zval不会既被引用,又被指向,必须分离 基于这样的分析,我们就可以让debug_zval_dump出refcount为1的结果来:输出:string(8) "laruence" refcount(1) 为什么结果是refcount(1)呢debug_zval_dump()中参数是引用的话,refcount永远为1这两段代码在执行的时候是这样的逻辑:PHP先看变量指向的zval是否被引用,如果是引用,则不再产生新的zval甭管哪个变量引用了它,比如有个变量$a被引用了,$b=&$a,就算自己引用自己$a=&$a,$a所指向的zval都不会被复制,改变其中一个变量的值,另一个值也被改变(写时改变)如果is_ref为0且refcount大于1,改变其中一个变量时,复制新的zval(写时复制) 还有一个知识点需要了解下,就是PHP数组复制的机制复制一个数组,就是把一个数组赋值给一个变量便可。会把数组指针位置一同复制。这里面有两种情况:① 指针位置合法,这时直接复制,无影响② 原数组指针位置非法时(移出界),“新”数组指针会初始化(这里的新为什么要加引号?请看下文),而老的数组指针位置不变,还是false先看例子: 结果:!结果:出现这种情况好像不对?$arr2 难道不是新数组?新数组的数组指针应该重置了啊这里注意了:$arr2 = $arr1 ,在俩变量都没发生写操作时,他们其实引用的是同一个内存地址。在其中一个变量发生写操作后,内存地址会复制一份,发生改变的变量会去引用它,并把数组指针初始化。所以 $arr1 会去引用复制的内存地址,并将指针初始化二。.foreach循环时调用current等函数!结果: 56按照之前说的,foreach先赋值,再移动指针,再执行循环体,第一次结果为2可以理解为什么三次都是2呢?咋就这么2呢?因为current函数是按引用传递的函数 在zval笔记中说了,一个zval不能既被引用,又被指向所以,变量分离,重新拷贝一份数组专门用于current函数 当然,如果数组zval的is_ref为1,则不会拷贝数组了或者:结果:current是引用传参

杨冬芳 2019-12-02 02:26:33 0 浏览量 回答数 0

回答

在Java中,常量池的概念想必很多人都听说过。这也是面试中比较常考的题目之一。在Java有关的面试题中,一般习惯通过String的有关问题来考察面试者对于常量池的知识的理解,几道简单的String面试题难倒了无数的开发者。所以说,常量池是Java体系中一个非常重要的概念。 谈到常量池,在Java体系中,共用三种常量池。分别是字符串常量池、Class常量池和运行时常量池。 本文先来介绍一下到底什么是Class常量池。 什么是Class文件 在Java代码的编译与反编译那些事儿中我们介绍过Java的编译和反编译的概念。我们知道,计算机只认识0和1,所以程序员写的代码都需要经过编译成0和1构成的二进制格式才能够让计算机运行。 我们在《深入分析Java的编译原理》中提到过,为了让Java语言具有良好的跨平台能力,Java独具匠心的提供了一种可以在所有平台上都能使用的一种中间代码——字节码(ByteCode)。 有了字节码,无论是哪种平台(如Windows、Linux等),只要安装了虚拟机,都可以直接运行字节码。 同样,有了字节码,也解除了Java虚拟机和Java语言之间的耦合。这话可能很多人不理解,Java虚拟机不就是运行Java语言的么?这种解耦指的是什么? 其实,目前Java虚拟机已经可以支持很多除Java语言以外的语言了,如Groovy、JRuby、Jython、Scala等。之所以可以支持,就是因为这些语言也可以被编译成字节码。而虚拟机并不关心字节码是有哪种语言编译而来的。 Java语言中负责编译出字节码的编译器是一个命令是javac。 javac是收录于JDK中的Java语言编译器。该工具可以将后缀名为.java的源文件编译为后缀名为.class的可以运行于Java虚拟机的字节码。 如,我们有以下简单的HelloWorld.java代码: public class HelloWorld { public static void main(String[] args) { String s = "Hollis"; } } 通过javac命令生成class文件: javac HelloWorld.java 生成HelloWorld.class文件:  如何使用16进制打开class文件:使用 vim test.class ,然后在交互模式下,输入:%!xxd 即可。 可以看到,上面的文件就是Class文件,Class文件中包含了Java虚拟机指令集和符号表以及若干其他辅助信息。 要想能够读懂上面的字节码,需要了解Class类文件的结构,由于这不是本文的重点,这里就不展开说明了。 读者可以看到,HelloWorld.class文件中的前八个字母是cafe babe,这就是Class文件的魔数(Java中的”魔数”) 我们需要知道的是,在Class文件的4个字节的魔数后面的分别是4个字节的Class文件的版本号(第5、6个字节是次版本号,第7、8个字节是主版本号,我生成的Class文件的版本号是52,这时Java 8对应的版本。也就是说,这个版本的字节码,在JDK 1.8以下的版本中无法运行)在版本号后面的,就是Class常量池入口了。 Class常量池 Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池(constant pool table),用于存放编译器生成的各种字面量(Literal)和符号引用(Symbolic References)。 由于不同的Class文件中包含的常量的个数是不固定的,所以在Class文件的常量池入口处会设置两个字节的常量池容量计数器,记录了常量池中常量的个数。  当然,还有一种比较简单的查看Class文件中常量池的方法,那就是通过javap命令。对于以上的HelloWorld.class,可以通过 javap -v HelloWorld.class 查看常量池内容如下:  从上图中可以看到,反编译后的class文件常量池中共有16个常量。而Class文件中常量计数器的数值是0011,将该16进制数字转换成10进制的结果是17。 原因是与Java的语言习惯不同,常量池计数器是从0开始而不是从1开始的,常量池的个数是10进制的17,这就代表了其中有16个常量,索引值范围为1-16。 常量池中有什么 介绍完了什么是Class常量池以及如何查看常量池,那么接下来我们就要深入分析一下,Class常量池中都有哪些内容。 常量池中主要存放两大类常量:字面量(literal)和符号引用(symbolic references)。 字面量 前面说过,运行时常量池中主要保存的是字面量和符号引用,那么到底什么字面量? 在计算机科学中,字面量(literal)是用于表达源代码中一个固定值的表示法(notation)。几乎所有计算机编程语言都具有对基本值的字面量表示,诸如:整数、浮点数以及字符串;而有很多也对布尔类型和字符类型的值也支持字面量表示;还有一些甚至对枚举类型的元素以及像数组、记录和对象等复合类型的值也支持字面量表示法。 以上是关于计算机科学中关于字面量的解释,并不是很容易理解。说简单点,字面量就是指由字母、数字等构成的字符串或者数值。 字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=123这里的a为左值,123为右值。在这个例子中123就是字面量。 int a = 123; String s = "hollis"; 上面的代码事例中,123和hollis都是字面量。 本文开头的HelloWorld代码中,Hollis就是一个字面量。 符号引用 常量池中,除了字面量以外,还有符号引用,那么到底什么是符号引用呢。 符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量: * 类和接口的全限定名 * 字段的名称和描述符 * 方法的名称和描述符 这也就可以印证前面的常量池中还包含一些com/hollis/HelloWorld、main、([Ljava/lang/String;)V等常量的原因了。 Class常量池有什么用 前面介绍了这么多,关于Class常量池是什么,怎么查看Class常量池以及Class常量池中保存了哪些东西。有一个关键的问题没有讲,那就是Class常量池到底有什么用。 首先,可以明确的是,Class常量池是Class文件中的资源仓库,其中保存了各种常量。而这些常量都是开发者定义出来,需要在程序的运行期使用的。 在《深入理解Java虚拟》中有这样的表述: Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态连接的内容,在虚拟机类加载过程时再进行详细讲解。 前面这段话,看起来很绕,不是很容易理解。其实他的意思就是: Class是用来保存常量的一个媒介场所,并且是一个中间场所。在JVM真的运行时,需要把常量池中的常量加载到内存中。 至于到底哪个阶段会做这件事情,以及Class常量池中的常量会以何种方式被加载到具体什么地方,会在本系列文章的后续内容中继续阐述。欢迎关注我的博客(http://www.hollischuang.com) 和公众号(Hollis),即可第一时间获得最新内容。 另外,关于常量池中常量的存储形式,以及数据类型的表示方法本文中并未涉及,并不是说这部分知识点不重要,只是Class字节码的分析本就枯燥,作者不想在一篇文章中给读者灌输太多的理论上的内容。感兴趣的读者可以自行Google学习,如果真的有必要,我也可以单独写一篇文章再深入介绍。 参考资料 《深入理解java虚拟机》 《Java虚拟机原理图解》 1.2.2、Class文件中的常量池详解(上)

montos 2020-06-02 10:12:18 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现

剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

问题

Windows服务器日常维护策略

我的中国 2019-12-01 21:57:39 2665 浏览量 回答数 1

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。

剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

【精品问答】Python二级考试题库

珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站