• 关于

    通用系统理论怎么用

    的搜索结果

回答

可以这样回答:emmm 怎么说呢。 数据库就是用来存储数据的仓库,就像我们生活中存放物品的容器一样,但是容器也有通用和专用之分,比如塑料袋就是通用容器,因为塑料袋可以装各种东西:即可以装糖果,也可以装铅笔。但我们也可以选择一种更合适的存储方式:用糖果盒来装糖果,用笔筒来装铅笔。糖果盒和笔筒就是专用容器。数据和物品一样,也可以采用通用或者专用的存储方式,各有利弊,SQL就是通用数据库,NoSQL就是专用数据库,这就是他俩的区别。 集合论与关系代数 可是为什么SQL可以做到通用呢?世界上的数据结构千千万,为啥SQL可以满足各种需求而且半个世纪都不过时? 虽然说唯一不变的就是变化,计算机行业一直在发生裂变,但是有些基本的东西是永远不变的,或者说变化很慢:当今世上最流行的编程语言JavaScript仍然遵守着60年前Lisp语言的标准,现代操作系统Windows,OSX,Linux都来自于共同祖先Unix。 数据库的发展也是一样,无论形式怎样变化,其本质都是围绕集合论与关系代数来设计的。基本理论决定一切,在软件行业只要掌握了基础数学理论,就掌握了一切变化的规律,这就是SQL永不过时的秘密。 一切都是线性表 软件学家认识到,整个计算机行业都是建立在对数据的一维利用上:无论是内存,外存还是网络,存储和传输的都是一维数据。一维数据也就是线性表,所有复杂的数据结构都建立在线性表之上,任何二维,三维的数据结构也是由线性表组成的。线性表俗称列表,从“人类本质是复读机”理论上看,世间万物都是由列表(集合)组成的。 在宇宙间,一个技术文明等级的重要标志,是它能够控制和使用的微观维度。对于基本粒子的一维使用,从我们那些长毛裸·体的祖先在山洞中生起篝火时就开始了,对化学反应的控制,就是在一维层次上操控微观粒子。当然,这种控制也是从低级到高级,从篝火到后来的蒸汽机,再到后来的发电机;现在,人类对微观粒子一维控制的水平已达到了顶峰,有了计算机和纳米材料。但这一切,都局限于对微观维度的一维控制,在宇宙间一个更高级的文明看来,篝火和计算机、纳米材料等等是没有本质区别的,同属于一个层次。 ------《三体I:地球往事》 科幻小说《三体》刘慈欣 基于这个理论(或者说世界观),集合论被拿来研究数据库了,比如我们数学课本上的集合要求集合的元素具有互异性和无序性:因为要互异,我们有了数据库的唯一性主键;因为要无序,数据库的排序就交给索引来做了。 集合论是数学本身的一个分支,数据库科学出现后,为了研究集合与集合之间的关系,衍生出了一门新的分支:关系代数。 关系代数研究的是二维线性表之间可以发生的各种操作,也就是表格语言,最基本的操作包括矩阵学中的水平分割和垂直分割:分别对应选择和投影。SQL(结构化查询语言)就是关系代数的一个实现,所以SQL数据库也叫关系数据库,关系代数和sql的对应关系如下图: 尽管SQL的语法一直饱受吐槽:凌乱而易引歧义,还不是很优雅。但由于SQL的数学基础很稳固,SQL才能够一直流行到现在。但并不是说NoSQL的基础不稳固,相反NoSQL是对具体结构做具体分析,NoSQL的数学基础往往更简单,更牢固。 表格与图表的统一 无论是表格还是各种统计图在数据上都是统一的,都是二维列表(也可以叫列表的列表),一个表格可以无损地转化成一个柱状图,折线图,雷达图,饼图。。。所以表格可以看成是一种特殊的图表。著名的前端框架ag-grid就是在这个理论上诞生的: 关系代数,SQL,NoSQL,线性表,统计图,表格,ag-grid这些研究的都是集合,都是列表,都是最本质,永恒不变的东西,所以才有那么多学者投入到这个永不过时的领域。 就这样啦~ mua! (完)

茶什i 2019-12-30 11:37:02 0 浏览量 回答数 0

回答

" 用了两年的时间,终于把这个问题解决了。。######能分享下如何解决的吗###### 分布式事务的基本理论,2PC, QUORUM, PAXOS,系统要达到100w/s的水准靠水平分割 ######好问题,。。。######mark######你的解法是正确可行的,不知道面试官是怎么想的,估计面试官自己都没有答案。 消息队列是可以集群的,最终的瓶颈只是在数据库上面,所以要做多master应该就可以解决了。 如果单库多master还无法解决的话,那就要进行数据库分割。 如果分割了还无法解决的话,那就要采用内存数据库,然后在持久化到磁盘。 灵活运用吧。 ###### 两阶段提交本身属于强一致性模型,你又说做最终一致检查,有点概念不清的嫌疑。 所以面试官在听到你说2PC的时候,估计已经不想跟你扯了, 猜测~~。    其实海量分布式事务的解决方案就是最终一致性模型。 ######因为他的说法中有错别字,我没有看到2pc,这一点他的强一致模型确实和最终一致模型概念不清。楼主本身估计不是做架构的,是根据自己公司原来的架构体系自己总结的一些东西。不过楼主的解决方案的大体方向是可行的。###### 引用来自“jobet”的评论你的解法是正确可行的,不知道面试官是怎么想的,估计面试官自己都没有答案。 消息队列是可以集群的,最终的瓶颈只是在数据库上面,所以要做多master应该就可以解决了。 如果单库多master还无法解决的话,那就要进行数据库分割。 如果分割了还无法解决的话,那就要采用内存数据库,然后在持久化到磁盘。 灵活运用吧。 什么东西一大了,单纯靠数据库,分布式平台等数据工具是解决不了的。一定要结合具体业务特性,大概率下数据分布特征来做模型的重新设计和优化。这就是我说的,大数据的工作,hadoop之类的工具,并不能帮你做什么。还是自身业务模型设计的问题。哈######其实这个问题基本上没有正确的方案,每一个平台根据业务性质都会不同,唯一能够提供的就是一个大体的思虑,其他的根据自己的业务性质自行提炼和优化。###### 引用来自“兮风古道”的评论 两阶段提交本身属于强一致性模型,你又说做最终一致检查,有点概念不清的嫌疑。 所以面试官在听到你说2PC的时候,估计已经不想跟你扯了, 猜测~~。    其实海量分布式事务的解决方案就是最终一致性模型。 二段提交的时候,最后一次commit还是会出错的。。######回复 @jobet : 收到。。我搞错了。。######回复 @Brin想写程序 : 2pc是针对于多数据源的事务处理,也就是分布式事务。你说的这个不是。######回复 @jobet : 问一下mysql的autocommit=false后的,commit和rollback难道不是二段提交的吗?这个应该就是数据库的二段提交吧?######2pc的话,对性能的消耗是很大的。估计面试官是因为听到他说2pc就直接否决了,后续的已经没有兴趣了。###### Brin有什么好办法了,记得 博客里补上######我的解决方案是根据用户顺序处理,也就是用顺序一致性替代绝对一致性,然后用分布式消息队列,用一致性哈希算法,只将一个用户的数据发送给同一个处理者,然后按顺序执行这一个人的操作。所以这个是无锁的,可并行的。###### 引用来自“jobet”的评论你的解法是正确可行的,不知道面试官是怎么想的,估计面试官自己都没有答案。 消息队列是可以集群的,最终的瓶颈只是在数据库上面,所以要做多master应该就可以解决了。 如果单库多master还无法解决的话,那就要进行数据库分割。 如果分割了还无法解决的话,那就要采用内存数据库,然后在持久化到磁盘。 灵活运用吧。 引用来自“中山野鬼”的评论什么东西一大了,单纯靠数据库,分布式平台等数据工具是解决不了的。一定要结合具体业务特性,大概率下数据分布特征来做模型的重新设计和优化。这就是我说的,大数据的工作,hadoop之类的工具,并不能帮你做什么。还是自身业务模型设计的问题。哈 我也觉得是具体业务具体分析,比如在电商平台里面,在怎么分布式,买东西这个过程是一个用户触发的。 所以按照用户对纬度,对资源进行水平分割,应该可以解决大部分问题。 但是但是,最麻烦的是先有很多电商平台非常庞大,而且一开始就没有做这种分割,业务是一团乱麻,没人清楚这个用户的购买行为会影响多少台服务器里面的数据,所以只能寻找比较通用的解决方案。 也就是在某个层面上能彻底解决,现在好像思路还是从rpc层面去解决这个问题。找到统一的一劳永逸的中间价或者说体系结构。。 所以我也很难想明白。。######马克,学习了"

kun坤 2020-05-26 13:15:05 0 浏览量 回答数 0

回答

【丁宁-清华大学-阿里达摩院自然语言技术实习体验】 作者简介:丁宁,清华大学计算机科学与技术系2年级博士生,研究方向为自然语言处理、信息抽取、语言表示学习等,在ACL、EMNLP、AAAI、IJCAI等发表多篇文章,作为研究型实习生在阿里达摩院实习半年+。 实习体会 很幸运能来到阿里巴巴进行实习!组里的氛围特别好,同事和师兄师姐都非常专业、友善、亲切。无论是科研上还是工作生活上的任 何问题,都能得到慷慨的帮助。在这里,我认识了一批学术和生活上的榜样(我的主管每天都吃健康餐,而我牛肉汤泡饼),结交了志同道合的朋友(排队喝牛肉汤回来写论文的日子),见识到了IT同学的认真负责(远程帮我调试打印机,周末修电脑),见过了马云老师,也亲身经历了一次双十一奋战。阿里的科研积淀和文化氛围都让我感到收获颇丰,感谢阿里巴巴提供研究型实习生这一高水平项目,也期待更多的同学可以加入研究型实习生的大家庭。 科研心得& 工作宣传 今年在阿里巴巴所做的跨领域分词工作被ACL 2020高分接收,其中meta review说“well-written, well-motivated with strong results, sure accept”。其实这句话可以很好地总结评判科研论文好坏的标准,实际上或许现阶段的科研也并没有什么秘密,动机明确、方法得当、实验充分,就可以形成一篇不错的科研论文。当然了,如果想做出让领域内眼前一亮的工作,可能就需要一些灵光一闪了。 具体到我们的工作上来,跨领域任务往往面临目标领域精标注数据缺失的问题,具体到分词任务上来说,这种数据缺失往往会导致OOV和词的分布差异问题。本文通过弱监督启发式算法来进行远程标注,并引入对抗学习来进行降噪。本文的实验中以newswire (新闻语料)作为源领域,在5个不同的目标领域数据上都取得了较好的效果。 这个工作或许有助于我们真正的往跨领域的两个通用问题上去设计了相关的解决办法。论文名字:《Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation》,具体可以查看达摩院的官方宣传~:ACL 2020有哪些值得关注的论文? - 阿里巴巴达摩院的回答 - 知乎https://www.zhihu.com/question/385259014/answer/1190808208 另外,也宣传一下作为co-author的另一篇ACL 2020论文,是实习生同事周洁(上海交大研究生)的工作,瞄准多层级文本分类任务,设计层级敏感编码器将多层结构作为有向图建模,并且实现了一个串行和并行的版本,论文名字:Hierarchy-Aware Global Model for Hierarchical Text Classification。 还有另一个实习生同事张浩宇(国防科大博士生)在IJCAI 2020的工作,使用noisy learning的方法去进行远程监督entity typing降噪,方法非常优雅,论文名字:Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling。 【杜志浩-哈尔滨工业大学-我在达摩院作实习研究僧的那些事儿】 经韩老师介绍,2019年7月,有幸进入阿里巴巴达摩院成为一名实习研究僧。如今也已半年有余,期间发生的事情仍然历历在目。从初出茅庐的不安,到积极融入的快乐,再到宠辱不惊的泰然,一路走来收获良多! 初出茅庐 其实,刚到达摩院语音算法组时,我的内心充满了不安。这种不安来自于初出茅庐的不自信,不知自己能否胜任这份工作,为公司带来效益。同时,也来自于环境转变的不适应,换了一个全新的环境,对公司内的工作方式、待人接物都不甚了解。 但是,在算法组师兄师姐的帮助下,我的这些不安很快就烟消云散了。为了能够使我尽快熟悉工作内容、了解工作方式,雷鸣师兄坚持每周四晚上为实习生开组会,拉着仕良哥、智颖等很多小伙伴一起讨论算法思路和实验中遇到的问题。我想他们应该都挺忙的吧,但还是牺牲自己休息的时间来参加组会。 刚来的那段时间,除了“雷老师,xxx麻烦审批通过一下”以外,我说的最多的恐怕就是“xx姐/哥,xxx在哪”。由于对很多事情都不了解,比如服务器怎么申请啊,oss怎么弄啊,我总是要麻烦逍北姐、遥仙哥等目之所及的小伙伴。他们一边在忙自己的工作一边还不厌其烦的告诉我,为我提供了莫大的帮助。 积极融入 在算法组这段时间,让我印象最为深刻的一句话就是“我们做事情都很直接,有什么问题,就带着方案提出来”。以前,总是被教育和鼓励发现问题,在阿里,找到问题只是完成了第一步,还需要再提出一个切实可行的解决方案。期间发生的一段小插曲让我现在依然记忆犹新。  为了准备910,语音测试组的小伙伴每天都在紧张的进行测试。其中一项是对语音实时转录及翻译软件的稳定性测试。由于已经进入应用阶段,不能在直接将数据送入到模型中,需要将语音播放出来,再由软件录音进行测试。播放的内容是马老师的演讲,对于坐在旁边的小伙伴来说既是一件好事,也是一件坏事。由于马老师的演讲实在太引人入胜了,每次他们进行测试时,我们都无法专心工作,最终只能……。 咳咳,我心想,这么下去也不是事儿啊,梦想要有,生活也得继续啊,得想想办法解决一下这个问题。我尝试了各种办法,但似乎都无法绕过功放这个问题。最终功夫不负有心人,找到了一款虚拟声卡的软件,能够将一个应用程序的音频输出直接作为另一个应用程序的输入。在熟悉过这个软件的使用方式后,我找到测试组的组长,向他提出了我现在的处境和解决方案。他告诉我,他也知道这样会打扰到周边的人,但是之前也没有太好的办法,感谢我提出的解决方案。 虽然这只是实习期间的一段小插曲,但是我依然印象深刻。通过这件事,我践行了带着方案提问题,这一阿里人所特有的工作方式,让我感觉自己正在逐渐融入到这个集体当中。 宠辱不惊 经过几个月“死去”又“活来”的做实验、写论文,我跟雷鸣师兄合作的语音增强相关工作投稿到了ICASSP 2020。这是语音信号处理领域的顶级会议,在来阿里之前,我也投稿过一次,但不幸被拒。为了准备这篇文章,雷鸣师兄跟我保持着很高互动,了解实验进度,适时的进行指导。此外,还有仕良哥帮助我进行语音畸变的评估。 2020年1月25日这一天,是我国的传统节日,春节,同时也是ICASSP出结果的日子。在得知结果前,我的内心非常忐忑。但当得知接收的喜讯时,我反而没有想象中那么兴奋,没有想象中那么高兴。我的第一反应是看看审稿人的意见,看看我专家们对我文章的看法,还有哪些不足和需要改进的地方。 我想宠辱不惊的心态应该是我在阿里的一个重要收获吧,不以物喜不以己悲。尽力做好自己该做的事儿,结果自然水到渠成。 再说两句 在阿里的这段实习使我受益匪浅。这里有乐于助人、善解人意的师兄师姐,也有认真负责、要求严格的主管Leader;有弹性自由的工作时间,也有肝到深夜的满腔热情;有最新最热的研究成果,也有成熟稳定的应用软件。这里不像实验室的象牙塔,关注技术的同时,也更关注技术如何落地、如何应用到生活中去,最终如何造福亿万用户。 韩鹏-KAUST-青春没有我之阿里巴巴天猫精灵争夺赛被迫写的研究心得 竞选宣言: 在阿里实习摸了几个月的鱼,最开心的就是又吃到了祖国的美食,虽然杭州的食物实在是太清淡了,但总比我在沙特每天吃水煮青菜不放盐要好很多。在阿里的这几个月,让我看淡了很多,发现生命里比较重要的就是长在自己脑袋上的头发,不能太年轻就失去他们。女网红我是感觉自己这辈子没机会了,毕竟流量明星也不是靠推荐算法能捧红的,也就希望能够得到这次500块钱的天猫精灵,请大家pick我。 研究心得: 多抱大腿 为了凑足300字的内心情感白描: 这个世界实在是太无聊了,尤其疫情导致的只能居家办公,我已经憋得快精神失常了,虽然平时也不是那么正常。希望这个世界早日恢复原来的美好,我还打算去越南胡志明市的日式KTV感受一下女仆装呢,希望疫情不会让这些服务业倒闭呢吧。 居然还不够300字,感觉生命浪费在写文字上要比大保健上还是好一些的,希望这些文字能够启发你,虽然我感觉也并没有什么意义,而人活着的意义又是什么呢? 【韩镕罄-南加州大学- 阿里研究型实习生体验】 简介: 经过两年研究时间,找到了学校的教职,也找到了老婆,感谢阿里~ 2018年八月来阿里做研究型实习生,本人在南加州大学商学院读Operations Management 的Ph.D. 块两年时间做了几篇 field experiment paper, 感觉阿里有太多好玩有趣的商业问题可以讨论直接研究。 通过和阿里的合作顺利找到UIUC 伊利诺伊大学香槟分校的常任轨教职。 更神奇的是,在实习期间,随便刷个阿里妹儿的相亲帖, 加个微信 聊一聊 发现和自己一天生日。 就是你了!现在已经结婚快半年! 三十而立,一切静好,感谢阿里! 【马腾-清华大学- 阿里巴巴RI项目心得】 我与阿里之缘 在2019年的夏天,后来成为我主管的文侑来到清华进行交流,当时的我刚刚完成了一个学术项目的研究,正在寻求于之后的研究方向。恰好在交流会上碰见了文侑,经过一番交流之后吗,了解到操作系统团队是阿里 RDMA 技术的先行者和推广者,这正是我计划之后想要研究的方向,于是便一拍即合。由于我之前所研究的领域刚好符合是阿里目前正在做的一些项目,所以文侑提供了一个可以在阿里实习的机会。 在通过了多轮面试之后,我终于成功的入职了操作系统内核组作为学术型实习生。从2018年九月初入职至今,将近两年的时间,我也逐渐地适应了在阿里的生活,松弛有度而又充满欢乐。在这里我也结识了许多要好的朋友,并且,通过公司组织的各种聚会和团建的活动,让我解释了许多有着共同语言爱好的伙伴,大家给与了我这个新人很多的帮助和照顾,使我也渐渐地融入了这个有爱的团队。 在阿里的学术成果 在阿里实习期间,在同事们的帮助下,我顺利地完成了两个与我所在实验室合作的学术项目,并且这两个项目也幸运的产出了两篇高质量的论文,分别发表在了不同领域的高水平会议当中。 其中,第一篇论文发表在第21届Cluster会议,与2019年在美国阿尔伯克基召开。Cluster 是高性能计算方向计算机系统领域的主要会议,这个工作提出并实现了统一高效的 RDMA 消息中间件,解决了 RDMA 在实际生产过程中的一些关键可靠性和可用性问题,例如:极简的接口抽象,必要的上层消息确认机制,中间件辅助流控配合 DCQCN,结合生产系统的诊断机制等等,目前该技术已经被广泛应用在阿里巴巴基础云产品中(包括:数据库,分布式存储等)。另外一个工作则发表在了第25届 ASPLOS会议。ASPLOS 是操作系统,体系结构和编程语言三个方向综合的计算机系统领域顶级会议。这篇论文是和我所在的清华高性能所合作完成的,文章中第一次提出了利用RDMA将数据中心的NVM做disaggregation, 实现了高效的框架,同时证明了这种新架构的可行性。 在阿里的感想 阿里巴巴操作系统团队是一直致力于建立和完善系统领域工业界和学术界的纽带,并且在持续实践工业界和学术界之间的问题分享和工作互动,他们希望通过这些分析和互动能够更好地促进中国在世界计算机系统领域的整体发展和创新。作为操作系统团队中的一员,我深切了解到了先进技术对于企业发展的重要性,在实习的过程中,同我所在的实验室进行合作,我更是深深感受到只有通过学术与工业相辅相成,才能够真正让企业发展先进技术。另外一方面,经过一段时间的实习,我对所在的操作系统团队和阿里技术部门的工作有了更深入的了解,我对自己也有了进一步的规划,计划在毕业之后能够入职阿里,通过我的努力,继续在追逐技术之路上奋斗着。 【亓家鑫-新加坡南洋理工大学- 阿里云实习心得】 非常荣幸我们的研究工作*《Two causal principles for improving visual dialog》*获得了同行的认可,并收录在CVPR 2020会议中。在此要特别感谢我的教授,MReaL实验室成员以及阿里城市大脑实验室师兄师姐一直以来的支持和帮助。比起论文本身的内容,我更希望跟大家分享一年来做研究的心得和感悟,虽然目前我仍然是一个萌新,不过我希望通过萌新的角度能带给大家一些研究上的启发。 开始一个研究之前,选择方向很重要。当然,每一个方向都有自己的优缺点,比如新的方向“容易”发文章,可能将其他领域原有的方法引入加一些调整就可以达到比较高的结果。不过如果没有坚实的创新,在同行评议时,可能会受到质疑。一旦没有通过,再转投时可能发现已经落后于其他人。“老“的方向可能会感觉灌水困难,不过因为我没有真正做过经典的方向,所以不太好发表评论。根据观察,在一堆全面而又坚实的研究中找到创新点,对萌新来说确实困难,不过一旦有所突破,肯定会对这个社区产生广泛的影响。作为一个萌新,可能不会自己选择方向或者领域,所以接受导师或者主管的安排成了唯一的选择,不过要相信自己的导师和主管,因为大家都是在帮助你,而且他们经验丰富。只有当自己走完一套研究的流程,并且真正找到自己感兴趣或者觉得可以有所突破的方向,那可能才是真正属于自己的研究的开始。 当选定了方向,开始做研究的时候,清楚的了解所有有关的方法是非常重要的,因为这样可以防止你的idea被存在的方法“抄袭“。其实对一个比较成熟的研究方向来说,简单思考得到的idea一般都会被提出过。不过研究完所有存在方法后,要跳出这些方法,因为阅读他们的方法可能不是来借鉴,更多的是防止撞车,想要真正有创新,在别人的方法上改动往往是不够的,这就要求我们重新审视这个任务甚至数据集的每一个样本。当然目前即使是学术界toy的数据集也有动辄几十万的数据量,看完是不可能的,不过根据自己的思路统计一些数据特征,有时候对研究会产生很大的帮助。当觉得自己已经掌握了这个数据集或者这个任务的时候,应该是跑一些baseline来练习了。 我作为萌新,没有从零开始写,而是找了一个现成的模型开始修改,这样难度会减少很多,不过毕竟是别人的代码,还是有很多不舒服的地方,所以等自己成熟了的时候,有空的时候,一定要从头写一遍。当然我也不知道什么时候有空。当我开始修改baseline的时候,此次的研究旅行就算是上路了,在接受导师的指引的同时也可以自己不断的尝试自己的想法,因为不知道什么是有用的。我作为萌新刚开始的感受是我觉得可能我想的都有用,那一定要去试一下,所以我也建议大家多试一下,说不定真的有用呢,反正电费不花自己的。当一个东西有用的时候,就可以来思考他为什么有用了,当你想好它为什么有用并且通过了广泛的测试,就到了跟大家分享成果的时候。 当然,一个有用的idea背后可能有无数个没用的idea,至于他们为什么没用,我觉得如果实在是有兴趣,可以研究一下,但是有时候会花大量的时间。举一个实际的例子,我在去年做visual dialog比赛,大概四月份就发现了一个有用的方法,之后也顺利的拿到了第一并且在此基础上进行探究和扩展发表了自己的成果。不过同时,当时有一个效果降低的操作一直困扰着我,直到六个月以后,当然这六个月中还做了其他的事情,我才发现了它真正的原因,并且最终变成了我文章中的一句话。举这个例子的目的是,研究没有效果的idea会对研究有所帮助,不过可能会收益较低。 研究成果的发表是一个很重要的过程,它可以给领域内的同行以启发,甚至可以影响本领域之外的人,所以有时候高度总结自己的思想是一件有用的事情。比如我所做的工作我认为进行高度总结之后可以得到一个启发是:对多模态任务来说不一定所有模态都是平等的,对模型来说所存在模态也不一定是影响结果的全部。除了对自己motivation的总结,应用细节以及结果展示也是非常重要的,因为我是萌新,怎样写出一篇文章的经验肯定是不足的,所以在此不再赘述。在发表完文章之后,“售后服务“也是非常重要的一点,这也是我的教授教我的很重要的理念。因为发表的内容不是刊登出来就结束了,而是你对社区贡献的开始,之后做研究可能会发现更好的实现,或者当时的理论没有讲清楚完善,这些都可以补充到自己的代码中,让大家更好的了解你的思路和工作,或许以后还能收获好评。 此外,实验室的成员就是自己研究道路上的引导者和伙伴,会对自己的研究产生各种各样至关重要的影响,大多时候大家都不会吝惜跟你讨论分享自己的观点,有时还会亲自帮助你解决问题,所以要记得经常参加团建和小集体聚会。不过也不能太依赖别人,每当遇到问题的时候,特别是技术性的问题,还是依靠自己解决的好,毕竟未来总会离开实验室,离开乐于帮助你的人。最后,保护好自己的头发,还是要早睡早起,调不出来的bug熬夜也调不出来,不work的idea可能真的不work,没有人保证炼出来的一定是金子,不要过分影响正常的作息,毕竟这不是百米赛跑,也不能算是马拉松,而是长久的起码好几年以上要坚持的事业。不过我作为萌新才刚刚起步,依然没有体会到最艰难的时刻,不过做好心理准备还是应该的,该来的总是会来的。最后的最后希望这些浅显的经验总结能够给大家带来一点儿帮助,谢谢大家的阅读。 【田冰川-南京大学- 在阿里网络团队实习两年是一种怎样的体验?】 简介: 大家好!我是田冰川,南京大学2016级直博生,导师为田臣老师,研究方向为计算机网络。2018年6月,我以研究型实习生的身份入职阿里巴巴基础设施事业部网络研究团队,实习期间主要从事网络验证相关的研究工作,即通过形式化方法与灰度测试,来降低网络变更中的潜在风险。 2018年既是网络研究团队刚刚组建的一年,也是研究型实习生在阿里刚刚起步的一年。这年春天,经我导师田臣老师介绍,我参加了研究型实习生面试,加入了网络研究团队。 来到团队后,我参加的第一个研究项目是“金睛”,用以保障复杂ACL变更的正确性。ACL即访问控制列表,网络中的ACL决定着流量的连通性。网络架构演化有时会伴随着对ACL的迁移,如何保证迁移前后网络连通性是等价的,是困扰架构与运营部门的一大难题,而金睛项目则是为该问题而生。项目落地以来,金睛系统多次在骨干网ACL迁移中对变更方案进行了验证,并逐渐扩展至对边缘网络的验证。相关论文发表于SIGCOMM 2019主会,我在会场进行了20余分钟的演讲,与我们团队的另一篇文章HPCC共同成为阿里集团在网络领域top1学术会议主会中的首次亮相。 时间总是过的很快。转眼间,我来阿里已经两年了,自金睛之后,又陆续参与了多个研究课题。在阿里的时间越久,就越能切身体会到学术界研究与工业界研究的不同。在阿里实习以来,我接触到的所有研究课题,都不是凭空“想”出来的空中楼阁,更不是靠别人论文“启发”出来的二手课题,而是源自于真实业务的现阶段瓶颈与下一阶段发展趋势——这一点是高校科研很难做到的。 这两年间,我对科研这件事的心态也发生了进一步的变化。2017年,来到阿里之前,我的论文达到了学校博士毕业的最低要求,相当于没有了毕业之忧,对科研的心态从“先拿到博士学位再说”,变成了“想要做出点什么,不想让自己的博士5年就这么水过去”;在来到阿里,接触到工业界的前沿课题之后,我对科研的心态再一次发生了转变,变成“因为认可一件事的价值,所以想要去做好”——这已经成为一种内在的驱动力,让我在认真工作的同时,享受研究带来的乐趣。 如果一切顺利的话,我将于2021年6月博士毕业。能在阿里巴巴度过专属实习生的“三年醇”,想必也是人生中的一大成就了! 【吴秉哲-北京大学- 吴师傅的博士研究课题:大数据时代的数据隐私研究方向初探】 加上本科的时间,不知不觉已经在燕园里面呆了八年了,明年不出意外应该就会离开学校去业界工作。准备最近以文章的形式梳理一下博士几年的研究以及生活的心路历程。由于内容比较分散,所以决定分为几个不同的部分。这次推送封面图片是16年骑行到加乌拉山口遥看喜马拉雅山脉的图片,而我在阿里的花名是风远,意为远处的风。希望多年之后,还有一颗少年的心,投入每天永不变。这次借着阿里内部一个活动的机会,写了今天的这篇稿子,为大家介绍一下我的thesis topic。 已经在蚂蚁实习了一年了,一年时光匆匆而过,而在蚂蚁金服度过的这段时光带给了我很多研究以及生活中的体验,这一年里学到的经验也将伴随着我之后的研究之路。 我本科四年是在数院度过,在研究生阶段决定转换方向到计算机系。博士的前两年一直在跌跌撞撞地寻找自己的研究方向,尝试过很多方向均以失败告终。终于在第三年的时候,误打误撞开始研究起机器学习的隐私保护问题并找到了很多灵感,开始沉淀了一些基本的研究工作。有一天我从一个朋友那里听到了她关于金服这边隐私保护机器学习的团队介绍,当时我就决定要到业界的前沿去看一看隐私保护的真实业界需求。在此之前,我已经在谷歌,IBM等公司有过多段实习的经历,但是在蚂蚁这一次实习经历,是与我自己研究方向最接近,也是时间最长的一次。借着这次约稿的机会,以此文简单总结一下自己过去两年在这一方向的研究。 隐私保护与共享学习 目前随着各种机器学习算法在集团的业务落地,许多隐私泄露与数据滥用的风险相继而来。 尤其是在蚂蚁金服这样一个拥有很多支付数据的企业,数据安全以及隐私保护的重要性更是不言而喻。站在商业合作的角度,如何实现不同公司或者部门之间的数据共享学习也是我所在的团队现在攻坚的一个问题。在这样一个研究背景下,我来到了蚂蚁金服的共享智能团队,开始和师兄师姐们从不同的维度对上述问题展开了深入的研究。 共享学习这样一个概念听起来很美好,但是实际落地起来却困难重重,需要考虑到上层软件算法的设计以及底层系统和硬件的优化,才有可能真正在实际的业务中兼顾效率和隐私保护强度。共享智能团队在这一方向上有着得天独厚的优势。一是领先的业务场景,在国际同行好多还停留在学术研究阶段时,我们团队已经和国内多家银行有了合作。另一个则是技术沉淀的领先。因为金服自身业务的特殊性,我们团队很早就开始了隐私保护机器学习和共享学习的布局,包括很多原始的技术沉淀,强大的工程团队以及学术预研团队。这些积累也使得我们能够很快地摸清最新的一些研究成果并能将其吸入到我们自己的系统当中。 我自己关于隐私保护机器学习的研究主要是围绕着三个层面展开,分别是理论,算法设计,以及系统和硬件优化。在理论层面,我主要针对现有的各种机器学习算法,建立相应的隐私泄露分析框架,比如我们在之前的工作中,针对一种常用的贝叶斯学习的算法根据雷尼差分隐私建立了隐私泄露的定量分析框架,我们进一步使用我们的框架和已有的一些泛化误差上界做了联系,从而能从多个角度去解释该算法的隐私泄露原因。在算法设计层面,我们针对各种已有的新兴算法以及场景,比如图神经网络,推荐系统建立了相应的共享学习算法,并利用我们的理论框架,对这些算法的隐私保护强度做了定量的评估。除开上层的理论和算法设计,底层的系统和硬件的优化同样是非常重要的一环。 在我们团队,我们主打基于硬件可信执行环境 (TEE)的机器学习serving系统,我针对我们当前这套服务系统,结合神经网络计算的一些特点,定制了该系统的一系列优化措施大大提升了整个系统的吞吐量。我也将其中一些措施注册了专利,并在前几天得到了内部的专利授权。除开上述介绍的学术研究方面的成果,我也参与了IEEE共享学习标准的制定会议,这也使得我从标准制定者的角度去更深地思考如何使用技术在未来社会中实现隐私与效率的兼顾。 总之,我自己很感谢能成为共享智能团队的一员,我在这里学到的最宝贵的经验就是详细地从上到下了解了这样一个大团队的合作与分工,学习他们是如何一步步从最初的需求分析,算法设计,到最后真正的业务落地。也很高兴和各位共享智能的同事度过自己博士生涯中很重要的一年。也非常感谢我的博士导师对我研究的无条件支持。回看博士这一路的艰辛,也是感慨万千。有点像自己之前高原骑行的经历,经历了爬到坡顶的缺氧与无力,终在转角处遇见了骑行途中最美的雪山风光。

游客bnlxddh3fwntw 2020-05-19 16:05:51 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板