• 关于

    记录类型不可用

    的搜索结果

问题

E-MapReduce作业结果和日志查看是什么?

nicenelly 2019-12-01 21:21:31 1025 浏览量 回答数 0

问题

API参考 - API参考 - 实例管理 -DescribeDBInstanceSwitchLog

李沃晟 2019-12-01 21:40:34 579 浏览量 回答数 0

回答

消息队列(Message Queue,简称 MQ)是构建分布式互联网应用的基础设施,通过 MQ 实现的松耦合架构设计可以提高系统可用性以及可扩展性,是适用于现代应用的最佳设计方案。MQ 产品生态丰富,多个子产品线联合打造金融级高可用消息服务以及对物联网的原生支持,覆盖金融保险、(新)零售、物联网、移动互联网、传媒泛娱乐、教育、物流、能源、交通等行业。 阿里云消息队列新用户只需9.9/月https://www.aliyun.com/product/ons?utm_content=se_1005011197 消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。该产品最初由阿里巴巴自研并捐赠给 Apache 基金会,服务于阿里集团 13 年,覆盖全集团所有业务。作为双十一交易核心链路的官方指定产品,支撑千万级并发、万亿级数据洪峰,历年刷新全球最大的交易消息流转记录。 产品优势 稳定性 阿里巴巴双十一官方指定消息产品,支撑阿里巴巴集团所有的消息服务,历经十余年高可用与高可靠的严苛考验,是阿里巴巴交易链路的核心产品; 服务可用性 99.95%,Region 化、多可用区、分布式集群化部署,确保服务高可用,即便整个机房不可用仍可正常提供消息服务; 数据可靠性 99.99999999%,同步双写、超三副本数据冗余与快速切换技术确保数据可靠; 高性能 历年双 11 购物狂欢节零点千万级 TPS、万亿级数据洪峰,创造了全球最大的业务消息并发以及流转纪录(日志类消息除外); 在始终保证高性能前提下,支持亿级消息堆积,不影响集群的正常服务,在削峰填谷(蓄洪)、微服务解耦的场景下尤为重要; 丰富的消息类型 提供丰富的消息类型,满足各种严苛场景下的高级特性需求,当前支持的消息类型涵盖普通消息、顺序消息(全局顺序 / 分区顺序)、分布式事务消息、定时消息/延时消息; 安全访问控制 以消息主题、订阅组的粒度,对每一条消息的收、发请求都进行严格的访问控制,确保消息的安全性; 全面支持阿里云 RAM 主子账号、黑白名单、STS 等功能,支持 TLS 传输加密协议、阿里云 VPC 访问等;

NaCl鱼 2020-04-17 09:21:25 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

消息队列(Message Queue,简称 MQ)是构建分布式互联网应用的基础设施,通过 MQ 实现的松耦合架构设计可以提高系统可用性以及可扩展性,是适用于现代应用的最佳设计方案。MQ 产品生态丰富,多个子产品线联合打造金融级高可用消息服务以及对物联网的原生支持,覆盖金融保险、(新)零售、物联网、移动互联网、传媒泛娱乐、教育、物流、能源、交通等行业。 阿里云消息队列新用户只需9.9/月https://www.aliyun.com/product/ons?utm_content=se_1005011197 消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。该产品最初由阿里巴巴自研并捐赠给 Apache 基金会,服务于阿里集团 13 年,覆盖全集团所有业务。作为双十一交易核心链路的官方指定产品,支撑千万级并发、万亿级数据洪峰,历年刷新全球最大的交易消息流转记录。 产品优势 稳定性 阿里巴巴双十一官方指定消息产品,支撑阿里巴巴集团所有的消息服务,历经十余年高可用与高可靠的严苛考验,是阿里巴巴交易链路的核心产品; 服务可用性 99.95%,Region 化、多可用区、分布式集群化部署,确保服务高可用,即便整个机房不可用仍可正常提供消息服务; 数据可靠性 99.99999999%,同步双写、超三副本数据冗余与快速切换技术确保数据可靠; 高性能 历年双 11 购物狂欢节零点千万级 TPS、万亿级数据洪峰,创造了全球最大的业务消息并发以及流转纪录(日志类消息除外); 在始终保证高性能前提下,支持亿级消息堆积,不影响集群的正常服务,在削峰填谷(蓄洪)、微服务解耦的场景下尤为重要; 丰富的消息类型 提供丰富的消息类型,满足各种严苛场景下的高级特性需求,当前支持的消息类型涵盖普通消息、顺序消息(全局顺序 / 分区顺序)、分布式事务消息、定时消息/延时消息; 安全访问控制 以消息主题、订阅组的粒度,对每一条消息的收、发请求都进行严格的访问控制,确保消息的安全性; 全面支持阿里云 RAM 主子账号、黑白名单、STS 等功能,支持 TLS 传输加密协议、阿里云 VPC 访问等;

NaCl鱼 2020-04-17 10:02:34 0 浏览量 回答数 0

回答

阿里云有智能DNS解析 1.1 智能DNS解析粒度 一级(免费提供) 二级(付费升级) 默认 - 移动 山东、江苏、安徽、浙江、福建、上海 广东、广西、海南 湖北、湖南、河南、江西 北京、天津、河北、山西、内蒙古 宁夏、新疆、青海、陕西、甘肃 四川、云南、贵州、西藏、重庆 辽宁、吉林、黑龙江 联通 山东、江苏、安徽、浙江、福建、上海 广东、广西、海南 湖北、湖南、河南、江西 北京、天津、河北、山西、内蒙古 宁夏、新疆、青海、陕西、甘肃 四川、云南、贵州、西藏、重庆 辽宁、吉林、黑龙江 电信 山东、江苏、安徽、浙江、福建、上海 广东、广西、海南 湖北、湖南、河南、江西 北京、天津、河北、山西、内蒙古 宁夏、新疆、青海、陕西、甘肃 四川、云南、贵州、西藏、重庆 辽宁、吉林、黑龙江 教育网 山东、江苏、安徽、浙江、福建、上海 广东、广西、海南 湖北、湖南、河南、江西 北京、天津、河北、山西、内蒙古 宁夏、新疆、青海、陕西、甘肃 四川、云南、贵州、西藏、重庆 辽宁、吉林、黑龙江 搜索引擎 搜索引擎、百度、谷歌、必应 需单独购买:有道、雅虎 一级(免费提供) 二级(付费升级) 三级(付费升级) 境外 大洋洲 澳大利亚,新西兰,斐济,帕劳 境外 亚洲 阿联酋,香港,印度尼西亚,印度, 日本,柬埔寨,韩国,老挝, 缅甸,澳门,马尔代夫,马来西亚, 尼泊尔,菲律宾,沙特阿拉伯,新加坡, 泰国,台湾,越南,蒙古, 巴基斯坦,朝鲜,哈萨克斯坦,乌兹别克斯坦, 土耳其,伊朗,伊拉克,以色列, 科威特,黎巴嫩,卡塔尔 境外 欧洲 奥地利,瑞士,德国,西班牙, 法国,英国,意大利,荷兰, 俄罗斯,瑞典,捷克,比利时, 爱尔兰,丹麦,芬兰,冰岛, 匈牙利,波兰,斯洛伐克,白俄罗斯, 立陶宛,乌克兰,保加利亚,克罗地亚, 葡萄牙,罗马尼亚,斯洛文尼亚 境外 北美洲 加拿大,墨西哥,美国 境外 南美洲 阿根廷,巴西,哥伦比亚、委内瑞拉、 厄瓜多尔、秘鲁、玻利维亚、智利、 巴拉圭、乌拉圭 境外 非洲 南非,埃及,尼日利亚,安哥拉, 加纳,科特迪瓦,肯尼亚,塞舌尔, 阿尔及利亚,喀麦隆,摩洛哥,塞内加尔 1.2 地域智能DNS解析 地域线路指以地区为维度划分的线路,如购买地域线路(含省份)则包含三个一级线路,7个中国大区线路,31个分省线路,4个搜索引擎线路。地域线路不区分运营商维度,举例如果设置记录如下: www.abc.com 默认 1.1.1.1 www.abc.com 中国地区 2.2.2.2 则只要来自中国地区的访问者,在此线路类型维度下,不会区分任何运营商。 也就是指只要是属于中国地区,不论是电信、还是联通或者其他运营商,均会返回地址2.2.2.2 非中国地区的网站访问者则返回1.1.1.1 一级 二级 三级 默认 - - 中国地区 华东、华南、华中、华北,西北、西南,东北 华东:山东、江苏、安徽、浙江、福建、上海; 华南:广东、广西、海南; 华中:湖北、湖南、河南、江西; 华北:北京、天津、河北、山西、内蒙古; 西北:宁夏、新疆、青海、陕西、甘肃; 西南:四川、云南、贵州、西藏、重庆; 东北:辽宁、吉林、黑龙江 二、控制台配置 在控制台中添加DNS解析路选择对应的智能解析区域,并设置相关IP地址,如下图所示: 三、常用帮助 3.1 地域线路和运营商线路是什么区别?地域线路类型是以地区划分为主,如果对于网站访问者来源只想区分地区,不区分网络运营商,则可以选择地域线路使用。运营商线路是以网络运营商为主,如果网站访问者想按照网络运营商划分,则可以选择运营商线路类型 3.2 一个域名设置解析记录可以同时使用两个线路类型吗?不可以,一个域名只能使用一个线路类型。 3.3 切换线路类型,会对解析造成影响吗?场景一:如果当前线路类型下,存在默认线路,此种切换则不会影响网站的访问。场景二:如果当前线路类型下,您的解析记录只有个性化线路(个性化线路范围,请参考名词解释),则切换线路类型,会影响到网站的访问。 3.4 线路类型切换规则1)如果记录中包含默认、海外、搜索引擎线路,切换这些解析线路会继续服务2)如果记录中存在不符合当前线类型的个性化解析线路,则这些包含个性化线路的解析记录会被系统自动暂停。举例如果当前线路类型为地域线路,而解析记录中包含如下记录默认线路 www.abc.com 1.1.1.1 解析记录可用中国地区 www.abc.com 2.2.2.2 解析记录可用移动 www.abc.com 3.3.3.3此为不符合当前线路类型的个性化线路,会处于暂停状态。联通北京 www.abc.com 4.4.4.4此为不符合当前线路类型的个性化线路,会处于暂停状态。 阿里云解析DNS购买地址:https://wanwang.aliyun.com/domain/dns 望采纳,谢谢

元芳啊 2019-12-02 00:07:16 0 浏览量 回答数 0

问题

解决方案:该表不包含唯一列。网格编辑,复选框,编辑,复制和删除功能不可用?mysql

保持可爱mmm 2020-05-17 21:23:39 1 浏览量 回答数 1

问题

E-MapReduce作业结果和日志查看是什么?

nicenelly 2019-12-01 21:17:15 1255 浏览量 回答数 0

回答

在primary-secondary 类型的协议中,副本被分为两大类,其中有且仅有一个副本作为primary 副本, 除primary 以外的副本都作为secondary 副本。维护primary 副本的节点作为中心节点,中心节点负 责维护数据的更新、并发控制、协调副本的一致性。 Primary-secondary 类型的协议一般要解决四大类问题:数据更新流程、数据读取方式、Primary 副本的确定和切换、数据同步(reconcile)。 数据更新基本流程 1. 数据更新都由primary 节点协调完成。 2. 外部节点将更新操作发给primary 节点 3. primary 节点进行并发控制即确定并发更新操作的先后顺序 4. primary 节点将更新操作发送给secondary 节点 5. primary 根据secondary 节点的完成情况决定更新是否成功并将结果返回外部节点 在工程实践中,如果由primary 直接同时发送给其他N 个副本发送数据,则每个 secondary 的更新吞吐受限于primary 总的出口网络带宽,最大为primary 网络出口带宽的1/N。为了 解决这个问题,有些系统(例如,GFS),使用接力的方式同步数据,即primary 将更新发送给第一 个secondary 副本,第一个secondary 副本发送给第二secondary 副本,依次类推。 数据读取方式 数据读取方式也与一致性高度相关。如果只需要最终一致性,则读取任何副本都可以满足需求。如果需要会 话一致性,则可以为副本设置版本号,每次更新后递增版本号,用户读取副本时验证版本号,从而 保证用户读到的数据在会话范围内单调递增。使用primary-secondary 比较困难的是实现强一致性。 由于数据的更新流程都是由primary 控制的,primary 副本上的数据一定是最新的,所以 如果始终只读primary 副本的数据,可以实现强一致性。如果只读primary 副本,则secondary 副本 将不提供读服务。实践中,如果副本不与机器绑定,而是按照数据段为单位维护副本,仅有primary 副本提供读服务在很多场景下并不会造出机器资源浪费。 将副本分散到集群中个,假设primary 也是随机的确定的,那么每台机器 上都有一些数据的primary 副本,也有另一些数据段的secondary 副本。从而某台服务器实际都提供 读写服务。 - 由primary 控制节点secondary 节点的可用性。当primary 更新某个secondary 副本不成功 时,primary 将该secondary 副本标记为不可用,从而用户不再读取该不可用的副本。不可用的 secondary 副本可以继续尝试与primary 同步数据,当与primary 完成数据同步后,primary 可以副本 标记为可用。这种方式使得所有的可用的副本,无论是primary 还是secondary 都是可读的,且在一 个确定的时间内,某secondary 副本要么更新到与primary 一致的最新状态,要么被标记为不可用, 从而符合较高的一致性要求。这种方式依赖于一个中心元数据管理系统,用于记录哪些副本可用, 哪些副本不可用。某种意义上,该方式通过降低系统的可用性来提高系统的一致性。 primary 副本的确定与切换 在primary-secondary 类型的协议中,另一个核心的问题是如何确定primary 副本,尤其是在原 primary 副本所在机器出现宕机等异常时,需要有某种机制切换primary 副本,使得某个secondary 副本成为新的primary 副本。 通常的,在primary-secondary 类型的分布式系统中,哪个副本是primary 这一信息都属于元信 息,由专门的元数据服务器维护。执行更新操作时,首先查询元数据服务器获取副本的primary 信 息,从而进一步执行数据更新流程。 由于分布式系统中可靠的发现节点异常是需要一定的探测时间的,这样的探测时间通常是10 秒级别,这也意味着一旦primary 异常,最多需要10 秒级别的 发现时间,系统才能开始primary 的切换,在这10 秒时间内,由于没有primary,系统不能提供更 新服务,如果系统只能读primary 副本,则这段时间内甚至不能提供读服务。从这里可以看到, primary-backup 类副本协议的最大缺点就是由于primary 切换带来的一定的停服务时间。 数据同步 不一致的secondary 副本需要与primary 进行同步(reconcile)。 通常不一致的形式有三种:一、由于网络分化等异常,secondary 上的数据落后于primary 上的 数据。二、在某些协议下,secondary 上的数据有可能是脏数据,需要被丢弃。所谓脏数据是由于 primary 副本没有进行某一更新操作,而secondary 副本上反而进行的多余的修改操作,从而造成 secondary 副本数据错误。三、secondary 是一个新增加的副本,完全没有数据,需要从其他副本上 拷贝数据。 对于第一种secondary 数据落后的情况,常见的同步方式是回放primary 上的操作日志(通常是 redo 日志),从而追上primary 的更新进度。对于脏数据的情况, 较好的做法是设计的分布式协议不产生脏数据。如果协议一定有产生脏数据的可能,则也应该使得 产生脏数据的概率降到非常低得情况,从而一旦发生脏数据的情况可以简单的直接丢弃有脏数据的 副本,这样相当于副本没有数据。另外,也可以设计一些基于undo 日志的方式从而可以删除脏数据。 如果secondary 副本完全没有数据,则常见的做法是直接拷贝primary 副本的数据,这种方法往往比 回放日志追更新进度的方法快很多。但拷贝数据时primary 副本需要能够继续提供更新服务,这就 要求primary 副本支持快照(snapshot)功能。即对某一刻的副本数据形成快照,然后拷贝快照,拷贝 完成后使用回放日志的方式追快照形成后的更新操作。

kun坤 2020-04-24 15:30:53 0 浏览量 回答数 0

问题

使用表格存储的表的建议有哪些

云栖大讲堂 2019-12-01 20:57:03 1070 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:12 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 除MySQL 基础版以外,其它类型的实例都支持日志管理,您可以通过控制台或SQL命令查询实例的错误日志和慢日志明细,帮助故障定位分析。但对于SQL Server 2012及以上版本的实例而言,仅能通过SQL命令进行日志管理。本文将介绍通过控制台及SQL命令进行日志管理的方法。 通过控制台或者API管理日志 您可以通过RDS控制台进行MySQL 5.5/5.6/5.7、SQL Server 2008 R2、PostgreSQL和PPAS实例的日志管理。但不同引擎所支持的管理内容不同,请以各控制台的界面为准。 对于MySQL高可用版、金融版实例,您还可以通过控制台或者API DescribeDBInstanceSwitchLog查询实例的主备切换日志。 操作步骤 登录RDS管理控制台。 选择目标实例所在地域。 单击目标实例的ID,进入基本信息页面。 在左侧导航栏中选择日志管理,进入日志管理页面。 在日志管理页面选择查询错误日志、慢日志明细、慢日志统计或者主备切换日志,选择时间范围,单击查询。 查询项 内容 错误日志 记录1个月内数据库中执行错误的SQL语句。 慢日志明细 记录1个月内数据库中执行时间超过1s(可以在参数设置中修改long_query_time参数来设置)的SQL语句,并进行相似语句去重。 该列表中不提供最近两个小时的慢日志,如需查询请通过MySQL库中的slow_log_view表查询。 慢日志统计 对1个月内数据库中执行时间超过1秒(可以在参数设置中修改long_query_time参数来设置)的SQL语句进行统计汇总,给出慢查询日志的分析报告。 主备切换日志 该功能适用于:MySQL高可用版、金融版实例。 通过SQL命令管理日志 SQL Server 2012及以上版本的实例仅支持通过存储过程sp_rds_read_error_logs读取错误日志,使用方法与sp_readerrorlog相同。 示例1: EXEC sp_rds_read_error_logs 示例2: EXEC sp_rds_read_error_logs 0,1 ,'error'

2019-12-01 22:57:11 0 浏览量 回答数 0

回答

本人学习数据结构时看到的不错的总结,共享一下了 文件有一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字; 排序是将文件按关键字的递增(减)顺序排列; 排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序; 在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内部排序,反之称外部排序; 排序算法的基本操作:1)比较关键字的大小;2)改变指向记录的指针或移动记录本身。 评价排序方法的标准:1)执行时间;2)所需辅助空间,辅助空间为O(1)称就地排序;另要注意算法的复杂程度。 若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算。 8.2插入排序 8.2.1直接插入排序 实现过程: void insertsort(seqlist R) { int i, j; for(i=2;i<=n;i++) if(R[i].key< R[i-1].key{ R[0]=R[i];j=i-1; do{R[j+1]=R[j];j--;} while(R[0].key R[j+1]=R[0]; } } 复制代码 算法中引入监视哨R[0]的作用是:1)保存 R[i] 复制代码 的副本;2)简化边界条件,防止循环下标越界。 关键字比较次数最大为(n+2)(n-1)/2;记录移动次数最大为(n+4)(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.2.2希尔排序 实现过程:是将直接插入排序的间隔变为d。d的取值要注意:1)最后一次必为1;2)避免d值互为倍数; 关键字比较次数最大为n^1.25;记录移动次数最大为1.6n^1.25; 算法的平均时间是O(n^1.25);是一种就地的不稳定的排序; 8.3交换排序 8.3.1冒泡排序 实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次。 关键字比较次数最小为n-1、最大为n(n-1)/2;记录移动次数最小为0,最大为3n(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.3.2快速排序 实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i。i=j时确定基准,并以其为界限将序列分为两段。重复以上步骤。 关键字比较次数最好为nlog2n+nC(1)、最坏为n(n-1)/2; 算法的最好时间是O(nlog2n);最坏时间是O(n^2);平均时间是O(nlog2n);辅助空间为O(log2n);是一种不稳定排序; 8.4选择排序 8.4.1直接选择排序 实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次。 关键字比较次数为n(n-1)/2;记录移动次数最小为0,最大为3(n-1); 算法的最好时间是O(n^2);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的不稳定的排序; 8.4.2堆排序 实现过程:把序列按层次填入完全二叉树,调整位置使双亲大于或小于孩子,建立初始大根或小根堆,调整树根与最后一个叶子的位置,排除该叶子重新调整位置。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);是一种就地的不稳定排序; 8.5归并排序 实现过程:将初始序列分为2个一组,最后单数轮空,对每一组排序后作为一个单元,对2个单元排序,直到结束。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);辅助空间为O(n);是一种稳定排序; 8.6分配排序 8.6.1箱排序 实现过程:按关键字的取值范围确定箱子的个数,将序列按关键字放入箱中,输出非空箱的关键字。 在桶内分配和收集,及对各桶进行插入排序的时间为O(n),算法的期望时间是O(n),最坏时间是O(n^2)。 8.6.2基数排序 实现过程:按基数设置箱子,对关键字从低位到高位依次进行箱排序。 算法的最好时间是O(d*n+d*rd);最坏时间是O(d*n+d*rd);平均时间是O(d*n+d*rd);辅助空间O(n+rd);是一种稳定排序; 8.7各种内部排序方法的比较和选择 按平均时间复杂度分为: 1) 平方阶排序:直接插入、直接选择、冒泡排序; 2) 线性对数阶:快速排序、堆排序、归并排序; 3) 指数阶:希尔排序; 4) 线性阶:箱排序、基数排序。 选择合适排序方法的因素:1)待排序的记录数;2)记录的大小;3)关键字的结构和初始状态;4)对稳定性的要求;5)语言工具的条件;6)存储结构;7)时间和辅助空间复杂度。 结论: 1) 若规模较小可采用直接插入或直接选择排序; 2) 若文件初始状态基本有序可采用直接插入、冒泡或随机快速排序; 3) 若规模较大可采用快速排序、堆排序或归并排序; 4) 任何借助于比较的排序,至少需要O(nlog2n)的时间,箱排序和基数排序只适用于有明显结构特征的关键字; 5) 有的语言没有提供指针及递归,使归并、快速、基数排序算法复杂; 6) 记录规模较大时为避免大量移动记录可用链表作为存储结构,如插入、归并、基数排序,但快速、堆排序在链表上难以实现,可提取关键字建立索引表,然后对索引表排序。 附二: 第八章排序 ************************************************************************************* 记录中可用某一项来标识一个记录,则称为关键字项,该数据项的值称为关键字。 排序是使文件中的记录按关键字递增(或递减)次序排列起来。·基本操作:比较关键字大小;改变指向记录的指针或移动记录。 ·存储结构:顺序结构、链表结构、索引结构。 经过排序后这些具有相同关键字的记录之间的相对次序保持不变,则称这种排序方法是稳定的,否则排序算法是不稳定的。 排序过程中不涉及数据的内、外存交换则称之为"内部排序"(内排序),反之,若存在数据的内外存交换,则称之为外排序。 内部排序方法可分五类:插入排序、选择排序、交换排序、归并排序和分配排序。 评价排序算法好坏的标准主要有两条:执行时间和所需的辅助空间,另外算法的复杂程序也是要考虑的一个因素。 ************************************************************************************* 插入排序:·直接插入排序: ·逐个向前插入到合适位置。 ·哨兵(监视哨)有两个作用: ·作为临变量存放 R[i] 复制代码 ·是在查找循环中用来监视下标变量j是否越界。 ·直接插入排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为(n+2)(n-1)/2;移动次数为(n+4)(n-1)/2; ·希尔排序: ·等间隔的数据比较并按要求顺序排列,最后间隔为1。 ·希尔排序是就地的不稳定排序。时间复杂度为O(n^1.25),比较次数为(n^1.25);移动次数为(1.6n^1.25); 交换排序:·冒泡排序:·自下向上确定最轻的一个。·自上向下确定最重的一个。·自下向上确定最轻的一个,后自上向下确定最重的一个。 ·冒泡排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为n(n-1)/2;移动次数为3n(n-1)/2; ·快速排序:·以第一个元素为参考基准,设定、动两个指针,发生交换后指针交换位置,直到指针重合。重复直到排序完成。 ·快速排序是非就地的不稳定排序。时间复杂度为O(nlog2n),比较次数为n(n-1)/2; 选择排序:·直接选择排序: ·选择最小的放在比较区前。 ·直接选择排序就地的不稳定排序。时间复杂度为O(n^2)。比较次数为n(n-1)/2; ·堆排序 ·建堆:按层次将数据填入完全二叉树,从int(n/2)处向前逐个调整位置。 ·然后将树根与最后一个叶子交换值并断开与树的连接并重建堆,直到全断开。 ·堆排序是就地不稳定的排序,时间复杂度为O(nlog2n),不适宜于记录数较少的文件。。 归并排序: ·先两个一组排序,形成(n+1)/2组,再将两组并一组,直到剩下一组为止。 ·归并排序是非就地稳定排序,时间复杂度是O(nlog2n), 分配排序:·箱排序: ·按关键字的取值范围确定箱子数,按关键字投入箱子,链接所有非空箱。 ·箱排序的平均时间复杂度是线性的O(n). ·基数排序:·从低位到高位依次对关键字进行箱排序。 ·基数排序是非就稳定的排序,时间复杂度是O(d*n+d*rd)。 各种排序方法的比较和选择: ·.待排序的记录数目n;n较大的要用时间复杂度为O(nlog2n)的排序方法; ·记录的大小(规模);记录大最好用链表作为存储结构,而快速排序和堆排序在链表上难于实现; ·关键字的结构及其初始状态; ·对稳定性的要求; ·语言工具的条件; ·存储结构; ·时间和辅助空间复杂度。 排序(sort)或分类 所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下: 输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。 输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。 1.被排序对象--文件 被排序的对象--文件由一组记录组成。 记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。 注意: 在不易产生混淆时,将关键字项简称为关键字。 2.排序运算的依据--关键字 用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。 关键字的选取应根据问题的要求而定。 【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。 排序的稳定性 当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。 注意: 排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。 排序方法的分类 1.按是否涉及数据的内、外存交换分 在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。 注意: ① 内排序适用于记录个数不很多的小文件 ② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。 2.按策略划分内部排序方法 可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。 排序算法分析 1.排序算法的基本操作 大多数排序算法都有两个基本的操作: (1) 比较两个关键字的大小; (2) 改变指向记录的指针或移动记录本身。 注意: 第(2)种基本操作的实现依赖于待排序记录的存储方式。 2.待排文件的常用存储方式 (1) 以顺序表(或直接用向量)作为存储结构 排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置) (2) 以链表作为存储结构 排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序; (3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表) 排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。 3.排序算法性能评价 (1) 评价排序算法好坏的标准 评价排序算法好坏的标准主要有两条: ① 执行时间和所需的辅助空间 ② 算法本身的复杂程度 (2) 排序算法的空间复杂度 若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。 非就地排序一般要求的辅助空间为O(n)。 (3) 排序算法的时间开销 大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

马铭芳 2019-12-02 01:19:07 0 浏览量 回答数 0

问题

订阅日志服务数据的用户手册

云栖大讲堂 2019-12-01 20:56:31 1339 浏览量 回答数 0

回答

常见错误处理 错误码 处理方式 1000 一般为语法或者超时引起,如果多次刷新不再出现,则是超时引起,如果仍出现,则语法有问题,请对照文档仔细检查,如分隔符、函数字段类型等 2112 排序表达式中的text_relevance(field)、fieldterm_proximity(field)等文本feature中的field必须在查询的索引包含的源字段中,否则会报错,但不影响搜索结果。 3007 对于API推送系统是有频率限制,请控制好频率重试 4003 可以先按照文档样例,试下签名结果是否一致,判断是否是签名算法问题。如果不是,请检查下参数按照字典序排序后应该是公共参数(大写字母)在前,请求参数(小写字母)在后。另外还有空格等一些编码规则,具体参考授权文档介绍 4007 一般Json字段内容中包含双引号或者不可见字符会导致格式解析失败,请转义或者过滤后重试 4010 TimeStamp参数是有过期时间的,请按照要求格式取当前时间来计算 5001 没有找到对应的用户,一般为ACCESSKEY信息不正确,或者使用区域域名错误(API域名请以应用管理-》基本信息-》API入口为准),请检查修改后重试 5008 服务内部是通过Accesskey来进行用户身份校验的,请确保AccessKey已经开启,您可以通过控制台AccessKey管理入口来创建和删除 6013 start+hit不能超过5000,否则会报错无结果。需要超过5000的请求,请查看下API文档中的SCROLL接口,看是否满足需求 6015 请及时到控制台配额管理处进行QPS峰值的调整,否则超过的请求会被丢弃 6127 除了query子句,其他子句出现的字段都必须配置为属性字段才能使用。请修改应用结构后重试 系统级别(1000-1999) 错误码 错误说明 1000 系统内部错误 1001 没有找到模版 1003 不支持的索引类型 1004 服务暂时不可用,请稍后再试 应用相关(2000-2999) 错误码 错误说明 2001 待查应用不存在 2002 应用已经存在 2003 到达创建应用总限制 2004 应用名不可用。应用名由数字、26个英文字母或下划线组成,长度不超过30位 2005 应用名称没有设定 2006 新应用名称没有设定 2007 备注不超300字 2008 摘要配置参数错误 2009 更新状态失败 2010 应用暂停中 2011 应用冻结中 2012 应用未开启 2013 删除失败,没有此应用 2014 文件上传失败 2016 区域信息没有 2017 此应用并不属于当前区域 2099 当前接口暂时不提供服务。 2101 表达式不存在 2102 表达式名称被占用 2103 到达该应用表达式总数限制 2104 表达式名不可用。表达式名由数字、26个英文字母或下划线组成,长度不超过30位 2105 表达式名称没有设定 2106 新表达式名称没有设定 2107 表达式备注不超过300字 2108 表达式备注格式错误 2109 表达式格式错误 2110 表达式长度超过限制 2111 表达式id未指定 2112 表达式错误 2113 表达式不能为空 2114 操作错误 2201 粗排配置名没有设定 2202 粗排配置名已经存在 2203 粗排配置个数超出限制 2204 粗排配置名错误。只能由数字、26个英文字母或下划线组成 2205 粗排配置名长度超出限制 2206 粗排字段必须是数值型 2207 粗排配置不存在 2208 粗排配置错误,必须包含字段 2209 粗排配置权重错误,必须是-100000到100000之间的非0数值,浮点数精度支持6位 2210 与系统默认粗排配置重名 2211 timeliness()的参数必须是INT类型 2112 排序表达式错误 2551 查询指定的下拉提示规则不存在 文档相关(3000-3999) 错误码 错误说明 3001 文档不能为空 3002 文档大小超过限制 3003 已经到最大文档数 3004 保存文档失败 3005 doc格式错误 3006 文档操作cmd不合法 3007 请求过于频繁 3008 文档总长度太长 3009 没有文档id 3011 在配置RDS或MYSQL数据源后,不支持API推送文档 3012 未找到指定资源 3013 文档推送速率超过应用配额 3014 文档推送速率触发系统限制 3015 单次推送文档个数超过系统限制 3016 文档总数超过应用配额 授权相关(4000-4999) 错误码 错误说明 4001 认证失败 4002 需要设置签名 4003 签名验证失败 4004 需要设置SignatureNonce 4005 SignatureNonce不能重复使用 4006 SignatureNonce验证失败 4007 解析JSON格式失败 4008 用户名称不能为空,请检查域名正确性 4009 需要指定用户标识 4010 时间过期 4011 demo帐号禁止执行的操作 4012 数据表不存在 4013 Timestamp格式错误 4014 需要设置Timestamp 4020 RAM子账户鉴权失败 用户相关(5000-5999) 错误码 错误说明 5001 用户不存在 5002 用户名不正确 5003 需要用户登录 5005 用户未开通OpenSearch服务,请前往阿里云官网开通 5008 用户没有启用ACCESSKEY 5100 用户没有此区域的操作权限 5004 用户未缴费 5005 用户未开通OpenSearch服务,请前往阿里云官网开通 5006 欠费冻结中 5008 用户没有启用ACCESSKEY 5009 用户已经删除 5010 ACCESSKEY 已经禁用 5011 通过邮箱获取到多个用户 5012 CODE_USER_ALIYUN_USER_ID_INVALID,错误信息为空 5013 CODE_USER_ALIYUN_BID_INVALID,错误信息为空 5014 CODE_USER_CLIENT_ID_INVALID,错误信息为空 5015 CODE_USER_ID_INVALID,错误信息为空 5100 用户没有此区域的操作权限 搜索相关(6000-6999) 错误码 错误说明 6001 查询query为空 6002 并不被支持的搜索key关键字 6003 并不被支持的搜索field关键字 6004 复杂查询为空 6005 field无效 6006 请求包含太多应用名 6007 超出多索引查询每个模板中索引总数 6008 请求串语法错误,解析失败 6009 查询子句过长 6010 无效的rerank size 6011 SignatureNonce格式错误 6013 start+hit超过系统限制 6014 因系统繁忙,请求被丢弃 6015 因流量超出配额,请求被丢弃 6016 查询hit数超过系统限制 6017 目前scroll只支持search_type为scan,也就是说设置了参数scroll,就必须设置参数search_type=scan 6018 设置了scroll参数,但没有search_type参数 6019 传入的scroll_id参数解析失败 6020 无效的scroll参数值 6021 scroll请求不支持Aggregate/Sort/Distinct,当传入这些clause时,会报错 6022 scroll_id已经过期失效了 6100 查询词为空 6101 查询的索引字段不存在 6102 Query中的数值范围错误 6103 Filter中的表达式返回值必须为bool类型 6104 Sort中的表达式返回值不能为bool类型 6105 Sort中存在相同的表达式 6106 查询query语句非法 6107 统计函数表达式的返回值不能为bool或者string类型 6108 统计中的范围必须为升序 6109 统计中的范围表达式返回值类型错误 6110 统计函数不存在 6111 不支持的统计函数 6112 Query 子句错误 6113 Filter子句错误 6114 Aggregate子句错误 6115 Sort子句错误 6116 Distinct子句错误 6117 查询中包含未知的子句 6118 语法错误 6119 Distinct子句中的dist_count值错误,应该为大于0的整数 6120 Distinct子句中的dist_times值错误,应该为大于0的整数 6121 Distinct子句中的reserved值错误,应为true/false 6122 Distinct子句缺少distinct_key 6123 Distinct子句中的grade值错误,例如为空,或非数值 6124 Distinct子句中包含distinct个数不对,个数应在(0,2] 6125 Distinct子句中的max_item_count值错误,应该为大于0的整数 6126 Distinct子句中的update_total_hit值错误,应为true/false 6127 请求中包含了未定义的attribute字段 6128 表达式中的二元操作符的两边的表达式结果类型不匹配 6129 表达式中的二元操作符的两边表达式不能同时为常量 6130 二元逻辑运算表达式类型错误,应为bool类型 6131 二元表达式中不支持string类型 6132 二元表达式中不支持数组类型 6133 位操作中的类型错误 6134 常量表达式的返回值类型错误 6300 常量表达式类型应是整数或浮点数 6301 位取反操作数类型必须为整数 6302 取负数操作数必须为数值 6303 逻辑非操作数必须为数值 6304 二元运算操作数类型错误 6305 非法的二元运算符 6306 函数参数类型错误 6307 函数未定义 6308 函数参数个数错误 6309 非法的数组操作 6310 可过滤字段不存在 6311 数组字段被错当作单值使用 6312 单值字段被错当作数组使用 6313 数组字段下标越界(小于0) 6314 不支持的字段类型 6315 索引字段参数不存在 6316 Query中没有指定索引 6317 Filter子句中只能使用一次公式 6318 公式语法解析出错 6500 搜索语法中包含不存在的字段 6501 在线系统没有索引数据 6502 用户query语法错误 6601 一个索引字段只能包含在一个规则中 6602 没有查询词,如default:’’的情况 6603 查询中的索引字段没有在查询分析规则中指定 6604 关键词没有使用引号括起来,如default:xxx,正确为default:’xxx’ 6605 双引号查询不能配置查询分析规则 6607 disable参数格式错误 6608 disable指定关闭的索引字段不存在 6609 disable指定关闭的功能列表不存在 6610 查询分析后的query为空(原query为空,或者全部是stopword) 6611 查询中没有指定索引字段 数据处理相关(7000-7999) 错误码 错误说明 7100 没有错误发生 7101 单个文档过长 7102 文档所属应用的元信息错误(clientid 或 accesskey、应用名或表名等不正确) 7103 HA3 文档格式错误: 字段解析失败 7104 JSON文档格式错误:字段解析失败 7105 JSON 文档格式错误: json非法 7106 JSON 文档格式错误: json非法 7107 不支持的编码 7108 编码转换失败 7109 fields中没有id字段 7110 fields中id定义不合法 7111 fields中包含保留字段 7201 HA3 文档格式错误: cmd 非法(cmd 非 ADD/UPDATE/DELETE) 7202 JSON 文档格式错误: cmd 非法(cmd 非 ADD/UPDATE/DELETE) 7301 主键字段不存在 7302 字段数据类型错误 7303 数组字段相关错误 7401 文档总数超出配额 7402 每日更新文档数超出配额 7403 单次导入的数据大小超出配额 7500 系统内部错误 7501 云梯Hive待同步字段的列号超出了当前数据的列数范围 7502 从Mysql中读取到的主键字段为空,请联系数据库管理员 7503 JsonKeyValueExtractor内容转换错误: Json格式非法 7504 JsonKeyValueExtractor内容转换错误: key不存在 7505 TairLDBExtractor内容转换错误: namespace非法(应为int32类型) 7506 TairLDBExtractor内容转换错误: 从Tair中读取数据失败 7507 MySql实时同步过滤条件格式错误 7508 系统内部错误: 内容转换插件初始化失败 7509 TairLDBExtractor内容转换配置错误:Tair连接失败,请检查configId 或 namespace 是否有效 7510 KVExtractor内容解析错误:KV格式无法解析 7511 OSS 数据读取失败 7512 OSS 内容长度超过限度 7513 OSS 内容解析错误 7514 系统内部错误: OSS LOG 格式不兼容 7515 过滤条件执行错误 7516 字段映射过程中源表字段缺失 7517 StringCatenateExtractor内容转换错误: 源字段不存在 7518 StringCatenateExtractor内容转换错误: 不支持多值字段 7601 任务执行错误 7602 更新app失败 7701 数据清理任务错误:指定过滤字段不存在 7801 文档格式错误 文档错误内部通知(8000-8999) 错误码 错误说明 8001 保存错误信息失败 8002 必要参数缺失 8003 应用不存在 8004 参数错误 模板相关(9000-9999) 错误码 错误说明 9001 用户名为空 9002 应用名为空 9003 模板名不可用。模板名只能由数字、26个英文字母或下划线组成 9004 模板名长度不可超过30位 9005 查询模板信息出错 9006 模板名字已存在 9007 插入模板信息出错 9008 无效的数据 9009 定义的字段数目超过系统允许的最大字段数 9010 此字段保留字段名 9011 字段已存在 9012 索引名称必须以字母开头,由数字、26个英文字母或下划线组成,长度不超过30位,多值字段类型不能为SWS_TEXT或TEXT 9013 不支持数组 9014 不支持主键 9015 未设定主键 9016 主键不唯一 9017 更新信息失败 9018 删除信息失败 9019 包含多个索引字段的搜索字段最多4个 9020 同一个STRING/TEXT类型的索引字段不能进入多个只包含一个字段的搜索字段中 9021 索引名称必须以字母开头,由数字、26个英文字母或下划线组成,长度不超过30个 9022 该表已经关联 9023 索引名不能包含多类型的字段 9100 系统内部错误 9101 该字段超过数量限制 9102 该数据源未被用到 9103 无效的外表连接 9104 最多2级关联 9105 待查模板不存在 9501 用户名为空 9502 应用名为空 9519 未指定模板 9600 系统内部错误 9902 插件字段类型错误 9999 此域名不提供本服务 数据同步相关(10000-) 错误码 错误说明 10001 没有指定的tddl group key,tddl信息获取失败 10002 获取字段失败或者表不存在 10011 连接agg失败 10012 应用里存在doc 10013 应用不是自定义结构 10110 该任务已结束 10010 部分数据源有问题,已经忽略有错误的数据 10014 数据源类型错误 10100 创建任务失败,未结束的任务已经存在 10101 没有指定应用ID 10106 没有指定应用ID 10107 没有指定应用ID 10102 ACTION无效 10112 文档数量超过限制 10201 获取配额列表失败 10202 更新配额失败 10301 参数错误:参数未提供或者格式不正确 10302 时间参数错误 10303 数据源未配置 10304 该表配额超限 10305 OSS参数错误 10306 OSS BUCKET名称无效 10307 OSS 记录类型无效 10308 OSS BUCKET日志功能未开启 10309 存在未完成的任务 10310 不是运行中的应用,无法创建任务 10311 时间范围不合法 10312 应用描述长度超过限制,最多600字 10313 OSS 内容格式不合法 10314 OSS BUCKET所在区域ACL网络不通 10315 OSS BUCKET的地址信息不合法 10330 数据源参数不合法 10350 连接ODPS服务失败 10351 ODPS 返回错误 10400 OSS前缀不合法 10450 字段不存在

保持可爱mmm 2020-03-26 22:06:37 0 浏览量 回答数 0

问题

如何解决SSIS中的多步​​OLE DB操作错误?

心有灵_夕 2019-12-26 21:44:05 1 浏览量 回答数 1

问题

用户指南-日志管理

李沃晟 2019-12-01 21:39:09 628 浏览量 回答数 0

问题

结合云解析实现跨地域负载均衡

行者武松 2019-12-01 21:36:56 2533 浏览量 回答数 0

问题

3月18日万网DNS系统升级通知

焦闻鱼 2019-12-01 21:43:42 6434 浏览量 回答数 3

问题

API参考 - API参考 - 数据迁移 - DescribeFilesForSQLServer

李沃晟 2019-12-01 21:41:27 653 浏览量 回答数 0

问题

Eclipse用户指南:使用阿里云图形界面:RDS图形化界面

行者武松 2019-12-01 21:51:20 1802 浏览量 回答数 0

回答

索引,索引!!!为经常查询的字段建索引!! 但也不能过多地建索引。insert和delete等改变表记录的操作会导致索引重排,增加数据库负担。优化目标1.减少 IO 次数 IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑,当然,也是收效最明显的优化手段。2.降低 CPU 计算 除了 IO 瓶颈之外,SQL优化中需要考虑的就是 CPU 运算量的优化了。order by, group by,distinct … 都是消耗 CPU 的大户(这些操作基本上都是 CPU 处理内存中的数据比较运算)。当我们的 IO 优化做到一定阶段之后,降低 CPU 计算也就成为了我们 SQL 优化的重要目标优化方法改变 SQL 执行计划 明确了优化目标之后,我们需要确定达到我们目标的方法。对于 SQL 语句来说,达到上述2个目标的方法其实只有一个,那就是改变 SQL 的执行计划,让他尽量“少走弯路”,尽量通过各种“捷径”来找到我们需要的数据,以达到 “减少 IO 次数” 和 “降低 CPU 计算” 的目标分析复杂的SQL语句explain 例如: mysql> explain select from (select from ( select * from t3 where id=3952602) a) b; id select_type table type possible_keys key key_len ref rows Extra 1 PRIMARY system NULL NULL NULL NULL 1 2 DERIVED system NULL NULL NULL NULL 1 3 DERIVED t3 const PRIMARY,idx_t3_id PRIMARY 4 1 很显然这条SQL是从里向外的执行,就是从id=3 向上执行.show show tables或show tables from database_name; // 显示当前数据库中所有表的名称 show databases; // 显示mysql中所有数据库的名称 show columns from table_name from database_name; 或MySQL show columns from database_name.table_name; // 显示表中列名称 show grants for user_name@localhost; // 显示一个用户的权限,显示结果类似于grant 命令 show index from table_name; // 显示表的索引 show status; // 显示一些系统特定资源的信息,例如,正在运行的线程数量 show variables; // 显示系统变量的名称和值show processlist; // 显示系统中正在运行的所有进程,也就是当前正在执行的查询。 show table status; // 显示当前使用或者指定的database中的每个表的信息。信息包括表类型和表的最新更新时间 show privileges; // 显示服务器所支持的不同权限 show create database database_name; // 显示create database 语句是否能够创建指定的数据库 show create table table_name; // 显示create database 语句是否能够创建指定的数据库 show engies; // 显示安装以后可用的存储引擎和默认引擎。 show innodb status; // 显示innoDB存储引擎的状态 show logs; // 显示BDB存储引擎的日志 show warnings; // 显示最后一个执行的语句所产生的错误、警告和通知 show errors; // 只显示最后一个执行语句所产生的错误关于enum 存在争议。 对于取值有限且固定的字段,推荐使用enum而非varchar。但是!!其他数据库可能不支持,导致了难于迁移的问题。开启缓存查询 对于完全相同的sql,使用已经存在的执行计划,从而跳过解析和生成执行计划的过程。 应用场景:有一个不经常变更的表,且服务器收到该表的大量相同查询。对于频繁更新的表,查询缓存是不适合的 Mysql 判断是否命中缓存的办法很简单,首先会将要缓存的结果放在引用表中,然后使用查询语句,数据库名称,客户端协议的版本等因素算出一个hash值,这个hash值与引用表中的结果相关联。如果在执行查询时,根据一些相关的条件算出的hash值能与引用表中的数据相关联,则表示查询命中 查询必须是完全相同的(逐字节相同)才能够被认为是相同的。另外,同样的查询字符串由于其它原因可能认为是不同的。使用不同的数据库、不同的协议版本或者不同 默认字符集的查询被认为是不同的查询并且分别进行缓存。 下面sql查询缓存认为是不同的: SELECT * FROM tbl_name Select * from tbl_name 缓存机制失效的场景 如果查询语句中包含一些不确定因素时(例如包含 函数Current()),该查询不会被缓存,不确定因素主要包含以下情况 · 引用了一些返回值不确定的函数 · 引用自定义函数(UDFs)。 · 引用自定义变量。 · 引用mysql系统数据库中的表。 · 下面方式中的任何一种: SELECT ...IN SHARE MODE SELECT ...FOR UPDATE SELECT ...INTO OUTFILE ... SELECT ...INTO DUMPFILE ... SELECT * FROM ...WHERE autoincrement_col IS NULL · 使用TEMPORARY表。 · 不使用任何表。 · 用户有某个表的列级别权限。额外的消耗 如果使用查询缓存,在进行读写操作时会带来额外的资源消耗,消耗主要体现在以下几个方面 · 查询的时候会检查是否命中缓存,这个消耗相对较小 · 如果没有命中查询缓存,MYSQL会判断该查询是否可以被缓存,而且系统中还没有对应的缓存,则会将其结果写入查询缓存 · 如果一个表被更改了,那么使用那个表的所有缓冲查询将不再有效,并且从缓冲区中移出。这包括那些映射到改变了的表的使用MERGE表的查询。一个表可以被许多类型的语句更改,例如INSERT、UPDATE、DELETE、TRUNCATE、ALTER TABLE、DROP TABLE或DROP DATABASE。 对于InnoDB而言,事物的一些特性还会限制查询缓存的使用。当在事物A中修改了B表时,因为在事物提交之前,对B表的修改对其他的事物而言是不可见的。为了保证缓存结果的正确性,InnoDB采取的措施让所有涉及到该B表的查询在事物A提交之前是不可缓存的。如果A事物长时间运行,会严重影响查询缓存的命中率 查询缓存的空间不要设置的太大。 因为查询缓存是靠一个全局锁操作保护的,如果查询缓存配置的内存比较大且里面存放了大量的查询结果,当查询缓存失效的时候,会长时间的持有这个全局锁。因为查询缓存的命中检测操作以及缓存失效检测也都依赖这个全局锁,所以可能会导致系统僵死的情况静态表速度更快定长类型和变长类型 CHAR(M)定义的列的长度为固定的,M取值可以为0~255之间,当保存CHAR值时,在它们的右边填充空格以达到指定的长度。当检索到CHAR值时,尾部的空格被删除掉。在存储或检索过程中不进行大小写转换。CHAR存储定长数据很方便,CHAR字段上的索引效率级高,比如定义char(10),那么不论你存储的数据是否达到了10个字节,都要占去10个字节的空间,不足的自动用空格填充。 VARCHAR(M)定义的列的长度为可变长字符串,M取值可以为0~65535之间,(VARCHAR的最大有效长度由最大行大小和使用的字符集确定。整体最大长度是65,532字节)。VARCHAR值保存时只保存需要的字符数,另加一个字节来记录长度(如果列声明的长度超过255,则使用两个字节)。VARCHAR值保存时不进行填充。当值保存和检索时尾部的空格仍保留,符合标准SQL。varchar存储变长数据,但存储效率没有CHAR高。 如果一个字段可能的值是不固定长度的,我们只知道它不可能超过10个字符,把它定义为 VARCHAR(10)是最合算的。VARCHAR类型的实际长度是它的值的实际长度+1。空间上考虑,用varchar合适;从效率上考虑,用char合适,关键是根据实际情况找到权衡点。VARCHAR和TEXT、BlOB类型 VARCHAR,BLOB和TEXT类型是变长类型,对于其存储需求取决于列值的实际长度(在前面的表格中用L表示),而不是取决于类型的最大可能尺寸。 BLOB和TEXT类型需要1,2,3或4个字节来记录列值的长度,这取决于类型的最大可能长度。VARCHAR需要定义大小,有65535字节的最大限制;TEXT则不需要。如果你把一个超过列类型最大长度的值赋给一个BLOB或TEXT列,值被截断以适合它。 一个BLOB是一个能保存可变数量的数据的二进制的大对象。4个BLOB类型TINYBLOB、BLOB、MEDIUMBLOB和LONGBLOB仅仅在他们能保存值的最大长度方面有所不同。 BLOB 可以储存图片,TEXT不行,TEXT只能储存纯文本文件。 在BLOB和TEXT类型之间的唯一差别是对BLOB值的排序和比较以大小写敏感方式执行,而对TEXT值是大小写不敏感的。换句话说,一个TEXT是一个大小写不敏感的BLOB。 效率来说基本是char>varchar>text,但是如果使用的是Innodb引擎的话,推荐使用varchar代替char char和varchar可以有默认值,text不能指定默认值静态表和动态表 静态表字段长度固定,自动填充,读写速度很快,便于缓存和修复,但比较占硬盘,动态表是字段长度不固定,节省硬盘,但更复杂,容易产生碎片,速度慢,出问题后不容易重建。当只需要一条数据的时候,使用limit 1 表记录中的一行尽量不要超过一个IO单元 区分in和exist select * from 表A where id in (select id from 表B)这句相当于select from 表A where exists(select from 表B where 表B.id=表A.id)对于表A的每一条数据,都执行select * from 表B where 表B.id=表A.id的存在性判断,如果表B中存在表A当前行相同的id,则exists为真,该行显示,否则不显示 区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。 所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况复杂多表尽量少用join MySQL 的优势在于简单,但这在某些方面其实也是其劣势。MySQL 优化器效率高,但是由于其统计信息的量有限,优化器工作过程出现偏差的可能性也就更多。对于复杂的多表 Join,一方面由于其优化器受限,再者在 Join 这方面所下的功夫还不够,所以性能表现离 Oracle 等关系型数据库前辈还是有一定距离。但如果是简单的单表查询,这一差距就会极小甚至在有些场景下要优于这些数据库前辈。尽量用join代替子查询 虽然 Join 性能并不佳,但是和 MySQL 的子查询比起来还是有非常大的性能优势。 MySQL需要为内层查询语句的查询结果建立一个临时表。然后外层查询语句在临时表中查询记录。查询完毕后,MySQL需要插销这些临时表。所以在MySQL中可以使用连接查询来代替子查询。连接查询不需要建立临时表,其速度比子查询要快。尽量少排序 排序操作会消耗较多的 CPU 资源,所以减少排序可以在缓存命中率高等 IO 能力足够的场景下会较大影响 SQL 的响应时间。 对于MySQL来说,减少排序有多种办法,比如: 上面误区中提到的通过利用索引来排序的方式进行优化 减少参与排序的记录条数 非必要不对数据进行排序尽量避免select * 大多数关系型数据库都是按照行(row)的方式存储,而数据存取操作都是以一个固定大小的IO单元(被称作 block 或者 page)为单位,一般为4KB,8KB… 大多数时候,每个IO单元中存储了多行,每行都是存储了该行的所有字段(lob等特殊类型字段除外)。 所以,我们是取一个字段还是多个字段,实际上数据库在表中需要访问的数据量其实是一样的。 也有例外情况,那就是我们的这个查询在索引中就可以完成,也就是说当只取 a,b两个字段的时候,不需要回表,而c这个字段不在使用的索引中,需要回表取得其数据。在这样的情况下,二者的IO量会有较大差异。尽量少or 当 where 子句中存在多个条件以“或”并存的时候,MySQL 的优化器并没有很好的解决其执行计划优化问题,再加上 MySQL 特有的 SQL 与 Storage 分层架构方式,造成了其性能比较低下,很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果。尽量用 union all 代替 union union 和 union all 的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的 CPU 运算,加大资源消耗及延迟。所以当我们可以确认不可能出现重复结果集或者不在乎重复结果集的时候,尽量使用 union all 而不是 union。尽量早过滤 在 SQL 编写中同样可以使用这一原则来优化一些 Join 的 SQL。比如我们在多个表进行分页数据查询的时候,我们最好是能够在一个表上先过滤好数据分好页,然后再用分好页的结果集与另外的表 Join,这样可以尽可能多的减少不必要的 IO 操作,大大节省 IO 操作所消耗的时间。避免类型转换 这里所说的“类型转换”是指 where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换: 人为在column_name 上通过转换函数进行转换直接导致 MySQL(实际上其他数据库也会有同样的问题)无法使用索引,如果非要转换,应该在传入的参数上进行转换,由数据库自己进行转换, 如果我们传入的数据类型和字段类型不一致,同时我们又没有做任何类型转换处理,MySQL 可能会自己对我们的数据进行类型转换操作,也可能不进行处理而交由存储引擎去处理,这样一来,就会出现索引无法使用的情况而造成执行计划问题。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL 对于破坏性来说,高并发的 SQL 总是会比低频率的来得大,因为高并发的 SQL 一旦出现问题,甚至不会给我们任何喘息的机会就会将系统压跨。而对于一些虽然需要消耗大量 IO 而且响应很慢的 SQL,由于频率低,即使遇到,最多就是让整个系统响应慢一点,但至少可能撑一会儿,让我们有缓冲的机会。从全局出发优化,而不是片面调整 尤其是在通过调整索引优化 SQL 的执行计划的时候,千万不能顾此失彼,因小失大。尽可能对每一条运行在数据库中的SQL进行 explain 知道 SQL 的执行计划才能判断是否有优化余地,才能判断是否存在执行计划问题。在对数据库中运行的 SQL 进行了一段时间的优化之后,很明显的问题 SQL 可能已经很少了,大多都需要去发掘,这时候就需要进行大量的 explain 操作收集执行计划,并判断是否需要进行优化。尽量避免where子句中对字段进行null值的判断 会导致引擎放弃索引,进而进行全表扫描。 尽量不要给数据库留null值,尽可能地使用not null填充数据库。可以为每个null型的字段设置一个和null对应的实际内容表述。避免在where中使用!=, >, <操作符 否则引擎放弃使用索引,进行全表扫描。常用查询字段建索引避免在where中使用or imagein和not in关键词慎用,容易导致全表扫面 对连续的数值尽量用between通配符查询也容易导致全表扫描避免在where子句中使用局部变量 sql只有在运行时才解析局部变量。而优化程序必须在编译时访问执行计划,这时并不知道变量值,所以无法作为索引的输入项。 image避免在where子句中对字段进行表达式操作 会导致引擎放弃使用索引 image避免在where子句中对字段进行函数操作 image不要where子句的‘=’左边进行函数、算术运算或其他表达式运算 系统可能无法正确使用索引避免update全部字段 只update需要的字段。频繁调用会引起明显的性能消耗,同时带来大量日志。索引不是越多越好 一个表的索引数最好不要超过6个尽量使用数字型字段而非字符型 因为处理查询和连接时会逐个比较字符串的每个字符,而对于数字型而言只需要比较一次就够了。尽可能用varchar/nvarchar代替char/nchar 变长字段存储空间小,对于查询来说,在一个相对较小的字段内搜索效率更高。。。?避免频繁创建和删除临时表,减少系统表资源消耗select into和create table 新建临时表时,如果一次性插入数据量很大,使用select into代替create table,避免造成大量log,以提高速度。 如果数据量不大,为了缓和系统表的资源,先create table,再insert。 拆分大的DELETE和INSERT语句 因为这两个操作是会锁表的,对于高访问量的站点来说,锁表时间内积累的访问数、数据库连接、打开的文件数等等,可能不仅仅让WEB服务崩溃,还会让整台服务器马上挂了。 所以,一定要拆分,使用LIMIT条件休眠一段时间,批量处理。

wangccsy 2019-12-02 01:50:30 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。

封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

第一种OutOfMemoryError: PermGen space发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。第二种OutOfMemoryError: Java heap space发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m第三种OutOfMemoryError:unable to create new native thread在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。那么是什么原因造成这种问题呢?每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。给出一个有关能够创建线程的最大个数的估算公式:(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads对于jdk1.5而言,假设操作系统保留120M内存:1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads对于栈大小为256KB的jdk1.4而言,1.5GB allocated to JVM: ~1520 threads1.0GB allocated to JVM: ~3520 threads 对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

蛮大人123 2019-12-02 02:27:59 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站