• 关于 栈缓冲区溢出无法连接 的搜索结果

回答

本文总结了常见的 Linux 内核参数及相关问题。修改内核参数前,您需要: 从实际需要出发,最好有相关数据的支撑,若您的业务没有受到影响不建议调整内核参数。 了解每一个参数的具体作用,并且同类型或版本操作系统下内核参数可能有所不同。 备份 ECS 实例中的重要数据。参阅文档 创建快照。 Linux 常用内核网络参数 参数 描述 net.core.rmem_default 默认的 TCP 数据接收窗口大小(字节)。 net.core.rmem_max 最大的 TCP 数据接收窗口(字节)。 net.core.wmem_default 默认的 TCP 数据发送窗口大小(字节)。 net.core.wmem_max 最大的 TCP 数据发送窗口(字节)。 net.core.netdev_max_backlog 在每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。 net.core.somaxconn 定义了系统中每一个端口最大的监听队列的长度,这是个全局的参数。 net.core.optmem_max 表示每个套接字所允许的最大缓冲区的大小。 net.ipv4.tcp_mem 确定 TCP 栈应该如何反映内存使用,每个值的单位都是内存页(通常是 4KB)第一个值是内存使用的下限;第二个值是内存压力模式开始对缓冲区使用应用压力的上限;第三个值是内存使用的上限。在这个层次上可以将报文丢弃,从而减少对内存的使用。对于较大的 BDP 可以增大这些值(注意:其单位是内存页而不是字节)。 net.ipv4.tcp_rmem 为自动调优定义 socket 使用的内存。第一个值是为 socket 接收缓冲区分配的最少字节数;第二个值是默认值(该值会被 rmem_default 覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是接收缓冲区空间的最大字节数(该值会被 rmem_max 覆盖)。 net.ipv4.tcp_wmem 为自动调优定义 socket 使用的内存。第一个值是为 socket 发送缓冲区分配的最少字节数;第二个值是默认值(该值会被 wmem_default 覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是发送缓冲区空间的最大字节数(该值会被 wmem_max 覆盖)。 net.ipv4.tcp_keepalive_time TCP 发送 keepalive 探测消息的间隔时间(秒),用于确认 TCP 连接是否有效。 net.ipv4.tcp_keepalive_intvl 探测消息未获得响应时,重发该消息的间隔时间(秒)。 net.ipv4.tcp_keepalive_probes 在认定 TCP 连接失效之前,最多发送多少个 keepalive 探测消息。 net.ipv4.tcp_sack 启用有选择的应答(1 表示启用),通过有选择地应答乱序接收到的报文来提高性能,让发送者只发送丢失的报文段,(对于广域网通信来说)这个选项应该启用,但是会增加对 CPU 的占用。 net.ipv4.tcp_fack 启用转发应答,可以进行有选择应答(SACK)从而减少拥塞情况的发生,这个选项也应该启用。 net.ipv4.tcp_timestamps TCP 时间戳(会在 TCP 包头增加 12 B),以一种比重发超时更精确的方法(参考 RFC 1323)来启用对 RTT 的计算,为实现更好的性能应该启用这个选项。 net.ipv4.tcp_window_scaling 启用 RFC 1323 定义的 window scaling,要支持超过 64KB 的 TCP 窗口,必须启用该值(1 表示启用),TCP 窗口最大至 1GB,TCP 连接双方都启用时才生效。 net.ipv4.tcp_syncookies 表示是否打开 TCP 同步标签(syncookie),内核必须打开了 CONFIG_SYN_COOKIES 项进行编译,同步标签可以防止一个套接字在有过多试图连接到达时引起过载。默认值 0 表示关闭。 net.ipv4.tcp_tw_reuse 表示是否允许将处于 TIME-WAIT 状态的 socket (TIME-WAIT 的端口)用于新的 TCP 连接。 net.ipv4.tcp_tw_recycle 能够更快地回收 TIME-WAIT 套接字。 net.ipv4.tcp_fin_timeout 对于本端断开的 socket 连接,TCP 保持在 FIN-WAIT-2 状态的时间(秒)。对方可能会断开连接或一直不结束连接或不可预料的进程死亡。 net.ipv4.ip_local_port_range 表示 TCP/UDP 协议允许使用的本地端口号。 net.ipv4.tcp_max_syn_backlog 对于还未获得对方确认的连接请求,可保存在队列中的最大数目。如果服务器经常出现过载,可以尝试增加这个数字。默认为 1024。 net.ipv4.tcp_low_latency 允许 TCP/IP 栈适应在高吞吐量情况下低延时的情况,这个选项应该禁用。 net.ipv4.tcp_westwood 启用发送者端的拥塞控制算法,它可以维护对吞吐量的评估,并试图对带宽的整体利用情况进行优化,对于 WAN 通信来说应该启用这个选项。 net.ipv4.tcp_bic 为快速长距离网络启用 Binary Increase Congestion,这样可以更好地利用以 GB 速度进行操作的链接,对于 WAN 通信应该启用这个选项。 net.ipv4.tcp_max_tw_buckets 该参数设置系统的 TIME_WAIT 的数量,如果超过默认值则会被立即清除。默认为 180000。 net.ipv4.tcp_synack_retries 指明了处于 SYN_RECV 状态时重传 SYN+ACK 包的次数。 net.ipv4.tcp_abort_on_overflow 设置改参数为 1 时,当系统在短时间内收到了大量的请求,而相关的应用程序未能处理时,就会发送 Reset 包直接终止这些链接。建议通过优化应用程序的效率来提高处理能力,而不是简单地 Reset。默认值: 0 net.ipv4.route.max_size 内核所允许的最大路由数目。 net.ipv4.ip_forward 接口间转发报文。 net.ipv4.ip_default_ttl 报文可以经过的最大跳数。 net.netfilter.nf_conntrack_tcp_timeout_established 让 iptables 对于已建立的连接,在设置时间内若没有活动,那么则清除掉。 net.netfilter.nf_conntrack_max 哈希表项最大值。 查看和修改 Linux 实例内核参数 方法一、通过 /proc/sys/ 目录 /proc/sys/ 目录是 Linux 内核在启动后生成的伪目录,其目录下的 net 文件夹中存放了当前系统中生效的所有内核参数、目录树结构与参数的完整名称相关,如 net.ipv4.tcp_tw_recycle,它对应的文件是 /proc/sys/net/ipv4/tcp_tw_recycle,文件的内容就是参数值。 查看内核参数:使用 cat 查看对应文件的内容,例如执行命令 cat /proc/sys/net/ipv4/tcp_tw_recycle 查看 net.ipv4.tcp_tw_recycle 的值。 修改内核参数:使用 echo 修改内核参数对应的文件,例如执行命令 echo "0" > /proc/sys/net/ipv4/tcp_tw_recycle 将 net.ipv4.tcp_tw_recycle 的值修改为 0。 注意:方法一修改的参数值仅在当次运行中生效,系统重启后会回滚历史值,一般用于临时性的验证修改的效果。若需要永久性的修改,请参阅方法二。 方法二、通过 sysctl.conf 文件 查看内核参数:执行命令 sysctl -a 查看当前系统中生效的所有参数,如下所示: net.ipv4.tcp_app_win = 31 net.ipv4.tcp_adv_win_scale = 2 net.ipv4.tcp_tw_reuse = 0 net.ipv4.tcp_frto = 2 net.ipv4.tcp_frto_response = 0 net.ipv4.tcp_low_latency = 0 net.ipv4.tcp_no_metrics_save = 0 net.ipv4.tcp_moderate_rcvbuf = 1 net.ipv4.tcp_tso_win_divisor = 3 net.ipv4.tcp_congestion_control = cubic net.ipv4.tcp_abc = 0 net.ipv4.tcp_mtu_probing = 0 net.ipv4.tcp_base_mss = 512 net.ipv4.tcp_workaround_signed_windows = 0 net.ipv4.tcp_challenge_ack_limit = 1000 net.ipv4.tcp_limit_output_bytes = 262144 net.ipv4.tcp_dma_copybreak = 4096 net.ipv4.tcp_slow_start_after_idle = 1 net.ipv4.cipso_cache_enable = 1 net.ipv4.cipso_cache_bucket_size = 10 net.ipv4.cipso_rbm_optfmt = 0 net.ipv4.cipso_rbm_strictvalid = 1 修改内核参数: 执行命令   /sbin/sysctl -w kernel.domainname="example.com"  来修改指定的参数值,如 sysctl -w net.ipv4.tcp_tw_recycle="0" 执行命令   vi /etc/sysctl.conf  修改   /etc/sysctl.conf  文件中的参数。 执行命令   /sbin/sysctl -p  使配置生效。 Linux 网络相关内核参数引发的常见问题及处理 问题现象 原因分析 解决方案 无法在本地网络环境通过 SSH 连接 ECS Linux 实例,或者访问该 Linux 实例上的 HTTP 业务出现异常。Telnet 测试会被 reset。 如果您的本地网络是 NAT 共享方式上网,该问题可能是由于本地 NAT 环境和目标 Linux 相关内核参数配置不匹配导致。尝试通过修改目标 Linux 实例内核参数来解决问题:1. 远程连接目标 Linux 实例;2. 查看当前配置: cat /proc/sys/net/ipv4/tcp_tw_recyclecat /proc/sys/net/ipv4/tcp_timestamps 查看上述两个配置的值是不是 0,如果为 1的话,NAT 环境下的请求可能会导致上述问题。 通过如下方式将上述参数值修改为 0:1. 执行命令 vi /etc/sysctl.conf。2. 添加如下内容:net.ipv4.tcp_tw_recycle=0net.ipv4.tcp_timestamps=0。3. 输入指令 # sysctl -p 使配置生效。4. 重新 SSH 登录实例或者业务访问测试。 服务端 A 与 客户端 B 建立了 TCP 连接,之后服务端 A 主动断开了连接,但是在客户端 B 上仍然看到连接是建立的。示例见图一,图二。 通常是由于修改了服务端内核参数 net.ipv4.tcp_fin_timeout 默认设置所致。 1. 执行命令 vi /etc/sysctl.conf,修改配置:net.ipv4.tcp_fin_timeout=30。2. 执行命令 # sysctl -p 使配置生效。 通过 netstat 或 ss 可以看到大量处于 TIME_WAIT 状态的连接。 通过 netstat -n | awk ‘/^tcp/ {++y[$NF]} END {for(w in y) print w, y[w]}’ 查看 TIME_WAIT 数量。 1. 执行命令 vi /etc/sysctl.conf,修改或加入以下内容: net . ipv4 . tcp_syncookies = 1 net . ipv4 . tcp_tw_reuse = 1 net . ipv4 . tcp_tw_recycle = 1 net . ipv4 . tcp_fin_timeout = 30 2. 执行命令 /sbin/sysctl -p  使配置生效。 云服务器上出现大量 CLOSE_WAIT 状态的连接数。 根据实例上的业务量来判断 CLOSE_WAIT 数量是否超出了正常的范围。TCP 连接断开时需要进行四次挥手,TCP 连接的两端都可以发起关闭连接的请求,若对端发起了关闭连接,但本地没有进行后续的关闭连接操作,那么该链接就会处于 CLOSE_WAIT 状态。虽然该链接已经处于半开状态,但是已经无法和对端通信,需要及时的释放该链接。建议从业务层面及时判断某个连接是否已经被对端关闭,即在程序逻辑中对连接及时进行关闭检查。 通过命令 netstat -an|grep CLOSE_WAIT|wc -l 查看当前实例上处于 CLOSE_WAIT 状态的连接数。Java 语言:1. 通过 read 方法来判断 I/O 。当 read 方法返回 -1 时则表示已经到达末尾。2. 通过 close 方法关闭该链接。C 语言:1. 检查 read 的返回值,若是 0 则可以关闭该连接,若小于 0 则查看一下 errno,若不是 AGAIN 则同样可以关闭连接。 ECS Linux FIN_WAIT2 状态的 TCP 链接过多。 HTTP 服务中,SERVER 由于某种原因关闭连接,如 KEEPALIVE 的超时。这样,作为主动关闭的 SERVER 一方就会进入 FIN_WAIT2 状态。但 TCP/IP 协议栈中,FIN_WAIT2 状态是没有超时的(不像 TIME_WAIT 状态),如果 Client 不关闭,FIN_WAIT_2 状态将保持到系统重启,越来越多的 FIN_WAIT_2 状态会致使内核 Crash。 1. 执行命令 vi /etc/sysctl.conf,修改或加入以下内容: net . ipv4 . tcp_syncookies = 1 net . ipv4 . tcp_fin_timeout = 30 net . ipv4 . tcp_max_syn_backlog = 8192 net . ipv4 . tcp_max_tw_buckets = 5000 2. 执行命令 # sysctl -p 使配置生效。 查询服务器 /var/log/message 日志,发现全部是类似如下 kernel: TCP: time wait bucket table overflowt 的报错信息,报错提示 TCP time wait 溢出,见图三。 TCP 连接使用很高,容易超出限制。见图四。 1. 执行命令 netstat -anp |grep tcp |wc -l统计 TCP 连接数。2. 对比 /etc/sysctl.conf 配置文件的 net.ipv4.tcp_max_tw_buckets 最大值,看是否有超出情况。3. 执行命令 vi /etc/sysctl.conf,查询 net.ipv4.tcp_max_tw_buckets 参数。如果确认连接使用很高,容易超出限制。4. 调高参数 net.ipv4.tcp_max_tw_buckets,扩大限制。5. 执行命令 # sysctl -p 使配置生效。 ECS Linux 实例出现间歇性丢包的情况,通过 tracert, mtr 等手段排查,外部网络未见异常。同时,如下图所示,在系统日志中重复出现大量kernel nf_conntrack: table full, dropping packet.错误信息。见图五。 ip_conntrack 是 Linux 系统内 NAT 的一个跟踪连接条目的模块。ip_conntrack 模块会使用一个哈希表记录 TCP 通讯协议的 established connection 记录,当哈希表满了的时候,会导致 nf_conntrack: table full, dropping packet 错误。需要通过修改内核参数来调整 ip_conntrack 限制。 Centos 5.x 系统1. 使用管理终端登录实例。2. 执行命令 # vi /etc/sysctl.conf 编辑系统内核配置。3. 修改哈希表项最大值参数:net.ipv4.netfilter.ip_conntrack_max = 655350。4. 修改超时时间参数:net.ipv4.netfilter.ip_conntrack_tcp_timeout_established = 1200,默认情况下 timeout 是5天(432000秒)。5. 执行命令 # sysctl -p 使配置生效。Centos 6.x 及以上系统:1. 使用管理终端登录实例。2. 执行命令 # vi /etc/sysctl.conf 编辑系统内核配置。3. 修改哈希表项最大值参数:net.netfilter.nf_conntrack_max = 655350。4. 修改超时时间参数:net.netfilter.nf_conntrack_tcp_timeout_established = 1200,默认情况下 timeout 是5天(432000秒)。5. 执行命令 # sysctl -p 使配置生效。 客户端做了 NAT 后无法访问 ECS、RDS,包括通过 SNAT VPC 访问外网的 ECS 。无法访问连接其他 ECS 或 RDS 等云产品,抓包检测发现远端对客户端发送的 SYN 包没有响应。 若远端服务器同时开启 net.ipv4.tcp_tw_recycle 和 net.ipv4.tcp_timestamps,即参数取值为 1 时,服务器会检查每一个报文的时间戳(Timestamp),若 Timestamp 不是递增的关系,则不做处理。做了 NAT 后,服务器看到来自不同的客户端的 IP 相似,但 NAT 前每一台客户端的时间可能会有偏差,在服务器上就会看到 Timestamp 不是递增的情况。 - 远端服务器为 ECS:修改参数 net.ipv4.tcp_tw_recycle 为 0。- 远端服务器为 RDS 等 PaaS 服务:RDS 无法直接修改内核参数,需要在客户端上修改参数 net.ipv4.tcp_tw_recycle 和 net.ipv4.tcp_timestamps 为 0。 参考链接 Linux man-pages kernel/git/torvalds/linux.git_proc kernel/git/torvalds/linux.git_proc_net_tcp kernel/git/torvalds/linux.git_ip-sysctl kernel/git/torvalds/linux.git_netfilter-sysctl kernel/git/torvalds/linux.git_nf_conntrack-sysctl 图一: 客户端 B TCP 连接 图二: 客户端 A TCP 连接 图三: 报错提示 TCP time wait 溢出 图四: 查询 net.ipv4.tcp_max_tw_buckets 参数 图五: ECS Linux 实例间歇性丢包

KB小秘书 2019-12-02 02:05:57 0 浏览量 回答数 0

回答

请求错误 这类的状态码代表了客户端看起来可能发生了错误,妨碍了服务器的处理。除非响应的是一个 HEAD 请求,否则服务器就应该返回一个解释当前错误状况的实体,以及这是临时的还是永久性的状况。这些状态码适用于任何请求方法。浏览器应当向用户显示任何包含在此类错误响应中的实体内容。 如果错误发生时客户端正在传送数据,那么使用TCP的服务器实现应当仔细确保在关闭客户端与服务器之间的连接之前,客户端已经收到了包含错误信息的数据包。如果客户端在收到错误信息后继续向服务器发送数据,服务器的TCP栈将向客户端发送一个重置数据包,以清除该客户端所有还未识别的输入缓冲,以免这些数据被服务器上的应用程序读取并干扰后者。 400 Bad Request 1、语义有误,当前请求无法被服务器理解。除非进行修改,否则客户端不应该重复提交这个请求。 2、请求参数有误。 401 Unauthorized 当前请求需要用户验证。该响应必须包含一个适用于被请求资源的 WWW-Authenticate 信息头用以询问用户信息。客户端可以重复提交一个包含恰当的 Authorization 头信息的请求。如果当前请求已经包含了 Authorization 证书,那么401响应代表着服务器验证已经拒绝了那些证书。如果401响应包含了与前一个响应相同的身份验证询问,且浏览器已经至少尝试了一次验证,那么浏览器应当向用户展示响应中包含的实体信息,因为这个实体信息中可能包含了相关诊断信息。参见RFC 2617。 402 Payment Required 该状态码是为了将来可能的需求而预留的。 403 Forbidden 服务器已经理解请求,但是拒绝执行它。与401响应不同的是,身份验证并不能提供任何帮助,而且这个请求也不应该被重复提交。如果这不是一个 HEAD 请求,而且服务器希望能够讲清楚为何请求不能被执行,那么就应该在实体内描述拒绝的原因。当然服务器也可以返回一个404响应,假如它不希望让客户端获得任何信息。 404 Not Found 请求失败,请求所希望得到的资源未被在服务器上发现。没有信息能够告诉用户这个状况到底是暂时的还是永久的。假如服务器知道情况的话,应当使用410状态码来告知旧资源因为某些内部的配置机制问题,已经永久的不可用,而且没有任何可以跳转的地址。404这个状态码被广泛应用于当服务器不想揭示到底为何请求被拒绝或者没有其他适合的响应可用的情况下。出现这个错误的最有可能的原因是服务器端没有这个页面。 405 Method Not Allowed 请求行中指定的请求方法不能被用于请求相应的资源。该响应必须返回一个Allow 头信息用以表示出当前资源能够接受的请求方法的列表。 鉴于 PUT,DELETE 方法会对服务器上的资源进行写操作,因而绝大部分的网页服务器都不支持或者在默认配置下不允许上述请求方法,对于此类请求均会返回405错误。 406 Not Acceptable 请求的资源的内容特性无法满足请求头中的条件,因而无法生成响应实体。 除非这是一个 HEAD 请求,否则该响应就应当返回一个包含可以让用户或者浏览器从中选择最合适的实体特性以及地址列表的实体。实体的格式由 Content-Type 头中定义的媒体类型决定。浏览器可以根据格式及自身能力自行作出最佳选择。但是,规范中并没有定义任何作出此类自动选择的标准。 407 Proxy Authentication Required 与401响应类似,只不过客户端必须在代理服务器上进行身份验证。代理服务器必须返回一个 Proxy-Authenticate 用以进行身份询问。客户端可以返回一个 Proxy-Authorization 信息头用以验证。参见RFC 2617。 408 Request Timeout 请求超时。客户端没有在服务器预备等待的时间内完成一个请求的发送。客户端可以随时再次提交这一请求而无需进行任何更改。 409 Conflict 由于和被请求的资源的当前状态之间存在冲突,请求无法完成。这个代码只允许用在这样的情况下才能被使用:用户被认为能够解决冲突,并且会重新提交新的请求。该响应应当包含足够的信息以便用户发现冲突的源头。 冲突通常发生于对 PUT 请求的处理中。例如,在采用版本检查的环境下,某次 PUT 提交的对特定资源的修改请求所附带的版本信息与之前的某个(第三方)请求向冲突,那么此时服务器就应该返回一个409错误,告知用户请求无法完成。此时,响应实体中很可能会包含两个冲突版本之间的差异比较,以便用户重新提交归并以后的新版本。 410 Gone 被请求的资源在服务器上已经不再可用,而且没有任何已知的转发地址。这样的状况应当被认为是永久性的。如果可能,拥有链接编辑功能的客户端应当在获得用户许可后删除所有指向这个地址的引用。如果服务器不知道或者无法确定这个状况是否是永久的,那么就应该使用404状态码。除非额外说明,否则这个响应是可缓存的。 410响应的目的主要是帮助网站管理员维护网站,通知用户该资源已经不再可用,并且服务器拥有者希望所有指向这个资源的远端连接也被删除。这类事件在限时、增值服务中很普遍。同样,410响应也被用于通知客户端在当前服务器站点上,原本属于某个个人的资源已经不再可用。当然,是否需要把所有永久不可用的资源标记为'410 Gone',以及是否需要保持此标记多长时间,完全取决于服务器拥有者。 411 Length Required 服务器拒绝在没有定义 Content-Length 头的情况下接受请求。在添加了表明请求消息体长度的有效 Content-Length 头之后,客户端可以再次提交该请求。 412 Precondition Failed 服务器在验证在请求的头字段中给出先决条件时,没能满足其中的一个或多个。这个状态码允许客户端在获取资源时在请求的元信息(请求头字段数据)中设置先决条件,以此避免该请求方法被应用到其希望的内容以外的资源上。 413 Request Entity Too Large 服务器拒绝处理当前请求,因为该请求提交的实体数据大小超过了服务器愿意或者能够处理的范围。此种情况下,服务器可以关闭连接以免客户端继续发送此请求。 如果这个状况是临时的,服务器应当返回一个 Retry-After 的响应头,以告知客户端可以在多少时间以后重新尝试。 414 Request-URI Too Long 请求的URI 长度超过了服务器能够解释的长度,因此服务器拒绝对该请求提供服务。这比较少见,通常的情况包括: 本应使用POST方法的表单提交变成了GET方法,导致查询字符串(Query String)过长。 重定向URI “黑洞”,例如每次重定向把旧的 URI 作为新的 URI 的一部分,导致在若干次重定向后 URI 超长。 客户端正在尝试利用某些服务器中存在的安全漏洞攻击服务器。这类服务器使用固定长度的缓冲读取或操作请求的 URI,当 GET 后的参数超过某个数值后,可能会产生缓冲区溢出,导致任意代码被执行[1]。没有此类漏洞的服务器,应当返回414状态码。 415 Unsupported Media Type 对于当前请求的方法和所请求的资源,请求中提交的实体并不是服务器中所支持的格式,因此请求被拒绝。 416 Requested Range Not Satisfiable 如果请求中包含了 Range 请求头,并且 Range 中指定的任何数据范围都与当前资源的可用范围不重合,同时请求中又没有定义 If-Range 请求头,那么服务器就应当返回416状态码。 假如 Range 使用的是字节范围,那么这种情况就是指请求指定的所有数据范围的首字节位置都超过了当前资源的长度。服务器也应当在返回416状态码的同时,包含一个 Content-Range 实体头,用以指明当前资源的长度。这个响应也被禁止使用 multipart/byteranges 作为其 Content-Type。 417 Expectation Failed 在请求头 Expect 中指定的预期内容无法被服务器满足,或者这个服务器是一个代理服务器,它有明显的证据证明在当前路由的下一个节点上,Expect 的内容无法被满足。 421 too many connections There are too many connections from your internet address 从当前客户端所在的IP地址到服务器的连接数超过了服务器许可的最大范围。通常,这里的IP地址指的是从服务器上看到的客户端地址(比如用户的网关或者代理服务器地址)。在这种情况下,连接数的计算可能涉及到不止一个终端用户。 422 Unprocessable Entity 请求格式正确,但是由于含有语义错误,无法响应。(RFC 4918 WebDAV) 423 Locked 当前资源被锁定。(RFC 4918 WebDAV) 424 Failed Dependency 由于之前的某个请求发生的错误,导致当前请求失败,例如 PROPPATCH。(RFC 4918 WebDAV) 425 Unordered Collection 在WebDav Advanced Collections 草案中定义,但是未出现在《WebDAV 顺序集协议》(RFC 3658)中。 426 Upgrade Required 客户端应当切换到TLS/1.0。(RFC 2817) 449 Retry With 由微软扩展,代表请求应当在执行完适当的操作后进行重试。 451Unavailable For Legal Reasons 该请求因法律原因不可用。(RFC 7725)

微wx笑 2019-12-01 23:36:42 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播