• 关于 负数表示法是什么 的搜索结果

回答

1。二进制与十进制数间的转换 (1)二进制转换为十进制 将每个二进制数按权展开后求和即可。请看例题: 把二进制数(101.101)2=1*22+0*21+1*20+1*2-1+0*2-2+1*2-3=(5.625)10 (2)十进制转换为二进制 一般需要将十进制数的整数部分与小数部分分开处理。 整数部分计算方法:除2取余法请看例题: 十进制数(53)10的二进制值为(110101)2 小数部分计算方法:乘2取整法,即每一步将十进制小数部分乘以2,所得积的小数点左边的数字(0或1)作为二进制表示法中的数字,第一次乘法所得的整数部分为最高位。请看例题: 将(0.5125)10转换成二进制。(0.5125)10=(0.101)2 2。 八进制、十六进制与十六进制间的转换 八进制、十六进制与十六进制之间的转换方法与二进制,同十进制之间的转换方法类似。例如: (73)8=7*81+3=(59)10 (0.56)8=5*8-1+6*8-2=(0.71875)10 (12A)16=1*162+2*161+A*160=(298)10 (0.3C8)16=3*16-1+12*16-2+8*16-3=(0.142578125)10 十进制整数→→→→→八进制方法:“除8取余” 十进制整数→→→→→十六进制方法:“除16取余” 例如: (171)10=(253)8 (2653)10=(A5D)16 十进制小数→→→→→八进制小数 方法:“乘8取整” 十进制小数→→→→→十六进制小数方法:“乘16取整”例如: (0。71875)10=(0.56)8 (0.142578125)10=(0.3C8)16 3.非十进制数之间的转换 (1)二进制数与八进制数之间的转换 转换方法是:以小数点为界,分别向左右每三位二进制数合成一位八进制数,或每一位八进制数展成三位二进制数,不足三位者补0。例如: (423。45)8=(100 010 011.100 101)2 (1001001.1101)2=(001 001 001.110 100)2=(111.64)8 2。二进制与十六进制转换 转换方法:以小数点为界,分别向左右每四位二进制合成一位十六进制数,或每一位十六进制数展成四位二进制数,不足四位者补0。例如: (ABCD。EF)16=(1010 1011 1100 1101.1110 1111)2 (101101101001011.01101)2=(0101 1011 0100 1011.0110 1000)2=(5B4B。68)16 为什么需要八进制和十六进制? 编程中,我们常用的还是10进制……必竟C/C++是高级语言。 比如: int a = 100,b = 99; 不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。 但,二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是: 0000 0000 0000 0000 0110 0100 面对这么长的数进行思考或操作,没有人会喜欢。因此,C,C++ 没有提供在代码直接写二进制数的方法。 用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢。 2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可以发现这一点。 6.2 二、八、十六进制数转换到十进制数 6.2.1 二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成 十进制 第0位 0 * 20 = 0 第1位 0 * 21 = 0 第2位 1 * 22 = 4 第3位 0 * 23 = 0 第4位 0 * 24 = 0 第5位 1 * 25 = 32 第6位 1 * 26 = 64 第7位 0 * 27 = 0 + --------------------------- 100 用横式计算为: 0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位: 1 * 22 + 1 * 23 + 1 * 25 + 1 * 26 = 100 6.2.2 八进制数转换为十进制数 八进制就是逢8进1。 八进制数采用 0~7这八数来表达一个数。 八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方…… 所以,设有一个八进制数:1507,转换为十进制为: 用竖式表示: 1507换算成十进制。 第0位 7 * 80 = 7 第1位 0 * 81 = 0 第2位 5 * 82 = 320 第3位 1 * 83 = 512 + -------------------------- 839 同样,我们也可以用横式直接计算: 7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839 结果是,八进制数 1507 转换成十进制数为 839 6.2.3 八进制数的表达方法 C,C++语言中,如何表达一个八进制数呢。如果这个数是 876,我们可以断定它不是八进制数,因为八进制数中不可能出7以上的阿拉伯数字。但如果这个数是123、是567,或12345670,那么它是八进制数还是10进制数,都有可能。 所以,C,C++规定,一个数如果要指明它采用八进制,必须在它前面加上一个0,如:123是十进制,但0123则表示采用八进制。这就是八进制数在C、C++中的表达方法。 由于C和C++都没有提供二进制数的表达方法,所以,这里所学的八进制是我们学习的,CtC++语言的数值表达的第二种进制法。 现在,对于同样一个数,比如是100,我们在代码中可以用平常的10进制表达,例如在变量初始化时: int a = 100; 我们也可以这样写: int a = 0144; //0144是八进制的100;一个10进制数如何转成8进制,我们后面会学到。 千万记住,用八进制表达时,你不能少了最前的那个0。否则计算机会通通当成10进制。不过,有一个地方使用八进制数时,却不能使用加0,那就是我们前面学的用于表达字符的“转义符”表达法。 6.2.4 八进制数在转义符中的使用 我们学过用一个转义符'\'加上一个特殊字母来表示某个字符的方法,如:'\n'表示换行(line),而'\t'表示Tab字符,'\''则表示单引号。今天我们又学习了一种使用转义符的方法:转义符'\'后面接一个八进制数,用于表示ASCII码等于该值的字符。 比如,查一下第5章中的ASCII码表,我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用 '\77'来表示'?'。由于是八进制,所以本应写成 '\077',但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。 事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。 6.2.5 十六进制数转换成十进制数 2进制,用两个阿拉伯数字:0、1; 8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7; 10进制,用十个阿拉伯数字:0到9; 16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊。 16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。 十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方…… 所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。 假设有一个十六进数 2AF5, 那么如何换算成10进制呢。 用竖式计算: 2AF5换算成10进制: 第0位: 5 * 160 = 5 第1位: F * 161 = 240 第2位: A * 162 = 2560 第3位: 2 * 163 = 8192 + ------------------------------------- 10997 直接计算就是: 5 * 160 + F * 161 + A * 162 + 2 * 163 = 10997 (别忘了,在上面的计算中,A表示10,而F表示15) 现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。 假设有人问你,十进数 1234 为什么是 一千二百三十四。你尽可以给他这么一个算式: 1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100 6.2.6 十六进制数的表达方法 如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。 C,C++规定,16进制数必须以 0x开头。比如 0x1表示一个16进制数。而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。其中的x也也不区分大小写。(注意:0x中的0是数字0,而不是字母O) 以下是一些用法示例: int a = 0x100F; int b = 0x70 + a; 至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。 6.2.7 十六进制数在转义符中的使用 转义符也可以接一个16进制数来表示一个字符。如在6.2.4小节中说的 '?' 字符,可以有以下表达方式: '?' //直接输入字符 '\77' //用八进制,此时可以省略开头的0 '\0x3F' //用十六进制 同样,这一小节只用于了解。除了空字符用八进制数 '\0' 表示以外,我们很少用后两种方法表示一个字符。 6.3 十进制数转换到二、八、十六进制数 6.3.1 10进制数转换为2进制数 给你一个十进制,比如:6,如果将它转换成二进制数呢。 10进制数转换成二进制数,这是一个连续除2的过程: 把要转换的数,除以2,得到商和余数, 将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。 听起来有些糊涂。我们结合例子来说明。比如要转换6为二进制数。 “把要转换的数,除以2,得到商和余数”。 那么: 要转换的数是6, 6 ÷ 2,得到商是3,余数是0。 (不要告诉我你不会计算6÷3。) “将商继续除以2,直到商为0……” 现在商是3,还不是0,所以继续除以2。 那就: 3 ÷ 2, 得到商是1,余数是1。 “将商继续除以2,直到商为0……” 现在商是1,还不是0,所以继续除以2。 那就: 1 ÷ 2, 得到商是0,余数是1 (拿笔纸算一下,1÷2是不是商0余1!) “将商继续除以2,直到商为0……最后将所有余数倒序排列” 好极。现在商已经是0。 我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了。 6转换成二进制,结果是110。 把上面的一段改成用表格来表示,则为: 被除数 计算过程 商 余数 6 6/2 3 0 3 3/2 1 1 1 1/2 0 1 (在计算机中,÷用 / 来表示) 如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除: 请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。 说了半天,我们的转换结果对吗。二进制数110是6吗。你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。 6.3.2 10进制数转换为8、16进制数 非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。 来看一个例子,如何将十进制数120转换成八进制数。 用表格表示: 被除数 计算过程 商 余数 120 120/8 15 0 15 15/8 1 7 1 1/8 0 1 120转换为8进制,结果为:170。 非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。 同样是120,转换成16进制则为: 被除数 计算过程 商 余数 120 120/16 7 8 7 7/16 0 7 120转换为16进制,结果为:78。 6.4 二、十六进制数互相转换 二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。 我们也一样,只要学完这一小节,就能做到。 首先我们来看一个二进制数:1111,它是多少呢。 你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。 然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。 记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。 下面列出四位二进制数 xxxx 所有可能的值(中间略过部分) 仅4位的2进制数 快速计算方法 十进制值 十六进值 1111 = 8 + 4 + 2 + 1 = 15 F 1110 = 8 + 4 + 2 + 0 = 14 E 1101 = 8 + 4 + 0 + 1 = 13 D 1100 = 8 + 4 + 0 + 0 = 12 C 1011 = 8 + 4 + 0 + 1 = 11 B 1010 = 8 + 0 + 2 + 0 = 10 A 1001 = 8 + 0 + 0 + 1 = 10 9 .... 0001 = 0 + 0 + 0 + 1 = 1 1 0000 = 0 + 0 + 0 + 0 = 0 0 二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。 如(上行为二制数,下面为对应的十六进制): 1111 1101 , 1010 0101 , 1001 1011 F D , A 5 , 9 B 反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢。 先转换F: 看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢。应该是8 + 4 + 2 + 1,所以四位全为1 :1111。 接着转换 D: 看到D,知道它是13,13如何用8421凑呢。应该是:8 + 2 + 1,即:1011。 所以,FD转换为二进制数,为: 1111 1011 由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。 比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数: 被除数 计算过程 商 余数 1234 1234/16 77 2 77 77/16 4 13 (D) 4 4/16 0 4 结果16进制为: 0x4D2 然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。 其中对映关系为: 0100 -- 4 1011 -- D 0010 -- 2 同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。 下面举例一个int类型的二进制数: 01101101 11100101 10101111 00011011 我们按四位一组转换为16进制: 6D E5 AF 1B 6.5 原码、反码、补码 结束了各种进制的转换,我们来谈谈另一个话题:原码、反码、补码。 我们已经知道计算机中,所有数据最终都是使用二进制数表达。 我们也已经学会如何将一个10进制数如何转换为二进制数。 不过,我们仍然没有学习一个负数如何用二进制表达。 比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为: 00000000 00000000 00000000 00000101 5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。 现在想知道,-5在计算机中如何表示。 在计算机中,负数以其正值的补码形式表达。 什么叫补码呢。这得从原码,反码说起。 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。 比如 00000000 00000000 00000000 00000101 是 5的 原码。 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。 取反操作指:原为1,得0;原为0,得1。(1变0; 0变1) 比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。 称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。 反码是相互的,所以也可称: 11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。 补码:反码加1称为补码。 也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。 比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。 那么,补码为: 11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011 所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。 再举一例,我们来看整数-1在计算机中如何表示。 假设这也是一个int类型,那么: 1、先取1的原码:00000000 00000000 00000000 00000001 2、得反码: 11111111 11111111 11111111 11111110 3、得补码: 11111111 11111111 11111111 11111111 可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。 一切都是纸上说的……说-1在计算机里表达为0xFFFFFF,我能不能亲眼看一看呢。当然可以。利用C++ Builder的调试功能,我们可以看到每个变量的16进制值。

boxti 2019-12-02 01:27:41 0 浏览量 回答数 0

回答

加法:   (1)首先是最右数码位相加。这里加数和被加数的最后一位分别为“0”和“1”,根据加法原则可以知道,相加后为“1”。   (2)再进行倒数第二位相加。这里加数和被加数的倒数第二位都为“1”,根据加法原则可以知道,相加后为“(10)2”,此时把后面的“0”留下,而把第一位的“1”向高一位进“1”。   (3)再进行倒数第三位相加。这里加数和被加数的倒数第二位都为“0”,根据加法原则可以知道,本来结果应为“0”,但倒数第二位已向这位进“1”了,相当于要加“被加数”、“加数”和“进位”这三个数的这个数码位,所以结果应为0 1=1。   (4)最后最高位相加。这里加数和被加数的最高位都为“1”,根据加法原则可以知道,相加后为“(10)2”。一位只能有一个数字,所以需要再向前进“1”,本身位留下“0”,这样该位相加后就得到“0”,而新的最高位为“1。 减法:   (1)首先最后一位向倒数第二位借“1”,相当于得到了(10)2,也就是相当于十进制数中的2,用2减去1得1。   (2)再计算倒数第二位,因为该位同样为“0”,不及减数“1”大,需要继续向倒数第三位借“1”(同样是借“1”当“2”),但因为它在上一步中已借给了最后一位“1”(此时是真实的“1”),则倒数第二位为1,与减数“1”相减后得到“0”。   (3)用同样的方法倒数第三位要向它们的上一位借“1”(同样是当“2”),但同样已向它的下一位(倒数第二位)借给“1”(此时也是真实的“1”),所以最终得值也为“0”。   (4)被减数的倒数第四位尽管与前面的几位一样,也为“0”,但它所对应的减数倒数第四位却为“0”,而不是前面几位中对应的“1”,它向它的高位(倒数第五位)借“1”(相当于“2”)后,在借给了倒数第四位“1”(真实的“1”)后,仍有“1”余,1 –0=1,所以该位结果为“1”。   (5)被减数的倒数第五位原来为“1”,但它借给了倒数第四位,所以最后为“0”,而此时减数的倒数第五位却为“1”,这样被减数需要继续向它的高位(倒数第六位)借“1”(相当于“2”),2–1=1。   (6)被减数的最后一位本来为“1”,可是借给倒数第五位后就为“0”了,而减数没有这个位,这样结果也就是被减数的相应位值大小,此处为“0”。   在二进制数的加、减法运算中一定要联系上十进制数的加、减法运算方法,其实它们的道理是一样的,也是一一对应的。在十进制数的加法中,进“1”仍就当“1”,在二进制数中也是进“1”当“1”。在十进制数减法中我们向高位借“1”当“10”,在二进制数中就是借“1”当“2”。而被借的数仍然只是减少了“1”,这与十进制数一样。 乘法:   把二进制数中的“0”和“1”全部当成是十进制数中的“0”和“1”即可。根据十进制数中的乘法运算知道,任何数与“0”相乘所得的积均为“0”,这一点同样适用于二进制数的乘法运算。只有“1”与“1”相乘才等于“1”。乘法运算步骤:   (1)首先是乘数的最低位与被乘数的所有位相乘,因为乘数的最低位为“0”,根据以上原则可以得出,它与被乘数(1110)2的所有位相乘后的结果都为“0”。   (2)再是乘数的倒数第二位与被乘数的所有位相乘,因为乘数的这一位为“1”,根据以上原则可以得出,它与被乘数(1110)2的高三位相乘后的结果都为“1”,而于最低位相乘后的结果为“0”。   (3)再是乘数的倒数第三位与被乘数的所有位相乘,同样因为乘数的这一位为“1”,处理方法与结果都与上一步的倒数第二位一样,不再赘述。   (4)最后是乘数的最高位与被乘数的所有位相乘,因为乘数的这一位为“0”,所以与被乘数(1110)2的所有位相乘后的结果都为“0”。   (5)然后再按照前面介绍的二进制数加法原则对以上四步所得的结果按位相加(与十进制数的乘法运算方法一样),结果得到(1110)2×(0110)2=(1010100)2。 除法:   (1)首先用“1”作为商试一下,相当于用“1”乘以除数“110”,然后把所得到的各位再与被除数的前4位“1001”相减。按照减法运算规则可以得到的余数为“011”。   (2)因为“011”与除数“110”相比,不足以被除,所以需要向低取一位,最终得到“0111”,此时的数就比除数“110”大了,可以继续除了。同样用“1”作为商去除,相当于用“1”去乘除数“110”,然后把所得的积与被除数中当前四位“0111”相减。根据以上介绍的减法运算规则可以得到此步的余数为“1”。   (3)因为“1”要远比除数“110”小,被除数向前取一位后为“11”,仍不够“110”除,所以此时需在商位置上用“0”作为商了。   (4)然后在被除数上继续向前取一位,得到“110”。此时恰好与除数“110”完全一样,结果当然是用“1”作为商,用它乘以除数“110”后再与被除数相减,得到的余数正好为“0”。证明这两个数能够整除。   这样一来,所得的商(1101)2就是两者相除的结果。-------------------------二进制数的运算方法 同十进制都属于 进位 运算方法,它们有类似的地方,当然也有不同的地方,二进制下只有加法。乘法和减法是变相的加法,除法只是简单地移位。 首先,简单的说明一下,什么是进位 运算方法。    十进制含有的数是 0 1 2 3 4 5  6 7 8 9  十个数, 而二级制只有两个数 0 1  比方说十进制数   1234=1x10^3 + 1x10^2 + 3x10^1 + 4x10^0 其中1 2 3 4 分别居在 千位 十位 百位 个位 。 同样的二进制数 里也存在一样的位制  二进制化十进制 二进制的1010  =1 x 2^3+ 0 x 2^2 + 1 x 2^1+ 0 x 2^0 =  10 (十进制) 同理十进制化为二进制 :10(10)=1 x 2^3+ 0 x 2^2 + 1 x 2^1+ 0 x 2^0 =1010(2)因为我们不能较快的获得有多少个 2^0 2^1  2^2   2^3  2^4  2^5  2^6 ........2^n 所以才有短除法这一形式来辅助运算 除2取余法   10/2=5.......0     5/2=2........1      2/2=1........0       1/2=0........1      把结果倒过来写就是1010了  以上是进制的转换。 加法: 下面就是加法的运算      十进制下有                                                   二进制下就有      1234                                                                     1011                                                                     +   2846                                                            +       1111                     —--.--.—---                                                         ------.-.-.------                                                         4080                                                                   11010    总的来说 二进制下和是十进制的运算时一样的, 十进制下满十进一,二进制下满二进一。 减法 有两种方式    以下是特殊情况  注意第一位是符号位。  0代表正数, 1 代表负数            。。                                             另一种方式是吧减法当成加上一个负数   0    1 0 0 1                                                             0     1001 - 0    1 1 1 1             《===》                        +         1     0001              ----------------                                                 ------------------。------   1    1 0 1 0           算的结果是负数                           1    1010 负数与成正数互化就是取反加一 取反 0 1 0 1 +               1 ---------------    负的 0 1 1 0 =负的 0x2^3+1x^2+1x2^1+0x2^0=  负6               表示方法是取反加一 前面的第一位是符号位 1 代表负数  1  1110 乘法111x111=    1   1   1              x            1   1   1     --------------------------------                           1    1   1                      1   1    1 +               1  1   1      -----------------------------------             1   1   0   0   0    1 除法:            1 1 1 1 / 1 0= 111      1111 / 11 = 101 除法和十进制的出发类似 不同的是这里是不会出现小数的 就像例子中的1 1 1 1 / 1 0= 111   化成十进制是 15除以2 但是结果却是111=7 因为那个余数1 已经被挤出去了,这里涉及到了计算机的内存问题 这就不深究 知道怎么算就好了    还有最重要的是亲看了满意要给分哦。

玄学酱 2019-12-02 01:27:57 0 浏览量 回答数 0

问题

十大经典排序算法最强总结(内含代码实现)

游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2

试用中心

为您提供0门槛上云实践机会,企业用户最高免费12个月

问题

【javascript学习全家桶】934道javascript热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:22 6202 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播