• 关于

    数字计算器工作原理

    的搜索结果

回答

计算机科学与技术专业课程 课程简介 1.数字逻辑电路: “数字逻辑”是计算机专业本科生的一门主要课程,具有自身的理论体系和很强的实践性。它是计算机组成原理的主要先导课程之一,是计算机应用专业关于计算机系统结构方面的主干课程之一。 课程的主要目的是使学生了解和掌握从对数字系统提出要求开始,一直到用集成电路实现所需逻辑功能为止的整个过程的完整知识。内容有数制和编码、布尔代数和逻辑函数、组合逻辑电路的分析和设计,时序逻辑电路的分析和设计,中、大规模集成电路的应用。通过对该课程的学习,可以为计算机组成原理、微型计算机技术、计算机系统结构等课程打下坚实的基础。 2.计算机组成原理: 本课程是计算机系本科生的一门重要专业基础课。在各门硬件课程中占有举足轻重的地位。它的先修课程是《数字逻辑电路》,后继课程有《微机接口技术》、《计算机系统结构》。从课程地位来说,本课程在先修课和后继课中起着承上启下的作用。主要讲解计算机五大部件的组成及工作原理,逻辑设计与实现方法,整机的互连技术,培养学生具有初步的硬件系统分析、设计、开发和使用的能力。具体内容包括:数制与码制、基本逻辑部件、运算方法与运算器、指令系统与寻址方式,中央处理器(CPU)的工作原理及设计方法。存储系统和输入/输出(I/O)系统等。通过该课程的学习,可以使学生较深地掌握单台计算机的组成及工作原理,进一步加深对先修课程的综合理解及灵活应用,为后继课程的学习建立坚实的基础知识。 3.微机接口技术: 本课程是计算机科学与技术专业学生必修的核心课程之一,它的先修课程为数字逻辑、计算机组成原理。本课程对于训练学生掌握硬件接口设计技术,熟悉微处理器和各种接口芯片的硬件设计和软件调试技术都有重要作用,在软件方面要求掌握汇编语言,在硬件方面要掌握中断、DMA、计数器/定时器等设计技术。通过该课程的学习使学生学会微机接口设计的基本方法和技能。 4.计算机系统结构: 计算机系统结构主要是研究高性能计算机组织与结构的课程。主要包括:计算机系统结构的基本概念、指令的流水处理与向量计算机、高性能微处理器技术、并行处理机结构及算法和多处理机技术。结合现代计算机系统结构的新发展,介绍近几年来计算机系统结构所出现的一些新概念和新技术。 5.数据库概论: 数据库已是计算机系本科生不可缺少的专业基础课,它是计算机应用的重要支柱之一。该课程讲授数据库技术的特点,数据库系统的结构,三种典型数据模型及系统(以关系型系统为主)、数据库规范化理论,数据库的设计与管理,以及数据库技术的新进展等。通过本课程学习,掌握基本概念、理论和方法,学会使用数据库管理系统设计和建立数据库的初步能力,为以后实现一个数据库管理系统及进行系统的理论研究打下基础。 6.算法与数据结构: “数据结构”是计算机程序设计的重要理论技术基础,是计算机科学与技术专业的必修课,是计算机学科其它专业课的先修课程。通过学习本课程使学生掌握数据结构的基本逻辑结构和存储结构及其基本算法的设计方法,并在实际应用中能灵活使用。学会分析研究数据对象的特性,选择合适的逻辑结构、存储结构及设计相应的算法。初步掌握算法的时空分析技巧,同时进行程序设计训练。使学生学会应用抽象数据类型概念进行抽象设计。主要内容有:线性表、链表、栈、队列、数组、广义表、树与二叉树、图、查找、排序、内存管理、文件存储管理。 7.离散数学: “离散数学”是计算机科学与技术专业必修课程,其主要内容包括:命题逻辑;一阶命题逻辑;集合、关系与映射;代数系统、布尔代数 ;图论等。这些内容为学习计算机专业课程,如编译原理、数据结构提供重要的理论工具,同时也是计算机应用不可缺少的理论基础。 离散数学主要培养学生对事物的抽象思维能力和逻辑推理能力,为今后处理离散信息,从事计算机软件的开发和设计,以及计算机的其它实际应用打好数学基础。 8.操作系统: 操作系统是现代计算机系统中不可缺少的重要组成部分。它的先修课程是数据结构和计算机基础,在此基础上讲解操作系统的主要内容:CPU管理、存储器管理、作业管理、I/O设备管理和文件管理。这些基本原理告诉人们作为计算机系统中各种资源的管理者和各种活动的组织者、指挥者,操作系统是如何使整个计算机系统有条不率地高效工作,以及它为用户使用计算机系统提供了哪些便利手段。掌握了这些知识,人们就会对计算机系统的总体框架、工作流程和使用方法有了一个全面的认识,就会清楚后续专业课程所述内容在计算机系统中所处的地位和作用,这样不仅便于理解后续课程内容,而且能使人们把计算机的各部分知识有机地联系起来。此外,由于多处理机系统和计算机网络的盛行,本课程中也包含了对多处理机操作系统和网络操作系统的概述,从而使学习者可以跟上计算机技术的发展速度。 9.数据通信与计算机网: 该课程主要介绍网络基本理论和网络最新实用技术,分基础理论、实用技术和新技术三部分进行讲述。主要讲解计算机网络的功能和组成,数据传输,链路控制,多路复用,差错检测,网络体系结构,网络分层协议及局域网、广域网等。要求学生掌握数据通信的基本原理和计算机网络的体系结构,打下坚实的理论基础,培养实际应用的能力,为今后从事计算机网络的科研和设计工作打下基础。 10.高级语言程序设计: 本课程介绍了C与C++的全集。它从语法入手,同时强调程序设计的基本方法,以使学生能在较短的时间内,掌握C语言的结构化程序设计方法与C++语言的面向对象程序设计方法。主要内容有:1、过程初步;2、过程组织和管理;3、C++的数据类型;4、类与对象;5、继承;6、I/O流。 11.软件工程: 软件工程课程是计算机专业的一门主要专业课程,是培养高水平软件研制和开发人员的一门重程。该课程主要介绍软件工程的概念、原理及典型的方法技术,进述软件生存周期各阶段的任务、过程、方法和工具,讨论了软件工程使用的科学管理技术。 12.数据库应用: 通过实践方式使学生进一步掌握数据库知识和技术,掌握C/S(客户/服务)模式下的大型数据库的设计与实现,培养同行间的合作精神,学习应用合作方法。 13.软件编程实践: 主要介绍最新的常规的软件编程平台、工具和方法。本课程面向应用技术和实用技术,培养学生自学新技术的能力,在WINDOWS下的综合编程能力,实际解决问题能力。 14.计算机网络工程: 计算机技术与通信技术相结合导致了计算机网络的产生。计算机网络已成为当今大型信息系统的基础。-------------------------高等数学、大学英语、概率统计、离散数学、电路、模拟电子、数字电子、数据结构、操作系统、编译原理、计算机网络、数据库原理、软件工程、汇编语言、C++程序设计、接口技术、Java、VC++、计算机病毒分析、信息安全、等。 高数学的是微积分,线性代数,概率论与数理统计。英语是大学英语上下。还有就是专业的计算机知识,数据分析,c语言,java,还有计算机的系统分析,各种软件技术,学会写代码,程序等。

琴瑟 2019-12-02 01:22:34 0 浏览量 回答数 0

回答

嵌入式Linux操作系统学习规划 ARM+LINUX路线,主攻嵌入式Linux操作系统及其上应用软件开发目标: (1) 掌握主流嵌入式微处理器的结构与原理(初步定为arm9) (2) 必须掌握一个嵌入式操作系统 (初步定为uclinux或linux,版本待定) (3) 必须熟悉嵌入式软件开发流程并至少做一个嵌入式软件项目。 从事嵌入式软件开发的好处是: (1)目前国内外这方面的人都很稀缺。这一领域入门门槛较高,所以非专业IT人员很难切入这一领域;另一方面,是因为这一领域较新,目前发展太快,大多数人无条件接触。 (2)与企业计算等应用软件不同,嵌入式领域人才的工作强度通常低一些(但收入不低)。 (3)哪天若想创业,搞自已的产品,嵌入式不像应用软件那样容易被盗版。硬件设计一般都是请其它公司给订做(这叫“贴牌”:OEM),都是通用的硬件,我们只管设计软件就变成自己的产品了。 (4)兴趣所在,这是最主要的。 从事嵌入式软件开发的缺点是: (1)入门起点较高,所用到的技术往往都有一定难度,若软硬件基础不好,特别是操作系统级软件功底不深,则可能不适于此行。 (2)这方面的企业数量要远少于企业计算类企业。 (3)有少数公司经常要硕士以上的人搞嵌入式,主要是基于嵌入式的难度。但大多数公司也并无此要求,只要有经验即可。 (4)平台依托强,换平台比较辛苦。 兴趣的由来: 1、成功观念不同,不虚度此生,就是我的成功。 2、喜欢思考,挑战逻辑思维。 3、喜欢C C是一种能发挥思维极限的语言。关于C的精神的一些方面可以被概述成短句如下: 相信程序员。 不要阻止程序员做那些需要去做的。 保持语言短小精干。 一种方法做一个操作。 使得它运行的够快,尽管它并不能保证将是可移植的。 4、喜欢底层开发,讨厌vb类开发工具(并不是说vb不好)。 5、发展前景好,适合创业,不想自己要死了的时候还是一个工程师。 方法步骤: 1、基础知识: 目的:能看懂硬件工作原理,但重点在嵌入式软件,特别是操作系统级软件,那将是我的优势。 科目:数字电路、计算机组成原理、嵌入式微处理器结构。 汇编语言、C/C++、编译原理、离散数学。 数据结构和算法、操作系统、软件工程、网络、数据库。 方法:虽科目众多,但都是较简单的基础,且大部分已掌握。不一定全学,可根据需要选修。 主攻书籍:the c++ programming language(一直没时间读)、数据结构-C2。 2、学习linux: 目的:深入掌握linux系统。 方法:使用linux—〉linxu系统编程开发—〉驱动开发和分析linux内核。先看深,那主讲原理。看几遍后,看情景分析,对照深看,两本交叉,深是纲,情是目。剖析则是0.11版,适合学习。最后深入代码。 主攻书籍:linux内核完全剖析、unix环境高级编程、深入理解linux内核、情景分析和源代。 3、学习嵌入式linux: 目的:掌握嵌入式处理器其及系统。 方法:(1)嵌入式微处理器结构与应用:直接arm原理及汇编即可,不要重复x86。 (2)嵌入式操作系统类:ucOS/II简单,开源,可供入门。而后深入研究uClinux。 (3)必须有块开发板(arm9以上),有条件可参加培训(进步快,能认识些朋友)。 主攻书籍:毛德操的《嵌入式系统》及其他arm9手册与arm汇编指令等。 4、深入学习: A、数字图像压缩技术:主要是应掌握MPEG、mp3等编解码算法和技术。 B、通信协议及编程技术:TCP/IP协议、802.11,Bluetooth,GPRS、GSM、CDMA等。 2010-8-21 16:46 回复 122.90.173.* 2楼 C、网络与信息安全技术:如加密技术,数字证书CA等。 D、DSP技术:Digital Signal Process,DSP处理器通过硬件实现数字信号处理算法。 说明:太多细节未说明,可根据实际情况调整。重点在于1、3,不必完全按照顺序作。对于学习c++,理由是c++不只是一种语言,一种工具,她还是一种艺术,一种文化,一种哲学理念、但不是拿来炫耀得东西。对于linux内核,学习编程,读一些优秀代码也是有必要的。 注意: 要学会举一反多,有强大的基础,很多东西简单看看就能会。想成为合格的程序员,前提是必须熟练至少一种编程语言,并具有良好的逻辑思维。一定要理论结合实践。 不要一味钻研技术,虽然挤出时间是很难做到的,但还是要留点余地去完善其他的爱好,比如宇宙,素描、机械、管理,心理学、游戏、科幻电影。还有一些不愿意做但必须要做的。 技术是通过编程编程在编程编出来的。永远不要梦想一步登天,不要做浮躁的人,不要觉得路途漫上。而是要编程编程在编程,完了在编程,在编程。等机会来了在创业(不要相信有奇迹发生,盲目创业很难成功,即便成功了发展空间也不一定很大)。 嵌入式书籍推荐 Linux基础 1、《Linux与Unix Shell 编程指南》 C语言基础 1、《C Primer Plus,5th Edition》【美】Stephen Prata着 2、《The C Programming Language, 2nd Edition》【美】Brian W. Kernighan David M. Rithie(K & R)着 3、《Advanced Programming in the UNIX Environment,2nd Edition》(APUE) 4、《嵌入式Linux应用程序开发详解》 Linux内核 1、《深入理解Linux内核》(第三版) 2、《Linux内核源代码情景分析》毛德操 胡希明著 研发方向 1、《UNIX Network Programming》(UNP) 2、《TCP/IP详解》 3、《Linux内核编程》 4、《Linux设备驱动开发》(LDD) 5、《Linux高级程序设计》 杨宗德著 硬件基础 1、《ARM体系结构与编程》杜春雷着 2、S3C2410 Datasheet 英语基础 1、《计算机与通信专业英语》 系统教程 1、《嵌入式系统――体系结构、编程与设计》 2、《嵌入式系统――采用公开源代码和StrongARM/Xscale处理器》毛德操 胡希明着 3、《Building Embedded Linux Systems》 4、《嵌入式ARM系统原理与实例开发》 杨宗德著 理论基础 1、《算法导论》 2、《数据结构(C语言版)》 3、《计算机组织与体系结构?性能分析》 4、《深入理解计算机系统》【美】Randal E. Bryant David O''Hallaron着 5、《操作系统:精髓与设计原理》 6、《编译原理》 7、《数据通信与计算机网络》 8、《数据压缩原理与应用》 C语言书籍推荐 1. The C programming language 《C程序设计语言》 2. Pointers on C 《C和指针》 3. C traps and pitfalls 《C陷阱与缺陷》 4. Expert C Lanuage 《专家C编程》 5. Writing Clean Code -----Microsoft Techiniques for Developing Bug-free C Programs 《编程精粹--Microsoft 编写优质无错C程序秘诀》 6. Programming Embedded Systems in C and C++ 《嵌入式系统编程》 7.《C语言嵌入式系统编程修炼》 8.《高质量C++/C编程指南》林锐 尽可能多的编码,要学好C,不能只注重C本身。算法,架构方式等都很重要。 这里很多书其实是推荐而已,不必太在意,关键还是基础,才是重中之重。。。

小旋风柴进 2019-12-02 01:20:03 0 浏览量 回答数 0

回答

开发板用友善之臂的吧 mini2440 连3.5寸屏500块钱的样子 有好几张DVD学习光盘 这款口碑比较高 嵌入式Linux操作系统学习规划 ARM+LINUX路线,主攻嵌入式Linux操作系统及其上应用软件开发目标: (1) 掌握主流嵌入式微处理器的结构与原理(初步定为arm9) (2) 必须掌握一个嵌入式操作系统 (初步定为uclinux或linux,版本待定) (3) 必须熟悉嵌入式软件开发流程并至少做一个嵌入式软件项目。 从事嵌入式软件开发的好处是: (1)目前国内外这方面的人都很稀缺。这一领域入门门槛较高,所以非专业IT人员很难切入这一领域;另一方面,是因为这一领域较新,目前发展太快,大多数人无条件接触。 (2)与企业计算等应用软件不同,嵌入式领域人才的工作强度通常低一些(但收入不低)。 (3)哪天若想创业,搞自已的产品,嵌入式不像应用软件那样容易被盗版。硬件设计一般都是请其它公司给订做(这叫“贴牌”:OEM),都是通用的硬件,我们只管设计软件就变成自己的产品了。 (4)兴趣所在,这是最主要的。 从事嵌入式软件开发的缺点是: (1)入门起点较高,所用到的技术往往都有一定难度,若软硬件基础不好,特别是操作系统级软件功底不深,则可能不适于此行。 (2)这方面的企业数量要远少于企业计算类企业。 (3)有少数公司经常要硕士以上的人搞嵌入式,主要是基于嵌入式的难度。但大多数公司也并无此要求,只要有经验即可。 (4)平台依托强,换平台比较辛苦。 兴趣的由来: 1、成功观念不同,不虚度此生,就是我的成功。 2、喜欢思考,挑战逻辑思维。 3、喜欢C C是一种能发挥思维极限的语言。关于C的精神的一些方面可以被概述成短句如下: 相信程序员。 不要阻止程序员做那些需要去做的。 保持语言短小精干。 一种方法做一个操作。 使得它运行的够快,尽管它并不能保证将是可移植的。 4、喜欢底层开发,讨厌vb类开发工具(并不是说vb不好)。 5、发展前景好,适合创业,不想自己要死了的时候还是一个工程师。 方法步骤: 1、基础知识: 目的:能看懂硬件工作原理,但重点在嵌入式软件,特别是操作系统级软件,那将是我的优势。 科目:数字电路、计算机组成原理、嵌入式微处理器结构。 汇编语言、C/C++、编译原理、离散数学。 数据结构和算法、操作系统、软件工程、网络、数据库。 方法:虽科目众多,但都是较简单的基础,且大部分已掌握。不一定全学,可根据需要选修。 主攻书籍:the c++ programming language(一直没时间读)、数据结构-C2。 2、学习linux: 目的:深入掌握linux系统。 方法:使用linux—〉linxu系统编程开发—〉驱动开发和分析linux内核。先看深,那主讲原理。看几遍后,看情景分析,对照深看,两本交叉,深是纲,情是目。剖析则是0.11版,适合学习。最后深入代码。 主攻书籍:linux内核完全剖析、unix环境高级编程、深入理解linux内核、情景分析和源代。 3、学习嵌入式linux: 目的:掌握嵌入式处理器其及系统。 方法:(1)嵌入式微处理器结构与应用:直接arm原理及汇编即可,不要重复x86。 (2)嵌入式操作系统类:ucOS/II简单,开源,可供入门。而后深入研究uClinux。 (3)必须有块开发板(arm9以上),有条件可参加培训(进步快,能认识些朋友)。 主攻书籍:毛德操的《嵌入式系统》及其他arm9手册与arm汇编指令等。 4、深入学习: A、数字图像压缩技术:主要是应掌握MPEG、mp3等编解码算法和技术。 B、通信协议及编程技术:TCP/IP协议、802.11,Bluetooth,GPRS、GSM、CDMA等。 2010-8-21 16:46 回复 122.90.173.* 2楼 C、网络与信息安全技术:如加密技术,数字证书CA等。 D、DSP技术:Digital Signal Process,DSP处理器通过硬件实现数字信号处理算法。 说明:太多细节未说明,可根据实际情况调整。重点在于1、3,不必完全按照顺序作。对于学习c++,理由是c++不只是一种语言,一种工具,她还是一种艺术,一种文化,一种哲学理念、但不是拿来炫耀得东西。对于linux内核,学习编程,读一些优秀代码也是有必要的。 注意: 要学会举一反多,有强大的基础,很多东西简单看看就能会。想成为合格的程序员,前提是必须熟练至少一种编程语言,并具有良好的逻辑思维。一定要理论结合实践。 不要一味钻研技术,虽然挤出时间是很难做到的,但还是要留点余地去完善其他的爱好,比如宇宙,素描、机械、管理,心理学、游戏、科幻电影。还有一些不愿意做但必须要做的。 技术是通过编程编程在编程编出来的。永远不要梦想一步登天,不要做浮躁的人,不要觉得路途漫上。而是要编程编程在编程,完了在编程,在编程。等机会来了在创业(不要相信有奇迹发生,盲目创业很难成功,即便成功了发展空间也不一定很大)。 嵌入式书籍推荐 Linux基础 1、《Linux与Unix Shell 编程指南》 C语言基础 1、《C Primer Plus,5th Edition》【美】Stephen Prata着 2、《The C Programming Language, 2nd Edition》【美】Brian W. Kernighan David M. Rithie(K & R)着 3、《Advanced Programming in the UNIX Environment,2nd Edition》(APUE) 4、《嵌入式Linux应用程序开发详解》 Linux内核 1、《深入理解Linux内核》(第三版) 2、《Linux内核源代码情景分析》毛德操 胡希明著 研发方向 1、《UNIX Network Programming》(UNP) 2、《TCP/IP详解》 3、《Linux内核编程》 4、《Linux设备驱动开发》(LDD) 5、《Linux高级程序设计》 杨宗德著 硬件基础 1、《ARM体系结构与编程》杜春雷着 2、S3C2410 Datasheet 英语基础 1、《计算机与通信专业英语》 系统教程 1、《嵌入式系统――体系结构、编程与设计》 2、《嵌入式系统――采用公开源代码和StrongARM/Xscale处理器》毛德操 胡希明着 3、《Building Embedded Linux Systems》 4、《嵌入式ARM系统原理与实例开发》 杨宗德著 理论基础 1、《算法导论》 2、《数据结构(C语言版)》 3、《计算机组织与体系结构?性能分析》 4、《深入理解计算机系统》【美】Randal E. Bryant David O''Hallaron着 5、《操作系统:精髓与设计原理》 6、《编译原理》 7、《数据通信与计算机网络》 8、《数据压缩原理与应用》 C语言书籍推荐 1. The C programming language 《C程序设计语言》 2. Pointers on C 《C和指针》 3. C traps and pitfalls 《C陷阱与缺陷》 4. Expert C Lanuage 《专家C编程》 5. Writing Clean Code -----Microsoft Techiniques for Developing Bug-free C Programs 《编程精粹--Microsoft 编写优质无错C程序秘诀》 6. Programming Embedded Systems in C and C++ 《嵌入式系统编程》 7.《C语言嵌入式系统编程修炼》 8.《高质量C++/C编程指南》林锐 尽可能多的编码,要学好C,不能只注重C本身。算法,架构方式等都很重要。 这里很多书其实是推荐而已,不必太在意,关键还是基础,才是重中之重。。。

一键天涯 2019-12-02 01:19:56 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

  Gps电路工作原理图:   利用GPS定位卫星,在全球范围内实时进行定位、导航的系统,称为全球卫星定位系统,简称GPS。GPS是由美国国防部研制建立的一种具有全方位、全天候、全时段、高精度的卫星导航系统,能为全球用户提供低成本、高精度的三维位置、速度和精确定时等导航信息,是卫星通信技术在导航领域的应用典范,它极大地提高了地球社会的信息化水平,有力地推动了数字经济的发展。-------------------------GPS定位系统的工作原理是由地面主控站收集各监测站的观测资料和气象信息,计算各卫星的星历表及卫星钟改正数,按规定的格式编辑导航电文,通过地面上的注入站向GPS卫星注入这些信息。测量定位时,用户可以利用接收机的储存星历得到各个卫星的粗略位置。根据这些数据和自身位置,由计算机选择卫星与用户联线之间张角较大的四颗卫星作为观测对象。观测时,接收机利用码发生器生成的信息与卫星接收的信号进行相关处理,并根据导航电文的时间标和子帧计数测量用户和卫星之间的伪距。将修正后的伪距及输入的初始数据及四颗卫星的观测值列出3个观测方程式,即可解出接收机的位置,并转换所需要的坐标系统,以达到定位目的。 GPS定位系统又叫GPRS,简单来说GPS定位系统是靠你的车载终端中内置一张手机卡,通过手机信号传输到后台,来实现定位,GPS终端就是这个后台,可以帮你实现一键导航、后台服务、等各种人性服务。GPS定位系统随着社会的发展被应用到越来越多的行业,它起到前期监督,后期管理的作用,统一分配,便于管理,提高我们的工作效率,降低成本

知与谁同 2019-12-02 01:17:06 0 浏览量 回答数 0

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello

玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

问的这个问题还很不能自己打给你了 复制些详细的给你看吧电脑为何采用二进制1.二进制只需用两种状态表示数字,容易实现计算机是由电子元器件构成的,二进制在电气、电子元器件中最易实现。它只有两个数字,用两种稳定的物理状态即可表达,而且稳定可靠。比如磁化与未磁化,晶体管的载止与导通(表现为电平的高与低)等。而若采用十进制,则需用十种稳定的物理状态分别表示十个数字,不易找到具有这种性能的元器件,即使有,其运算与控制的实现也极复杂。2.二进制的运算规则简单加法是最基本的运算。乘法是连加,减法是加法的逆运算(利用补码原理,还可以转化为加法运算,类似钟表拨针时的计算),除法是乘法的逆运算。其余任何复杂的数值计算也都可以分解为基本算术运算复合进行。为提高运算效率,在计算机中除采用加法器外,也直接使用乘法器。众所周知,十进制的加法和乘法运算规则的口诀各有100条,根据交换率去掉重复项,也各有55条。用计算机的电路实现这么多运算规则是很复杂的。相比之下,二进制的算术运算规则非常简单,加法、乘法各仅四条:0+0=0 0×0=0O+1=1 0×1=01+0=l l×O=0l+1=10 1×1=l根据交换率去掉重复项,实际各仅3条。用计算机的脉冲数字电路是很容易实现的。3.用二进制容易实现逻辑运算计算机不仅需要算术运算功能,还应具备逻辑运算功能,二进制的0和1分别可用来表示假(false)和真(true),用布尔代数的运算法则很容易实现逻辑运算。4.二进制的弱点可以克服二进制主要的弱点是表示同样大小的数值时,其位数比十进制或其他数制多得多,难写难记,因而在日常生活和工作中是不便使用的。但这个弱点对计算机而言,并不构成困难。在计算机中每个存储记忆元件(比如由晶体管组成的触发器)可以代表一位数字,“记忆”是它们本身的属性,不存在“记不住”或“忘记”的问题。至于位数多,只要多排列一些记忆元件就解决了,鉴于集成电路芯片上元件的集成度极高,在体积上不存在问题。对于电子元器件,0和1两种状态的转换速度极快,因而运算速度是很高的。二进制运算1.算术运算前面已经讲过,二进制算术运算规则非常简单,现举二例加以说明。即1110B+1011B=11001B即1110B×10llB=10011010B2.逻辑运算在计算机中还经常用二进制数进行逻辑运算。逻辑运算在二进制数位之间进行,不存在进位或借位。在逻辑运算中,二进制数中的“1”表示“真”,“0”表示“假”。(1)或(OR)运算或运算又称逻辑加,运算符为“∨”或者“+”。运算规则是:0∨0=0O∨1=l1∨O=l1∨1=l也就是说,参加运算的逻辑值只要有一个为1,运算结果即为1,否则为0。(2)与(AND)运算与运算又称逻辑乘,运算符为“∧”或者“×”。运算规则是:0∧0=00∧1=O1∧O=01∧1=1也就是说,当参加运算的逻辑值均为1时,运算结果才为1,否则为0。(3)非(NOT)运算非运算即对每个二进制位的逻辑值取反,运算符为在二进制数字上方加一横线。运算规则是:0=11=0(4)异或(XOR)运算异或运算即按位相加(不进位),运算符常记为。运算规则是:00=00l=1l0=lll=0可以看出,如果参加运算的两个逻辑值相同,运算结果为0,否则为l。下面举例说明二进制数的逻辑运算。设 X=10110101B Y=ll010110B则 X∨Y=11110111BX∧Y=10010100B XY=01100011B更多的参考资料吧,复制也复制不上来了参考资料: http://ced.xxjy.cn/Resource/Book/Edu/JSJCKS/TS003063/0003_ts003063.htm

一键天涯 2019-12-02 01:27:55 0 浏览量 回答数 0

回答

十进制有0~9共十个数字。以此类推,二进制应当只有两个数字,记为0、1。基数不是一个独立的数字。 2.逢基数进一 凡某位运算结果为基数就要进位,本数位的值记为0,进位值为1。在十进制中,逢十进一。在二进制中,逢二进一。 3.每一位的权(数位值)是基数的方幂,指数自右至左递增1 十进制:…10410310210110010-110-210-3…… 二进制:…24232221202-12-22-3…… 需要特别指出的是,为说明方便,此处二进制数是用十进制数的数字表达的。 4.每一位的数值等于该位上的权与数字的乘积 例如: 1995=1000×1+100×9+100×9+1×5 1001.101B=23×1+20×1+2-1×1+2-3×1 同样,为说明方便,此处等号右边的二进制数是用十进制数字表达的。 电脑为何采用二进制 l.二进制只需用两种状态表示数字,容易实现 计算机是由电子元器件构成的,二进制在电气、电子元器件中最易实现。它只有两个数字,用两种稳定的物理状态即可表达,而且稳定可靠。比如磁化与未磁化,晶体管的载止与导通(表现为电平的高与低)等。而若采用十进制,则需用十种稳定的物理状态分别表示十个数字,不易找到具有这种性能的元器件,即使有,其运算与控制的实现也极复杂。 2.二进制的运算规则简单 加法是最基本的运算。乘法是连加,减法是加法的逆运算(利用补码原理,还可以转化为加法运算,类似钟表拨针时的计算),除法是乘法的逆运算。其余任何复杂的数值计算也都可以分解为基本算术运算复合进行。为提高运算效率,在计算机中除采用加法器外,也直接使用乘法器。 众所周知,十进制的加法和乘法运算规则的口诀各有100条,根据交换率去掉重复项,也各有55条。用计算机的电路实现这么多运算规则是很复杂的。 相比之下,二进制的算术运算规则非常简单,加法、乘法各仅四条: 0+0=0 0×0=0 O+1=1 0×1=0 1+0=l l×O=0 l+1=10 1×1=l 根据交换率去掉重复项,实际各仅3条。用计算机的脉冲数字电路是很容易实现的。 3.用二进制容易实现逻辑运算 计算机不仅需要算术运算功能,还应具备逻辑运算功能,二进制的0和1分别可用来表示假(false)和真(true),用布尔代数的运算法则很容易实现逻辑运算。 4.二进制的弱点可以克服 二进制主要的弱点是表示同样大小的数值时,其位数比十进制或其他数制多得多,难写难记,因而在日常生活和工作中是不便使用的。但这个弱点对计算机而言,并不构成困难。在计算机中每个存储记忆元件(比如由晶体管组成的触发器)可以代表一位数字,“记忆”是它们本身的属性,不存在“记不住”或“忘记”的问题。至于位数多,只要多排列一些记忆元件就解决了,鉴于集成电路芯片上元件的集成度极高,在体积上不存在问题。对于电子元器件,0和1两种状态的转换速度极快,因而运算速度是很高的。 二进制运算 1.算术运算 前面已经讲过,二进制算术运算规则非常简单,现举二例加以说明。 即1110B+1011B=11001B 即1110B×10llB=10011010B 2.逻辑运算 在计算机中还经常用二进制数进行逻辑运算。逻辑运算在二进制数位之间进行,不存在进位或借位。在逻辑运算中,二进制数中的“1”表示“真”,“0”表示“假”。 (1)或(OR)运算 或运算又称逻辑加,运算符为“∨”或者“+”。运算规则是: 0∨0=0 O∨1=l 1∨O=l 1∨1=l 也就是说,参加运算的逻辑值只要有一个为1,运算结果即为1,否则为0。 (2)与(AND)运算 与运算又称逻辑乘,运算符为“∧”或者“×”。运算规 则是: 0∧0=0 0∧1=O 1∧O=0 1∧1=1 也就是说,当参加运算的逻辑值均为1时,运算结果才为1,否则为0。(3)非(NOT)运算非运算即对每个二进制位的逻辑值取反,运算符为在二进制数字上方加一横线。运算规则是: 0=1 1=0 (4)异或(XOR)运算异或运算即按位相加(不进位),运算符常记为Å。运算规则是: 0Å0=0 0Ål=1 lÅ0=l lÅl=0 可以看出,如果参加运算的两个逻辑值相同,运算结果为0,否则为l。下面举例说明二进制数的逻辑运算。 设 X=10110101B Y=ll010110B 则 X∨Y=11110111B X∧Y=10010100B XÅY=01100011B 十进制数与二进制数的转换 我们在日常生活和工作中使用十进制数,在计算机中使用二进制数,因此在计算机输入时要将十进制数转换为二进制数,在计算机输出时要将二进制数转换为十进制数。这种转换过程,是曲计算机自动完成的。为简便起见,这里我们只介绍整数间的转换。 1.十进制数转换为二进制数 整数的转换,通常采用除2取余法。即将十进制数依次除以2,再把每次得到的余数从后向前依次排列就得到相应的二进制数。例如: 即 75=1001011B 实际上,直接将十进制数用2的n次幂展开更为方便。例如: 75=64+8+2+1 =26×1+25×O+24×O+23×1+22×0+21×1+20×1 =1001011B 2.二进制数转换为十进制数 将二进制数每一位的数值用十进制表达并相加即得到相应的十进制数。例如: 11010010B=27×1+26×1+25×0+24×1+23×0+22 ×O+21×1+20×1 =128+64+16+2 =210

祁同伟 2019-12-02 01:28:03 0 浏览量 回答数 0

回答

二进制只需用两种状态表示数字,容易实现计算机是由电子元、器件构成的,二进制在电气、电子元器件中最易实现。它只有两个数字,用两种稳定的物理状态即可表达,而且稳定可靠。比如磁化与未磁化,晶体管的载止与导通(表现为电平的高与低)等。而若采用十进制,则需用十种稳定的物理状态分别表示十个数字,不易找到具有这种性能的元器件。即使有,其运算与控制的实现也极复杂。 二进制的运算规则简单加法是最基本的运算。乘法是连加,减法是加法的逆运算(利用补码原理,还可以转化为加法运算,类似钟表拨针时的计算),除法是乘法的逆运算。其余任何复杂的数值计算也都可以分解为基本算术运算复合进行。为提高运算效率,在计算机中除采用加法器外,也直接使用乘法器。 众所周知,十进制的加法和乘法运算规则的口诀各有100条,根据交换率去掉重复项,也各有55条。用计算机的电路实现这么多运算规则是很复杂的。 相比之下,二进制的算术运算规则非常简单,加法、乘法各仅四条: 0+0=00×0=0 0+1=10×1=0 1+0=11×0=0 1+1=101×1=1 根据交换率去掉重复项,实际各仅3条。用计算机的脉冲数字电路是很容易实现的。 3.用二进制容易实现逻辑运算计算机不仅需要算术功能,还应具备逻辑运算功能,二进制的0,1分别 可用来表示假(false)和真(true),用布尔代数的运算法则很容易实现逻辑运算。 4.二进制的弱点可以克服二进制主要的弱点是表示同样大小的数值时,其位数比十进制或其他数制多得多,难写难记,因而在日常生活和工作中是不便使用的。但这个弱点对计算机而言,并不构成困难。在计算机中每个存储记忆元件(比如由晶体管组成的触发器)可以代表一位数字,“记忆”是它们本身的属性,不存在“记不住”或“忘记”的问题。至于位数多,只要多排列一些记忆元件就解决了,鉴于集成电路芯片上元件的集成度极高,在体积上不存在问题。对于电子元、器件,0和1两种状态的转换速度极快,因而运算速度是很高的。 二进制运算 1.算术运算前面已经讲过,二进制算术规则非常简单,现举二例加以说明。 即1110B+1011B=11001B 即1110B×1011B=10011010B 2.逻辑运算在计算机中还经常用二进制数进行逻辑运算。逻辑运算在二进制数位之间进行,不存在进位或借位。在逻辑运算中,二进制数中的“1”表示“真”,“0”表示“假”。 (1)或(OR)运算 或运算又称逻辑加,运算符为“∨”或者“+”。运算规则是: 0∨0=0 0∨1=1 1∨0=1 1∨1=1 也就是说,当参加运算的逻辑值只要有一个1,运算结果即为1,否则为0。 (2)与(AND)运算 与运算又称逻辑乘,运算符为“∧”或“×”。运算规则是: 0∧0=0 0∧1=0 1∧0=0 1∧1=1 也就是说,当参加运算的逻辑值均为1时,运算结果才为1,否则为0。 (3)非(NOT)运算 非运算即对每个二进制位的逻辑值取反,运算符为在二进制数字上方加 一横线。运算规则是: 0=1 1=0 (4)异或(XOR)运算 异或运算即按位相加(不进位),运算符常记为,运算规则是: 00=0 01=1 10=1 11=0 可以看出,如果参加运算的逻辑值只要有一个为1,运算结果即为1,否则为0。 下面举例说明二进制数的逻辑运算。 设X=10110101BY=11010110B X∨Y=11110111B X∧Y=10010100B X==D1001010Y00101001BB XY=011000i11B 十进制数与二进制数的转换 我们在日常生活和工作中使用十进制数,在计算机中使用二进制数,因此在计算机输入时要将十进制数转换为二进制数,在计算机输出时要将二进制数转换为十进制数。这种转换过程,是由计算机自动完成的。为简便起见,这里我们只介绍整数间转换。 1 .十进制数转换为二进制数整数的转换,通常采用除2取余法。即将十进制数依次除以2,再把每次得到的余数从后向前依次排列就得到相应的二进制数。例如:实际上,直接将十进制数用2的n次幂展开更为方便。例如: 75=64+8+2+1 =26×1+26×0×24×0+23×1+22×0+21×1+20×1 =1001011B 2.二进制数转换为十进制数将二进制数每一位的数值用十进制表达并相加即得到相应的十进制数。 例如: 11010010B=27×1+26×1+25×0+24×1+23×0+22×0+21×1+20×1 =128+64+16+2 =210

小旋风柴进 2019-12-02 01:28:12 0 浏览量 回答数 0

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

问题

【精品问答】130+大数据面试汇总

问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。

小哇 2019-12-02 01:21:12 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。

琴瑟 2019-12-02 01:21:11 0 浏览量 回答数 0

回答

加密算法 加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。 对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。 不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。 不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。 加密技术 加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。 非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的操作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。 PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种操作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。 数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。 PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互操作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。 加密的未来趋势 尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。 在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。 由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。 目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

一键天涯 2019-12-02 01:26:21 0 浏览量 回答数 0

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

回答

以太坊的核心元素是以太坊虚拟机(Ethereum Virtual Machine,EVM),它是智能合约的执行环境。EVM分散储存在以太坊网络的每个节点上,智能合约代码被对外隔离,并分布在每个节点上执行,因此以太坊EVM又被称为世界电脑。合同代码不是用图灵完备的高级程序语言编写的,而是由简单的、基于堆栈的低级程序语言编写的,看起来就像JVM的字节码(Java虚拟机)。每个以太坊节点都运行EVM,这意味着对于以太坊网络的参与者,每个节点都参与验证新块是否有效以及计算是否已正确,都是运行EVM代码的独立实例。由于每个节点都参与计算,虽然不一定是最高效的模型,但它具有很高的加密安全性。 从技术上讲,EVM以状态转换作为函数的运作模式,其工作原理是将一串参数输入EVM,以获取整个以太坊网络的新区块状态和gas数量,具体过程为输入(block_state,gas,memory,transaction,message,code,stack,pc)→EVM→输出(block_state,gas)。其中block_state是以太坊网络的全局状态,包括所有账户、账户余额和长期存储;gas是运行这些计算所需的费用,由计算的类型和工作量决定;memory是执行内存;transaction代表交易;message是有关交易的元数据;code就是代码本身;stack和pc是与执行相关的堆栈和程序计数器。这一串参数被输入到EVM以生成整个以太坊网络的新block_state和账户拥有的新gas数量。 以太坊EVM的设计目标有5个:简单、高效、确定性、专用化和安全性。EVM设计简单,可以轻松证明智能合约的安全性,这也有助于保护平台本身。EVM组件尽可能紧凑,以提高空间效率。EVM具有确定性,即相同的输入状态应始终产生相同的输出状态。确定性的虚拟机必然会限制应用范围,例如以太坊的HTTP请求不可用。EVM具有专用的内置函数,例如可以轻松处理20字节地址加密的加密函数、用于自定义加密的模块化指数算法、读取区块数据、读取交易数据的函数,以及与block_state交互的函数。以太坊EVM的安全性在于每次计算都要预先消耗gas,这增加了DoS攻击的成本,使得攻击者无法发动大规模的无效合约。EVM的主要编程语言是Solidity,智能合约用Solidity写好后,通过Solidity Compiler(solc)编译并生成EVM代码。合约语言的复杂性通过Solidity Compiler进行管理,但在架构层面,Solidity仍然是一种简单的基于堆栈的语言。 智能合约是在以太坊EVM上自动执行的合约代码,一般包括合约所有人、合约对象、合约条款、合约算法、合约触发条件等内容。对于可信电子证照应用,数据共享规则被转换为智能合约并部署在区块链上之后,常规共享条款和违约处理条款就可以自动履行,且执行过程由区块链完整记录,其执行状态可被随时查看和审计,从而提供一个公平、公正、公开的合约执行环境。此外,通过智能合约还可对参与方身份进行权限检查,针对交易者身份进行访问控制。 用智能合约完成可信电子证照应用的注册、发证、查验等过程,具体包括5个主要功能模块和5个API。5个主要功能模块为公民用户App、发证机构前端、区块链平台、政府业务库和后台身份管理数据库;5个API包括注册区块链用户、发送制证信息、查验电子证照信息、查询用户公钥和查询电子证明信息,具体分析如下所示。 1. 注册区块链用户 用于新用户注册区块链信息管理账户。对于业务系统注册账号来说分为3个不同的角色:普通用户、制证机关用户、查验机构用户。 输入:账户名称(用于登录系统的ID)。 输出:账户地址(注册用户在区块链上的地址,用于用户之间传输信息)和账户公私钥(普通用户的公私钥用于用户证件信息的加解密,制证机关用户的公私钥用于对发证机构的数字签名进行验证,查验机构用户的公私钥用于对查验信息的加解密)。 2. 发送制证信息 用于制证机构用户存储新增证件信息以及发送给办证用户。以制证机构用户在区块链上给办证用户发送一笔交易为载体,把新增的证件信息保存在区块链上,并发送给办证用户。 输入:申请制证用户的区块链地址(发证机构制证后给该地址用户发送制证信息)、发证机构组织机构代码(发证机构的唯一标示)、申请制证用户的证件信息(需要用户公钥加密)。 输出:该笔交易的Hash值(交易信息地址唯一标识)、记录证件信息的区块编号(交易信息地址唯一标识)。

问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

问题

css的3D旋转问题,不知道哪里问题,应该每45度停一下,结果每90度停一下

杨冬芳 2019-12-01 19:56:18 1421 浏览量 回答数 0

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

问题

Android安全开发之ZIP文件目录遍历

移动安全 2019-12-01 21:18:52 3164 浏览量 回答数 0

问题

如何深入理解StatsD与Graphite?

doudou1 2019-12-01 22:07:08 12758 浏览量 回答数 1

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

回答

逻辑回归 逻辑回归实际上是一种分类算法。我怀疑它这样命名是因为它与线性回归在学习方法上很相似,但是成本和梯度函数表述不同。特别是,逻辑回归使用了一个sigmoid或“logit”激活函数,而不是线性回归的连续输出。 首先导入和检查我们将要处理的数据集。 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os path = os.getcwd() + '\data\ex2data1.txt' data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) data.head() 在数据中有两个连续的自变量——“Exam 1”和“Exam 2”。我们的预测目标是“Admitted”的标签。值1表示学生被录取,0表示学生没有被录取。我们看有两科成绩的散点图,并使用颜色编码来表达例子是positive或者negative。 positive = data[data['Admitted'].isin([1])] negative = data[data['Admitted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted') ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted') ax.legend() ax.set_xlabel('Exam 1 Score') ax.set_ylabel('Exam 2 Score') 从这个图中我们可以看到,有一个近似线性的决策边界。它有一点弯曲,所以我们不能使用直线将所有的例子正确地分类,但我们能够很接近。现在我们需要实施逻辑回归,这样我们就可以训练一个模型来找到最优决策边界,并做出分类预测。首先需要实现sigmoid函数。 def sigmoid(z): return 1 / (1 + np.exp(-z)) 这个函数是逻辑回归输出的“激活”函数。它将连续输入转换为0到1之间的值。这个值可以被解释为分类概率,或者输入的例子应该被积极分类的可能性。利用带有界限值的概率,我们可以得到一个离散标签预测。它有助于可视化函数的输出,以了解它真正在做什么。 nums = np.arange(-10, 10, step=1) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(nums, sigmoid(nums), 'r') 我们的下一步是写成本函数。成本函数在给定一组模型参数的训练数据上评估模型的性能。这是逻辑回归的成本函数。 def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / (len(X)) 注意,我们将输出减少到单个标量值,该值是“误差”之和,是模型分配的类概率与示例的真实标签之间差别的量化函数。该实现完全是向量化的——它在语句(sigmoid(X * theta.T))中计算模型对整个数据集的预测。 测试成本函数以确保它在运行,首先需要做一些设置。 # add a ones column - this makes the matrix multiplication work out easier data.insert(0, 'Ones', 1) # set X (training data) and y (target variable) cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] # convert to numpy arrays and initalize the parameter array theta X = np.array(X.values) y = np.array(y.values) theta = np.zeros(3) 检查数据结构的形状,以确保它们的值是合理的。这种技术在实现矩阵乘法时非常有用 X.shape, theta.shape, y.shape ((100L, 3L), (3L,), (100L, 1L)) 现在计算初始解的成本,将模型参数“theta”设置为零。 cost(theta, X, y) 0.69314718055994529 我们已经有了工作成本函数,下一步是编写一个函数,用来计算模型参数的梯度,以找出改变参数来提高训练数据模型的方法。在梯度下降的情况下,我们不只是在参数值周围随机地jigger,看看什么效果最好。并且在每次迭代训练中,我们通过保证将其移动到减少训练误差(即“成本”)的方向来更新参数。我们可以这样做是因为成本函数是可微分的。这是函数。 def gradient(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) grad[i] = np.sum(term) / len(X) return grad 我们并没有在这个函数中执行梯度下降——我们只计算一个梯度步骤。在练习中,使用“fminunc”的Octave函数优化给定函数的参数,以计算成本和梯度。因为我们使用的是Python,所以我们可以使用SciPy的优化API来做同样的事情。 import scipy.optimize as opt result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y)) cost(result[0], X, y) 0.20357134412164668 现在我们的数据集里有了最优模型参数,接下来我们要写一个函数,它使用我们训练过的参数theta来输出数据集X的预测,然后使用这个函数为我们分类器的训练精度打分。 def predict(theta, X): probability = sigmoid(X * theta.T) return [1 if x >= 0.5 else 0 for x in probability] theta_min = np.matrix(result[0]) predictions = predict(theta_min, X) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) accuracy = 89% 我们的逻辑回归分类器预测学生是否被录取的准确性可以达到89%,这是在训练集中的精度。我们没有保留一个hold-out set或使用交叉验证来获得准确的近似值,所以这个数字可能高于实际的值。 正则化逻辑回归 既然我们已经有了逻辑回归的工作实现,我们将通过添加正则化来改善算法。正则化是成本函数的一个条件,使算法倾向于更简单的模型(在这种情况下,模型会减小系数),原理就是帮助减少过度拟合和帮助模型提高通用化能力。我们使用逻辑回归的正则化版本去解决稍带挑战性的问题, 想象你是工厂的产品经理,你有一些芯片在两种不同测试上的测试结果。通过两种测试,你将会决定那种芯片被接受或者拒绝。为了帮助你做这个决定,你将会有以往芯片的测试结果数据集,并且通过它建立一个逻辑回归模型。 现在可视化数据。 path = os.getcwd() + '\data\ex2data2.txt' data2 = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted']) positive = data2[data2['Accepted'].isin([1])] negative = data2[data2['Accepted'].isin([0])] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(positive['Test 1'], positive['Test 2'], s=50, c='b', marker='o', label='Accepted') ax.scatter(negative['Test 1'], negative['Test 2'], s=50, c='r', marker='x', label='Rejected') ax.legend() ax.set_xlabel('Test 1 Score') ax.set_ylabel('Test 2 Score') 这个数据看起来比以前的例子更复杂,你会注意到没有线性决策线,数据也执行的很好,处理这个问题的一种方法是使用像逻辑回归这样的线性技术,就是构造出由原始特征多项式派生出来的特征。我们可以尝试创建一堆多项式特性以提供给分类器。 degree = 5 x1 = data2['Test 1'] x2 = data2['Test 2'] data2.insert(3, 'Ones', 1) for i in range(1, degree): for j in range(0, i): data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j) data2.drop('Test 1', axis=1, inplace=True) data2.drop('Test 2', axis=1, inplace=True) data2.head() 现在我们需要去修改成本和梯度函数以包含正则项。在这种情况下,将正则化矩阵添加到之前的计算中。这是更新后的成本函数。 def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / 2 * len(X)) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / (len(X)) + reg 我们添加了一个名为“reg”的新变量,它是参数值的函数。随着参数越来越大,对成本函数的惩罚也越来越大。我们在函数中添加了一个新的“learning rate”参数。 这也是等式中正则项的一部分。 learning rate为我们提供了一个新的超参数,我们可以使用它来调整正则化在成本函数中的权重。 接下来,我们将在梯度函数中添加正则化。 def gradientReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) if (i == 0): grad[i] = np.sum(term) / len(X) else: grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i]) return grad 与成本函数一样,将正则项加到最初的计算中。与成本函数不同的是,我们包含了确保第一个参数不被正则化的逻辑。这个决定背后的直觉是,第一个参数被认为是模型的“bias”或“intercept”,不应该被惩罚。 我们像以前那样测试新函数 # set X and y (remember from above that we moved the label to column 0) cols = data2.shape[1] X2 = data2.iloc[:,1:cols] y2 = data2.iloc[:,0:1] # convert to numpy arrays and initalize the parameter array theta X2 = np.array(X2.values) y2 = np.array(y2.values) theta2 = np.zeros(11) learningRate = 1 costReg(theta2, X2, y2, learningRate) 0.6931471805599454 我们能使用先前的最优代码寻找最优模型参数。 result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate)) result2 (数组([ 0.35872309, -3.22200653, 18.97106363, -4.25297831, 18.23053189, 20.36386672, 8.94114455, -43.77439015, -17.93440473, -50.75071857, -2.84162964]), 110, 1) 最后,我们可以使用前面应用的相同方法,为训练数据创建标签预测,并评估模型的性能。 theta_min = np.matrix(result2[0]) predictions = predict(theta_min, X2) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)] accuracy = (sum(map(int, correct)) % len(correct)) print 'accuracy = {0}%'.format(accuracy) 准确度 = 91%

珍宝珠 2019-12-02 03:22:33 0 浏览量 回答数 0

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现

剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

问题

HBase高性能随机查询之道 – HFile原理解析

pandacats 2019-12-20 20:57:14 0 浏览量 回答数 0

问题

云服务器ECS下的FTP服务的如何安装配置与使用

boxti 2019-12-01 21:45:58 5158 浏览量 回答数 2

问题

移动元年短视频、直播爆发,又将出现什么样的转码格式?

爵霸 2019-12-01 21:58:15 2521 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

十大经典排序算法最强总结(内含代码实现)

游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2

问题

【精品问答】Python二级考试题库

珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站