• 关于

    完全可控性工作原理

    的搜索结果

回答

管线探测仪 管线探测仪性能特点: 1、符合人机工程学原理的设计: 手感轻盈、外形美观、重心平衡、工作省电,完全符合人机工程学原理。IP54防水指标可确保在任何潮湿环境下使用。接收机和发射机都配有超大、超清晰LCD显示屏,背景灯可保证在任何环境下清晰显示信息。直观、便捷的界面可以使操作人员轻松使用任何功能。接收机和发射机表盘上的图标形象直观。 2、Centros 中央定位处理器: 通过三十多年设计研究经验的积累,使在管线定位仪设计和生产方面拥有了大量专利。五十多项软、硬件专利表明了我们不断进取的决心。Centros专利化中央定位处理器就是几十年研究的结晶。Centros大大提高了定位的准确度、测量结果的可重复性及仪器的响应速度。它具有强大的信号滤波和分析能力,即使在强干扰环境下也可进行准确定位。Centros是任何其他管线仪都无法比拟的定位引擎。 3、eCAL 网上标定: 网上标定是的专有技术。设备不需返厂,就可进行标定。这就确保管线仪能始终达到出厂时的标定要求。网上标定成功后,用户可直接打印标定证书。 4、峰值距离箭头: 使用左右箭头和不同音频,为操作人员指出管线中心线位置。箭头越远,离目标管线的距离越远。 5、iLOC(无线连接) iLOC是接收机和发射机之间的蓝牙连接,它大量节省了操作人员的工作时间,减轻了操作人员的工作强度。操作人员可使用iLOC的独特功能遥控发射机,从而节省来回行走时间,可以将更多的时间用来探测。iLOC的操作距离最远可达800米。 6、SurveyCERT (测绘应用) SurveyCERT提供了信息共享的,可将探测信息导入第三方应用系统进行审核、分析和出具报告等。可存储1000条定位记录。使用蓝牙连接,可将数据及时传送到PC或PDA,并使用SurveyCERT图形实时审视。如果PC和PDA带有GPS接收机,SurveyCERT将自动添加时间和位置信息。SurveyCERT的互操作性使它同商业版GIS匹配。 7、动态过载保护: 该功能使能在其他管线仪无法正常探测的区域进行测量。在强电干扰的环境中,可自动过滤干扰信号,因而,在电站和铁路高压电网下,也能正常工作。 8、Strikealert(穿透报警)和被动避开扫描: 一旦发现浅埋电缆,便发出警报,避免事故的发生。同时用电力和无线电模式快速扫测地下管道和线缆。原声可区别电力和无线电信号的存在。 9、罗盘和CD (电流方向)功能: 罗盘可以指出目标管道和线缆的方向。使用罗盘进行追踪,并正确摆放接收机,以获取准确深度。电流方向是一项专利技尸电流方向箭头可准确识别多条平行电缆中目标电缆,能快速查找和识别目标电缆。 技术指标: 1、接收机技术参数 工作频率:至少包括577Hz,512Hz,640Hz,870Hz,940Hz,8kHz,33kHz,65kHz,83kHz,131kHz,200kHz十一个主动频率,电力和无线电频率两个被动频率。512Hz,640Hz,8kHz,33kHz四个探头频率。 灵敏度:不低于 6E-15 Tesla, 5μA@ 1 米 (33kHz) 动态范围:140dB rms/√Hz 选择性:120dB/Hz 测深范围:管线≤ 6米,探头≤15米 测深精度:管线 ± 5% 公差( 深度0.1—3米),探头 ± 5% 公差 (深度0.1—7米) 定位精度:± 5

管理贝贝 2019-12-02 01:16:51 0 浏览量 回答数 0

回答

管线探测仪 管线探测仪性能特点: 1、符合人机工程学原理的设计: 手感轻盈、外形美观、重心平衡、工作省电,完全符合人机工程学原理。IP54防水指标可确保在任何潮湿环境下使用。接收机和发射机都配有超大、超清晰LCD显示屏,背景灯可保证在任何环境下清晰显示信息。直观、便捷的界面可以使操作人员轻松使用任何功能。接收机和发射机表盘上的图标形象直观。 2、Centros 中央定位处理器: 通过三十多年设计研究经验的积累,使在管线定位仪设计和生产方面拥有了大量专利。五十多项软、硬件专利表明了我们不断进取的决心。Centros专利化中央定位处理器就是几十年研究的结晶。Centros大大提高了定位的准确度、测量结果的可重复性及仪器的响应速度。它具有强大的信号滤波和分析能力,即使在强干扰环境下也可进行准确定位。Centros是任何其他管线仪都无法比拟的定位引擎。 3、eCAL 网上标定: 网上标定是的专有技术。设备不需返厂,就可进行标定。这就确保管线仪能始终达到出厂时的标定要求。网上标定成功后,用户可直接打印标定证书。 4、峰值距离箭头: 使用左右箭头和不同音频,为操作人员指出管线中心线位置。箭头越远,离目标管线的距离越远。 5、iLOC(无线连接) iLOC是接收机和发射机之间的蓝牙连接,它大量节省了操作人员的工作时间,减轻了操作人员的工作强度。操作人员可使用iLOC的独特功能遥控发射机,从而节省来回行走时间,可以将更多的时间用来探测。iLOC的操作距离最远可达800米。 6、SurveyCERT (测绘应用平台) SurveyCERT提供了信息共享的平台,可将探测信息导入第三方应用系统进行审核、分析和出具报告等。可存储1000条定位记录。使用蓝牙连接,可将数据及时传送到PC或PDA,并使用SurveyCERT图形软件实时审视。如果PC和PDA带有GPS接收机,SurveyCERT将自动添加时间和位置信息。SurveyCERT的互操作性使它同商业版GIS软件匹配。 7、动态过载保护: 该功能使能在其他管线仪无法正常探测的区域进行测量。在强电干扰的环境中,可自动过滤干扰信号,因而,在电站和铁路高压电网下,也能正常工作。 8、Strikealert(穿透报警)和被动避开扫描: 一旦发现浅埋电缆,便发出警报,避免事故的发生。同时用电力和无线电模式快速扫测地下管道和线缆。原声可区别电力和无线电信号的存在。 9、罗盘和CD (电流方向)功能: 罗盘可以指出目标管道和线缆的方向。使用罗盘进行追踪,并正确摆放接收机,以获取准确深度。电流方向是一项专利技尸电流方向箭头可准确识别多条平行电缆中目标电缆,能快速查找和识别目标电缆。 技术指标: 1、接收机技术参数 工作频率:至少包括577Hz,512Hz,640Hz,870Hz,940Hz,8kHz,33kHz,65kHz,83kHz,131kHz,200kHz十一个主动频率,电力和无线电频率两个被动频率。512Hz,640Hz,8kHz,33kHz四个探头频率。 灵敏度:不低于 6E-15 Tesla, 5μA@ 1 米 (33kHz) 动态范围:140dB rms/√Hz 选择性:120dB/Hz 测深范围:管线≤ 6米,探头≤15米 测深精度:管线 ± 5% 公差( 深度0.1—3米),探头 ± 5% 公差 (深度0.1—7米) 定位精度:± 5

青衫无名 2019-12-02 01:16:48 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。

封神 2019-12-02 02:00:50 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

怎样实现数据存储的管理维护

elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

回答

加密算法 加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。 对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。 不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。 不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。 加密技术 加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。 非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的操作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。 PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种操作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。 数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。 PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互操作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。 加密的未来趋势 尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。 在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。 由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。 目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

一键天涯 2019-12-02 01:26:21 0 浏览量 回答数 0

回答

工作流:   根据 WfMC 的定义,工作流(Workflow)就是自动运作的业务过程部分或整体,表现为参与者对文件、信息或任务按照规程采取行动,并令其在参与者之间传递。简单地说,工作流就是一系列相互衔接、自动进行的业务活动或任务。   工作流是针对工作中具有固定程序的常规活动而提出的一个概念。通过将工作活动分解成定义良好的任务、角色、规则和过程来进行执行和监控,达到提高生产组织水平和工作效率的目的。工作流技术为企业更好地实现经营目标提供了先进的手段。   1993年,国际工作流管理联盟(Workflow Management Coalition,WfMC)的成立标志着工作流技术开始进入相对成熟的阶段。为了实现不同工作流产品之间的互操作,WfMC在工作流管理系统的相关术语、体系结构及应用编程接口等方面制定了一系列标准。工作流管理联盟给出的工作流定义是:工作流是指整个或部分经营过程在计算机支持下的全自动或半自动化。在实际情况中可以更广泛地把凡是由计算机软件系统(工作流管理系统)控制其执行的过程都称为工作流。   一个工作流包括一组活动及它们的相互顺序关系,还包括过程及活动的启动和终止条件,以及对每个活动的描述。工作流管理系统指运行在一个或多个工作流引擎上用于定义、实现和管理工作流运行的一套软件系统,它与工作流执行者(人、应用)交互,推进工作流实例的执行,并监控工作流的运行状态。   一、工作流管理:   通常,工作流管理系统指运行在一个或多个称为工作流机的软件上的用于定义、实现和管理工作流运行的一套软件系统,它和工作流执行者(人、应用)交互,推进工作流实例的执行,并监控工作流的运行状态。在这里需要强调指出的是工作流管理系统不是企业的业务系统。在很大程度上,工作流管理系统为企业的业务系统运行提供一个软件支撑环境,非常类似于在单个计算机上的操作系统。只不过工作流管理系统支撑的范围比较大、环境比较复杂而已,所以也有人称工作流管理系统是业务操作系统(BOS - Business Operating System)。在工作流管理系统的支撑下,通过集成具体的业务应用软件和操作人员的界面操作,才能够良好地完成对企业经营过程运行的支持。所以,工作流管理系统在一个企业或部门的经营过程中的应用过程是一个业务应用软件系统的集成与实施过程。   二、工作流管理系统:   工作流管理系统可以用来定义与执行不同覆盖范围(单个工作者、部门、全企业、企业间)、不同时间跨度(分钟、小时、天、月)的经营过程。这完全取决于实际应用背景的需求。按照经营过程以及组成活动的复杂程度的不同,工作流管理系统可以采取许多种实施方式,在不同的实施方式中,所应用的信息技术、通信技术和支撑系统结构会有很大的差别。工作流管理系统的实际运行环境可以是在一个工作组内部或者在全企业的所有业务部门。   三、业务过程:   业务过程(business process)就是活动的集合,这些活动均关联于特定的托付事项(commitment),为过程的产出增值。相对于“工作流”,业务过程是一个更一般化的统称,而工作流这个词,则已经不能仅从字面含义或原理上去理解,它已经被赋予了更深一层的特定含义——专指基于信息技术规划、运作、管理的业务过程。   四、自动与协调:   “自动”(automate)是工作流的一个特征,但这主要是指它自动进行的特征,而不是说没有人的参与。工作流实际上是一个人-电脑协调的混合过程,在一个实际的工作流中,通常总有些步骤是人完成的。协调是工作流管理的一个目标或者特征,这包括了人与人、人与电脑,电脑(软件)之间等多种层面的含义。   五、监察与控制:   监察(Monitoring)与控制(Contorl)是工作流系统的重要功能与特征。这不仅包括对正在发生的业务过程(工作流),还包括它的定义或改变(比如BPR的过程)。这是工作流系统带给我们的明显好处之一。   六、标准化:   作流的概念被明确提出并得到重视的同时,人们就认识到了“标准化”在其中的重要性,有关工作流的标准开发和推广,基本是与“工作流”的开发和推广同步进行的。在这方面目前的权威性机构,是“工作流管理联盟”(Workflow Management Coalition, WfMC)。它成立于1993年8月,目前已拥有 130 余个成员,成员包括工作流产品的供应者、应用者,有关大学和研究机构和个人,是一个国际性的非赢利组织。在最近的投资成员(Funding members)清单中,可以看到诸如 Baan, HP, IBM, Microsoft, Oracle, Peplesoft, SAP AG, Xerox 等机构。   七、工作流与重规划:   从逻辑上,对工作流的关注和研究可以看作是对业务过程重规划(BPR)的一种深化。BPR的观点,要求我们将眼光投向实际业务进行的过程,但这个过程应当是什么样的,怎样分析、构造?工作流就是一个具体的、操作性的答案,它可以令我们从神秘的、难以预测和控制的“头脑风暴式”的“艺术的”业务过程创造,变成解析的、技术的、可控制和预测的工程化过程,如此,才真正体现出 re-engineering 中 engineering 的意义。   工作流与 BPR 的概念,已经被几乎所有的研究者联系在一起研究和应用。在这个领域有一个非常活跃的组织,即国际工作流与重规划协会( Workflow And Reengineering International Association, WARIA)。   八、工作流与企业工程:   无论从理论、方法上,还是对象、内容上,我们都有理由将“工作流”看作是企业工程的一部分。实际上,已有的关于工作流体系的描述,本身就是一个通用的业务模型框架。仅仅囿于工作流是不够的,必须对整个体系的目标及所有相关要素综合考虑——这正是企业工程。   九、工作流与IT应用体系:   与以往已经被采用的企业 IT 应用体系,例如 MRPII 或 ERP 相比,WFMS是一个相当重要的里程碑。(ERP的概念并不确定,我这里仅指其基本或较早期的含义而言)。从用户的角度,WFMS带来(或将要带来)的变化是极其强烈的,甚至可以形容为一种用户“梦想”的实现。   在一些老的“模块化”的产品中,系统的设计是通常是基于任务分割的,作业项目之间是分裂的。面向对象的技术,并不能直接解决这个的问题,相反,往往使系统变得更加混乱和琐碎。从操作上,典型地,我们必须不断地在层次结构的功能表(比如下拉菜单)或对象之间“进进退退”,或者在“神出鬼没”的对象以及相关菜单中捉迷藏。   工作流管理系统是一个真正的“人-机”系统,用户是系统中的基本角色,是直接的任务分派对象,他或她可以直接看到电脑针对自己列出的“任务清单”,跟踪每一项任务的状态,或继续一项任务,而不必从一个模块退出,进入另一个模块,搜索相应任务的线索。前者是面向功能或对象的,而后者是直接面向用户的。这样,用户的任务分派和任务的完成状态,可以被最大程度地电脑化和受到控制。   现在的典型工作流产品是客户-服务软件。而日益增长的重要途径是通过万维网界面,它可以令客户或远程的职员更好地参与。工作流的定义经常是借助于图形化工具,依照业务过程实例的情况定义相应工作的安排   OA(办公自动化): 引自肖淑男 2001-2-20   通常,OA 就是办公自动化,英文Office Automation的缩写。通过流程或特定环节与日常事务联系在一起,使公文在流转、审批、发布等方面提高效率,实现办公管理规范化和信息规范化,降低企业运行成本的一套系统的统称。   多年来,OA尚无一个确切的定义,人们对OA的看法和理解各有不同。笔者认为:OA本身就不是一个有确定界定的概念,它是一个过程、一种境界。它随技术的发展而发展,随人们办公方式和习惯以及管理思想的变化而变化。在技术发展过程中的每一个阶段,人们给OA赋予了不同的内容和新的想象,技术与管理的进步给OA打下了每一步发展的历史烙印。同时,不同行业、不同层次的人对OA的看法和理解也各有不同。也许正是OA这种变化和发展的特点使之成为30多年来常新不衰的话题。   现在有一种较普遍的偏见:认为OA仅仅是诸如公文流转、收发文管理、档案管理、会议安排、文献检索、电子表格、电子邮件等等这些非结构化数据的处理和交换过程,面向的用户群也只是机关办公室或企业的职能部门、文秘部门。其实,今天看来,OA应有更丰富的内容和层面,更广泛的用户群。以下是笔者对OA在功能上以及所涉及的技术范畴的肤浅理解,愿与同行商榷。   功能方面:广义面言,OA应该是一个企业除了生产控制之外的一切信息处理与管理的集合。它面向不同层次的使用者,便有不同的功能表现:   对于企业高层领导而言,OA是决策支持系统(DSS)。OA运用科学的数学模型,结合企业内部/外部的信息为条件,为企业领导提供决策参考和依据;   对于中层管理者而言:OA是信息管理系统(IMS),OA利用业务各环节提供的基础“数据”,提炼出有用的管理“信息”,把握业务进程,降低经营风险,提高经营效率;   对于普通员工而言:OA是事务/业务处理系统。OA为办公室人员提供良好的办公手段和环境,使之准确、高效,愉快地工作。   技术范畴:OA是计算机技术在办公业务中的合理应用。计算机技术是OA的前提。如果脱离计算机技术面阔谈OA,无异于痴人说梦。没有计算机技术,OA便成无源之水、无本之木。计算机对信息的存储与处理能力极大地改变了人们的办公方式,提高了工作效率。如:要建立决策支持系统,则需要数据仓库 、OLAP等技术;要建立信息管理系统,则要有数据库、程序设计语言等技术;要建立事务/业务处理系统,则离不开数据库、设计良好的人机界面和工作流控制、OLTP等技术。   OA是利用通信技术来实现人与机器、机器与机器及人与人的交流。通信技术是OA的基础。现代办公室不再是孤军奋战,而是一个团队的协同工作,团队中成员之间的协调、合作离不开通信技术;现代办公室也不再是闭门造车,企业需要与外界广泛的信息交流,这更离不开通信技术。没有通信技术的支持,OA便成空中楼阁。   OA是科学的管理思想在先进的技术手段下的物化。科学的管理思想是实现OA的核心。计算机技术和通信技术仅仅是为实现OA打下了基础,提供了可能。要真正实现OA,还需物化人类思维中科学管理的内容。正如仅有优质的画笔、画板、颜料而没有达.芬奇,就不会有蒙娜尼莎的微笑一样。不体现人类管理智慧,就不会有真正的OA,如果有,也只是技术的堆砌和摆设。   由此而知,OA是计算机技术、通信技术与科学的管理思想完美结合的一种境界和理想。我们一直在为实现OA而努力,但我们的成果仅仅是在某些环节、某些方面、部分地实现了OA的功能,与真正的OA尚有差距,差距的根本在于应用系统对管理思想的实现方面。 答案来源于网络

养狐狸的猫 2019-12-02 03:00:25 0 浏览量 回答数 0

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

问题

大数据被用来犯罪怎么办

游客ftkex2f22paya 2019-12-01 19:34:14 2 浏览量 回答数 0

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

回答

Kafka 是目前主流的分布式消息引擎及流处理平台,经常用做企业的消息总线、实时数据管道,本文挑选了 Kafka 的几个核心话题,帮助大家快速掌握 Kafka,包括: Kafka 体系架构 Kafka 消息发送机制 Kafka 副本机制 Kafka 控制器 Kafka Rebalance 机制 因为涉及内容较多,本文尽量做到深入浅出,全面的介绍 Kafka 原理及核心组件,不怕你不懂 Kafka。 1. Kafka 快速入门 Kafka 是一个分布式消息引擎与流处理平台,经常用做企业的消息总线、实时数据管道,有的还把它当做存储系统来使用。早期 Kafka 的定位是一个高吞吐的分布式消息系统,目前则演变成了一个成熟的分布式消息引擎,以及流处理平台。 1.1 Kafka 体系架构 Kafka 的设计遵循生产者消费者模式,生产者发送消息到 broker 中某一个 topic 的具体分区里,消费者从一个或多个分区中拉取数据进行消费。拓扑图如下: 目前,Kafka 依靠 Zookeeper 做分布式协调服务,负责存储和管理 Kafka 集群中的元数据信息,包括集群中的 broker 信息、topic 信息、topic 的分区与副本信息等。 ** 1.2 Kafka 术语** 这里整理了 Kafka 的一些关键术语: Producer:生产者,消息产生和发送端。 Broker:Kafka 实例,多个 broker 组成一个 Kafka 集群,通常一台机器部署一个 Kafka 实例,一个实例挂了不影响其他实例。 Consumer:消费者,拉取消息进行消费。 一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组,一条消息只能被消费组中一个 Consumer 消费。 Topic:主题,服务端消息的逻辑存储单元。一个 topic 通常包含若干个 Partition 分区。 Partition:topic 的分区,分布式存储在各个 broker 中, 实现发布与订阅的负载均衡。若干个分区可以被若干个 Consumer 同时消费,达到消费者高吞吐量。一个分区拥有多个副本(Replica),这是Kafka在可靠性和可用性方面的设计,后面会重点介绍。 message:消息,或称日志消息,是 Kafka 服务端实际存储的数据,每一条消息都由一个 key、一个 value 以及消息时间戳 timestamp 组成。 offset:偏移量,分区中的消息位置,由 Kafka 自身维护,Consumer 消费时也要保存一份 offset 以维护消费过的消息位置。 1.3 Kafka 作用与特点 Kafka 主要起到削峰填谷(缓冲)、系统解构以及冗余的作用,主要特点有: 高吞吐、低延时:这是 Kafka 显著的特点,Kafka 能够达到百万级的消息吞吐量,延迟可达毫秒级; 持久化存储:Kafka 的消息最终持久化保存在磁盘之上,提供了顺序读写以保证性能,并且通过 Kafka 的副本机制提高了数据可靠性。 分布式可扩展:Kafka 的数据是分布式存储在不同 broker 节点的,以 topic 组织数据并且按 partition 进行分布式存储,整体的扩展性都非常好。 高容错性:集群中任意一个 broker 节点宕机,Kafka 仍能对外提供服务。 2. Kafka 消息发送机制 Kafka 生产端发送消息的机制非常重要,这也是 Kafka 高吞吐的基础,生产端的基本流程如下图所示: 主要有以下方面的设计: 2.1 异步发送 Kafka 自从 0.8.2 版本就引入了新版本 Producer API,新版 Producer 完全是采用异步方式发送消息。生产端构建的 ProducerRecord 先是经过 keySerializer、valueSerializer 序列化后,再是经过 Partition 分区器处理,决定消息落到 topic 具体某个分区中,最后把消息发送到客户端的消息缓冲池 accumulator 中,交由一个叫作 Sender 的线程发送到 broker 端。 这里缓冲池 accumulator 的最大大小由参数 buffer.memory 控制,默认是 32M,当生产消息的速度过快导致 buffer 满了的时候,将阻塞 max.block.ms 时间,超时抛异常,所以 buffer 的大小可以根据实际的业务情况进行适当调整。 2.2 批量发送 发送到缓冲 buffer 中消息将会被分为一个一个的 batch,分批次的发送到 broker 端,批次大小由参数 batch.size 控制,默认16KB。这就意味着正常情况下消息会攒够 16KB 时才会批量发送到 broker 端,所以一般减小 batch 大小有利于降低消息延时,增加 batch 大小有利于提升吞吐量。 那么生成端消息是不是必须要达到一个 batch 大小时,才会批量发送到服务端呢?答案是否定的,Kafka 生产端提供了另一个重要参数 linger.ms,该参数控制了 batch 最大的空闲时间,超过该时间的 batch 也会被发送到 broker 端。 2.3 消息重试 此外,Kafka 生产端支持重试机制,对于某些原因导致消息发送失败的,比如网络抖动,开启重试后 Producer 会尝试再次发送消息。该功能由参数 retries 控制,参数含义代表重试次数,默认值为 0 表示不重试,建议设置大于 0 比如 3。 3. Kafka 副本机制 前面提及了 Kafka 分区副本(Replica)的概念,副本机制也称 Replication 机制是 Kafka 实现高可靠、高可用的基础。Kafka 中有 leader 和 follower 两类副本。 3.1 Kafka 副本作用 Kafka 默认只会给分区设置一个副本,由 broker 端参数 default.replication.factor 控制,默认值为 1,通常我们会修改该默认值,或者命令行创建 topic 时指定 replication-factor 参数,生产建议设置 3 副本。副本作用主要有两方面: 消息冗余存储,提高 Kafka 数据的可靠性; 提高 Kafka 服务的可用性,follower 副本能够在 leader 副本挂掉或者 broker 宕机的时候参与 leader 选举,继续对外提供读写服务。 3.2 关于读写分离 这里要说明的是 Kafka 并不支持读写分区,生产消费端所有的读写请求都是由 leader 副本处理的,follower 副本的主要工作就是从 leader 副本处异步拉取消息,进行消息数据的同步,并不对外提供读写服务。 Kafka 之所以这样设计,主要是为了保证读写一致性,因为副本同步是一个异步的过程,如果当 follower 副本还没完全和 leader 同步时,从 follower 副本读取数据可能会读不到最新的消息。 3.3 ISR 副本集合 Kafka 为了维护分区副本的同步,引入 ISR(In-Sync Replicas)副本集合的概念,ISR 是分区中正在与 leader 副本进行同步的 replica 列表,且必定包含 leader 副本。 ISR 列表是持久化在 Zookeeper 中的,任何在 ISR 列表中的副本都有资格参与 leader 选举。 ISR 列表是动态变化的,并不是所有的分区副本都在 ISR 列表中,哪些副本会被包含在 ISR 列表中呢?副本被包含在 ISR 列表中的条件是由参数 replica.lag.time.max.ms 控制的,参数含义是副本同步落后于 leader 的最大时间间隔,默认10s,意思就是说如果某一 follower 副本中的消息比 leader 延时超过10s,就会被从 ISR 中排除。Kafka 之所以这样设计,主要是为了减少消息丢失,只有与 leader 副本进行实时同步的 follower 副本才有资格参与 leader 选举,这里指相对实时。 3.4 Unclean leader 选举 既然 ISR 是动态变化的,所以 ISR 列表就有为空的时候,ISR 为空说明 leader 副本也“挂掉”了,此时 Kafka 就要重新选举出新的 leader。但 ISR 为空,怎么进行 leader 选举呢? Kafka 把不在 ISR 列表中的存活副本称为“非同步副本”,这些副本中的消息远远落后于 leader,如果选举这种副本作为 leader 的话就可能造成数据丢失。Kafka broker 端提供了一个参数 unclean.leader.election.enable,用于控制是否允许非同步副本参与 leader 选举;如果开启,则当 ISR 为空时就会从这些副本中选举新的 leader,这个过程称为 Unclean leader 选举。 前面也提及了,如果开启 Unclean leader 选举,可能会造成数据丢失,但保证了始终有一个 leader 副本对外提供服务;如果禁用 Unclean leader 选举,就会避免数据丢失,但这时分区就会不可用。这就是典型的 CAP 理论,即一个系统不可能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)中的两个。所以在这个问题上,Kafka 赋予了我们选择 C 或 A 的权利。 我们可以根据实际的业务场景选择是否开启 Unclean leader选举,这里建议关闭 Unclean leader 选举,因为通常数据的一致性要比可用性重要的多。 4. Kafka 控制器 控制器(Controller)是 Kafka 的核心组件,它的主要作用是在 Zookeeper 的帮助下管理和协调整个 Kafka 集群。集群中任意一个 broker 都能充当控制器的角色,但在运行过程中,只能有一个 broker 成为控制器。 这里先介绍下 Zookeeper,因为控制器的产生依赖于 Zookeeper 的 ZNode 模型和 Watcher 机制。Zookeeper 的数据模型是类似 Unix 操作系统的 ZNode Tree 即 ZNode 树,ZNode 是 Zookeeper 中的数据节点,是 Zookeeper 存储数据的最小单元,每个 ZNode 可以保存数据,也可以挂载子节点,根节点是 /。基本的拓扑图如下: Zookeeper 有两类 ZNode 节点,分别是持久性节点和临时节点。持久性节点是指客户端与 Zookeeper 断开会话后,该节点依旧存在,直到执行删除操作才会清除节点。临时节点的生命周期是和客户端的会话绑定在一起,客户端与 Zookeeper 断开会话后,临时节点就会被自动删除。 Watcher 机制是 Zookeeper 非常重要的特性,它可以在 ZNode 节点上绑定监听事件,比如可以监听节点数据变更、节点删除、子节点状态变更等事件,通过这个事件机制,可以基于 ZooKeeper 实现分布式锁、集群管理等功能。 4.1 控制器选举 当集群中的任意 broker 启动时,都会尝试去 Zookeeper 中创建 /controller 节点,第一个成功创建 /controller 节点的 broker 则会被指定为控制器,其他 broker 则会监听该节点的变化。当运行中的控制器突然宕机或意外终止时,其他 broker 能够快速地感知到,然后再次尝试创建 /controller 节点,创建成功的 broker 会成为新的控制器。 4.2 控制器功能 前面我们也说了,控制器主要作用是管理和协调 Kafka 集群,那么 Kafka 控制器都做了哪些事情呢,具体如下: 主题管理:创建、删除 topic,以及增加 topic 分区等操作都是由控制器执行。 分区重分配:执行 Kafka 的 reassign 脚本对 topic 分区重分配的操作,也是由控制器实现。 Preferred leader 选举:这里有一个概念叫 Preferred replica 即优先副本,表示的是分配副本中的第一个副本。Preferred leader 选举就是指 Kafka 在某些情况下出现 leader 负载不均衡时,会选择 preferred 副本作为新 leader 的一种方案。这也是控制器的职责范围。 集群成员管理:控制器能够监控新 broker 的增加,broker 的主动关闭与被动宕机,进而做其他工作。这里也是利用前面所说的 Zookeeper 的 ZNode 模型和 Watcher 机制,控制器会监听 Zookeeper 中 /brokers/ids 下临时节点的变化。 数据服务:控制器上保存了最全的集群元数据信息,其他所有 broker 会定期接收控制器发来的元数据更新请求,从而更新其内存中的缓存数据。 从上面内容我们大概知道,控制器可以说是 Kafka 的心脏,管理和协调着整个 Kafka 集群,因此控制器自身的性能和稳定性就变得至关重要。 社区在这方面做了大量工作,特别是在 0.11 版本中对控制器进行了重构,其中最大的改进把控制器内部多线程的设计改成了单线程加事件队列的方案,消除了多线程的资源消耗和线程安全问题,另外一个改进是把之前同步操作 Zookeeper 改为了异步操作,消除了 Zookeeper 端的性能瓶颈,大大提升了控制器的稳定性。 5. Kafka 消费端 Rebalance 机制 前面介绍消费者术语时,提到了消费组的概念,一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组 ,一条消息只能被消费组中的一个消费者进行消费。我们用下图表示Kafka的消费模型。 5.1 Rebalance 概念 就 Kafka 消费端而言,有一个难以避免的问题就是消费者的重平衡即 Rebalance。Rebalance 是让一个消费组的所有消费者就如何消费订阅 topic 的所有分区达成共识的过程,在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 的完成。因为要停止消费等待重平衡完成,因此 Rebalance 会严重影响消费端的 TPS,是应当尽量避免的。 5.2 Rebalance 发生条件 关于何时会发生 Rebalance,总结起来有三种情况: 消费组的消费者成员数量发生变化 消费主题的数量发生变化 消费主题的分区数量发生变化 其中后两种情况一般是计划内的,比如为了提高消息吞吐量增加 topic 分区数,这些情况一般是不可避免的,后面我们会重点讨论如何避免因为组内消费者成员数发生变化导致的 Rebalance。 5.3 Kafka 协调器 在介绍如何避免 Rebalance 问题之前,先来认识下 Kafka 的协调器 Coordinator,和之前 Kafka 控制器类似,Coordinator 也是 Kafka 的核心组件。 主要有两类 Kafka 协调器: 组协调器(Group Coordinator) 消费者协调器(Consumer Coordinator) Kafka 为了更好的实现消费组成员管理、位移管理,以及 Rebalance 等,broker 服务端引入了组协调器(Group Coordinator),消费端引入了消费者协调器(Consumer Coordinator)。每个 broker 启动的时候,都会创建一个 GroupCoordinator 实例,负责消费组注册、消费者成员记录、offset 等元数据操作,这里也可以看出每个 broker 都有自己的 Coordinator 组件。另外,每个 Consumer 实例化时,同时会创建一个 ConsumerCoordinator 实例,负责消费组下各个消费者和服务端组协调器之前的通信。可以用下图表示协调器原理: 客户端的消费者协调器 Consumer Coordinator 和服务端的组协调器 Group Coordinator 会通过心跳不断保持通信。 5.4 如何避免消费组 Rebalance 接下来我们讨论下如何避免组内消费者成员发生变化导致的 Rebalance。组内成员发生变化无非就两种情况,一种是有新的消费者加入,通常是我们为了提高消费速度增加了消费者数量,比如增加了消费线程或者多部署了一份消费程序,这种情况可以认为是正常的;另一种是有消费者退出,这种情况多是和我们消费端代码有关,是我们要重点避免的。 正常情况下,每个消费者都会定期向组协调器 Group Coordinator 发送心跳,表明自己还在存活,如果消费者不能及时的发送心跳,组协调器会认为该消费者已经“死”了,就会导致消费者离组引发 Rebalance 问题。这里涉及两个消费端参数:session.timeout.ms 和 heartbeat.interval.ms,含义分别是组协调器认为消费组存活的期限,和消费者发送心跳的时间间隔,其中 heartbeat.interval.ms 默认值是3s,session.timeout.ms 在 0.10.1 版本之前默认 30s,之后默认 10s。另外,0.10.1 版本还有两个值得注意的地方: 从该版本开始,Kafka 维护了单独的心跳线程,之前版本中 Kafka 是使用业务主线程发送的心跳。 增加了一个重要的参数 max.poll.interval.ms,表示 Consumer 两次调用 poll 方法拉取数据的最大时间间隔,默认值 5min,对于那些忙于业务逻辑处理导致超过 max.poll.interval.ms 时间的消费者将会离开消费组,此时将发生一次 Rebalance。 此外,如果 Consumer 端频繁 FullGC 也可能会导致消费端长时间停顿,从而引发 Rebalance。因此,我们总结如何避免消费组 Rebalance 问题,主要从以下几方面入手: 合理配置 session.timeout.ms 和 heartbeat.interval.ms,建议 0.10.1 之前适当调大 session 超时时间尽量规避 Rebalance。 根据实际业务调整 max.poll.interval.ms,通常建议调大避免 Rebalance,但注意 0.10.1 版本之前没有该参数。 监控消费端的 GC 情况,避免由于频繁 FullGC 导致线程长时间停顿引发 Rebalance。 合理调整以上参数,可以减少生产环境中 Rebalance 发生的几率,提升 Consumer 端的 TPS 和稳定性。 6.总结 本文总结了 Kafka 体系架构、Kafka 消息发送机制、副本机制,Kafka 控制器、消费端 Rebalance 机制等各方面核心原理,通过本文的介绍,相信你已经对 Kafka 的内核知识有了一定的掌握,更多的 Kafka 原理实践后面有时间再介绍。

剑曼红尘 2020-04-16 18:15:45 0 浏览量 回答数 0

回答

没有简易算法,只有坐着慢慢算,算不死你。。。。。。哈哈哈1.除锈工程定额适用于什么工程。定额适用于金属表面的手工、动力工具、干喷射除锈及化学除锈工程。 手工除锈指操作人员利用钢丝刷、铁砂布、破布等对锈蚀的构件进行除锈处理。动力工具除锈指操作人员利用电动工具、钢丝刷、砂轮片、破布进行除锈处理。喷射除锈指操作人员利用鼓风机、除锈喷砂机、空气压缩机、轴流风机对锈蚀器具进行除锈处理。化学除锈指操作人员利用化学反应原理对锈蚀构件进行除锈处理。 2.哪些除锈已综合考虑在定额内?各种管件、阀件及设备上人孔、管口凸凹部分的除锈已综合考虑在定额内。 3.喷射除锈按Sa2.5级标准确定,当变更级别标准时,其人工、材料和机械应如何计算?喷射除锈按Sa2.5级标准确定。若变更级别标准,如按Sa3级则人工、材料、机械乘以系数1.1,按Sa2级或Sal级则人工、材料、机械乘以系数0.9。 4.手工、动力工具除锈可分为哪几种?区分标准是什么?手工、动力工具除锈分轻、中、重三种,区分标准为: 轻锈:部分氧化皮开始破裂脱落,红锈开始发生。 中锈:部分氧化皮破裂脱落,呈堆粉状,除锈后用肉眼能见到腐蚀小凹点。 重锈:大部分氧化皮脱落,呈片状锈层或凸起的锈斑,除锈后出现麻点或麻坑。 5.喷射除锈标准有哪几级?喷射除锈标准: Sa3级:除净金属表面上油脂、氧化皮、锈蚀产物等一切杂物,呈现均一的金属本色,并有一定的粗糙度。 Sa2.5级:完全除去金属表面的油脂、氧化皮、锈蚀产物等一切杂物,可见阴影条纹、斑痕等残留物不得超过单位面积的5%。 Sa2级:除去金属表面上的油脂、锈皮、松疏氧化皮、浮锈等杂物,允许有紧附的氧化皮。 6.什么是微锈?发生微锈时执行什么定额?定额不包括除微锈(标准:氧化皮完全紧附,仅有少量锈点),发生时执行轻锈定额乘以系数0.2。 7.因施工需要发生的二次除锈,应如何处理?因施工需要发生的二次除锈,应另行计算。 8.各种除锈有何优缺点?各种除锈的优缺点分别为: (1)手工除锈施工方法简单,可以在小构件和复杂外形构件上处理,比较经济,但工作效率低,大面积施工困难,除锈不彻底,氧化皮不易去除。 (2)风动工具除锈工作效率和质量均高于手工除锈,而且施工费用不太高,但劳动条件差,不适用于大面积除锈。 (3)干法喷砂除锈工作效率高,除锈效果好,比较彻底,但劳动条件差,粉尘量大,施工费用较高。 (4)湿法喷涂除锈粉尘少,工作条件比干法喷砂好,但工作效率比干喷砂低,处理后表面容易出现红锈,施工费用较高。 9.如何计算设备、管道除锈、刷油工程量?(1)设备简体、管道表面积计算公式:。 S=πDL (1—1) 式中 π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 10.如何计算设备、管道防腐蚀工程量?(I)设备筒体、管道表面积计算公式为: S=πDL (1—2) 式中 π——圆周率,取3.14; D——设备简体、管道直径(m); L——设备筒体、管道高或延长米(m)。 (2)设备上的人孔、管口所占面积不另计算,同时在计算设备表面积时也不扣除。其工程量计算方法见下例。 11.什么是阀们、弯头和法兰。如何计算其防腐蚀工程量。 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°, 180°弯头也称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05; N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式: V=π(D+1.033δ)X1.033δL (1-7) S=π(D+2.18δ+0.0082)L (1-8) 式中 V——绝热层体积; S——绝热层面积; D——直径; 1.033、2.1——调整系数; d——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: 1)单管伴热或双管伴热(管径相同,夹角小于900时): D`=D1+D2+(10~20mm) 式中 D`——伴热管道综合值; D1——主管道直径; D2——伴热管道直径; (10~20mm)——主管道与伴热管道之间的间隙。 2) 双管伴热(管径相同,夹角大于90°时): D`=D1+1.5D2+(10~20mm) (1-10) 3) 双管伴热(管径不同,夹角小于90°时): D`=D1+1.5D2+(10~20mm) (1—1) 式中 D`——伴热管道综合值; D1——主管道直径。 将上述D`计算结果分别代人公式(1—7)、(1—8)计算出伴热管道的绝热层、防潮层和保护层工程量。 (3)设备封头绝热、防潮和保护层工程量计算式: V=[(D+1.033δ)/2]2π×1.033δ×1.6N (1-12) S=[(D+2.1δ)/2] 2π×1.6N (1-13) 13.什么是绝热工程?绝热工程是将绝热材料用人工或机械方法捆绑、缠绕或浇注、喷镀在设备、管道、金属结构或其他物体表面上以达到绝热效果的施工全过程。 14.刷油工程和防腐蚀工程中设备、管道,一般金属结构、管廊钢和H型钢分别以什么为计量单位?刷油工程和防腐蚀工程中设备、管道以“m2”为计量单位。一般金属结构和管廊钢结构以“kg”为计量单位;H型钢制结构(包括大于400mm以上的型钢)以“10 m2”为计量单位。 15.如何计算设备、管道内壁防腐蚀工程量?计算设备、管道内壁防腐蚀工程量时,当壁厚大于等于10mm时,按其内径计算;当壁厚小于10mm时,按其外径计算。 16.为什么喷射除锈在变更级别标准时,其人工、材料和机械应乘以相关系数?一般除锈的下一步就是涂层,涂层的基层处理要求与涂料的品种、建筑构件的材料和重要性有关。例如,富锌类涂料对金属基层除锈的要求比较高,带锈底漆可以在不彻底除锈的基层上涂装,湿固化型涂料对基层或环境要求一定的湿度,重要的、高耸的钢结构或处于严重腐蚀条件下的钢结构的基层除锈要求较高等。在确定涂料方案时,应包括对基层处理的要求。实际问题实际分析,尽量减少不必要的浪费,当除锈级别较高时,人工、材料、机械费用为了定量处理乘以一个系数1.1,反之,当除锈级别不够高时,可乘以系数0.9。 17.如何计算人工除锈工程量? 人工除锈时,管道和金属结构应区分锈蚀不同等级;设备区分锈蚀不同等级和直径大小;管道和设备均以“10 m2”为单位计算;金属结构以质量“100kg”为单位计算。 18.如何计算砂轮机除锈工程量?砂轮机除锈,即半机械化除锈。金属面区分锈蚀等级以“10 m2”计算。 19.如何计算喷砂除锈工程量?工程量计算: (1)设备区分直径大小,按内壁,外壁划分子项目,以“10 m2”为单位计算。 (2)管道按内、外壁划分子项目,以“10 m2”为单位计算。 (3)金属结构按其质量,以“100kg”为单位计算。 (4)气柜有分喷石英砂和喷河砂之分,分别按水槽壁板、水槽底板、中罩板、金属结构划分子目,除金属结构按质量以“100kg”为单位计算外,其余均按面积以“10m2”为单位计算。 20.如何计算化学除锈工程量?化学除锈,又称酸洗除锈。金属表面分为一般和特殊两种,分别以10m2为单位计算。 21.钢筋除锈有哪些方法?什么情况下应降级使用或剔除不用?钢筋的表面应洁净。油渍、漆污和用锤敲击时能剥落的浮皮、铁锈等应在使用前清除干净。在焊接前,焊点处的水锈应清除干净。 钢筋的除锈,一般可通过以下两种方法:一是在钢筋冷拉或钢丝调直过程中除锈,对大量钢筋的除锈较为经济省力;二是用机械方法除锈,如采用电动除锈机除锈,对钢筋的局部除锈较为方便。此外,还可采用手工除锈(用钢丝刷、砂盘)、喷砂和酸洗除锈等。 电动除锈机,如图1—3所示。该机的圆盘钢丝刷有成品供应,也可用废钢丝蝇头拆开编成,其直径为20~30cm、厚度为5~ 15cm、转速为1000r/min左右,电动机功率为1.0~1.5kw。为了减少除锈时灰尘飞扬,应装设排尘罩和排尘管道。

游客886 2019-12-02 01:21:41 0 浏览量 回答数 0

问题

优势与挑战并存着,网络虚拟化的6大要点

hamtyb 2019-12-01 20:27:33 9831 浏览量 回答数 0

回答

在校生要找到好工作,主要靠几个光环,学校光环、竞赛光环、项目光环、实习光环。其中项目经验尤为重要。有些同学就有疑问了: “我校招没offer,没有项目经验,是不是要报个培训班?” “我转行计算机,是不是应该报个班?” “我也想自学,可怎么学啊,选哪个方向啊?” 对于有些同学,当我还在想办法劝他自学时,给我贴出了培训班的广告词,真可谓,人有多大胆,口号就有多不要脸: “0基础入学,三个月包就业” “毕业月入不过万,不收学费” “从前是你找工作,接下来是工作找你” 当我推荐某些同学去培训时,又给咔咔咔亮出了几个帖子,说培训出来的受歧视啊、有些同学培训出来还是找不到工作啊,等等。 其实,选择自学还是培训是看自身情况而定,无论选择自学还是培训,都只是入门的一种手段,各有优劣势,本文就详细说说自学/培训怎么选,选择以后怎么办,记得帮我点赞哦。   目录: 自学还是培训,怎么选? 自学怎么学? 培训班到底在培训什么? 有些企业歧视培训班学员,培训班的问题到底出在哪? 一些建议 一、自学还是培训,怎么选? 无论你是什么学历、有没有计算机基础,这些都不是决定你适合自学的条件,具备如下三个条件的人都可以选择自学: (1)、时间充足 如果说从零基础靠自学达到找工作的水平,需要多久呢?我觉得至少一年,有的人可能需要两年。所以,如果你是大一、大二、大三的学生,你还有时间,可以选择自学。如果你是已经工作的,想转行计算机,可以边工作边学习,这个过程会比较辛苦,但也不是绝对不可行。 对于大四的同学,以就业为导向,建议你去培训。不可否认,培训是最快入门的方式,对于时间不足的同学而言,培训是最优解。同样地,如果你是已工作的,不存在财务压力,我同样建议你去培训,工作后的时间很珍贵,比不上在校期间有大把时间可以浪费,如果做好了必转的决心,以最快速度转行才是最优解。 (2)、自控力强 能管得住自己,自己定的目标能想尽一切办法实现的同学,真不多,能占人群中1/4已经不错了。 有些人学了半小时就会累,休息一会,就成这样: 我见过太多的半途而废的同学,也见过太多自己安慰自己式的学习方式,但就业就是一个试金石,你这段时间的努力有没有回报,去找工作的时候,就水落石出。 如果在自律这方面不太行的话,可以看下这篇文章,《启舰:你是怎么变自律的?》,找到自已的驱动器,完成自己的梦想。 (3)、具备高中以上学历 计算机本身是数学家发明的,或多或少会用到一些基本的数学知识、经常用到的很多算法都是数学知识的延伸,没有基本的数学功底,自学确实很难。 至于英语阅读能力还好说,只要会用有道词典,不会的去搜去看,总会读懂的,而且入门级的文献和视频中文版的资料已足够你入门,英语应该不是太大的问题。 如果你这三点都满足,恭喜你,你具有了自学的基础,可以选择自学。 二、自学怎么学? 1、选定一个方向 首先,我们选择方向的目的是什么?不就是为了找份工作吗?那直接到招聘类网站去搜下相关的岗位数量及要求不就好了,哪个数量多,自己也喜欢,那就选这个即可。 其次,如果是大三、大四即将毕业的同学,想知道最近哪个岗位好找工作的话。还可以看看很多培训机构的培训内容,现在很多培训机构都声称保就业,真的以为,培训几个月能培训出朵花来吗?不可能的,编程是个需要长期训练的活,几个月的培训,仅是入门而已,入门的水平能保证找份工作,就靠的是这个岗位门槛低,需求大,好找工作。 如果实在不知道选什么,我帮你找几个方向:python、java后端、Html5就业岗位都挺多,就业门槛低,相对好就业,如果也有其它方向推荐,大家可以留言。 2、找到几套视频教材 在入门时强烈不建议跟着书学 第一,不一定能看得懂 第二,书本的知识不成体系,入门有入门的书,进阶有进阶的书,实战有实战的书,需要自己去选择,本身就不是一件易事。 第三,视频可以看到老师的操作,而书本全靠自己摸 现在某某培训班的入门、进阶、实战的系列视频不要太好找,找到这么两套视频,对比着看,或者跟着一套视频深入看,来得更容易。人家培训班安排好的路线跟着学,不懂的自己搜,就已经排除了自已给自己安排路线的难点,况且人家本身就是面向就业的,培训出来的同学能保就业,只要你能跟着学通学会,自然找到工作也不是问题。 我精心整理了计算机各个方向的从入门、进阶、实战的视频课程和电子书,都是技术学习路上必备的经验,跟着视频学习是进步最快的,而且所有课程都有源码,直接跟着去学!!! 只要关注微信公众号【启舰杂谈】后回复你所需方向的关键字即可,比如『Android』、『java』、『ReactNative』、『H5』、『javaweb』、『面试』、『机器学习』、『web前端』、『设计模式』等关键字获取对应资料。(所有资料免费送,转发宣传靠大家自愿) 视频内容非常多,总共2184G、一千六百多册电子书,九百多套视频教程,涉及43个方向。我整理了很长时间,有些资料是靠买的,希望大家能最快的提升自己。帮我点个赞吧。 启舰:全网2184G计算机各方向视频教程/电子书汇总(持续更新中)​   3、自学,除了知识,你还能学到什么? 自学的缺点很明显: 第一:速度慢,所有进度完全靠自己把控,没有氛围 第二:遇到问题需要自己解决,无人请教 那优点恰恰是从这些缺点中磨练出来的,进度靠自己把握,完全磨练了你的意志力。而所有问题靠自己解决,恰恰培养了你的解决问题的能力。 而这些能力都是培训班教不出来的、无法速成的。而这些能力却是真正的开发高手所必备的 问题定义、分析与设计阶段,这是最需要智商、创造力和经验的阶段,真正的开发高手,就是在这一阶段体现出远超普通人的水平,而在这一阶段所需要的能力,对不起,培训班教不出来,也无法速成,只能靠人自己的努力,慢慢地培养和增强。 4、自学建议 (1)、多做笔记、多复习 刚开始学习时,很难,真的很难。很多东西听不懂,很多东西需要自己搜,自己定的进度很可能完不成。 没关系,坚持下去,都是这么过来的。我刚开始自学的时候,也是无数次想死的冲动…… 学会做笔记,把自己学到的东西及时记下来,形成目录,在后面用到的时候,根据笔记再去看一遍,刚开始经常会出现,听得懂,跟着学会,自己弄就不会的现象。这都是正常的,技术本就是个熟能生巧的过程。 多动手,多总结,就慢慢熟练了。 (2)、多写代码!听得懂、看得懂,并没什么用 入门级知识,本就是语法和框架的熟悉过程,说到底就是工具的使用方法熟悉的过程。既然是工具,那就必然要多用。熟能生巧,指的是用的熟。很多同学看的懂,听的会,自己一下手就问题百出,就是练的少! (3)、听不懂,搜一下,再不懂就放过 刚学的时候很多概念听不懂,没关系,自己搜一下,能理解了就理解,理解不了就算。听一遍就行,学到后面的时候,你就懂些了回头,再看看那些知识,基本上你都懂了。 (4)、多写注释 刚开始的时候,很多逻辑弄不懂,没关系,自己把代码拆解,并对其加以注释,这样,你在反过来再看这些代码时,能很快弄懂它的逻辑。你要知道,你后面学习时还是会碰到这些知识的,而在只看一遍的情况下是不可能记得住的,到时候,你还是会返回来复习这些知识的。 增加注释,看起来浪费时间,其实是整理代码逻辑的过程。浑浑噩噩敲出来的代码,自己都不明白什么意思的话,其实相当于没有真正学会。 三、培训班到底在培训什么? 去培训的主要原因,说到底还是因为自己啥都不会。但不会与不会间是有区别的。 对于科班出身的,上学又好好学了的同学,虽然他们没有系统的编程知识,没有项目经验,但他们有计算机基础,他懂得操作系统原理、数据结构与算法等原理性知识。 而对于跨专业和在玩了四年的同学而言,那才是真正的零基础。 而对于培训机构而言,它的责任就是让你实现从0到1的入门过程,而有经验的老鸟都知道,编程入门仅仅是知识的堆积,并没有什么技巧性可言。所有的语法和框架运用,简单来说,就是学会编程套路,学习工具使用。 而培训机构的责任,就是把这些套路教给你。只要你不太笨,经过几个月的强化训练,大部分人都能学得会。 所以,培训班教你的就是工具的使用,目的,就是以最快的速度塞给你,助你找到工作。 四、有些企业歧视培训班学员,培训班的问题到底出在哪? 培训机构有着熟练的授课体系,老师手把手答疑,让你在学习路上没有一丁点的思考时间,为的就是以最快的速度让你达标,好结课,开始下一波培训。 1、问题就出在速度上。 认知科学的研究成果表明,知识的消化与吸收,职业技能的学习与精通,本质上是在大脑神经元之间建立连接,重塑大脑结构的过程,这个过程的时间可以缩短,但不能无限地缩短。另外,不同的人,拥有不同的背景和基础,在学习与掌握相同的知识与职业技能时,所花的时间是不一样的。 而培训机构才不管这些,他的目的就是挣钱,以最快的速度挣钱,能在三天内把所有内容塞给你绝不用四天,只要最终能糊弄住面试官,让学员找到一份工作就可以了。 所以,必然会出现下面的现象: 对于原来有一些基础的,学习能力较强的同学,在学习之前已经有较扎实的基础,所以在培训期间能够自己构建成技术体系,知识吸收相对较好: 而另一些学员,则会出现消化不良的情况: 2、培训后遗症 对于软件开发而言,所有的软件开发都大致分为两个阶段: 1、分析、定义、设计阶段。这个阶段是需要有解决问题、分析问题的能力。而这个能力培训班培训不出来,只能是慢慢增强。 2、语法、工具的使用,将设计的内容实现出来。这一块就比较机械了,工具嘛,学一学都能会,培训班在这一块的效率是很高效的,它们多半能在较短的时间内,教会学员特定编程语言(比如Python)特定工具(比如Git)与特定技术的使用(比如Spring MVC),并且传授给他们一些开发的“套路”(比如分层架构与设计模式),从而将学员成功地培养成为一个能够“搬砖”的软件工人,即初级程序员。 培训班一般都会选择门槛低、就业岗位多的方向进行培训,对于这类岗位,人才缺口大,只要能直接上手写代码的初级程序员,都很容易找到一份工作。这也就是为什么培训班多半会收学生五位数的学费,而学生也愿意支付的根本原因。 (1)、解决问题能力差,动不动就得人教 经过几个月饭来张口、衣来伸手的填鸭式集训,有些人在工作后,却依然认为,当他遇到问题时,从来不想着自己搜搜资料解决,而是依赖同事帮他答疑! 自学能力差、解决问题能力差,是很多人找到了工作,过不了试用期的根本原因。 (2)、培训效果立竿见影,却又很快遗忘 任何的知识都是一样,短时间内填鸭式学到的知识,在一段时间不用后,就会遗忘。这就是有些同学刚从培训班出来时,能找到份工作,当学到的东西在工作中几个月用不到时,就很快忘记,总觉得自己还是啥都不会的原因。 永远要记住:学历不行靠实力,实力不行靠态度!!! 当我们初入职场,尽心尽责地把自己的工作做完做好的同时,千万不要忘记像海绵一样,以最快的速度给自己充水。 像培训完的同学,在校期间已经做了很多的笔记,工作之余,多复习,重新练,利用时间将它理解,真正内化为自己的本领。 对于自学的同学,多找进阶性书籍和视频去看,以最快的速度提升自己。 文末我整理了计算机各个方向的从入门、进阶、实战的视频课程和电子书,都是技术学习路上必备的经验,跟着视频学习是进步最快的,而且所有课程都有源码,直接跟着去学!!! 五、一些建议 1、非科班同学建议 对于非科班转行计算机的同学,有太多的知识需要补足,如果你靠的是自学,需要强有力的自律能力,只要时间还够,是可以靠自学的,在跟着视频学的时候,哪里听不懂及时去搜相关的资料去补足。 刚开始自学时,即便是科班出身也是有想死的冲动的,大家都一样。我也是靠自学过来的,很多的东西不会,很多的东西听不懂。没关系,多做笔试,多搜资料,把不会的弄会,你会发现,学习起来越来越容易。 所有的困难只不过是纸老虎,坚持过去就成功了。 如果你是通过培训找到了一份工作,你需要比别人更努力补充计算机知识,基础知识的缺乏,会使你很难在这条路上走很远,所有的大神,都是自学能力很强的人,你想,你也可以。 2、所有开发方向都必须从C++开始? 经常会有要校生问我:我要做H5开发,是不是要先学C++? 其实,各个语言之间是没有任何关联的,完全都是有各自的语法体系和开发工具的,简单来讲,他们都是不同类型的工具。 你学会一种工具,只会对另一种类似的工具更容易上手,而不是完全不用学。所以,想学哪个方向,直接去学就行了,没必须先从C++入手迂回一下,纯属浪费时间。 但,如果你还在上学,现在正在学C++,那我还是建议你好好学,必须C语言语法更接近低层编译器原理,学会了它,对理解低层分配、释放、编译机制都是很有用的,但就以工作为导向而言,如果你不从事C++相关工作,是没必要学的。 3、培训出来人人工资过万? 有个男生非常沮丧的找我,自己是专科毕业,培训完,小公司不想进,大点的公司进不去,给的工资也不高,问我怎么办? 上面我们已经讲到,对于不同程度的同学,在培训出来的结果是不一样的,你要分清,你培训完的情况是属于这种: 还是这种? 对于没有名校光环的同学,建议以先就业为主。 别看培训班招你的时候给你洗脑,培训完人人过万,但能不能过万,最终靠的是自己,而不是培训班。 认请自己的情况,可以先就业,再优化自己履历,而进步步高升。 4、建议不要暴露自己的培训经历 你百度、知乎搜一下,遍地的培训歧视,很多公司根本不要培训出来的同学. 业界对培训有偏见,因为写代码是一个逐渐学习、熟练的过程,经过几个月集中的培训,虽然看起来什么都接触到了,但真正能内化为自己知识的部分其实不多。在工作中并不能熟练运用,仅是入门水平而已。 而且大家普遍认为参加培训的主要原因是因为,大学中没好好学,临近毕业了,催熟一把。不然,谁会花这几万块钱呢?对普通家庭而言,其实也并不是个小数目了。 有一个外包公司的朋友,技术总监,招人时培训公司出来都不要,原因就是干活能力不行。当然这仅代表个例,但大家需要注意的是,业界并不认为培训是一件光彩的事,千万不要搞错了!!! 5、培训班防骗三十六计 现在太多的培训机构,一个个把自己吹的天花乱坠,我也建议过小伙伴去培训,但小孩子交完钱培训一个月就退费了,深感自己好心做了坏事,这里建议大家培训市场,鱼龙混杂,一定要提前做好防骗准备。 谎言之所以真实是因为年青的心太不甘寂寞,太急于求成! 从网上找了,培训班防骗三十六计,供大家参考: “借刀杀人”:培训班间竞争激烈,彼此勾心斗角,正好为我所用。去培训班甲问乙如何,到培训班乙打听甲。Ha.Ha..,狗咬狗开始了,一时间内幕迭报:乙设备不全,很多实验不能做;甲的那个号称CCIE的老师只过了笔试,没过实验室,假的! “声东击西”:与甲约好星期六考察学校,结果星期X跑去(1=< X <= 5)。   “你怎么来了?”   “我星期六有事,所以提前来看看……” “抛砖引玉”:有时候,拿不定注意或者培训班在外地,实地考察有难度,何不到论坛发个帖子征求意见,要是能得到已经培训过的前辈的释疑,那你绝对是不虚此帖了! “假痴不癫”:有时候你可能偶然拥有一些内幕消息,不如试试他们的诚实度。   “听说你们的教师是CCIE!”   “那当然,技术首屈一指,……”   此时此刻,看着乙那得意样样的小样,不知是好笑,还是可气。不过记住:一个没有诚信的公司是什么都干的出来的! “反间计”:一个卑鄙的培训班后面一般都有一个卑鄙的流氓大亨,他不仅千方百计的从学员那里榨取钱财,对自己的手下也不会心慈手软,本着人们内部矛盾的原则发展一个或多个间谍。 “走为上计”:经过一番打探,知道他们都不是东西,还犹豫什么?宁缺毋滥,走人! 最后,如论怎么选,自终也只是入门阶段,为了找到一份工作。对于初入职场的你们,给一条最终建议:学校不行靠实力,实力不行靠态度。记得帮我点赞哦。 ———————————————— 版权声明:本文为CSDN博主「启舰」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/harvic880925/article/details/103413853

问问小秘 2020-01-07 10:55:15 0 浏览量 回答数 0

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

通过自动重连方式解决RDS闪断问题

nono20011908 2019-12-01 21:07:16 27529 浏览量 回答数 1

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

新地址 24题 Starters可以理解为启动器,它包含了一系列可以集成到应用里面的依赖包,你可以一站式集成 Spring 及其他技术,而不需要到处找示例代码和依赖包。如你想使用 Spring JPA 访问数据库,只要加入 spring-boot-starter-data-jpa 启动器依赖就能使用了。Starters包含了许多项目中需要用到的依赖,它们能快速持续的运行,都是一系列得到支持的管理传递性依赖。 23题 Spring Boot 的核心配置文件是application(.yml 或者 .properties) 和 bootstrap(.yml 或者 .properties) 配置文件。boostrap 由父 ApplicationContext 加载,比 applicaton 优先加载,boostrap 里面的属性不能被覆盖。application 配置文件主要用于 Spring Boot 项目的自动化配置。bootstrap 配置文件的应用场景:使用 Spring Cloud Config 配置中心时,这时需要在 bootstrap 配置文件中添加连接到配置中心的配置属性来加载外部配置中心的配置信息;一些固定的不能被覆盖的属性;一些加密/解密的场景。 22题 优点:快速构建项目;对主流开发框架的无配置集成;starters自动依赖与版本控制;大量的自动配置,简化开发,也可修改默认值;无需配置XML,无代码生成,开箱即用;项目可独立运行,无须外部依赖Servlet容器;提供运行时的应用监控;与云计算的天然集成。缺点:集成度较高,使用过程中不太容易了解底层。 21题 Spring Boot的初衷就是为了简化spring的配置,使得开发中集成新功能时更快,简化或减少相关的配置文件。Spring Boot其实是一个整合很多可插拔的组件(框架),内嵌了使用工具(比如内嵌了Tomcat、Jetty等),方便开发人员快速搭建和开发的一个框架。 20题 当程序创建对象、数组等引用类型实体时,系统会在堆内存中为之分配一块内存区,对象就保存在内存区中,不需要显式的去释放一个对象的内存,而是由虚拟机自行执行。在JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,标记那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。 19题 HashMap线程不安全,HashTable线程安全。HashMap允许有一个key为null,多个value为null;而HashTable不允许key和vale为null。继承类不一样,HashMap继承的是AbstractMap,HashTable继承的是Dictionary。初始容量不一样。使用的hashcode不一样。内部遍历方式的实现不一样。 18题 作用:内容可见性和禁止指令重排。内存可见性:某线程对 volatile 变量的修改,对其他线程都是可见的,即获取 volatile 变量的值都是最新的;禁止指令重排:重排序在单线程下一定能保证结果的正确性,但是在多线程环境下,可能发生重排序影响结果,若用volatile修饰共享变量,在编译时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。使用:当一个线程需要立刻读取到另外一个线程修改的变量值的时候,我们就可以使用volatile。区别:volatile是变量修饰符,而synchronized则作用于一段代码或者方法;volatile只是在线程内存和main memory(主内存)间同步某个变量的值,而synchronized通过锁定和解锁某个监视器同步所有变量的值。显然synchronized要比volatile消耗更多资源;synchronized 关键字可以保证变量原子性和可见性,volatile 不能保证原子性。 17题 非公平主要表现在获取锁的行为上,并非是按照申请锁的时间前后给等待线程分配锁的 ,每当锁被释放后 ,任何一个线程都有机会竞争到锁,这样做的目的是为了提高执行性能 ,缺点是可能会产生线程饥饿现象 。 16题 如果线程遇到了 IO 阻塞,无能为力,因为IO是操作系统实现的,Java代码并没有办法直接接触到操作系统。如果线程因为调用 wait()、sleep()、或者 join()方法而导致的阻塞,可以中断线程,并且通过抛出 InterruptedException 来唤醒它。 15题 原子操作就是无法被别的线程打断的操作。要么不执行,要么就执行成功。在Java中可以通过锁和循环CAS的方式来实现原子操作。从JDK 1.5开始提供了java.util.concurrent.atomic包,这个包中的原子操作类提供了一种用法简单、性能高效、线程安全地更新一个变量的方式。 14题 wait()是Object类的方法,所以每一个对象能使用wait()方法。sleep()是Thread类中的静态方法。sleep不会释放锁,但会让出cpu,sleep会在指定的休眠时间后自动唤醒。wait则会释放锁,让出系统资源,并且加入wait set中,wait不会自动唤醒,而需要notify()或者notifyAll()唤醒。sleep和wait都可以被中断,使用sleep需要捕获异常。wait与notify、notifyAll只能在同步代码块中使用,而sleep可以在任何地方使用。 13题 Synchronized 是由 JVM 实现的一种实现互斥同步的一种方式,查看编译后的字节码,会发现被 Synchronized 修饰过的程序块,在编译前后被编译器生成了monitorenter 和 monitorexit 两个字节码指令。在虚拟机执行到 monitorenter 指令时,首先要尝试获取对象的锁:如果这个对象没有锁定,或者当前线程已经拥有了这个对象的锁,把锁的计数器+1;当执行 monitorexit 指令时将锁计数器-1;当计数器为0时,锁就被释放了。如果获取对象失败了,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。Java 中 Synchronize 通过在对象头设置标记,达到了获取锁和释放锁的目的。 12题 Mybatis 通过动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这 4 种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler 的 invoke()方法,只会拦截那些你指定需要拦截的方法。 实现方法:1.编写Intercepror接口的实现类;2.设置插件的签名,告诉mybatis拦截哪个对象的哪个方法;3.最后将插件注册到全局配置文件中。 11题 Mybatis可以映射枚举类,不单可以映射枚举类,Mybatis可以映射任何对象到表的一列上。映射方式为自定义一个TypeHandler,实现TypeHandler的setParameter()和getResult()接口方法。TypeHandler 有两个作用,一是完成从 javaType至jdbcType 的转换,二是完成jdbcType至javaType的转换,体现为 setParameter()和getResult()两个方法,分别代表设置sql问号占位符参数和获取列查询结果。 10题 Mybatis使用RowBounds对象进行分页,也可以直接编写sql实现分页,也可以使用Mybatis的分页插件。分页插件的原理:使用Mybatis提供的插件接口,实现自定义插件,在插件的拦截方法内拦截待执行的sql,然后重写sql,根据dialect方言,添加对应的物理分页语句和物理分页参数。举例:select * from student,拦截 sql 后重写为:select t.* from(select * from student)t limit 0,10。 9题 resultType和resultMap都是表示数据库表与pojo之间的映射规则的。类的名字和数据库相同时,可以直接设置resultType 参数为Pojo类。若不同或者有关联查询,需要设置resultMap将结果名字和Pojo名字进行转换。在项目中我们定义的resultMap多了property和column属性,实际也就是分别配置Pojo类的属性和对应的表字段之间的映射关系,多了这个映射关系以后,方便维护。 8题 之所以说Mybatis半自动化,是因为SQL语句需要用户自定义,SQL的解析、执行等工作由Mybatis执行。区别:Hibernate属于全自动 ORM 映射工具,使用Hibernate查询关联对象或者关联集合对象时,可以根据对象关系模型直接获取,所以它是全自动的。而 Mybatis 在查询关联对象或关联集合对象时,需要手动编写 sql 来完成,所以它是半自动ORM映射工具。 7题 MyBatis 的缓存分为一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,默认就有,在操作数据库时需要构造 sqlSession对象,在对象中有一个(内存区域)数据结构(HashMap)用于存储缓存数据,不同的sqlSession之间的缓存数据区域(HashMap)是互相不影响的。二级缓存是mapper级别的缓存,默认是不打开的,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession去操作数据库得到数据会存在二级缓存区域,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession的。 6题 RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。用于方法上是为了细化映射,即根据特定的HTTP请求方法(GET、POST 方法等)、HTTP请求中是否携带特定参数等条件,将请求映射到匹配的方法上。 5题 1、前置通知(before advice):在目标方法调用之前执行; 2、后置通知(after returning advice):在目标方法调用之后执行,一旦目标方法产生异常不会执行; 3、最终通知(after(finally) advice):在目标调用方法之后执行,无论目标方法是否产生异常,都会执行; 4、异常通知(after throwing advice):在目标方法产生异常时执行; 5、环绕通知(around advice):在目标方法执行之前和执行之后都会执行,可以写一些非核心的业务逻辑,一般用来替代前置通知和后置通知。 4题 1、通过构造器或工厂方法创建Bean实例;2、为Bean的属性设置值和对其他Bean的引用;3、将Bean实例传递给Bean后置处理器的postProcessBeforeInitialization方法;4、调用Bean的初始方法(init-method);5、将bean实例传递给bean后置处理器的postProcessAfterInitialization方法;6、bean可以使用了;7、当容器关闭时,调用Bean的销毁方法(destroy-method) 3题 在TransactionDefinition接口中定义了五个表示隔离级别的常量: ISOLATION_DEFAULT:使用后端数据库默认的隔离级别,Mysql默认采用的REPEATABLE_READ隔离级别;Oracle默认采用的READ_COMMITTED隔离级别。 ISOLATION_READ_UNCOMMITTED:最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。 ISOLATION_READ_COMMITTED:允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生 ISOLATION_REPEATABLE_READ:对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。 ISOLATION_SERIALIZABLE:最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。 2 题 自动装配提供五种不同的模式供Spring容器用来自动装配beans之间的依赖注入: 1.默认的方式是不进行自动装配,通过手工设置ref 属性来进行装配bean。 2.byName:通过参数名自动装配,之后容器试图匹配、装配和该bean的属性具有相同名字的bean。 3.byType:按照参数的数据类型进行自动装配,之后容器试图匹配和装配和该bean的属性类型一样的bean。如果存在多个相同类型的bean对象,会出错。 4.constructor:使用构造方法完成对象注入,其实也是根据构造方法的参数类型进行对象查找,相当于采用byType的方式。 5.autodetect:如果找到默认的构造函数,则通过 constructor的方式自动装配,否则使用 byType的方式自动装配。在Spring3.0以后的版本此模式已被废弃,已经不再合法了。 1 题 循环依赖只会存在在单例实例中,多例循环依赖直接报错。Spring先用构造器实例化Bean对象,然后将实例化结束的对象放到一个Map中,并且Spring提供获取这个未设置属性的实例化对象的引用方法。当Spring实例化了A类、B类后,紧接着会去设置对象的属性,此时发现A类依赖B类,就会去Map中取出已经存在的单例B类对象,以此类推。因为所持有的都是引用,所以A类一改变B类也会跟着改变。从而解决循环依赖问题。

游客ih62co2qqq5ww 2020-03-03 18:05:36 0 浏览量 回答数 0

问题

【教程免费下载】Unity虚拟现实开发实战

玄学酱 2019-12-01 22:07:47 1731 浏览量 回答数 1

问题

MongoDB与内存 先讲讲Linux是如何管理内存的 再说说MongoDB是如何使用内存的:报错

kun坤 2020-06-14 08:19:04 0 浏览量 回答数 0

问题

一个老码农的技术理想

技术小菜鸟 2019-12-01 21:17:10 3067 浏览量 回答数 1

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来。想抓取什么?这个由你来控制它咯。 比如它在抓取一个网页,在这个网中他发现了一条道路,其实就是指向网页的超链接,那么它就可以爬到另一张网上来获取数据。这样,整个连在一起的大网对这之蜘蛛来说触手可及,分分钟爬下来不是事儿。 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.baidu.com/ ,我们会看到几张的图片以及百度搜索框,这个过程其实就是用户输入网址之后,经过DNS服务器,找到服务器主机,向服务器发出一个请求,服务器经过解析之后,发送给用户的浏览器 HTML、JS、CSS 等文件,浏览器解析出来,用户便可以看到形形色色的图片了。 因此,用户看到的网页实质是由 HTML 代码构成的,爬虫爬来的便是这些内容,通过分析和过滤这些 HTML 代码,实现对图片、文字等资源的获取。 3.URL的含义 URL,即统一资源定位符,也就是我们说的网址,统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。 URL的格式由三部分组成:①第一部分是协议(或称为服务方式)。②第二部分是存有该资源的主机IP地址(有时也包括端口号)。③第三部分是主机资源的具体地址,如目录和文件名等。爬虫爬取数据时必须要有一个目标的URL才可以获取数据,因此,它是爬虫获取数据的基本依据,准确理解它的含义对爬虫学习有很大帮助。 环境的配置 学习Python,当然少不了环境的配置,最初我用的是Notepad++,不过发现它的提示功能实在是太弱了,于是,在Windows下我用了 PyCharm,在Linux下我用了Eclipse for Python,另外还有几款比较优秀的IDE,大家可以参考这篇文章 学习Python推荐的IDE 。好的开发工具是前进的推进器,希望大家可以找到适合自己的IDE 作者:谢科链接:https://www.zhihu.com/question/20899988/answer/24923424来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 “入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。先长话短说summarize一下:你需要学习基本的爬虫工作原理基本的http抓取工具,scrapyBloom Filter: Bloom Filters by Example如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说:说说当初写的一个集群爬下整个豆瓣的经验吧。1)首先你要明白爬虫怎样工作。想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。那么在python里怎么实现呢?很简单import Queue initial_page = "http://www.renminribao.com" url_queue = Queue.Queue()seen = set() seen.insert(initial_page)url_queue.put(initial_page) while(True): #一直进行直到海枯石烂 if url_queue.size()>0: current_url = url_queue.get() #拿出队例中第一个的url store(current_url) #把这个url代表的网页存储好 for next_url in extract_urls(current_url): #提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break 写得已经很伪代码了。所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。2)效率如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。3)集群化抓取爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。代码于是写成#slave.py current_url = request_from_master()to_send = []for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url);send_to_master(to_send) master.py distributed_queue = DistributedQueue()bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url) 好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。但是如果附加上你需要这些后续处理,比如有效地存储(数据库应该怎样安排)有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...及时更新(预测这个网页多久会更新一次)

xuning715 2019-12-02 01:10:40 0 浏览量 回答数 0

问题

该来的终于来了:“第一起”基于 IPv6 的 DDoS 攻击

驻云科技 2019-12-01 21:44:35 4186 浏览量 回答数 1

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 42 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站