• 关于

    数据流计算怎么看配置

    的搜索结果

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

2018python技术问答集锦,希望能给喜欢python的同学一些帮助

技术小能手 2019-12-01 19:31:10 2040 浏览量 回答数 2

问题

Vue面试题汇总【精品问答】

问问小秘 2020-05-25 18:02:28 20475 浏览量 回答数 4

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】

行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

基础语言百问-Python

薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

HTML + CSS 前端的入门门槛极低,体现在HTML和CSS上。运行环境就是浏览器,推荐Chrome。你需要的只是一个文本编辑器,推荐Sublime Text 3,有不少好插件比如Emmet,谷歌搜一下很容易了解到的。当然你非要用记事本的话,也不是不行的。刚入门查阅资料可以用 w3school 或者 MDN 。 HTML和CSS不是编程语言,前者只是结构标签,后者则是样式配置,入门是非常简单的。网上资料也有很多,推荐慕课网 HTML+CSS基础课程。 我当时是看了一本书 Head First HTML and CSS,讲得浅显易懂,不过价格比较感人,也是只翻一遍的书,没有必要买了。 迅速刷一遍慕课网,对HTML和CSS有个大致印象就好。想巩固HTML标签可以去看看16年的task1-1。 HTML5的API可以先放一放,回头再看。 接下来就是深入学习CSS了。推荐: 《CSS权威指南(第3版)》。很枯燥的一本书,但我确实不知道哪本书更适合了。花两三天硬啃下来就好了。属性细节不必记忆,以后用到肯定要再查的。着重点放在大局上,比如盒模型,浮动和定位这些,抓住重点快速过一遍。 《CSS3 专业网页开发指南》。CSS3也是需要掌握的内容。但这里还是以了解为主,知道CSS3有什么内容就好,记忆属性是枯燥且毫无意义的。 以上内容用时5天左右,下面是实践。 学了几天HTML和CSS了,应该也有点成果了。打开IFE2015 task1,写个静态页面吧。 我X,完全写不出来。 这是正常的。去看下别人的代码吧,看一小部分就开窍了。忘掉的属性就查书或者w3c,多尝试,不断踩坑才有进步。 画完第一张图后,别着急往下写。你的代码肯定会有如下问题 胡乱的代码缩进毫无章法的属性顺序 满页的div 不停地写id和class重写吧,是的。重写之前先看一份代码规范 GitHub - ecomfe/spec: This repository contains the specifications.。当然代码规范不是唯一的,我最早看的是这一份,所以代码风格也一直维持到现在。 再去看一下别人提交的代码,多看几份。当然自己也要判断,不能听风就是雨啊,人家写得不好你再去重写一次,等于你也有责任对不对。 开始重写了,会发现功力大增,写代码速度也快了很多的。 写到第三张页面的时候,应该比较熟练了。如果看到布局就大概知道应该怎么写了,那就可以进入JavaScript的学习了。 以上内容用时10天左右。 进阶部分可以回头再看: 掌握预处理工具Sass,自动化工具Gulp。 阅读Bootstrap源码。 《CSS揭秘》,极其惊艳的一本书,涵盖了CSS3的很多奇技淫巧,虽说有些地方不太实用,但让人眼前一亮,很值得看。JavaScript 这是至关重要的阶段。 强烈推荐《JavaScript高级程序设计(第3版)》,俗称红宝书。前七章是重中之重,必须反复阅读,直至完全理解,期间可配合其他书一起读。DOM,事件流,表单,JSON,Ajax与最后几章也相当重要。其余章节可以略读或跳过(比如浏览器嗅探,XML以及那些列举大量API的章节,完全可以用到再查) 推荐《JavaScript语言精粹》,俗称蝴蝶书。超薄的一本,半天就可以看完。JavaScript是一门有很多坑的语言,我个人是喜欢把这些坑点全部搞清楚的,但这本书却避而不谈了,剩下的也就是所谓的“精粹”了。但清晰地过一遍知识点总是好的。 强烈推荐《你不知道的JS》。精彩至极的一本书,将JavaScript的坑一网打尽。之前搞不懂的问题,比如闭包,this之类的都可以在这里找到答案。 ES6也是必学的内容,推荐阮一峰老师的《ES6 标准入门》。但这本书以API居多,所以还是留个大概印象,以后写到类似的地方,查一查有没有ES6更简洁的写法就好,不必死记硬背。以及需要学会Webpack的使用,Babel和模块化就靠Webpack了。 不太推荐《JavaScript权威指南》,也就是犀牛书。那就是一本字典…… 进阶: 《JavaScript设计模式与开发实践》,设计模式是必须了解的内容,这本是写得不错的。 《高性能JavaScript》,红宝书作者的另一力作,讲了一些优化技巧与性能瓶颈问题,值得一读。 以上内容用时1个月左右,中途可穿插IFE2015 task2的题,比2016年的要简单。 这些书全部刷完的话,应该可以跟人谈笑风生了。 开始实践,IFE2016阶段二的题,想怎么刷就怎么刷吧。如果有编程经验的话,应该没什么压力了。JavaScript框架 这部分就比较自由了,每个人点的技能树都不一样的。前端的发展是爆炸式的,换工具比翻书还快,所以还是以看文档为主了。 目前主流框架经常被提及的是React,Angular,Vue。知乎搜一搜就有相当多的优秀答案了。不过这个答案也有时效性,说不定过两年这些框架全都被淘汰了呢【逃 学习至少一种框架,把IFE2016刷通关吧。耗时1个半月左右。 进阶:看各种源代码。这也是我最近打算做的事情,但是好像期末考要到了TAT 最后补充一下,计算机基础知识是很重要的。由于本人有OI的经验所以稍微占点优势。再推荐几本书,抽空还是要看看的: 《深入理解计算机系统》,CSAPP,也是我们专业这学期的课程(但是我的专业明明是EE啊)。 《计算机网络 自顶向下方法》,看名字就知道必读了吧。 操作系统好书挺多的,推荐一本 Operating Systems: Three Easy Pieces ,英文不够好就《现代操作系统》吧。 算法和数据结构,推荐两本:《算法导论》《数据结构与算法分析》。似乎算法和数据结构与前端关系不大,但作为一个码农,不要求你写红黑树,至少快速排序和二分查找这种要会写的吧。

1359302247831492 2019-12-02 00:16:32 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙

剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

回答

iperf,具体要纤细直接去看文档, 简单给你列条测试:(TCP和UDP知只是两种传输数据的协议) 1)TCP测试    服务器执行:./iperf -s -i 1 -w 1M '这裏是指定windows如果是 iperf -s则windwos默认大小为8kbyte/s    客户端执行:./iperf -c host -i 1 -w 1M   其中-w表示TCP window size,host需替换成服务器地址。    2)UDP测试    服务器执行:./iperf -u -s    客户端执行:./iperf -u -c 10.255.255.251 -b 900M -i 1 -w 1M -t 60   其中-b表示使用多少带宽,1G的线路你可以使用900M进行测试。 不给分不给力 连接速度是个很怪的概念。我们通常用连接带宽和网络延迟来表达网络连接的状态。 带宽可以用一端建立FTP服务器,另一端下载来测试。网络延时可以用PING命令来测试。 希望能帮到你。 行的。 家庭或小型办公室,如果有两台或更多的计算机,很自然地希望将他们组成一个网络。为方便叙述,以下约定将其称为局域网。在家庭环境下,可用这个网络来共享资源、玩那些需要多人参与的游戏、共用一个调制解调器享用Internet连接等等。办公室中,利用这样的网络,主要解决共享外设如打印机等,此外,办公室局域网也是多人协作工作的基础设施。 别看这样小的网络工程,在过去也是需要专业人员来进行组网配置的。那时,大部分操作的都是手工的,一般的用户都不具备相应的知识和经验。正好属于"高不成低不就"的情况,自然限制了它的发展。Windows XP的出现,打破了这种局面,这依赖它内建有强大的网络支持功能和方便的向导。用户完成物理连接后,运行连接向导,可以自己探测出网络硬件、安装相应的驱动程序或协议,并指导用户,完成所有的配置步骤。 本文介绍两种在Windows XP操作系统下的组网方案,并介绍Windows XP用于局域网中的各种很有特色的功能。 一. 目标: 组成家庭局域网:对外,可以连接Internet,允许局域网内的各个计算机共享连接。对内,可以共享网络资源和设备。 二. 采用什么网络形式? 家庭网中的计算机可能有桌面机或便携机,例如掌上电脑或笔记本机等,也可能出现各种传输介质的接口,所以网络形式上,不宜都采用有线网络,无线接口是必须考虑的。但如果可以明确定位在纯粹的有线网上,也可不设无线接口。所以,这里提供两种方案: 1. 有线与无线混合。 2. 有线。 三. 网络硬件选择 网络适配器(网卡)可采用PCI、PC或PCMCIA接口的卡(后两者多用在便携式机或笔记本机上),Windows XP也支持用USB接口的网络适配器。究竟采用那种适配器,取决于接入网络中的计算机。无论那种适配器,都需要注意与现有计算机的接口以及HUB的协调一致,USB接口的适配器可能适应性更强一些,但对于较旧的计算机,又需要注意它是否支持USB接口。 网络连接线,常用的有同轴电缆和双绞线,这都是大家熟悉的东西,不多解释。究竟采用哪一种,就看你怎么想了。 四. 可采用的网络结构和介质 以太结构:这种结构在办公室或商业用户中最为流行,熟悉的人也很多,技术资料和维护人员也容易找到,所以不多赘述。 电话线连接:这种形式主要的特色是成本很低,物理连接也很简单,适用于大部分的家庭用户。 无线电波:利用电磁波信号来传输信号,可以不用任何连线来进行通讯,并可以在移动中使用。但需要在每台计算机上加装无线适配器,成本高是肯定了。在我国,无线形式用在计算机网络通讯的还较少。在美国,用于无线网络的是一个称为IEEE 802.11b的标准协议,用于计算机近距离网络通讯。在该协议支持下,可达到的网速是11 Mbps。 五. 方案之一 这是一个有线、无线混合方案,具体结构可以参看图1。这个例子中,用4台计算机组成了一个混合网络,PC1是主机,它与外部连接有3个通路: 1. 与Internet接连的调制解调器:用于整个网络的各个计算机共享上网之用。 2. 无线适配器:用于和本网络内的无线设备之间的通讯。 3. HUB:用于"带动"本网络内的下游计算机。 该方案中的PC1、PC2机,必须用Windows XP操作系统,有线部分采用的是以太网结构连接。图中的HPNA是home phoneline network adaptor的缩写,表示家庭电话线网络适配器。图中的PC3和移动计算机,并不要求非使用Windows XP操作系统不可,别的windows版本也行。移动计算机和主机之间的网络连接利用的是无线形式。 如果希望建立混合网络,这种方案已经具备典型的功能,并且不需要花费很大就可以扩充网络规模。 关于连通操作: 图1显示的结构只能表示物理连接关系,物理连接完成后,还需要进行连通操作,网络才可真正投入使用。连通操作包括局域网内部各个计算机之间的连通,和局域网与Internet之间的连通。前者连通建立的步骤如下: 1. 鼠标点击 开始,进入控制面板,点击"Network and Internet Connections网络和Internet连接",选择网络连接( Network Connections),进行下一步。 2. 选择进行"两个或多个LAN的连接" 3. 右键点击一个连接. 4. 确定完成连接任务. 局域网之内的连通操作就完成了。 再说局域网与Internet之间的连通,这种情况主要考虑速度与成本两方面的兼顾。多机上网,最省事的办法是每个机器占据一条独立的电话线,但这不是一般用户能承受起的,资源的浪费也太大。另一个办法,可以使用住宅网关,但这样成本需要增加,不是最佳途径。比较好的方法是使用一个计算机作为主机服务器。这不仅技术上可行,还有很多别的优点,如: ①:由于Windows XP有内建的防火墙,主机介于Internet和终端机之间,可以利用主机的防火墙保护局域网中的分机免受来自Internet的攻击。 ②:主机是"隐匿在" Internet和局域网之间的,充当了网关的脚色,在分机上,用户感觉好像自己是直接连在Interne上一样,察觉不到中间还有主机存在。特别是可以使局域网中的每台计算机同时上网。大大减少了设备投资。 ③:除主机必须使用Windows XP操作系统之外,局域网内的计算机可使用早期的windows版本。 ④:如果局域网中需要使用不同的媒体(例如有线和无线混合),可以利用Windows XP作为过渡的网桥。 ⑤:虽然有网络资源和设备的共享功能,但也可以限制别人对私有文件和数据的访问,特别是将文件存放在主机上的时候,更具有这种优势可用。 ⑥:利用"万能即插即用"功能,可以随时扩充局域网的规模。 六. 方案之二 下面是这种方案的结构示意图。该方案适用于小型办公室。与上一个方案比较,主要是去掉了无线部分,主机与分机之间不采用电话线连接,而是采用了电缆或双绞线连接。所有分机都通过一个HUB与主机连接到Internet上,并可以支持打印机共享。这其实就是最常见的那种局域网的结构。 该方案完成物理连接之后,还需要进行下列操作: 1. 打开网络连接文件夹或找到网络连接的图标. 2. 右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3. 选择"Advanced(高级)"任务条。 4. 选择"Allow other networkusers to connect through this computer′s Internet connection(允许另外用户通过这个计算机连接到Internet)"检查框,并选定。 5. 点击 OK.结束操作。 启用Windows XP的防火墙,必须进行设置,不设置是不起作用的。设置过程: 1.打开网络连接文件夹或找到网络连接的图标. 2.右键点击"connection to the Internet you want to share(共享Internet连接)"然后再右键点击"Properties(属性)" 3.选择"Advanced(高级)"任务条。 4. 选择"Protect my computer and network by limitingor preventing access to this computer from the Internet(利用这个计算机限制从Internet进入的访问并保护我的计算机和网络" ,在其下面有一个Internet连接防火墙的检查框,鼠标点击选定。 5. 点击 OK.结束操作。 七. 几点说明 A.主机必须采用Windows XP操作系统,局域网内的计算机可以使用早一些的windows版本,如:windows98、windows ME、windows2000等等。 B.这里提供的是典型的情况,想扩充网络规模基本上可以照此叠加。 C.本文是依据英文测试版本进行的试验,不能保证将来的正式版本。特别是中文正式版本的性能与此完全一致。 参考资料: 创建局域网及配置管理 一.概念: (一).局域网的概念: 局域网做为网络的组成部分,发挥了不可忽视的作用。我们可以用Windows 9X把众多的计算机联系在一起,组成一个局域网,在这个局域网中,我们可以在它们之间共享程序、文档等各种资源,而不必再来回传递软盘;还可以通过网络使多台计算机共享同一硬件,如打印机、调制解调器等;同时我们也可以通过网络使用计算机发送和接收传真,方便快捷而且经济。 局域网是一个范围可大可小、简单的只有2台运行着Windows95的计算机连网(以工作组方式工作),也可以是幅员辽阔的高速ATM网和以太网混合使用、运行多种平台的大型企业。 (二).网络的类型: 1、按网络的地理位置分类 a.局域网(LAN):一般限定在较小的区域内,小于10km的范围,通常采用有线的方式连接起来 b.城域网(MAN):规模局限在一座城市的范围内,10~100km的区域。 c.广域网(WAN):网络跨越国界、洲界,甚至全球范围。 目前局域网和广域网是网络的热点。局域网是组成其他两种类型网络的基础,城域网一般都加入了广域网。广域网的典型代表是Internet网。 (二).硬件指南:网络硬件设备 组成小型局域网的主要硬件设备有网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等网络互连设备。以下主要介绍网卡、集线器等网络传输介质和中继器、网桥、路由器、网关等局域网互连设备。 1.网卡 网卡(Network Interface Card,NIC)也叫网络适配器,是连接计算机与网络的硬件设备。网卡插在计算机或服务器扩展槽中,通过网络线(如双绞线、同轴电缆或光纤)与网络交换数据、共享资源。 Realtek 10/100M,这是我们实例中所使用的网卡 二.组网: 返回顶部 (一).硬件配置:服务器:普通PC机,主板:intel 815,硬盘:迈拓40G,CPU:PIII933,内存:512M ,显示器:ACER。 其他:双绞线一箱(300m),16口HUB一个,RJ45头32个,网卡:Realtek 10/100M 16块。。 由于服务器需要安装两块网卡来用SyGate维护管理,两个网卡的设置请参阅如下的动画。 三.网络维护: 返回顶部 SyGate 4.0是一种支持多用户访问因特网的软件,并且是只通过一台计算机,共享因特网帐号,达到上网的目的。使用SyGate 4.0,若干个用户能同时通过一个小型网络(包括您的笔记本电脑),迅速、快捷、经济地访问因特网。SyGate 4.0能在目前诸多流行的操作系统上运行,譬如:Windows95、Windows98、Windows NT, Windows2000等操作系统;同时,SyGate 4.0还支持多数的因特网连接方式,这包括:调制解调器(模拟线路)拨入、ISDN(综合业务数字网)、线缆调制解调器(Cable Modem)、ADSL以及DirectPC等方式。 SyGate 4.0具有以下优势: 易于安装 SyGate在数分钟之内便可以安装完成,并且通常不需要其他外加的设置。和其他代理服务器软件(proxy server)不同的是,SyGate仅安装Server便可以了。 易于使用 SyGate拥有直观的图形化界面,懂得操作Windows的人员均会操作。SyGate启动后便在后台运行,不需要人工的干预。当SyGate检测到局域网内有上网 要求时,它能自动地连接到因特网上,免去了每次需要手工拨号的烦恼。用户可以不间断地、透明地浏览因特网、收发电子邮件、聊天、使用FTP以及操作其他的小程序等等。局域网内非Windows用户,如Macintosh、Solaris和Linux,均能通过TCP/IP协议上网。 四.Windows 对等网创建与维护 返回顶部 (一).建网软件要求 在一个局域网中,Windows 95、98、NT和2000等操作系统可以并存。当然,即使你的电脑是在DOS下面跑的,也可以实现联网。由于Windows操作系统才是广泛应用的系统,本文不准备讨论DOS联网。 建网硬件要求 要组建电脑网络,无疑需要能将电脑连在一起的硬件设备。最简单的办法是,使用特制的电缆,将两台电脑的并口或者串口联接起来,通过Windows的“直接电缆连接”实现联网。这种联接电缆可以自制,也可以到电脑城购买。其缺点是,只能联接两台电脑,联网距离较短、方式古板,实际应用很不方便,通常要求将一台电脑用作服务器,另外一台用作客户端来实现联网。 但更为普遍采用的是网卡加网线的联网方式。从插槽上分,网卡有ISA和PCI两种;从速度上分,网卡又有10MB和100MB甚至传输速度更高的网卡。要求不高的话,一块PCI 10MB网卡就够用了。 五.疑难解答 返回顶部 (一).网卡安装故障检查方法 如果无法安装网卡驱动程序或安装网卡后无法登录网络,请按下述步骤检查处理: 1.选择“控制面板”/“系统”图标,打开“系统属性”窗口; 2.在“系统属性”窗口的“设备管理”标签的“按类型查看设备列表”中,双击“网络适配器”条目前的“ ”号将其展开,其下应当列出当前网卡; 3.如果“设备管理”标签中没有“网络适配器”条目或当前网卡前有一“X”号,说明系统没能识别网卡,可能产生的原因有网卡驱动程序安装不当、网卡硬件安装不当、网卡硬件故障等等; 参考 LAN(局域网)一词指位于同一区域甚至同一建筑物内的中小型计算机网络,字典上的解释是:将计算机和字处理机等电子办公设备连接在一起构成的办公室或建筑物内的网络系统。相信大多数人都在学校里、当地图书馆或朋友家里。接触过局域网。 随着宽带互联网日益流行,许多人家里都有几台计算机,家庭局域网正在形成规范。通过局域网共享宽带互联网访问可降低成本,不需要每台计算机都连接调制解调器和单独的IP地址。但如何构建一个家庭局域网共享宽带互联网访问呢? 网络带宽表示 网络带宽以兆位秒Mbps测量,通常不用兆字节秒MBps表示。一个字节有八个二进制位组成,多数人都熟悉MBps。当前局域网多为10base-T(10Mbps或1.25MBps)和100base-TX(100Mbps或12.5MBps)的以太网,使用类似标准电话线的RJ-45接口,通过网络电缆把集线器(或路由器、交换器)和计算机连接起来就构成了以太网。 网络布线 开始组建家庭局域网之前,应多少了解一些可用网络电缆的区别。这取决你家中PC机需要安排的位置,因为可能需要在墙上打眼,以穿过五类网络电缆。对家里地方不宽敞的人,这可能是令人畏缩的任务,甚至不太可能。如果你想避免穿墙打眼的麻烦,无线局域网也很方便,但应注意,无线局域网通常速度不够快,花费也高的多。另一种选择可考虑10Mbps电话线套件,利用你现成的电话线在计算机之间传送数据,可购买D-Link,Linksys,3Com和Netgear等公司的产品。不想采用无线局域网的人,可选择五类双绞线网络电缆。如果对电缆不熟悉,下面列出了电子工业协会EIA关于电缆分类的解释。根据电缆的速度和质量,可将电缆分为六类: 一、二类电缆:数据传输速度低于10Mbps(普通电话线) 三类电缆:数据传输速度达16 Mbps 四类电缆:数据传输速度达20 Mbps 五类电缆:数据传输速度达100 Mbps 五类电缆增强:数据传输速度达200 Mbps 六类电缆:数据传输速度达600 Mbps 五类电缆十分普通,连接以太网费用也较低。如果你计划穿墙打眼或使用超过50英尺五类电缆,应购买细电缆,自己动手将RJ-45插头接在电缆两端。注意,别忘了电缆穿过墙之后再接RI-45插头。 连接RJ-45插头 五类电缆连接RJ-45插头并不困难,但需要专用连接工具,可从当地五金商店买一把或从朋友处借用。操作时小心剪掉约1/4英寸电缆外塑料皮,露出电缆里面8根彩色线,注意放入RJ-45连接器里面电缆线的次序: 1、白绿 2、绿 3、白橙 4、兰 5、白兰 6、橙 7、白橙 8、棕 应仔细展开8条彩色编码线,放入RJ-45插孔中,用专用工具压紧。有条件时可用RJ-45测试器验证一下是否连接可靠,以免将来麻烦。 需要的硬件 首先确保每台计算机里都安装了网卡,100base-TX或10base-T网卡,型号、尺寸任意。注意,一般选PCI网卡,各网卡速率应一致。100base-TX网卡数据传输率较高,适合于大量数据传输,如数字电影或其它大的多媒体文件。 组建局域网需要使用集线器,交换器或内置集线器的路由器,集线器只不过用于将你所有的计算机连到局域网上。如果你只有2台计算机并且不打算增加数量,可以用一段电缆直接将2台计算机连起来,缺点是你试图共享宽带互联网访问仍然有麻烦。如果你想多台计算机访问宽带互联网,使用路由器是个好主意,可以选购Netgaer,D-Link和Linksys等著名网络公司的产品。 典型的以太网使用集线器或交换器,两种设备都有单独的连接器,用于将每台计算机连接到局域网上。集线器与交换器的主要差别在于吞吐量,集线器在所有在用的端口间分配吞吐量,因此4端口100base-TX集线器每个在用的端口只有25Mbps吞吐量。交换器更贵些,但允许每个端口全速运行。 假如你准备设置一个只有单个宽带互联网连接的局域网,应确保你的DSL或有线电缆供应商给你提供的是外置调制解调器。多数外置调制解调器通过网卡连接到你的计算机,你可把具有调制解调器的那台计算机设置为路由器,虽然这并不推荐。作为一个例子,你将电话插头接入宽带调制解调器,然后经RJ-45(双绞线)电缆连至集线器/交换器/路由器,从此,你的任一台计算机都可连接到互联网上。 设置Windows网络 确保你准备在局域网上使用的每台计算机,都有足够的五类电缆已连到了集线器或路由器。现在你可能已安装了适当的网卡以及相应的驱动程序,右击“网络邻居”,选择“属性”,可以看到当前已经安装的协议和网卡。要设置网络,应确保所用的网卡已安装了TCP/IP协议。如果你使用的微软操作系统是Windows98或更高版本,网络设置相当简单,Windows网络作为操作系统的基本选项之一应该已经安装了。如果你至少在一台计算机上使用的是Windows Me,你可运行家庭网络向导,将一步步引导你完成设置。记住,你需要使用相同的组名设置你网络中的每台计算机。在Windows95/98中,需要进入网络属性,并确保所有设置为缺省。你的互联网服务供应商ISP可能已经告诉你,如何设置TCP/IP,怎样连接到互联网。你可能是静态IP地址,或是动态IP地址,取决于你的ISP。静态IP地址设置需要的时间稍长一点,如果你想给互联网用户提供服务,如FTP,Web服务器或任何其它服务,静态IP地址是不错的。如果你分配的是IP地址,你的TCP/IP协议属性获得的应是自动选择的IP地址。要检查你的计算机是否已被集线器/路由器分配了一个IP地址,可使用Windows TP配置(进入开始 传输大点的东西,用iostat 1 查看io 来源于网络,供您参考

保持可爱mmm 2019-12-02 02:20:25 0 浏览量 回答数 0

回答

1、拼多多被黑产薅羊毛事件 提名理由: 2019 年 1 月 20 日,微博爆料称拼多多出现重大 Bug:从网友晒出的图片看,此次 100 元无门槛券随便领,全场通用(特殊商品除外),有效期一年。有网友表示,凌晨 3 点多被同行“喊醒”,让来拼多多“薅羊毛”,“只需支付 4 毛钱,就可以充值 100 元话费”。 拼多多回应表示:有黑灰产团伙通过一个过期的优惠券漏洞盗取数千万元平台优惠券,进行不正当牟利。针对此行为,平台已第一时间修复漏洞,并正对涉事订单进行溯源追踪。同时我们已向公安机关报案,并将积极配合相关部门对涉事黑灰产团伙予以打击。 **翻车点评:**本次事件除了反映出拼多多在研发流程上的管控问题,也侧写出了中国企业的公关之难:在拼多多公关看来,此次被薅羊毛 200 亿的谣言是有心人在造谣抹黑;在旁观者看来,此次 200 亿谣言是拼多多的营销手段。一场罗生门背后,除了要敬畏每一行代码,还要敬畏每一位用户才是。 翻车等级:★★★☆☆ 2、苹果误发 7 倍工资给开发者,随后追回 提名理由: 2019 年 9 月 4 日,一位名为 @waylybaye 的 IOS 开发者在社交平台上爆料:“苹果搞了个大事故!!给国内开发者打上上个月的钱的时候,把单位是人民币的钱当成美元打过来了!所有开发者的收入都翻了 7 倍!现在这笔 7 倍的外汇已经到账可以申报了,但我不敢动……请问这种情况怎么搞?” 9 月 5 日,苹果官方发出邮件回应结算出错。在邮件中,苹果公司称,由于合作银行德意志银行方的问题,影响了开发者 2019 年 7 月的收入。希望开发者能够配合银行退回错误的金额,另外再汇一笔正确的金额。 该开发者表示将配合苹果公司退回款项,律师表示如果主张返还的行为给中国开发者带来很大的不便,甚至造成一些损失并有证据证明,那么中国开发者可以向苹果公司主张赔偿损失。 **翻车点评:**如果是越南开发者,收入岂不是翻了 2 万多倍?如果是津巴布韦开发者,岂不是要上天? **翻车等级:**★★★☆☆ 3、李世石击败围棋 AI:怀疑电脑质量有问题 提名理由: 李世石是当今世界唯一一位曾经打败 AI 围棋程序 AlphaGo 的人类棋手,他在 2019 年宣布了正式退役。这位棋手表示:在 AI 出现之后,他意识到即使通过疯狂的努力再次成为排名第一的棋手,他也无法真正一览众山小,因为有一个实体你无法击败它。 此次退役赛,李世石选择了对战 NHN Entertainment 开发的 AI 围棋程序 HanDol,这名 AI 棋手已经打败了韩国排名前五的棋手。2019 年 12 月 18 日,退役赛首战,李世石被让两子,做好了首战告负心理准备的李世石却意外取胜,原因在于 AI 程序在对弈中出现了一个低级失误,被李世石抓住机会一举奠定胜局。赢棋后的李世石并没有表现出过多的兴奋,他甚至怀疑是这台电脑的质量没有达到应有的水平。 **翻车点评:**AI、大数据、云计算的三位一体 ABC 战略,将给未来的世界带来怎样的颠覆?也许再过几年,你看到的金翻车奖就是 AI 评选的了。 翻车等级:★★★☆☆ 4、程序员用 Null 做车牌,命中车管所漏洞吃下所有无主罚单 提名理由: Joseph Tartaro 是一位美国软件安全领域的专家,2016 年年底,Tartaro 决定要注册一块有个性的车牌。作为一名软件安全方面的专家,他有着许多技术人独有的职业癖好:希望车牌号能够与工作联系在一起。“我可以给我老婆注册一块 VOID 车牌,这样我们的车道就变成了 NULL 和 VOID 了”。 当然,这里面是有其深层含义的。Tartaro 在最近的一次 Defcon 黑客大会上说,“null”在很多编程语言中是一个文本字符串,用来表示空值或未定义的值。在很多计算机中,null 就是 void。也就是说,他跟她老婆其实是二位一体的存在,公不离婆秤不离砣,颇有点程序员式的浪漫。但很快,这个车牌就让他浪不起来了,因为 Null 命中了车管所系统漏洞,他为此收到了所有的无名罚单,总额超过 1.2 万美元。他后来坦言,初衷其实只是为了使用 Null 车牌来逃避罚单,万万没想到无名罚单却成了自己的。 延展阅读:使用 Null 做自定义车牌,成功命中车管所系统漏洞,所有未填车牌的罚单都是我的了 **翻车点评:**我在看房的时候是坚决不看 404 号门牌的,这哥们却主动给自己报空指针,果然跟那些妖艳贱货有些不同。 **翻车等级:**★★★☆☆ 5、游戏公司主程锁死服务器事件 提名理由: 2019 年 1 月 21 日,一封《告游戏行业全体同仁书》将一家创业公司 C++ 主程燕某推向舆论高潮,这篇文章指责燕某在就职深圳螃蟹网络科技有限公司 3 个月期间,出于报复心理,于游戏上线测试当天无故失踪并锁死电脑和服务器,最终导致公司开发两年的项目失败,损失惨重,创始人尹某背上百万债务开始打工之路。 1 月 24 日,燕某发表长文针对深圳市螃蟹网络科技有限公司创始人尹某的《告游戏行业全体同仁书》中提及的各项指责以及网络传言一一反驳,并表示一切法庭上见,相信法律会还一个公道。 **翻车点评:**2019 年让吃瓜群众真正学到了新闻等等再看,本次事件是典型的反转案例,从《告游戏行业全体同仁书》发布后的”程序员是如何逼死一家公司“的舆论,到后来的风向大反转,深刻地揭示了:瓜,要慢慢吃。脸,要慢慢打。 **翻车等级:**★★★★☆ 6、李彦宏被泼水 提名理由: 2019 年 7 月 3 日,百度 AI 开发者大会于北京国家会议中心举行。百度创始人、董事长兼任 CEO 李彦宏首先发表演讲。而在他正在演示 AI 自主泊车“最后一公里”时,有持矿泉水瓶的男青年冲上台,将水浇在李彦宏头上。李彦宏的白衬衫几乎湿透,他愣了一下后说:“What‘s your problem?” 随后泼水者被工作人员控制,李彦宏在掌声鼓励中说道:“大家看到在 AI 前进的道路上还是会有各种各样想不到的事情会发生。但是我们前行的决心不会改变,我们坚信 AI 会改变每一个人的生活。” **翻车点评:**在技术发展的历史上,总会出现风口过热的情况,无论是 AI 还是区块链,都存在被吹过头的现象,我们愿意看到有清醒的人为这些过热的技术降降温,但却绝对不认可目前这种方式。 翻车等级:★★★★☆ 7、62 岁程序员骚操作,翻车获刑 **提名理由: ** 现年 62 岁的大卫·廷利 (David Tinley) 来自匹兹堡附近的哈里森市,廷利为西门子在 Monroeville 的办事处工作了将近 10 年的时间,他曾接过一个为西门子公司创建管理订单的电子表格需求,电子表格包含自定义脚本,可以根据存储在其他远程文档中的当前订单更新文件的内容,从而允许公司自动化库存和订单管理。 廷利十年前在给西门子写的电子表格中植入了逻辑炸弹,它会在特定日期之后导致电子表格崩溃,于是西门子就必须再次雇佣他进行修复,每次都需要重新支付修复费用,持续时间近 3 年。最近他被抓包了,面临最高十年监禁和 25 万美元(约合人民币 172 万)的指控。 **翻车点评:**西门子居然没有人 review 代码,廷利居然忘了自己挖的坑的发作时间,60 多岁还没退休,资本主义果然罪恶,emmm… 翻车等级:★★★★☆ 8、FBI 网站被黑,数千特工信息泄露 提名理由: 在传统的好莱坞大片里,FBI 通常都是神通广大,无所不能,个个有着汤姆斯克鲁斯的脸,施瓦辛格的体格,既有拳脚功夫了得的特工,也有技术实力超群的 Nerd。从来只有他们攻破某某国家防火墙的份,但现实告诉我们,这真的只是在拍戏。 2019 年 4 月,包括 TechCrunch 等多家媒体报导,一个黑客组织黑了美国联邦调查局 FBI 的附属网站,并泄露了数千名联邦特工和执法人员的个人信息。黑客攻击了与 FBI 培训学院 National Academy Association 相关的三个网站,利用其中存在的漏洞,下载了每个服务器上的内容。随后黑客将数据发布到他们自己的网站上,并提供下载。电子表格在删除重复数据后包含大约 4 000 条独特记录,包括 FBI 特工与其它执法人员的姓名、个人和政府电子邮件地址、职位、电话号码和邮政地址等信息。 **翻车点评:**有道是终日打雁,却被雁啄了眼睛。但对我们这一代看着 FBI Warning 长大的孩子来说,FBI 它算个球。 翻车等级:★★★★☆ 9、IT 圈的暴力裁员事件 提名理由: 2018 年的春天,堪称近年来最暖的春天。彼时人工智能领域风起云涌,AI 创业公司们纷纷高薪疯抢 AI 开发者,月薪动辄 10 万级别。人工智能的流行还未结束,一个名叫区块链的技术突然又火爆了起来,一时间,“凡人饮水处,皆言区块链”。那是程序员们最甜蜜的一段时间。 这一年的上半年,互联网公司们扎堆上市,蔚为壮观:哔哩哔哩、爱奇艺、美团、小米、拼多多、趣头条……上市后的互联网新兴巨头、独角兽公司为了攻城略地,开启了全面的整军备战:唯有技术、开发者,才是未来的决定因素,这是技术最好的时代。许多人都如此笃信。 一年后的 2019,一切变了:保安赶走身患绝症员工、统计时长裁员、251、1024 等事件频繁映入眼帘,从最开始的愤怒到最后来的无助,我们感同身受。当企业紧缩银根,高薪资的开发们就成了裁员者的 KPI 了。 **翻车点评:**2019 也许是过去十年最坏的一年,也可能是未来十年最好的一年。如果真到万不得已,我们只求一场好聚好散。PS:小编我买了一支录音笔。 **翻车等级:**★★★★★ 10、波音 737 Max 客机软件故障坠机事件 提名理由: 2019 年 3 月 10 日,埃塞俄比亚航空公司一架波音 737 MAX 8 客机在飞往肯尼亚途中坠毁。机上有 149 名乘客和 8 名机组成员,无人生还。据报道,此次失事的是一架全新的波音飞机,四个月前才交付给该航空公司。这是波音 737 MAX 8 半年内出现的第二起严重事故。(第一起为 2018 年 10 月 29 日印尼狮航的坠落事件,189 人罹难) 两次空难的影响因素都有该机型配置的自动控制下压机头的系统,其设计初衷是,如果机身上的传感器检测到高速失速的情况,即使在没有飞行员输入信号的情况下,该系统将强制将飞机的机头向下推。但在狮航空难事件中,该系统接收到了错误数据,导致飞机在正常情况下开始不断下压机头,飞行员在 11 分钟内连续手动拉升 20 余次终告失败,坠海罹难。 这次事故引发了技术圈的广泛讨论,这种由软件带来的自动化能力,究竟是好是坏? **点评:**两起空难总计 346 条人命面前,我们不愿也不敢戏谑。通过对波音公司的陆续调查发现,该公司为了节省成本,裁员了大量资深开发,代之以时薪 9 美元的印度外包,这家数字化转型的“代表企业”看起来光鲜亮丽,但也有阳光下的阴暗背面。 **等级:**★★★★★ 其他候选事件 韩企被爆用免费饮料换 GitHub 上的 star Twitter CEO 杰克·多西的推特账号被黑 特斯拉 App 突然瘫痪,大批车主没法上车 太空作案,NASA 女航天员在太空盗窃前任银行账户 中国人霸榜 GitHub Trending 引发国外开发者不满 你心目中,今年的翻车新闻之首是谁呢?

游客pklijor6gytpx 2020-01-02 10:26:08 0 浏览量 回答数 0

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板