• 关于

    存储即服务可以做什么

    的搜索结果

问题

让云计算真正省钱,解决云存储架构九个问题让云计算真正省钱

如何从存储架构层面,使企业的数据中心更适合云计算的环境?要解决这一问题,先要弄清楚什么是云计算,以及“云”对企业的存储有哪些需求。  据分析机构预测,到2012年...
hamtyb 2019-12-01 20:27:33 11001 浏览量 回答数 4

问题

什么是OTSClient

OTSClient 是表格存储服务的客户端,它为调用者提供了一系列的方法,可以用来操作表、读写单行数据、读写多行数据等。使用 Java SDK 发起表格存储的请求,您需要初始化一个 OTSClien...
云栖大讲堂 2019-12-01 21:01:52 2638 浏览量 回答数 0

回答

虚拟主机和云服务器的特点 * 共享云虚拟主机:虚拟主机即通过相关技术把一台服务器划分成多个一定大小的空间,每个空间都给予单独的 FTP 权限和 Web 访问权限,多个用户共同平均使用这台服务器的硬件资源。市场上的虚拟主机都是共享版虚机的模式。 * 独享云虚拟主机:与共享云虚拟主机相比,最大的不同是资源独享,享有整个服务器的软硬件资源,即每台轻云服务器的 CPU、内存、带宽、硬盘均为独享,且不限流量、独立 IP、预装了网站应用环境就和数据库环境,同时具备了虚机和服务器的优势,且提供可视化操作的控制面板环境,操作简单,即买即用。 * 云服务器 ECS :是一种弹性计算服务,支持各种应用软件灵活扩展,需要有专业技术人员来维护。 什么是阿里云解析 阿里云解析是阿里云为全网域名开放的域名智能解析服务,阿里云解析做为云计算服务的入口,将逐步与阿里云已有云产品进行融合打通,成为云产品大家庭中不可或缺的一份子,ECS、RDS、CDN、SLB等为用户提供高效可靠的计算、存储、网站加速和负载均衡服务,阿里云解析则提供强大稳定的解析调度入口,可以确保用户能有顺畅的访问体验,并为用户提供一站式的服务体验。 云解析是域名解析服务,服务器IP是云服务器的IP。服务器IP可以在首页右上角 控制台 -> 云计算基础服务 -> 云服务器 ECS -> 实例 中查看。云解析是在首页右上角 控制台 -> 域名与网站(万网) -> 云解析 DNS 中管理。
流离小猫 2019-12-01 23:48:01 0 浏览量 回答数 0

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

什么是日志库?

日志库(Logstore)是日志服务中日志数据的采集、存储和查询单元。每个日志库隶属于一个项目,且每个项目可以创建多个日志库。您可以根据实际需求为某一个项目生成多个日志库,其中常见的做...
轩墨 2019-12-01 21:50:32 1453 浏览量 回答数 0

问题

怎样实现数据存储的管理维护

    如何确保所有数据能够得到可靠备份,及时进行灾难恢复是存储管理软件的核心任务。此外数据存储的管理维护软件还存在以下一些基本功能,诸如改进系统和应用I/O性能及存储管理能力,提高数据和应用系统的...
elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

问题

OSS让你体验超大文件上传、下载,飞一般的感觉(新手必看)

阿里云开放存储(OSS) 让你体验超大文件上传、下载,飞一般的感觉~~!! OSS 是什么?(曾经很多站长、开发者询问过 … &#x...
聚小编 2019-12-01 20:29:02 14239 浏览量 回答数 4

回答

官方的解释相信大家都已经了解了,不了解也没有关系。现在从常识的角度来给大家解释和说明。OpenStack是一个云平台管理的项目,它不是一个软件。这个项目由几个主要的组件组合起来完成一些具体的工作。OpenStack是一个旨在为公共及私有云的建设与管理提供软件的开源项目,OpenStack被公认作为基础设施即服务(简称IaaS)资源的通用前端。如果这些还不明白,那么从另外的角度给大家介绍:首先让大家看下面两个图就很简单明了了:此图为openstack的登录界面下面是openstack的一个管理界面从这两个图,相信有一定开发经验,就能看出openstack是什么了。可以说他是一个框架,甚至可以从软件的角度来理解它。如果不明白,就从传统开发来讲解。不知道你是否了解oa,erp等系统,如果不了解可以到网上去找,资料一大把。他和oa,erp有什么不同。很简单就是openstack是用做云计算的一个平台,或则一个解决方案。它是云计算一个重要组成部分。上面对openstack有了一个感性的认识。(2)openstack能干什么。大家都知道阿里云平台,百度云平台,而阿里云平台据传说就是对openstack的二次开发。对于二次开发相信只要接触过软件的都会明白这个概念。不明白的自己网上去查一下。也就是说openstack,可以搭建云平台,什么云平台,公有云,私有云。现在百度在招聘的私有云工程师,应该就是这方面的人才。(3)openstack自身都包含什么以下是5个OpenStack的重要构成部分:lNova–计算服务lSwift–存储服务lGlance–镜像服务lKeystone–认证服务lHorizon–UI服务图1OpenStack基本构架下图展示了Keystone、Dashboard二者与其它OpenStack部分的交互。下面详细介绍每一个服务:(一)OpenStack计算设施—-NovaNova是OpenStack计算的弹性控制器。OpenStack云实例生命期所需的各种动作都将由Nova进行处理和支撑,这就意味着Nova以管理平台的身份登场,负责管理整个云的计算资源、网络、授权及测度。虽然Nova本身并不提供任何虚拟能力,但是它将使用libvirtAPI与虚拟机的宿主机进行交互。Nova通过Web服务API来对外提供处理接口,而且这些接口与Amazon的Web服务接口是兼容的。功能及特点l实例生命周期管理l计算资源管理l网络与授权管理l基于REST的APIl异步连续通信l支持各种宿主:Xen、XenServer/XCP、KVM、UML、VMwarevSphere及Hyper-VOpenStack计算部件lNova弹性云包含以下主要部分:lAPIServer(nova-api)l消息队列(rabbit-mqserver)l运算工作站(nova-compute)l网络控制器(nova-network)l卷管理(nova-volume)l调度器(nova-scheduler)API服务器(nova-api)API服务器提供了云设施与外界交互的接口,它是外界用户对云实施管理的唯一通道。通过使用web服务来调用各种EC2的API,接着API服务器便通过消息队列把请求送达至云内目标设施进行处理。作为对EC2-api的替代,用户也可以使用OpenStack的原生API,我们把它叫做“OpenStackAPI”。消息队列(RabbitMQServer)OpenStack内部在遵循AMQP(高级消息队列协议)的基础上采用消息队列进行通信。Nova对请求应答进行异步调用,当请求接收后便则立即触发一个回调。由于使用了异步通信,不会有用户的动作被长置于等待状态。例如,启动一个实例或上传一份镜像的过程较为耗时,API调用就将等待返回结果而不影响其它操作,在此异步通信起到了很大作用,使整个系统变得更加高效。运算工作站(nova-compute)运算工作站的主要任务是管理实例的整个生命周期。他们通过消息队列接收请求并执行,从而对实例进行各种操作。在典型实际生产环境下,会架设许多运算工作站,根据调度算法,一个实例可以在可用的任意一台运算工作站上部署。网络控制器(nova-network)网络控制器处理主机的网络配置,例如IP地址分配,配置项目VLAN,设定安全群组以及为计算节点配置网络。卷工作站(nova-volume)卷工作站管理基于LVM的实例卷,它能够为一个实例创建、删除、附加卷,也可以从一个实例中分离卷。卷管理为何如此重要?因为它提供了一种保持实例持续存储的手段,比如当结束一个实例后,根分区如果是非持续化的,那么对其的任何改变都将丢失。可是,如果从一个实例中将卷分离出来,或者为这个实例附加上卷的话,即使实例被关闭,数据仍然保存其中。这些数据可以通过将卷附加到原实例或其他实例的方式而重新访问。因此,为了日后访问,重要数据务必要写入卷中。这种应用对于数据服务器实例的存储而言,尤为重要。调度器(nova-scheduler)调度器负责把nova-API调用送达给目标。调度器以名为“nova-schedule”的守护进程方式运行,并根据调度算法从可用资源池中恰当地选择运算服务器。有很多因素都可以影响调度结果,比如负载、内存、子节点的远近、CPU架构等等。强大的是nova调度器采用的是可插入式架构。目前nova调度器使用了几种基本的调度算法:随机化:主机随机选择可用节点;可用化:与随机相似,只是随机选择的范围被指定;简单化:应用这种方式,主机选择负载最小者来运行实例。负载数据可以从别处获得,如负载均衡服务器。(二)OpenStack镜像服务器—-GlanceOpenStack镜像服务器是一套虚拟机镜像发现、注册、检索系统,我们可以将镜像存储到以下任意一种存储中:本地文件系统(默认)lOpenStack对象存储lS3直接存储lS3对象存储(作为S3访问的中间渠道)lHTTP(只读)功能及特点提供镜像相关服务Glance构件lGlance控制器lGlance注册器(三)OpenStack存储设施—-SwiftSwift为OpenStack提供一种分布式、持续虚拟对象存储,它类似于AmazonWebService的S3简单存储服务。Swift具有跨节点百级对象的存储能力。Swift内建冗余和失效备援管理,也能够处理归档和媒体流,特别是对大数据(千兆字节)和大容量(多对象数量)的测度非常高效。功能及特点l海量对象存储l大文件(对象)存储l数据冗余管理l归档能力—–处理大数据集l为虚拟机和云应用提供数据容器l处理流媒体l对象安全存储l备份与归档l良好的可伸缩性Swift组件lSwift账户lSwift容器lSwift对象lSwift代理lSwiftRINGSwift代理服务器用户都是通过Swift-API与代理服务器进行交互,代理服务器正是接收外界请求的门卫,它检测合法的实体位置并路由它们的请求。此外,代理服务器也同时处理实体失效而转移时,故障切换的实体重复路由请求。Swift对象服务器对象服务器是一种二进制存储,它负责处理本地存储中的对象数据的存储、检索和删除。对象都是文件系统中存放的典型的二进制文件,具有扩展文件属性的元数据(xattr)。注意:xattr格式被Linux中的ext3/4,XFS,Btrfs,JFS和ReiserFS所支持,但是并没有有效测试证明在XFS,JFS,ReiserFS,Reiser4和ZFS下也同样能运行良好。不过,XFS被认为是当前最好的选择。Swift容器服务器容器服务器将列出一个容器中的所有对象,默认对象列表将存储为SQLite文件(译者注:也可以修改为MySQL,安装中就是以MySQL为例)。容器服务器也会统计容器中包含的对象数量及容器的存储空间耗费。Swift账户服务器账户服务器与容器服务器类似,将列出容器中的对象。Ring(索引环)Ring容器记录着Swift中物理存储对象的位置信息,它是真实物理存储位置的实体名的虚拟映射,类似于查找及定位不同集群的实体真实物理位置的索引服务。这里所谓的实体指账户、容器、对象,它们都拥有属于自己的不同的Rings。(四)OpenStack认证服务(Keystone)Keystone为所有的OpenStack组件提供认证和访问策略服务,它依赖自身REST(基于IdentityAPI)系统进行工作,主要对(但不限于)Swift、Glance、Nova等进行认证与授权。事实上,授权通过对动作消息来源者请求的合法性进行鉴定。如下图所示:Keystone采用两种授权方式,一种基于用户名/密码,另一种基于令牌(Token)。除此之外,Keystone提供以下三种服务:l令牌服务:含有授权用户的授权信息l目录服务:含有用户合法操作的可用服务列表l策略服务:利用Keystone具体指定用户或群组某些访问权限认证服务组件服务入口:如Nova、Swift和Glance一样每个OpenStack服务都拥有一个指定的端口和专属的URL,我们称其为入口(endpoints)。l区位:在某个数据中心,一个区位具体指定了一处物理位置。在典型的云架构中,如果不是所有的服务都访问分布式数据中心或服务器的话,则也称其为区位。l用户:Keystone授权使用者译者注:代表一个个体,OpenStack以用户的形式来授权服务给它们。用户拥有证书(credentials),且可能分配给一个或多个租户。经过验证后,会为每个单独的租户提供一个特定的令牌。[来源:]l服务:总体而言,任何通过Keystone进行连接或管理的组件都被称为服务。举个例子,我们可以称Glance为Keystone的服务。l角色:为了维护安全限定,就云内特定用户可执行的操作而言,该用户关联的角色是非常重要的。译者注:一个角色是应用于某个租户的使用权限集合,以允许某个指定用户访问或使用特定操作。角色是使用权限的逻辑分组,它使得通用的权限可以简单地分组并绑定到与某个指定租户相关的用户。l租间:租间指的是具有全部服务入口并配有特定成员角色的一个项目。译者注:一个租间映射到一个Nova的“project-id”,在对象存储中,一个租间可以有多个容器。根据不同的安装方式,一个租间可以代表一个客户、帐号、组织或项目。(五)OpenStack管理的Web接口—-HorizonHorizon是一个用以管理、控制OpenStack服务的Web控制面板,它可以管理实例、镜像、创建密匙对,对实例添加卷、操作Swift容器等。除此之外,用户还可以在控制面板中使用终端(console)或VNC直接访问实例。总之,Horizon具有如下一些特点:l实例管理:创建、终止实例,查看终端日志,VNC连接,添加卷等l访问与安全管理:创建安全群组,管理密匙对,设置浮动IP等l偏好设定:对虚拟硬件模板可以进行不同偏好设定l镜像管理:编辑或删除镜像l查看服务目录l管理用户、配额及项目用途l用户管理:创建用户等l卷管理:创建卷和快照l对象存储处理:创建、删除容器和对象l为项目下载环境变量
游客2q7uranxketok 2021-02-20 14:47:42 0 浏览量 回答数 0

回答

目前,在很多的人的第一印象中,一般将 FaaS,也就是 Fucntion as a Service (函数即服务)等同于 Serverless, 比如阿里云的函数计算、AWS 的 Lambda,但是 实际上有许多其他的云服务也是 Serverless,他们和 FC 一起构建成完整的 Serverless 应用,让用户完全聚焦他最上层和核心的原始业务。比如,用户直接使用 API 网关, 就 可以从 API 限流、鉴权等许多 API 层面上需要考虑的繁杂工作中解放出来;直接使用 Serverless 的 NoSQL 数据库 TableStore 或者对象存储 OSS 来持久化数据,替代 自己管理数据库实例;使用 SLS 或者 Datahub 从外部系统收集数据流;使用消息服务 MNS/MQ 来管理消息等。 用户可以使用一个个函数将这些 Serverless 服务串联起来,从而达到构建具体复杂 的业务逻辑和应用的目标。在这里,用户也可以选择 Serverless 工作流来编排函数和其 他云服务,简化了开发和运行业务流程(比如自己去编写代码进行任务协调、状态管理、错 误处理以及重试等繁琐工作),让用户聚焦业务逻辑开发。当然,用户也可以使用阿里云提 供的开发工具链来简化自动化部署和持续集成。使用这些开箱即可使用的工具可以帮助用户 快速达到想要的目标和效果。 如果是一个庞大复杂的单体应用或者是一个面向服务体系的架构,开发者需要负责所有 的事情,包括代码的编写、管理和部署数据库以及其他相关的后端服务等,切换到 Servrless 架构, 可以看到:特定的的模块交由特定的托管云服务去处理, 之后再使用 实现了具体业务代码的函数将它们串联起来, 也实现了解耦。 为了使这种架构运转的更有 效率, 事件驱动是一个必不可少的特性, 比如用户尝试往 OSS 上传一个文件或者更新 表格存储会自动做一些逻辑处理,对于开发者来说, 最关心的是什么样的事件可以触发我 的编写逻辑。
1358896759097293 2021-03-24 21:04:34 0 浏览量 回答数 0

问题

日志服务的基本问题有哪些?

问题列表 [backcolor=transparent]日志服务是什么?[backcolor=transparent]日志服务可以用来做什么事情?[backcolor=transpar...
轩墨 2019-12-01 22:03:54 1194 浏览量 回答数 0

问题

如何整合WAN和因特网云服务?

    企业如何整合WAN和因特网云服务,或者使用公共因特网的 云计算服务?   大多数企业通过在因特网上的SSL VPN来支持远程用户。还有一些用因特网VPN把分支机构连接到数据中心,有效地让企业...
elainebo 2019-12-01 21:04:06 10065 浏览量 回答数 0

回答

您可以通过阿里云RDS管理控制台或API创建RDS实例。本文介绍如何通过控制台创建RDS MySQL实例。 其他引擎创建实例请参见: 创建RDS SQL Server实例 创建RDS PostgreSQL实例 创建RDS PPAS实例 创建RDS MariaDB实例 除了新版本的创建实例页面,您也可以切换回旧版创建实例页面。操作详情请参见: 创建RDS实例(新版) 创建RDS实例(旧版) 优惠活动 首购折扣价:首次购买RDS MySQL享受折扣价。详情请参见优惠活动。 计费说明 关于实例计费说明,请参见计费方式。 前提条件 已注册阿里云账号。具体操作请参见注册阿里云账号。 若您要创建按量付费的实例,请确保您的阿里云账号的余额大于等于100元。 注意事项 包年包月实例无法转为按量付费实例。 按量付费实例可以转为包年包月实例,请参见按量付费转包年包月。 同一个主账号,最多可以创建30个按量付费的RDS实例。如需提高此限额,请提交工单申请。 创建RDS实例(新版) 进入RDS实例创建页面。 说明 您也可以在当前创建RDS实例页面上方单击返回旧版切换到旧版创建RDS实例页面。 设置以下参数。 类别 说明 计费方式 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 地域 实例所在的地域,即实例所在的地理位置。 购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 类型 数据库引擎的类型和版本,这里选择MySQL。 当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。 说明 不同地域和数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。ESSD云盘分为如下三类: ESSD云盘:PL1性能级别的ESSD云盘。 ESSD PL2云盘:相比PL1,PL2性能级别的ESSD云盘大约可提升2倍IOPS和吞吐量。 ESSD PL3云盘:相比PL1,PL3性能级别的ESSD云盘最高可提升20倍IOPS、11倍吞吐量,适合对极限并发I/O性能要求极高、读写时延极稳定的业务场景。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 更多信息,请参见存储类型。 可用区 可用区是地域中的一个独立物理区域,主节点可用区指主实例所在可用区,备节点可用区指备实例所在可用区。 您可以设置实例为单可用区部署或多可用区部署: 单可用区部署指主节点可用区和备节点可用区都处于相同可用区。 多可用区部署指主节点可用区和备节点可用区处于不同可用区,此时您只需要选择主节点可用区,系统会自动选择备节点可用区。 相比单可用区部署,多可用区部署能提供可用区级别的容灾,建议您使用多可用区部署。 可用区 实例规格 入门级:通用型的实例规格,独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 企业级:独享或独占型的实例规格。独享型指独享被分配的CPU、内存、存储和I/O资源。独占型是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 说明 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 存储空间 存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。调整存储空间时最小单位为5GB。 说明 部分本地SSD盘的存储空间大小与实例规格绑定,ESSD/SSD云盘不受此限制。详情请参见主实例规格列表。 单击下一步:网络和资源组。 设置以下参数。 类别 说明 网络类型 经典网络:传统的网络类型。 专有网络:也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。选择专有网络时您需要选择对应的VPC和主节点交换机。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致(如果选择专有网络,还需要保证VPC一致),否则它们无法通过内网互通。 存储引擎 设置实例的默认存储引擎。当前仅MySQL 8.0高可用版(本地SSD盘)实例支持此选项。 关于阿里自研的X-Engine引擎详情请参见X-Engine简介。 说明 X-Engine兼容InnoDB,而且拥有更好的性能表现,建议您使用X-Engine作为默认存储引擎。 参数模板 设置实例参数模板。当前仅高可用版(本地SSD盘)实例支持此选项。 说明 您可以选择系统参数模板或自定义参数模板,详情请参见使用参数模板。 时区 设置实例时区。当前仅本地SSD盘实例支持此选项。 表名大小写 设置实例表名是否区分大小写。当本地数据库区分大小时,您可以选择区分大小写,便于您迁移数据。当前仅本地SSD盘实例支持此选项。 资源组 实例所属的资源组。 单击下一步:确认订单。 确认参数配置,选择购买量和购买时长(仅包年包月实例),勾选服务协议,单击去支付完成支付。 创建RDS实例(旧版) 进入旧版RDS实例创建页面。 选择计费方式。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 设置以下参数。 参数 说明 地域 实例所在的地理位置。购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 资源组 实例所属的资源组。 数据库类型 即数据库引擎的类型,这里选择MySQL。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 版本 指MySQL的版本。当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域所支持的版本不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。仅4个地域提供三节点企业版实例:华东1、华东2、华南1、华北2。 说明 不同数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 说明 SSD云盘支持云盘加密,能够最大限度保护您的数据安全,您的业务和应用程序无需做额外的改动。详情请参见云盘加密。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。 更多信息,请参见存储类型。 密钥 云盘加密所使用的的密钥。密钥的创建请参见管理密钥。 可用区 可用区是地域中的一个独立物理区域,不同可用区之间没有实质性区别。您可以选择将RDS实例的主备节点创建在同一可用区或不同可用区。 相比单可用区,多可用区能提供可用区级别的容灾。 网络类型 经典网络:传统的网络类型。 专有网络(推荐):也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致,否则它们无法通过内网互通。 规格 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 RDS实例有以下规格族: 通用型:独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 独享型:独享被分配的CPU、内存、存储和I/O资源。 独占物理机型:是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 例如,8核32GB是通用型实例规格,8核32GB(独享套餐)是独享型实例规格,30核220GB(独占主机)是独占物理机型实例规格。 存储空间 该存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。 设置购买时长(仅针对包年包月实例)和实例数量,然后单击右侧的立即购买。 说明 购买包年包月实例时,可以勾选自动续费,系统将根据您的购买时长进行自动续费。例如,您购买3个月的实例并勾选自动续费,则每次自动续费时会缴纳3个月的费用。 对于包年包月实例,您也可以单击加入购物车将实例加入到购物车中,最后单击购物车进行结算。 在订单确认页面,勾选相关协议,根据提示完成支付。 下一步 在控制台左上角,选择实例所在的地域即可查看到刚刚创建的实例。选择地域 创建实例后,您需要设置白名单和创建账号,如果是通过外网连接,还需要申请外网地址。然后就可以连接实例。 如果连接实例失败,请参见解决无法连接实例问题。 常见问题 为什么创建实例后无反应,实例列表也看不到创建中的实例? 看不到创建中的实例可能有如下两个原因: 地域错误 可能您所在地域和您创建实例时选择的地域不一致。您可以在页面左上角切换地域。 选择地域 可用区内资源不足 由于可用区资源是动态分配的,可能您下单后可用区内资源不足,所以会创建失败,建议您更换可用区重试。创建失败您可以在订单列表里看到退款。 如何授权子账号管理RDS实例? 答:请参见云数据库 RDS 授权。 相关API API 描述 CreateDBInstance 创建RDS实例。 操作视频 RDS实例创建
游客yl2rjx5yxwcam 2020-03-09 10:46:09 0 浏览量 回答数 0

回答

X-Engine是阿里云数据库产品事业部自研的联机事务处理OLTP(On-Line Transaction Processing)数据库存储引擎。作为自研数据库POLARDB的存储引擎之一,已经广泛应用在阿里集团内部诸多业务系统中,包括交易历史库、钉钉历史库等核心应用,大幅缩减了业务成本,同时也作为双十一大促的关键数据库技术,挺过了数百倍平时流量的冲击。 为什么设计一个新的存储引擎 X-Engine的诞生是为了应对阿里内部业务的挑战,早在2010年,阿里内部就大规模部署了MySQL数据库,但是业务量的逐年爆炸式增长,数据库面临着极大的挑战: 极高的并发事务处理能力(尤其是双十一的流量突发式暴增)。 超大规模的数据存储。 这两个问题虽然可以通过扩展数据库节点的分布式方案解决,但是堆机器不是一个高效的手段,我们更想用技术的手段将数据库性价比提升到极致,实现以少量资源换取性能大幅提高的目的。 传统数据库架构的性能已经被仔细的研究过,数据库领域的泰斗,图灵奖得主Michael Stonebreaker就此写过一篇论文 《OLTP Through the Looking Glass, and What We Found There》 ,指出传统关系型数据库,仅有不到10%的时间是在做真正有效的数据处理工作,剩下的时间都浪费在其它工作上,例如加锁等待、缓冲管理、日志同步等。 造成这种现象的原因是因为近年来我们所依赖的硬件体系发生了巨大的变化,例如多核(众核)CPU、新的处理器架构(Cache/NUMA)、各种异构计算设备(GPU/FPGA)等,而架构在这些硬件之上的数据库软件却没有太大的改变,例如使用B-Tree索引的固定大小的数据页(Page)、使用ARIES算法的事务处理与数据恢复机制、基于独立锁管理器的并发控制等,这些都是为了慢速磁盘而设计,很难发挥出现有硬件体系应有的性能。 基于以上原因,阿里开发了适合当前硬件体系的存储引擎,即X-Engine。 X-Engine架构 全新架构的X-Engine存储引擎不仅可以无缝对接兼容MySQL(得益于MySQL Pluginable Storage Engine特性),同时X-Engine使用分层存储架构。 因为目标是面向大规模的海量数据存储,提供高并发事务处理能力和降低存储成本,在大部分大数据量场景下,数据被访问的机会是不均等的,访问频繁的热数据实际上占比很少,X-Engine根据数据访问频度的不同将数据划分为多个层次,针对每个层次数据的访问特点,设计对应的存储结构,写入合适的存储设备。 X-Engine使用了LSM-Tree作为分层存储的架构基础,并进行了重新设计: 热数据层和数据更新使用内存存储,通过内存数据库技术(Lock-Free index structure/append only)提高事务处理的性能。 流水线事务处理机制,把事务处理的几个阶段并行起来,极大提升了吞吐。 访问频度低的数据逐渐淘汰或是合并到持久化的存储层次中,并结合多层次的存储设备(NVM/SSD/HDD)进行存储。 对性能影响比较大的Compaction过程做了大量优化: 拆分数据存储粒度,利用数据更新热点较为集中的特征,尽可能的在合并过程中复用数据。 精细化控制LSM的形状,减少I/O和计算代价,有效缓解了合并过程中的空间增大。 同时使用更细粒度的访问控制和缓存机制,优化读的性能。 技术特点 利用FPGA硬件加速Compaction过程,使得系统上限进一步提升。这个技术属首次将硬件加速技术应用到在线事务处理数据库存储引擎中,相关论文 《FPGA-Accelerated Compactions for LSM-based Key Value Store》 已经被2020年的顶级会议FAST'20接收。 通过数据复用技术减少数据合并代价,同时减少缓存淘汰带来的性能抖动。 使用多事务处理队列和流水线处理技术,减少线程上下文切换代价,并计算每个阶段任务量配比,使整个流水线充分流转,极大提升事务处理性能。相对于其他类似架构的存储引擎(例如RocksDB),X-Engine的事务处理性能有10倍以上提升。 X-Engine使用的Copy-on-write技术,避免原地更新数据页,从而对只读数据页面进行编码压缩,相对于传统存储引擎(例如InnoDB),使用X-Engine可以将存储空间降低至10%~50%。 Bloom Filter快速判定数据是否存在,Surf Filter判断范围数据是否存在,Row Cache缓存热点行,加速读取性能。 LSM基本逻辑 LSM的本质是所有写入操作直接以追加的方式写入内存。每次写到一定程度,即冻结为一层(Level),并写入持久化存储。所有写入的行,都以主键(Key)排序好后存放,无论是在内存中,还是持久化存储中。在内存中即为一个排序的内存数据结构(Skiplist、B-Tree、etc),在持久化存储也作为一个只读的全排序持久化存储结构。 普通的存储系统若要支持事务处理,需要加入一个时间维度,为每个事务构造出一个不受并发干扰的独立视域。例如存储引擎会对每个事务定序并赋予一个全局单调递增的事务版本号(SN),每个事务中的记录会存储这个SN以判断独立事务之间的可见性,从而实现事务的隔离机制。 如果LSM存储结构持续写入,不做其他的动作,那么最终会成为如下结构。 这种结构对于写入是非常友好的,只要追加到最新的内存表中即完成,为实现故障恢复,只需记录Redo Log,因为新数据不会覆盖旧版本,追加记录会形成天然的多版本结构。 但是如此累积,冻结的持久化层次越来越多,会对查询会产生不利的影响。例如对同一个key,不同事务提交产生的多版本记录会散落在各个层次中;不同的key也会散落在不同层次中。读操作需要查找各个层并合并才能得到最终结果。 因此LSM引入了Compaction操作解决这个问题,Compaction操作有2种作用: 控制LSM层次形状 一般的LSM形状都是层次越低,数据量越大(倍数关系),目的是为了提升读性能。 通常存储系统的数据访问都有局部性,大量的访问都集中在少部分数据上,这也是缓存系统能有效工作的基本前提。在LSM存储结构中,如果把访问频率高的数据尽可能放在较高的层次上,存放在快速存储设备中(例如NVM、DRAM),而把访问频率低的数据放在较低层次中,存放在廉价慢速存储设备中。这就是X-Engine的冷热分层概念。 合并数据 Compaction操作不断的把相邻层次的数据合并,并写入更低层次。合并的过程实际上是把要合并的相邻两层或多层的数据读出来,按key排序,相同的key如果有多个版本,只保留新的版本(比当前正在执行的活跃事务中最小版本号新),丢掉旧版本数据,然后写入新的层,这个操作非常耗费资源。 合并数据除了考虑冷热分层以外,还需要考虑其他维度,例如数据的更新频率,大量的多版本数据在查询的时候会浪费更多的I/O和CPU,因此需要优先进行合并以减少记录的版本数量。X-Engine综合考虑了各种策略形成自己的Compaction调度机制。 高度优化的LSM X-Engine的memory tables使用了无锁跳表(Locked-free SkipList),并发读写的性能较高。在持久化层如何实现高效,就需要讨论每层的细微结构。 数据组织 X-Engine的每层都划分成固定大小的Extent,存放每个层次中的数据的一个连续片段(Key Range)。为了快速定位Extent,为每层Extents建立了一套索引(Meta Index),所有这些索引,加上所有的memory tables(active/immutable)一起组成了一个元数据树(Metadata Tree),root节点为Metadata Snapshot,这个树结构类似于B-Tree。 X-Engine中除了当前的正在写入的active memory tables以外,其他结构都是只读的,不会被修改。给定某个时间点,例如LSN=1000,上图中的Metadata Snapshot 1引用到的结构即包含了LSN=1000时的所有的数据的快照,因此这个结构被称为Snapshot。 即便是Metadata结构本身,也是一旦生成就不会被修改。所有的读请求都是以Snapshot为入口,这是X-Engine实现Snapshot级别隔离的基础。前文说过随着数据写入,累积数据越多,会执行Compaction操作、冻结memory tables等,这些操作都是用Copy-on-write实现,即每次都将修改产生的结果写入新的Extent,然后生成新的Meta Index结构,最终生成新的Metadata Snapshot。 例如执行一次Compaction操作会生成新的Metadata Snapshot,如下图所示。 可以看到Metadata Snapshot 2相对于Metadata Snapshot 1并没有太多的变化,仅仅修改了发生变更的一些叶子节点和索引节点。 事务处理 得益于LSM的轻量化写机制,写入操作固然是其明显的优势,但是事务处理不只是把更新的数据写入系统那么简单,还要保证ACID(原子性、一致性、隔离性、持久性),涉及到一整套复杂的流程。X-Engine将整个事务处理过程分为两个阶段: 读写阶段 校验事务的冲突(写写冲突、读写冲突),判断事务是否可以执行、回滚重试或者等锁。如果事务冲突校验通过,则把修改的所有数据写入Transaction Buffer。 提交阶段 写WAL、写内存表,以及提交并返回用户结果,这里面既有I/O操作(写日志、返回消息),也有CPU操作(拷贝日志、写内存表)。 为了提高事务处理吞吐,系统内会有大量事务并发执行,单个I/O操作比较昂贵,大部分存储引擎会倾向于聚集一批事务一起提交,称为Group Commit,能够合并I/O操作。但是一组事务提交的过程中,还是有大量等待过程的,例如写入日志到磁盘过程中,除了等待落盘无所事事。 X-Engine为了进一步提升事务处理的吞吐,使用流水线技术,把提交阶段分为4个独立的更精细的阶段: 拷贝日志到缓冲区(Log Buffer) 日志落盘(Log Flush) 写内存表(Write memory table) 提交返回(Commit) 事务到了提交阶段,可以自由选择执行流水线中任意一个阶段,只要流水线任务的大小划分得当,就能充分并行起来,流水线处于接近满载状态。另外这里利用的是事务处理的线程,而非后台线程,每个线程在执行的时候,选择流水线中的一个阶段执行任务,或者空闲后处理其他请求,没有等待,也无需切换,充分利用了每个线程的能力。 读操作 LSM处理多版本数据的方式是新版本数据记录会追加在老版本数据后面,从物理上看,一条记录不同的版本可能存放在不同的层,在查询的时候需要找到合适的版本(根据事务隔离级别定义的可见性规则),一般查询都是查找最新的数据,总是由最高的层次往低层次找。 对于单条记录的查找而言,一旦找到便可以终止,如果记录在比较高的层次,例如memory tables,很快便可以返回;如果记录已经落入了很低的层次,那就得逐层查找,也许Bloom Filter可以跳过某些层次加快这个旅程,但毕竟还是有很多的I/O操作。X-Engine针对单记录查询引入了Row Cache,在所有持久化的层次的数据之上做了一个缓存,在memory tables中没有命中的单行查询,在Row Cache之中也会被捕获。Row Cache需要保证缓存了所有持久化层次中最新版本的记录,而这个记录是可能发生变化的,例如每次flush将只读的memory tables写入持久化层次时,就需要恰当的更新Row Cache中的缓存记录,这个操作比较微妙,需要精心的设计。 对于范围扫描而言,因为没法确定一个范围的key在哪个层次中有数据,只能扫描所有的层次做合并之后才能返回最终的结果。X-Engine采用了一系列的手段,例如SuRF(SIGMOD'18 best paper)提供range scan filter减少扫描层数、异步I/O与预取。 读操作中最核心的是缓存设计,Row Cache负责单行查询,Block Cache负责Row Cache的漏网之鱼,也用来进行范围扫描。由于LSM的Compaction操作会一次更新大量的Data Block,导致Block Cache中大量数据短时间内失效,导致性能的急剧抖动,因此X-Engine做了很多的优化: 减少Compaction的粒度。 减少Compaction过程中改动的数据。 Compaction过程中针对已有的缓存数据做定点更新。 Compaction Compaction操作是比较重要的,需要把相邻层次交叉的Key Range数据读取合并,然后写到新的位置。这是为前面简单的写入操作付出的代价。X-Engine为优化这个操作重新设计了存储结构。 如前文所述,X-Engine将每一层的数据划分为固定大小的Extent,一个Extent相当于一个小而完整的排序字符串表(SSTable),存储了一个层次中的一个连续片段,连续片段又进一步划分为一个个连续的更小的片段Data Block,相当于传统数据库中的Page,只不过Data Block是只读而且不定长的。 回看并对比Metadata Snapshot 1和Metadata Snapshot 2,可以发现Extent的设计意图。每次修改只需要修改少部分有交叠的数据,以及涉及到的Meta Index节点。两个Metadata Snapshot结构实际上共用了大量的数据结构,这被称为数据复用技术(Data Reuse),而Extent大小正是影响数据复用率的关键,Extent作为一个完整的被复用的物理结构,需要尽可能的小,这样与其他Extent数据交叉点会变少,但又不能非常小,否则需要索引过多,管理成本太大。 X-Engine中Compaction的数据复用是非常彻底的,假设选取两个相邻层次(Level1, Level2)中的交叉的Key Range所涵盖的Extents进行合并,合并算法会逐行进行扫描,只要发现任意的物理结构(包括Data Block和Extent)与其他层中的数据没有交叠,则可以进行复用。只不过Extent的复用可以修改Meta Index,而Data Block的复用只能拷贝,即便如此也可以节省大量的CPU。 一个典型的数据复用在Compaction中的过程可以参考下图。 可以看出数据复用的过程是在逐行迭代的过程中完成的,不过这种精细的数据复用带来另一个副作用,即数据的碎片化,所以在实际操作的过程中也需要根据实际情况进行分析。 数据复用不仅给Compaction操作本身带来好处,降低操作过程中的I/O与CPU消耗,更对系统的综合性能产生一系列的影响。例如c、Compaction过程中数据不用完全重写,大大降低了写入时空间的增大;大部分数据保持原样,数据缓存不会因为数据更新而失效,减少合并过程中因缓存失效带来的读性能抖动。 实际上,优化Compaction的过程只是X-Engine工作的一部分,更重要的是优化Compaction调度的策略,选什么样的Extent、定义compaction任务的粒度、执行的优先级等,都会对整个系统性能产生影响,可惜并不存在什么完美的策略,X-Engine积累了一些经验,定义了很多规则,而探索更合理的调度策略是未来一个重要方向。 适用场景 请参见X-Engine最佳实践。 如何使用X-Engine 请参见使用X-Engine引擎。 后续发展 作为MySQL的存储引擎,持续地提升MySQL系统的兼容能力是一个重要目标,后续会根据需求的迫切程度逐步加强原本取消的一些功能,例如外键,以及对一些数据结构、索引类型的支持。 X-Engine作为存储引擎,核心的价值还在于性价比,持续提升性能降低成本,是一个长期的根本目标,X-Engine还在Compaction调度、缓存管理与优化、数据压缩、事务处理等方向上进行深层次的探索。 X-Engine不仅仅局限为一个单机的数据库存储引擎,未来还将作为自研分布式数据库POLARDB分布式版本的核心,提供企业级数据库服务。
游客yl2rjx5yxwcam 2020-03-08 13:24:40 0 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。
茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

问题

Git 改变了分布式 Web 开发规则:报错

版本控制系统是大部分开发项目的核心组件,无论是开发应用程序、网站还是操作系统。大部分项目都涉及多个开发人员,往往位于不同的位置。分布式版本控制系统并不是新事物,但是 Git 版本控制系统为开发人员之...
kun坤 2020-06-08 11:09:24 3 浏览量 回答数 1

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

评测介绍 评测产品: 云引擎ACE服务开发语言: PHP评测人: mr_wid评测时间: 2014年10月13日-19日 评测概要 非常有幸能够申请到ACE的公测资格, 在本篇评测中, 笔者将以一个开发者的角度来对云引擎...
mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

问题

SQL 与 NoSQL 的对比

NoSQL 是一个用于描述高扩展高性能的非关系数据库的术语。NoSQL 数据库提供的 schemafree 数据模型使应用无需预先定义表结构,更适应业务的多元化发展,且其对超大数据规模和高并发的支持让 NoSQL...
云栖大讲堂 2019-12-01 20:54:13 1382 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。
封神 2019-12-02 02:00:50 0 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

首先申明,不是我原创,但是我看到比较不错的一片讲大数据分析处理的文章。谈到的阿里使用的云梯1,确实是使用的如下文的机制。但云梯1在阿里已经下线,目前使用的云梯2是用的ODPS的机制。技...
jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

问题

超越 MySQL 热:报错

尽管 MySQL 是最受欢迎的程序之一,但是许多开发人员认为有必要将其拆分成其他项目,并且每个分支项目都有自己的专长。该需求,以及 Oracle 对核心产品增长缓慢的担忧,导致出现了许...
kun坤 2020-06-05 22:43:07 0 浏览量 回答数 1

问题

超越 MySQL 热,数据库报错

" 尽管 MySQL 是最受欢迎的程序之一,但是许多开发人员认为有必要将其拆分成其他项目,并且每个分支项目都有自己的专长。该需求,以及 Oracle 对核心产品增长缓慢的担忧,...
python小菜菜 2020-06-01 19:55:39 0 浏览量 回答数 1

问题

redis的持久化你了解多少??

####前言 Redis的数据正常都是存储在内存内,如果宕机突然发生,数据就会全部丢失,因此需要提供一种方式保证redis的数据不会因为故障而丢失,这种机制就是redis的持久化机制...
huc_逆天 2020-06-05 23:39:12 90 浏览量 回答数 1

问题

表格存储Table Store-建表时的注意事项

建表时需要指定属性列吗? 不需要。Table Store支持半结构化的表,即建表时只需要指定主键列(1至4列),不需要在创建表的时候指定具有哪些属性列。Table St...
云栖大讲堂 2019-12-01 21:04:32 1535 浏览量 回答数 0

回答

什么是Kubernetes? Kubernetes是一种轻便的可伸展的开源平台,用来管理容器化的工作或者服务,拥有声明化配置和自动化等优点。它现在拥有一个快速扩大与成长的生态系统,其服务,工具和技术支持可被广泛用于各个方面。 为什么我需要Kubernetes,它用来做些什么? Kubernetes拥有大量的特性,比如: 容器平台 微服务平台 轻量化云服务平台 等等 Kubernetes提供了一个以容器为中心的管理环境,它根据用户的工作负载来协调计算,网络和储存基础架构。它既有PaaS的简化性,又具有IaaS的灵活性,并支持跨基础架构的可移植性 为什么Kubernetes是一个平台? 尽管Kubernetes提供了大量的功能性,总会有新的场景需要新的功能。一些特性的应用程序工作流程可以被简化来加快开发速度。最初的部署通常需要大规模的应用自动化。这就是为什么Kubernetes被设计成一个平台服务,用来创建一个包含工具和其他组成部分的系统环境,来使部署,测量和管理应用更加容易。 Label可以授权用户按照他们的想法来组织他们的资源。Annotation允许用户布置含有自定义信息的资源,来使工作流更加顺畅,并为管理工具提供到checkpoint状态的一种更简单的方式。 此外,Kubernetes控制平面基于开发人员和用户可用的相同API构建。用户可以编写他们自己的 controller,比如schedulers,这些API可以通过通用命令行工具进行定位。 这种设计使得许多其他系统能够在Kubernetes上面构建 Kubernetes不是什么 Kubernetes不是一个传统的,包罗万象的PaaS(平台即服务)系统。由于Kubernetes在容器级而不是在硬件级运行,因此它能提供一些PaaS产品常用的通用功能,比如部署,扩展,负载均衡,日志记录和监控。但是,Kubernetes并不是一个整体,这些默认解决方案都是可选和可插拔的。Kubernetes提供了构建人员平台的构建模块,但是在一些重要的地方保留了用户选择和灵活性。 Kubernetes: 不限制支持的应用程序类型。Kubernetes旨在支持各种各样的工作负载,包括无状态,有状态和数据处理工作负载。 如果一个应用程序可以在一个容器中运行,它应该在Kubernetes上运行得很好。 不部署源代码并且不构建您的应用程序。持续集成,交付和部署(CI / CD)工作流程由组织和偏好以及技术要求决定。 不提供应用程序级服务,例如中间件(例如,消息总线),数据处理框架(例如,Spark),数据库(例如,mysql),高速缓存,也不提供集群存储系统(例如,Ceph)。 在服务中。 这些组件可以在Kubernetes上运行,和/或可以通过便携式机制(例如Open Service Broker)在Kubernetes上运行的应用程序访问。 不指示日志,监视或警报解决方案。 它提供了一些集成作为概念证明,以及收集和导出指标的机制。 不提供或授权配置语言/系统(例如,jsonnet)。 它提供了一个声明性API,可以通过任意形式的声明性规范来实现。 不提供或采用任何全面的机器配置,维护,管理或自我修复系统。 此外,Kubernetes不仅仅是一个编排系统。 实际上,它消除了编排的需要。 业务流程的技术定义是执行定义的工作流程:首先执行A,然后运行B,然后运行C.相反,Kubernetes由一组独立的,可组合的控制流程组成,这些流程将当前状态持续推向所提供的所需状态。 如何从A到C无关紧要。也不需要集中控制。 这使得系统更易于使用且功能更强大,更具弹性且可扩展 为什么使用容器 过去部署应用的方式,是将应用安装在一个使用操作系统软件包管理器的主机上。这样做的缺点是应用程序的可执行文件、配置、库和生命周期互相影响,也会和操作系统纠缠不清。你也可以构建一个不可被修改的虚拟机镜像来实现可预测的部署和回滚,但是这样显然不够轻量化而且不可被移植 新的方式是在虚拟化的操作系统层来部署容器,而不是在虚拟化的硬件层。这些容器之间彼此独立,相对主机也保持独立。它们有自己单独的文件系统,也不能看到其他容器的进程,而且它们对于计算资源的使用量可以被限制。它们比虚拟机更容易被构建,因为它们从底层基础架构和主机文件系统中解耦出来,也可以跨单机与云之间移植。 因为容器小巧且轻快,一个应用程序可以被打包放到每个容器镜像中。这种一对一的应用对镜像的关系可以使容器发挥出最大功效。有了容器,不可变的容器镜像可以在构建时被创建,而不是在部署时,因为每个应用都不需要依赖于程序的其它应用部分,也不依赖于基础生产环境。同样,容器比VM更加透明,这有利于监控和管理。当容器的生命周期由基础架构管理而不是隐藏在流程管理器之后时,尤其如此。最后,当一个应用被部署在每个容器时,管理容器就变得和管理程序部署一样了。 阿里云导入自建K8S集群 更多阿里云帮助文档 https://help.aliyun.com 希望对您有帮助!
阿里朵 2019-12-02 02:19:54 0 浏览量 回答数 0

回答

区块链(blockchian)技术是随比特币等数字加密货币兴起的一种新型分布式数据组织方法及运算方式,通过去中心化来集体维护一个可靠数据库的技术。该技术将一段时间内的两两配对数据(比特币中指交易)打包成数据块(block),然后利用具有激励性质的共识算法让点对点对等网(p2p网络)中的所有节点产生的数据块保持一致,并生成数据指纹验证其有效性然后链接(chain)下一个数据块。在这个过程中,所有节点的地位都是对等的,没有所谓的服务器和客户端之分,因此被称为去中心化的方式,这很好地解决了数据在存储和共享环节中存在的安全和信任问题。通过区块链技术,在数据共享过程中可明确数据的来源、所有权和使用权,达到数据在存储上不可篡改、在流通上路径可追溯、在数据管理上可审计的目的,保证数据在存储、共享、审计等环节中的安全,实现真正意义上的数据全流程管理,进一步拓展数据的流通渠道、促进数据的共享共用、激发数据的价值挖掘、增强数据在流通中的信任。同时,基于区块链的分布式共享“总账”这一特点,在平台安全方面,可达到有效消除单点故障、抵御网络攻击的目的。这些特点使得区块链技术特别适合应用于具有保密要求的大数据运算领域。 近年来,国外已有一些研究机构和企业将区块链应用在电子证件认证和身份认证领域(见图1-1)。2015年7月,区块链初创公司ShoCard获150万美元投资,将实体身份证件的数据指纹保存在区块链上。用户用手机扫描自己的身份证件,ShoCard应用会把证件信息加密后保存在用户本地,把数据指纹保存到区块链。区块链上的数据指纹受一个私钥控制,只有持有私钥的用户自己才有权修改,ShoCard本身无权修改。同时,为了防范用户盗用他人身份证件扫描上传,ShoCard还允许银行等机构对用户的身份进行背书,确保真实性。2015年9月,去中心化的管理项目比特国(Bitnation)在区块链上实施“电子公民”(e-Residents)计划。用户在其官网上通过区块链登记成为Bitnation的“公民”,并获得Bitnation“世界公民身份证”。2015年12月,Bitnation与爱沙尼亚政府签署协议,将为“电子公民”项目提供公证服务,无论他们身居何处,在何处做生意,都可以在区块链上享受结婚证明、出生证明、商务合同和其他服务。区块链是一个公共账本,全世界数以千万计的计算机都存储着其副本,具备公开公证的可复制性与不可更改性,比目前各国使用的传统公证方法更安全。2016年6月,美国国安局向区块链初创公司Factom拨款19.9万美元用于物联网设备数字身份安全性开发,利用区块链技术来验证物联网设备,阻止因设备欺骗而导致的非授权访问,以此来确保数据完整性;美国区块链公司Certchain为文档建立数据指纹,提供去中心化的文件所有权证明;OneName公司则提供了另一种身份服务,即任何比特币的用户都可以把自己的比特币地址和自己的姓名、Twitter、Facebook等账号绑定起来,相当于为每个社交账户提供了一个公开的比特币地址和进行数字签名的能力。 在国内,有一些研究机构也在开展区块链在电子政务方面的应用研究。闵旭蓉等人[6]设计了一种电子证照共享平台,利用区块链技术的去中心化、不可篡改、分布式共同记账、非对称加密和数据安全存储等特点,实现电子证照的安全可信共享,实现各地、各部门和各层级间政务数据的互联互通,支撑政府高效施政。黄步添等人[7]明确了电子证照参与者的权利和义务,基于联盟链思想和轮值机制,设计区块链平台的系统架构、数据结构和业务流程,提供电子证照的颁发、存储、更新、验证等功能,实现多中心、协同式电子证照管理,从而为电子证照拥有者以及相关应用系统提供便捷的电子证照服务。蒋海等人[8]提供了一种区块链身份构建及验证方法,有效缓解了因个别认证机构的问题影响用户身份信息准确性的情况,然而其原始数据来源为第三方认证机构,未能解决数据的真实性问题,且其只进行身份验证,未与其他证件锚定,扩展性不强,发挥的作用有限。 此外,有一些教育和科研机构将区块链技术应用于教育证书领域。2015 年,麻省理工学院的媒体实验室(The MIT MediaLab)应用区块链技术研发了学习证书平台,并发布了一个类似“比特币钱包”的手机App[9]。学习者可以利用该App存储和分享自己的学习证书,随身携带、随时展示,且拥有重申成绩的权力。学习者不能擅自更改学习证书的内容,但能自主决定将什么证书展示给哪个访问者。在查询时,将数字证书的密钥点对点地发送给用人单位或学生等有关需求方,确保证书不会被恶意查询。无独有偶,位于旧金山的软件培训机构—Holberton School从2017年开始利用区块链技术记录学历,并在区块链上共享学生的学历证书信息。同样,学分也可以通过这项技术认证和交换。对于学生来说,这一应用拓宽了他们获得教育评价的途径,方便了学习记录和学历信息的保存。从更长远的眼光来看,利用区块链记录跨地区、跨院校甚至跨国学习者的信息,可以使在不同环境中学习的学习者获得同样有效的学习记录。区块链技术在教育证书方面可能的应用方式包括:为在线教育提供有公信力和低成本的证书系统;作为智能合约,完成教育契约和存证;作为分布式的学习记录存储,记录学习轨迹,共享学习学分。从应用规模和范围来看,区块链在教育领域的应用范围可以小到单个教育机构、学校联盟,大到全国甚至全球性的教育互认互通联盟。
问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

回答

以下是我列出的2020年Java开发者应该学习的技术: 1、DevOps (Docker and Jenkins) 过去的一年,越来越多的公司正在转型DevOps,DevOps非常庞大,需要学习很多工具和原理,但你不需要担心。有大神已经分享了DevOps路线图(https://github.com/kamranahmedse/developer-roadmap,可以按照这个路线图以自己的速度学习和掌握DevOps。 如果你是一个有经验的Java程序员,愿意学习环境管理、自动化和整体改进,你也可以成为DevOps工程师。 2、Java 9 - Java 15 相信现在很多Java开发人员主要使用的Java版本还是以Java 8为主,虽然Java 9 - Java 13已经推出了有一段时间。 但是作为Java程序员,我们可能因为某些原因没办法在线上环境真正的进行JDK的升级,但是花一些时间学习Java 9、Java 10、Java 11、Java 12和 Java 13的新特性还是有必要的。 另外,大家可以重点关注一些关键特性,如GC相关的特性、对编码风格有改变的特性等。还有就是Java的LTS版本(Java 8、Java 11)要重点学习。 还要提醒大家一点,在2020年,Oracle还会推出Java 14 和 Java 15!!!如果你在使用Java 7的话,马上就要被"套圈"了! 3、Spring Framework 5 2017年我们见证了Spring和Java生态系统的许多重大升级,Spring 5.0就是其中之一。Spring 5 的新反应式编程模型、HTTP/2 支持,以及 Spring 通过 Kotlin 对函数式编程的全面支持这些都值得我们好好了解一下。 4、Spring Security 5.0 Spring Security 5.0 提供了许多新功能,并支持 Spring Framework 5.0,总共有 400 多个增强功能和 bug 修复。在Spring Security 5.0.0之前,密码是明文保存,十分不安全。因为这一次发布的是大版本,所以我们决定使用更安全的密码存储方式。Spring Security 5.0.0的主要亮点在于它只需要最小化的JDK 8、反应式安全特性、OAuth 2.0(OIDC)和现代密码存储。 5、Spring Boot 2 Spring Boot 2.0 基于 Spring 5 Framework ,提供了 异步非阻塞 IO 的响应式 Stream 、非堵塞的函数式 Reactive Web 框架 Spring WebFlux等特性。很多使用过SpringBoot的人都知道,使用SpringBoot搭建Web应用真的是又快又好,相信Spring Boot 2会带来更多惊喜。 6、Hadoop、Spark 和 Kafka 另外在2020年Java程序员需要学习的是大数据相关的知识。特别是Apache Spark 和 Kafka两个框架。 如果你也想在2020年学习大数据,也一定绕不开Hadoop生态。 7、Elasticsearch 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选。维基百科、Stack Overflow、Github 都在使用它。 Elasticsearch是一个基于Lucene库的搜索引擎。它提供了一个分布式、支持多租户的全文搜索引擎,具有HTTP Web接口和无模式JSON文档。Elasticsearch是用Java开发的,并在Apache许可证下作为开源软件发布。 8、ServiceMesh 这两年很火,火的一塌糊涂。在2019年,但凡是程序员相关的大会,如果没有讲ServiceMest的专题,那都不好意思开。 所有人都在说 ServiceMesh; 几乎没人知道怎么落地 ServiceMesh; 但是大家都觉得其他人在大力做 ServiceMesh; 所以大家都宣称自己在做 ServiceMesh; 这个号称下一代微服务架构的概念,现在对于大多数人来说根本不知道是啥。只知道很多大厂宣称自己在做,很多大牛在布道。 9、Serverless 无服务器运算(英语:Serverless computing),又被称为功能即服务(Function-as-a-Service,缩写为 FaaS),是云计算的一种模型。以平台即服务(PaaS)为基础,无服务器运算提供一个微型的架构,终端客户不需要部署、配置或管理服务器服务,代码运行所需要的服务器服务皆由云平台来提供。这东西,听上去就很高大上。 2019年,和ServiceMesh一样,所有人都宣称自己在做。但是又很很多人不知道他到底是什么。 10、Kotlin 如果大家有关注Java 13的新特性的话,一定知道推出了字符串文本块的功能,这个功能其实是借鉴的Kotlin,除此之外,最近几年,Java有很多特性都在借鉴Kotlin,相比较于Java,Kotlin更加简洁,而且Kotlin编出来的代码也可以直接通过JVM运行。 Kotlin是一种在Java虚拟机上运行的静态类型编程语言,它也可以被编译成为JavaScript源代码。Kotlin的设计初衷就是用来生产高性能要求的程序的,所以运行起来和Java也是不相上下。Kotlin可以从 JetBrains InteilliJ Idea IDE这个开发工具以插件形式使用。 总结 以上,就是作者总结的建议Java程序员在2020年学习的一些技术,其中有一些是一定要学习的,还有一些是看大家的精力情况酌情考虑。
剑曼红尘 2020-04-07 20:42:52 0 浏览量 回答数 0

问题

OSS+CDN游戏更新服务器部署解决方案

OSS+CDN游戏更新服务器部署解决方案 一、游戏更新方式简介        现在的手游安装有几种方式。一种是安装的时候就把程序和资源安装到本地。另外一种是只安装程序和少量的必要资源,然后在启动的时候再把缺...
nono20011908 2019-12-01 21:07:16 23035 浏览量 回答数 2

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现
剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

Nacos 服务发现提供与其他服务发现产品不太一样的机制以及概念,在这里稍作介绍,下文中的内容都会多次提到这里介绍的概念,因此掌握这些概念,对于用好 Nacos 服务发现至关重要。 不同于 Consul, Eureka, Nacos 的服务发现使用的领域数据模型是服务 - 集群 - 实例这样的三层结构。最上面是服务,注册端(服务发布者)和订阅端(服务消费者)使用服务来与其他服务做区分,服务发现中,服务是必须指定的。集群则是中间一层,一个服务又会划分为多个集群,每个集群都有它的自定义配置,Nacos 提供了一个默认集群和相应的默认配置,在不需要多集群的场景下,可以不用指定集群。最下一层是实例,每个集群又会包含多个实例,这样对服务进行发现时,可以发现多个集群的所有实例,也可以指定集群,来发现特定集群的实例。 环境准备 首先,需要有一个 Nacos Server 部署起来,目前 Nacos 支持单机模式,也支持集群模式,部署文档可以参考 Nacos 快速入门。然后添加 Nacos 客户端最新版本依赖: <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>[latest-version]</version></dependency> 你可以配置从中央仓库直接依赖,也可以将 Nacos 最新源码下载下来,本地构建客户端版本。 Hello World 我们先来进行一个最简单的服务注册与发现。Nacos 支持从客户端注册服务实例和订阅服务,具体步骤如下: 配置 Nacos 客户端 Properties:Properties properties = new Properties();properties.setProperty(PropertyKeyConst.SERVER_ADDR, "127.0.0.1:8848"); 创建 Nacos Naming 客户端:NamingService namingService = NacosFactory.createNamingService(properties); 注册一个实例:namingService.registerInstance("nacos.test.1", InetAddress.getLocalHost().getHostAddress(), 8080); 查找这个服务的实例:System.out.println(namingService.getAllInstances("nacos.test.1")); 至此一个最简单的 Nacos 服务发现的使用已经完成了。这里要对一些细节稍作解释。首先在第一步中,属性 PropertyKeyConst.SERVER_ADDR 表示的是 Nacos 服务端的地址,这个地址的格式为 IP:port,IP:port。对于单机版,只需要指定一个 IP:port。甚至您可以将端口省略,这样将会访问 Nacos 的默认端口 8848。在第二步中,将创建一个 NamingService 实例,客户端将为该实例创建单独的资源空间,包括缓存、线程池以及配置等。Nacos 客户端没有对该实例做单例的限制,请小心维护这个实例,以防新建了多于预期的实例。第三步注册服务中,使用的是最简单的 API 注册方式,只需要传入服务名、IP、端口就可以。第四步是获取服务下的所有实例列表,包括健康和不健康的。 构建自定义实例 在一些场景中,我们希望注册的实例中,有一些能够被分配更多的流量,而另外一些分配较少的流量,或者能够传入一些实例的元信息存储到 Nacos 服务端,例如 IP 所属的应用或者所在的机房,这样在客户端可以根据服务下挂载的实例的元信息,来自定义负载均衡模式。别担心,我们有另外的注册实例接口,让你可以在注册的时候指定实例的属性: /** * Register a instance to service with specified instance properties * * @param serviceName name of service * @param instance instance to register * @throws NacosException / void registerInstance(String serviceName, Instance instance) throws NacosException; 这个方法可以在注册服务的时候,传入一个 Instanc 实例,而在 Instance 实例中,可以设置实例的若干属性: public class Instance { /* * Unique ID of this instance. / private String instanceId; /* * Instance ip / private String ip; /* * Instance port / private int port; /* * Instance weight / private double weight = 1.0D; /* * Instance health status / @JSONField(name = "valid") private boolean healthy = true; /* * Cluster information of instance / @JSONField(serialize = false) private Cluster cluster = new Cluster(); /* * Service information of instance / @JSONField(serialize = false) private Service service; /* * User extended attributes / private Map<String, String> metadata = new HashMap<String, String>(); ....} 其中,InstanceId 是由服务端生成返回给客户端,用于唯一标识该实例。IP、端口是实例的基本属性,除此之外,还有 weight 权重,可以设置该实例所分配流量的多少,这应该也比较好理解,权重越大,实例分配的流量就会越大。healthy 字段代表该实例是否健康,这个值也是由服务端返回给客户端的。cluster 和 service 分别表示该实例对应的集群和服务的一些信息,这些信息会在下面做介绍。最后是实例的元数据,这个元数据一个 String 对 String 的 Map。那么可以用如下代码来注册一个自定义实例: Instance instance = new Instance();instance.setIp(InetAddress.getLocalHost().getHostAddress());instance.setPort(8080);instance.setWeight(100);Map<String, String> metadata = new HashMap<String, String>(16);metadata.put("app", "nacos");metadata.put("site", "beijing");instance.setMetadata(metadata);namingService.registerInstance("nacos.test.1", instance); 构建自定义集群 Nacos 引入了集群的概念,在服务这个维度下面,可以对服务下的实例列表再做个划分。这在阿里巴巴内部非常普遍。一个典型的场景是这个服务下的实例,需要配置多种健康检查方式,有一些实例使用 TCP 的健康检查方式,另外一些使用 HTTP 的健康检查方式。另一个场景是,这个服务下挂载的机器分属不同的环境,我们希望能够在某些情况下(包括演练)将某个环境的流量全部切走,这样可以通过配置一个环境属于一个集群,来做到一次性切流。 在客户端构建自定义集群,有一些陷阱需要小心。当前我们只有注册实例的接口,实例内部的 cluster 字段可以配置集群的属性。但是多个实例之间如果配置了不同的集群属性,这时候会发生什么呢?Nacos 只会接受第一次注册该集群所传入的集群属性,也就是说,先注册的实例,获得优先权,将它对应的集群信息注册到 Nacos 服务端。只有 Nacos 服务端已经存在该集群的配置,后续的注册请求里的集群信息,都会被忽略。为了确保你的应用保持预期的行为,请务必让同一个集群下的实例使用相同的集群配置。 下面来看看可以为集群定义哪些配置: public class Cluster { /* * Name of belonging service / private String serviceName; /* * Name of cluster / private String name = ""; /* * Health check config of this cluster / private AbstractHealthChecker healthChecker = new AbstractHealthChecker.Tcp(); /* * Default registered port for instances in this cluster. / private int defaultPort = 80; /* * Default health check port of instances in this cluster. / private int defaultCheckPort = 80; /* * Whether or not use instance port to do health check. / private boolean useIPPort4Check = true; private Map<String, String> metadata = new HashMap<String, String>(); ...} 首先是集群对应的服务名,用来表示该集群所属的服务;然后是集群的名字、健康检查方式、默认的端口、默认的健康检查端口以及是否使用是的端口做健康检查。我们先来说简单的,默认端口表示注册时实例默认的端口,这个在客户端并没有体现,但是当使用 API 注册实例的时候,端口是可以不传入的,此时就会用这个默认端口作为实例的端口。然后是默认的健康检查端口,当健康检查方式中没有配置端口时,就会用这个端口来和实例通信,进行健康检查。下一个属性是是否使用实例端口做健康检查,如果设为 true,则会使用实例注册的端口来和实例进行通信。最后一个属性是集群的元数据,Nacos 支持多个维度的元数据,实例支持,集群支持,下面介绍的服务属性也支持。 健康检查方式,客户端心跳是一种模式,由客户端主动上报健康状态。服务端检测是另外一种模式,Nacos 目前支持三种:TCP、HTTP 和 MYSQL。TCP 方式会从 Nacos 服务端建立一个连接到实例,如果连接建立成功,则表示该实例健康。HTTP 方式则会从 Nacos 服务端想实例发起一个 HTTP 请求,可以配置的属性有访问的相对路径,访问的 HTTP 头部,这个头部使用竖线进行分割,以及预期的请求返回码,默认为 200: private String path = "";private String headers = "";private int expectedResponseCode = 200; MYSQL 健康检查方式,则可以让 Nacos 往实例执行一条 MySQL 命令,可以配置的属性有用户名、密码和执行的命令。执行结果如果不抛异常,则表示实例健康: private String user;private String pwd;private String cmd; 构建自定义服务 同理,服务也可能需要自定义的配置,Nacos 的服务随着实例的注册而存在,并随着所有实例的注销而消亡。目前除了使用 HTTP API 可以修改服务的属性外(这将在未来的篇章中进行介绍),就只能使用注册实例时传入服务属性来进行服务的自定义配置。这里的服务与 Consul 或者 Eureka 不同,Consul 与 Eureka 的服务其实就是指的实例,而每个实例有一个服务名,通过这个服务名来获取相同服务名下的实例列表,服务本身并不是一个数据实体。在真正的生产环境中,我们认为服务本身也是具有数据存储需求的,例如作用于服务下所有实例的配置、权限控制等。虽然有一些配置可以放到实例级别,例如健康检查是否开启。但是当服务的规模成千上万后,想要整体修改这些实例的健康检查开关,就是一个繁重的运维操作。另一些配置,例如下文会提到的健康保护阈值,是一定是一个服务只有一个唯一的值的,多个值将会造成逻辑上的冲突。 /* * Service name / private String name; /* * Protect threshold / private float protectThreshold = 0.0F; /* * Application name of this service / private String app; /* * Service group which is meant to classify services into different sets. / private String group; /* * Health check mode. / private String healthCheckMode; private Map<String, String> metadata = new HashMap<String, String>(); 服务的属性存储在 Service 类中,自上而下,依次是服务的名称、服务的健康保护阈值、服务的应用名、服务的分组、服务的健康检查模式以及服务的元数据。相关概念这里不再做一一陈述,你可以参考 Nacos 官网 概念介绍。这里要提到的是服务的健康保护阈值,在阿里巴巴内部,这个值被广泛的设置和调优。在这里对该属性的初衷做一个简单的介绍。分布式服务场景下的一个问题是在部分实例不健康的情况下,是否能够将流所有流量引向其他健康实例?在一些情况下,这可能造成雪崩效应。即本来健康的实例被多余的流量冲击,也变得不健康,然后导致健康的实例越来越少,最后整个服务崩溃。此时可以使用这个健康保护阈值,当健康实例与所有实例的比例小于这个值的时候,则认为所有实例都是健康的,这样虽然部分流量流向了不健康的实例,但是剩余健康的实例还是能够正常访问的。 服务发现 Nacos 的服务发现,有主动拉取和推送两种模式,这与一般的服务发现架构相同。在拉取方式中,提供了三个方法,一个是查询所有注册的实例,一个是只查询健康且上线的实例,还有一个是获取一个健康且上线的实例。一般情况下,订阅端并不关心不健康的实例或者权重设为 0 的实例,但是也不排除一些场景下,有一些运维或者管理的场景需要拿到所有的实例。目前的版本同时还支持根据服务端设定的负载均衡策略,来查询单个可用的实例。就好像 DNS 解析一样,虽然每次都返回一个后端 IP,但是整体可以保证域名挂载的所有 IP 会按照一定的策略都能够被客户端解析到。 /* * Get all instances of a service * * @param serviceName name of service * @return A list of instance * @throws NacosException /List<Instance> getAllInstances(String serviceName) throws NacosException;/* * Get qualified instances of service * * @param serviceName name of service * @param healthy a flag to indicate returning healthy or unhealthy instances * @return A qualified list of instance * @throws NacosException /List<Instance> selectInstances(String serviceName, boolean healthy) throws NacosException;/* * Select one healthy instance of service using predefined load balance strategy * * @param serviceName name of service * @return qualified instance * @throws NacosException /Instance selectOneHealthyInstance(String serviceName) throws NacosException; 前两个查询方法会返回所有实例的列表,这允许用户通过额外的工作,将实例的权重或者元数据运用到负载均衡中。对于一般的微服务场景,针对每个实例轮询,这样已经足够了。事实上,不管是在 Eureka 还是 Consul 里,其原生客户端都是只负责服务的发现,并不支持负载均衡。这样就需要第三方的 ribbon 或者 fabio 来完成负载均衡工作,此时它们的负载均衡,是完全放在客户端的。 Nacos 也会支持客户端侧的负载均衡,并支持用户扩展的负载均衡策略。不过在阿里巴巴内部,通常只需要由服务端来配置负载均衡策略,所有的调用端不区分业务的使用同一套负载均衡策略。因为实际上,调用端往往并不关心自身访问的服务的流量分配,而只需要一个可用的服务节点就可以了。而服务提供端,则由于其部署规模很大和部署环境的复杂,需要对环境信息敏感的流量分配以及对流量的绝对控制权。这时,往往需要提供端审慎的配置好统一的负载均衡策略,来保证所有订阅端按照这个策略来进行访问。 除了主动查询实例列表,Nacos 还提供订阅模式来感知服务下实例列表的变化,包括服务配置或者实例配置的变化。可以使用下面的接口来进行订阅或者取消订阅: /* * Subscribe service to receive events of instances alteration * * @param serviceName name of service * @param listener event listener * @throws NacosException /void subscribe(String serviceName, EventListener listener) throws NacosException;/* * Unsubscribe event listener of service * * @param serviceName name of service * @param listener event listener * @throws NacosException */void unsubscribe(String serviceName, EventListener listener) throws NacosException; 控制台使用 Nacos 0.3.0 版本上线了控制台,作为生产环境基本的运维工具,服务发现也通过控制台释放了部分的运维能力。虽然控制台承担的是运维为主的工作,但是开发人员也需要通过控制台来查看当前服务的注册状态和健康状态等,服务发现的控制台页面介绍可以参考 https://nacos.io/en-us/blog/discovery-console.html。虽然这篇文章中的一些页面通过社区的反馈而做了细微的调整,但是通过这篇文章应该可以掌握怎么使用服务发现的控制台了。控制台的启动方式也很简单,将 Nacos 安装包下载安装启动(安装教程)之后,直接访问:http://localhost:8848/nacos/index.html 即可打开最新的控制台界面。 小 结 Nacos 目前的版本,集成了服务发现和配置管理的基本能力以及部分高级特性。作为最小生产可用版本,Nacos 未来还会继续开放新特性,结合 SpringCloud、K8S、Dubbo 等生态,为开发者提供极致易用和稳定的服务管理和配置管理能力。在可预期的几个版本内,将会支持元数据的管理及 DNS 的服务发现。争取将使用 Nacos,作为服务发现和配置管理选型的最佳实践。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:00:16 0 浏览量 回答数 0

问题

区域选择帮助

  当前可选区域: 华东杭州节点        华东青岛节点   请您慎重选择区域,不同区域之间云服务器、RDS、OSS内网不互通,SLB不支持跨区域部署,请查看针对产品·服...
fanyue88888 2019-12-01 21:01:00 199572 浏览量 回答数 1

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT