• 关于

    无状态计算什么意思

    的搜索结果

问题

【算法】五分钟算法小知识:动态规划详解

游客ih62co2qqq5ww 2020-05-07 14:48:09 25 浏览量 回答数 1

问题

个推推送Android问题检测 - 安卓报错

montos 2020-06-01 12:47:32 0 浏览量 回答数 1

问题

个推推送Android问题检测 :配置报错 

kun坤 2020-05-31 21:38:58 1 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0

回答

关于线程和线程池的学习,我们可以从以下几个方面入手: 第一,什么是线程,线程和进程的区别是什么 第二,线程中的基本概念,线程的生命周期 第三,单线程和多线程 第四,线程池的原理解析 第五,常见的几种线程池的特点以及各自的应用场景 一、 线程,程序执行流的最小执行单位,是行程中的实际运作单位,经常容易和进程这个概念混淆。那么,线程和进程究竟有什么区别呢?首先,进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程,而线程,是运行中的实际的任务执行者。可以说,进程中包含了多个可以同时运行的线程。 二、 线程的生命周期,线程的生命周期可以利用以下的图解来更好的理解: 第一步,是用new Thread()的方法新建一个线程,在线程创建完成之后,线程就进入了就绪(Runnable)状态,此时创建出来的线程进入抢占CPU资源的状态,当线程抢到了CPU的执行权之后,线程就进入了运行状态(Running),当该线程的任务执行完成之后或者是非常态的调用的stop()方法之后,线程就进入了死亡状态。而我们在图解中可以看出,线程还具有一个则色的过程,这是怎么回事呢?当面对以下几种情况的时候,容易造成线程阻塞,第一种,当线程主动调用了sleep()方法时,线程会进入则阻塞状态,除此之外,当线程中主动调用了阻塞时的IO方法时,这个方法有一个返回参数,当参数返回之前,线程也会进入阻塞状态,还有一种情况,当线程进入正在等待某个通知时,会进入阻塞状态。那么,为什么会有阻塞状态出现呢?我们都知道,CPU的资源是十分宝贵的,所以,当线程正在进行某种不确定时长的任务时,Java就会收回CPU的执行权,从而合理应用CPU的资源。我们根据图可以看出,线程在阻塞过程结束之后,会重新进入就绪状态,重新抢夺CPU资源。这时候,我们可能会产生一个疑问,如何跳出阻塞过程呢?又以上几种可能造成线程阻塞的情况来看,都是存在一个时间限制的,当sleep()方法的睡眠时长过去后,线程就自动跳出了阻塞状态,第二种则是在返回了一个参数之后,在获取到了等待的通知时,就自动跳出了线程的阻塞过程 三、 什么是单线程和多线程? 单线程,顾名思义即是只有一条线程在执行任务,这种情况在我们日常的工作学习中很少遇到,所以我们只是简单做一下了解 多线程,创建多条线程同时执行任务,这种方式在我们的日常生活中比较常见。但是,在多线程的使用过程中,还有许多需要我们了解的概念。比如,在理解上并行和并发的区别,以及在实际应用的过程中多线程的安全问题,对此,我们需要进行详细的了解。 并行和并发:在我们看来,都是可以同时执行多种任务,那么,到底他们二者有什么区别呢? 并发,从宏观方面来说,并发就是同时进行多种时间,实际上,这几种时间,并不是同时进行的,而是交替进行的,而由于CPU的运算速度非常的快,会造成我们的一种错觉,就是在同一时间内进行了多种事情 而并发,则是真正意义上的同时进行多种事情。这种只可以在多核CPU的基础下完成。 还有就是多线程的安全问题?为什么会造成多线程的安全问题呢?我们可以想象一下,如果多个线程同时执行一个任务,name意味着他们共享同一种资源,由于线程CPU的资源不一定可以被谁抢占到,这是,第一条线程先抢占到CPU资源,他刚刚进行了第一次操作,而此时第二条线程抢占到了CPU的资源,name,共享资源还来不及发生变化,就同时有两条数据使用了同一条资源,具体请参考多线程买票问题。这个问题我们应该如何解决那?   有造成问题的原因我们可以看出,这个问题主要的矛盾在于,CPU的使用权抢占和资源的共享发生了冲突,解决时,我们只需要让一条线程战歌了CPU的资源时,阻止第二条线程同时抢占CPU的执行权,在代码中,我们只需要在方法中使用同步代码块即可。在这里,同步代码块不多进行赘述,可以自行了解。 四,线程池 又以上介绍我们可以看出,在一个应用程序中,我们需要多次使用线程,也就意味着,我们需要多次创建并销毁线程。而创建并销毁线程的过程势必会消耗内存。而在Java中,内存资源是及其宝贵的,所以,我们就提出了线程池的概念。 线程池:Java中开辟出了一种管理线程的概念,这个概念叫做线程池,从概念以及应用场景中,我们可以看出,线程池的好处,就是可以方便的管理线程,也可以减少内存的消耗。 那么,我们应该如何创建一个线程池那?Java中已经提供了创建线程池的一个类:Executor 而我们创建时,一般使用它的子类:ThreadPoolExecutor. public ThreadPoolExecutor(int corePoolSize,                                int maximumPoolSize,                                long keepAliveTime,                                TimeUnit unit,                                BlockingQueue workQueue,                                ThreadFactory threadFactory,                                RejectedExecutionHandler handler)这是其中最重要的一个构造方法,这个方法决定了创建出来的线程池的各种属性,下面依靠一张图来更好的理解线程池和这几个参数: 又图中,我们可以看出,线程池中的corePoolSize就是线程池中的核心线程数量,这几个核心线程,只是在没有用的时候,也不会被回收,maximumPoolSize就是线程池中可以容纳的最大线程的数量,而keepAliveTime,就是线程池中除了核心线程之外的其他的最长可以保留的时间,因为在线程池中,除了核心线程即使在无任务的情况下也不能被清除,其余的都是有存活时间的,意思就是非核心线程可以保留的最长的空闲时间,而util,就是计算这个时间的一个单位,workQueue,就是等待队列,任务可以储存在任务队列中等待被执行,执行的是FIFIO原则(先进先出)。threadFactory,就是创建线程的线程工厂,最后一个handler,是一种拒绝策略,我们可以在任务满了知乎,拒绝执行某些任务。 线程池的执行流程又是怎样的呢? 有图我们可以看出,任务进来时,首先执行判断,判断核心线程是否处于空闲状态,如果不是,核心线程就先就执行任务,如果核心线程已满,则判断任务队列是否有地方存放该任务,若果有,就将任务保存在任务队列中,等待执行,如果满了,在判断最大可容纳的线程数,如果没有超出这个数量,就开创非核心线程执行任务,如果超出了,就调用handler实现拒绝策略。 handler的拒绝策略: 有四种:第一种AbortPolicy:不执行新任务,直接抛出异常,提示线程池已满              第二种DisCardPolicy:不执行新任务,也不抛出异常              第三种DisCardOldSetPolicy:将消息队列中的第一个任务替换为当前新进来的任务执行              第四种CallerRunsPolicy:直接调用execute来执行当前任务 五,四种常见的线程池: CachedThreadPool:可缓存的线程池,该线程池中没有核心线程,非核心线程的数量为Integer.max_value,就是无限大,当有需要时创建线程来执行任务,没有需要时回收线程,适用于耗时少,任务量大的情况。 SecudleThreadPool:周期性执行任务的线程池,按照某种特定的计划执行线程中的任务,有核心线程,但也有非核心线程,非核心线程的大小也为无限大。适用于执行周期性的任务。 SingleThreadPool:只有一条线程来执行任务,适用于有顺序的任务的应用场景。 FixedThreadPool:定长的线程池,有核心线程,核心线程的即为最大的线程数量,没有非核心线程 作者:weixin_40271838 来源:CSDN 原文:https://blog.csdn.net/weixin_40271838/article/details/79998327 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:56:43 0 浏览量 回答数 0

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

问题

个推推送Android问题检测:报错

kun坤 2020-06-13 23:53:00 0 浏览量 回答数 1

回答

说到区块链,我们必然会谈及它的共识机制。不了解区块链的共识机制,就无法理解区块链的真正意义。那么,今日份的区块链的共识机制了解一下? 共识机制是什么? 什么是共识?直取它的字面意思,就是"共同的认识". 人与人是不同的,这种不同不仅体现在身材、长相、能力,更体现在文化、观点、想法、利益诉求等等方面。 共识,简而言之,就是一个群体的成员在某一方面达成的一致意见。 我们了解到,信任是社会运转中的一大痛点,银行有自己的信用体系,过去的金融体系服务于只服务于极少的企业家,因为建立信用体系耗资巨大。后来支付宝有了芝麻信用,信用已经关系到生活的很多方面,信用卡额度、花呗额度,芝麻信用高出国还可以免签。我们正享受着信用给我们带来的便捷。 区块链本质是去中心化,去中心化的核心是共识机制,区块链上的共识机制主要解决由谁来构造区块,以及如何维护区块链统一的问题。 区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质: 1)一致性:所有诚实节点保存的区块链的前缀部分完全相同。 2)有效性:由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。 区块链的自信任主要体现于分布于区块链中的用户无须信任交易的另一方,也无须信任一个中心化的机构,只需要信任区块链协议下的软件系统即可实现交易。 共识机制是什么?PoW 、PoS 、DPOW都是什么意思? 共识机制的必要性? 分布式系统中,多个主机通过异步通信方式组成网络集群。在这样的一个异步系统中,需要主机之间进行状态复制,以保证每个主机达成一致的状态共识。错误信息可能出现在异步系统内并不断传播,因此需要在默认不可靠的异步网络中定义容错协议,以确保各主机达成安全可靠的状态共识,这就是共识机制诞生的必要性。 这种自信任的前提是区块链的共识机制(consensus),即在一个互不信任的市场中,要想使各节点达成一致的充分必要条件是每个节点出于对自身利益最大化的考虑,都会自发、诚实地遵守协议中预先设定的规则,判断每一笔记录的真实性,最终将判断为真的记录记入区块链之中。attachments-2018-08-9yY7VRHa5b738e3d96021.jpg 换句话说,如果各节点具有各自独立的利益并互相竞争,则这些节点几乎不可能合谋欺骗你,而当节点们在网络中拥有公共信誉时,这一点体现得尤为明显。区块链技术正是运用一套基于共识的数学算法,在机器之间建立"信任"网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。 当今区块链的几种共识机制介绍 区块链上的共识机制有多种,但任何一种都不是完美无缺,或者说适用于所有应用场景的。 PoW 工作量证明 整个系统中每个节点为整个系统提供计算能力(简称算力),通过一个竞争机制,让计算工作完成最出色的节点获得系统的奖励,即完成新生成货币的分配,简单理解就是多劳多得,bitcoin、LTC等货币型区块链就应用POW机制。 优点 完全去中心化节点自由进出,算法简单,容易实现破坏系统花费的成本巨大,只要网络破坏者的算力不超过网络总算力的50%,网络的交易状态就能达成一致 缺点 浪费能源,这是最大的缺点区块的确认时间难以缩短,如bitcoin每秒只能做7笔交易,不适合商业应用新的区块链必须找到一种不同的散列算法,否则就会面临bitcoin的算力攻击对节点的性能网络环境要求高容易产生分叉,需要等待多个确认无法达成最终一致性 PoS 权益证明 也称股权证明,类似于你把财产存在银行,这种模式会根据你持有加密货币的数量和时间,分配给你相应的利息。 优点 对节点性能要求低,达成共识时间短 缺点 没有最终一致性,需要检查点机制来弥补最终性 DPOW 委托股权证明 DPOW是 PoS 的进化方案,在常规 PoW和 PoS 中,任何一个新加入的区块,都需要被整个网络所有节点做确认,非常影响效率。 DPoS则类似于现代董事会的投票机制,通过选举代表来进行投票和决策。被选举出的n个记账节点来做新区块的创建、验证、签名和相互监督,这样就极大地减少了区块创建和确认所需要消耗的时间和算力成本。 优点 大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证 缺点 牺牲了去中心化的概念,不适合公有链 PBFT 实用拜占庭容错 实用拜占庭容错机制是一种采用"许可投票、少数服从多数"来选举领导者并进行记账的共识机制,该共识机制允许拜占庭容错,允许强监督节点参与,具备权限分级能力,性能更高,耗能更低,而且每轮记账都会由全网节点共同选举领导者,允许33%的节点作恶,容错率为33%.实用拜占庭容错特别适合联盟链的应用场景。 优点 会背离中心化,加密货币的存在及奖励机制会产生马太效应,让社区中的穷者更穷,富者更富共识效率高,可实现高频交易 缺点 当系统只剩下33%的节点运行时,系统会停止运行 dBFT 授权拜占庭容错 这种机制是用权益来选出记账人,然后记账人之间通过拜占庭容错算法达成共识。授权拜占庭容错机制最核心的一点,就是最大限度地确保系统的最终性,使区块链能够适用于真正的金融应用场景。 优点 专业化的记账人可以容忍任何类型的错误记账由多人协同完成,每一个区块都有最终性,不会分叉算法的可靠性有严格的数学证明 缺点 当三分之一或以上记账人停止工作后,系统将无法提供服务当三分之一或以上记账人联合作恶,可能会使系统出现分叉 Pool 验证池 基于传统的分布式一致性技术,加上数据验证机制。 优点 不需要加密货币也可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础上,实现秒级共识验证。 缺点 去中心化程度不如bitcoin,更适合多方参与的多中心商业模式。 Paxos 这是一种传统的分布式一致性算法,是一种基于选举领导者的共识机制。领导者节点拥有绝对权限,并允许强监督节点参与,其性能高,资源消耗低。所有节点一般有线下准入机制,但选举过程中不允许有作恶节点,不具备容错性。 Paxos算法中将节点分为三种类型: proposer:提出一个提案,等待大家批准为结案。往往是客户端担任该角色 acceptor:负责对提案进行投票。往往是服务端担任该角色 learner:被告知结案结果,并与之统一,不参与投票过程。可能为客户端或服务端 Paxos 能保证在超过50%的正常节点存在时,系统能达成共识。 瑞波共识机制 瑞波共识算法使一组节点能够基于特殊节点列表形成共识,初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由该俱乐部51%的会员投票通过。共识遵循这些核心成员的"51%权利",外部人员则没有影响力。由于该俱乐部由中心化开始,它将一直是中心化的,而如果它开始腐化,股东们什么也做不了。与bitcoin及Peercoin一样,瑞波系统将股东们与其投票权隔开,因此,它比其他系统更中心化。 Peercoin Peercoin(点点币,PPC),混合了POW工作量证明及POS权益证明方式,其中POW主要用于发行货币,未来预计随着挖矿难度上升,产量降低,系统安全主要由POS维护。 在区块链网络中,由于应用场景的不同,所设计的目标各异,不同的区块链系统采用了不同的共识算法。每种共识算法都不是完美的,都有其优点和局限性。 区块链解决了在不可信信道上传输可信信息、价值转移的问题,而共识机制解决了区块链如何分布式场景下达成一致性的问题。 虽然区块链目前还处于发展的早期,行业发展还面临着一些阻碍,但社会已经足够多地认识到区块链的价值,区块链发展的脚步绝不会停滞不前,行业发展也定会找到突破阻碍的方法。

问问小秘 2019-12-02 03:07:12 0 浏览量 回答数 0

回答

更换服务器~100个是单服务器最大的负荷了你用的是镶嵌式的,要选择服务器机组的那种~刀片式服务器~然后oracl数据库支持分开安装。同步处理~ 你肯定买的是架式服务器~######装ORACLE服务器是刀片式的,6核至强 24G的内存 应该不是服务器瓶颈######oracl装在独立的一台服务器上的话,只支持小形企业和地、市级企业运行 你说的情况,可以理解你的数据量非常庞大,,有可能是省、国家级的数据量了~~ 让你单位给你单独开个服务器房间,更换服务器机柜然后购买刀片式服务器做服务器阵列机组~######数据量倒不会太大,一天1G不到,问题是很多存储过程的逻辑很复杂,一条线程调用存储过程,要等待很久才会返回,直接导致工作线程速度很慢,数据进入速度太快,工作异常状态频繁出现。######必须要实时的存入数据库吗?不能先缓存到服务器,然后让服务器慢慢去处理吗?或者直接将数据记入日志,然后sqlload?######回复 @xinzaibing : 我想到一个蛋疼的方式:数据写文件,文件内容定期入库,程序定期读取数据库计算的结果缓存到内存中。不知道你具体需求,瞎琢磨一个。######回复 @asdfsx : 公司领导一致认为内存不可靠,断电、程序异常什么的...存在内存的数据就没了...真是蛋疼啊######回复 @xinzaibing : 如果数据量不大的话,还有一个方案就是都保存在内存里,然后定时把内存里的结果同步到数据库里。数据库的逻辑挪到程序里..........这个方案比较累啊。另外就是缓存可以加个优先级高低的判断。######目前要求是必须要实时入库,采取写日志文件的方法也可以。 这些数据有一个特点,在某一个时刻会有一个突然出现的峰值,然后又慢慢变少,但是这个时间是不固定的,由于只实用了一条双缓冲队列,所有需要紧急处理的数据和非紧急处理的数据都在队列里,而如果遇到非紧急数据,处理了很长的时间,就直接导致后面的紧急数据失效了...或者导致嵌入式程序判断服务端未收到数据,进而采取重发,导致一条队列里有非常多重复的数据。######我可能会使用数据写入日志文件,然后定时将日志入库的办法操作######大概意思可能是多线程对数据库表的操作导致数据表锁定,性能损失在内耗上了。。那数据表采用行级锁呢?(这样会增大系统开销)我是菜鸟,求教  ######回复 @xinzaibing : 这个应该是属于最初的设计问题,hohoho######回复 @asdfsx : 目前我也在往这方面考虑,如果数据分类处理。那就得大改结构了...唉######回复 @xinzaibing : 建议根据上传的不同数据进行不同的处理,不要一股脑的都放在缓存中,如果是心跳的话,应该立即响应,如果是要处理的数据的话,才需要进行缓存等待处理######ORACLE默认就是行级锁的应该.. 主要是数据的写入速度远远小于数据上传的速度,导致了缓存溢出,紧急数据不能得到及时处理,大量数据出现超时失效,无法对嵌入式的采集器程序作出及时的心跳相应和其他回复(因为都在队列中,无法处理,无心跳的话嵌入式采集器会误认为服务器断线)。最终导致单台服务器接入数据的嵌入式设备的数量太少,不满足需求。######去年刚毕业,由于公司小,一个人搞后台,压力太大啊...大家指指招呗~ @中山野鬼######今天到图书馆看了一本书《让Orcale跑的更快点》,上面说可以从如下几个方面优化: 数据库方面:建适当的索引,固定长度;查询条件比较尽量简化;不同的表放在不同的磁盘里…… 服务层:增大缓存,(有没有数据库连接池不知道你能用上不) 软件层:对Java使用PaperStatement 囫囵吞枣就记得这么多了。。。哭~~######非常感谢...我去看看这本书 :)######我不清楚你的数据采集的内容是什么。不过看的出,对实时性要求高。换我,基本上就一个思路。 1、做个前段服务器,什么事情都不干,只进行数据的压缩。然后所有数据库和计算操作,放到后端。 至于并发,你这种 1W=100台服务器的方式治标不治本。######@中山野鬼 是说对数据进行预处理,提取有效内容?还是就是zip?######回复 @asdfsx : 不一样的。而是数据压缩。采样数据中间,信息密度不会太大的。######老鬼的思路有点像我说的那个数据写日志文件,或者内存缓存定时入库...........都被否定了啊######@xinzaibing 还有一个建议,上传的数据加一个验证,如果上传的数据已经插入缓存,就不要再次插入了。无脑插入插到崩也不是什么好主意啊######回复 @asdfsx : 要回复的,要处理成功后才回复,存库失败或者某些异常导致服务端崩溃重启,就不进行回复,客户端会持续地进行重发,重发到一定次数后,存本地,等恢复正常后发送存本地的数据

kun坤 2020-06-09 11:56:38 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

1.字符串转义序列转义字符 描述(在行尾时) 续行符\ 反斜杠符号' 单引号" 双引号a 响铃b 退格(Backspace)e 转义000 空n 换行v 纵向制表符t 横向制表符r 回车f 换页oyy 八进制数yy代表的字符,例如:o12代表换行xyy 十进制数yy代表的字符,例如:x0a代表换行other 其它的字符以普通格式输出 2.字符串格式化 3.操作符 一、算术运算符 注意: 双斜杠 // 除法总是向下取整。 从符点数到整数的转换可能会舍入也可能截断,建议使用math.floor()和math.ceil()明确定义的转换。 Python定义pow(0, 0)和0 ** 0等于1。 二、比较运算符 运算符 描述< 小于<= 小于或等于 大于= 大于或等于== 等于 != 不等于is 判断两个标识符是不是引用自一个对象is not 判断两个标识符是不是引用自不同对象注意: 八个比较运算符优先级相同。 Python允许x < y <= z这样的链式比较,它相当于x < y and y <= z。 复数不能进行大小比较,只能比较是否相等。 三、逻辑运算符 运算符 描述 备注x or y if x is false, then y, elsex x andy if x is false, then x, elsey not x if x is false, then True,elseFalse 注意: or是个短路运算符,它只有在第一个运算数为False时才会计算第二个运算数的值。 and也是个短路运算符,它只有在第一个运算数为True时才会计算第二个运算数的值。 not的优先级比其他类型的运算符低,所以not a == b相当于not (a == b),而 a == not b是错误的。 四、位运算符 运算符 描述 备注x | y 按位或运算符 x ^ y 按位异或运算符 x & y 按位与运算符 x << n 左移动运算符 x >> n 右移动运算符 ~x 按位取反运算符 五、赋值运算符 复合赋值运算符与算术运算符是一一对应的: 六、成员运算符 Python提供了成员运算符,测试一个元素是否在一个序列(Sequence)中。 运算符 描述in 如果在指定的序列中找到值返回True,否则返回False。not in 如果在指定的序列中没有找到值返回True,否则返回False。 4.关键字总结 Python中的关键字包括如下: and del from not while as elif global or with assert else if pass yield break except import print class exec in raise continue finally is return def for lambda try你想看看有哪些关键字?OK,打开一个终端,就像这样~ long@zhouyl:~$ pythonPython 2.7.3 (default, Jan 2 2013, 16:53:07) [GCC 4.7.2] on linux2Type "help", "copyright", "credits" or "license" for more information. import keywordkeyword.kwlist ['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'while', 'with', 'yield'] ============================== 华丽的 正文分隔符 ======================================== 看到这些关键字你还能记得多少?你不妨自己一个一个对照想想它的用法,下面是我总结的,我根据前面的学习笔记将上述关键字分为以下几类: 1.判断、循环 对于Python的循环及判断主要包括这些关键字: if elif else for while break continue and or is not in 这几个关键字在前面介绍 if 语法、while语法、for语法以及and...or语法中已有介绍,下面再一笔带过: 1.1 if 语法 if语法与C语言、shell脚本之下的非常类似,最大的区别就是冒号以及严格的缩进,当然这两点也是Python区别于其他语言的地方: if condition1: do something elif condition2: do another thing else: also do something 1.2 while 语法 Python的while语法区别于C、shell下的while除了冒号及缩进之外,还有一点就是while可以携带一个可选的else语句: while condition: do something else: do something 注:else语句是可选的,但是使用while语句时一定要注意判断语句可以跳出! 1.3 for 语法 与while类似,Python的for循环也包括一个可选的else语句(跳出for循环时执行,但是如果是从break语句跳出则不执行else语句块中的代码!),而且for 加上 关键字in就组成了最常见的列表解析用法(以后会写个专门的博客)。 下面是for的一般用法: for i in range(1,10,2): do something if condition: break else: do something for的列表解析用法: for items in list: print items 1.4 and...or 语法 Python的and/or操作与其他语言不同的是它的返回值是参与判断的两个值之一,所以我们可以通过这个特性来实现Python下的 a ? b : c ! 有C语言基础的知道 “ a ? b : c ! ” 语法是判断 a,如果正确则执行b,否则执行 c! 而Python下我们可以这么用:“ a and b or c ”(此方法中必须保证b必须是True值),python自左向右执行此句,先判断a and b :如果a是True值,a and b语句仍需要执行b,而此时b是True值!所以a and b的值是b,而此时a and b or c就变成了b or c,因b是True值,所以b or c的结果也是b;如果a是False值,a and b语句的结果就是a,此时 a and b or c就转化为a or c,因为此时a是 False值,所以不管c是True 还是Flase,a or c的结果就是c!!!捋通逻辑的话,a and b or c 是不是就是Python下的a ? b : c ! 用法? 1.5 is ,not is 和 is not 是Python下判断同一性的关键字,通常用来判断 是 True 、False或者None(Python下的NULL)! 比如 if alue is True : ... (不记得本节的童鞋罚复习:python 学习笔记 2 -- 判断语句) 2.函数、模块、类 对于Python的函数及模块主要包括这些关键字: from import as def pass lambda return class 那么你还能记得它们么?下面简单介绍一下: 2.1 模块 Python的编程通常大量使用标准库中的模块,使用方法就是使用import 、from以及as 关键字。 比如: import sys # 导入sys模块 from sys import argv # 从sys模块中导入argv ,这个在前面介绍脚本传参数时使用到 import cPickle as p # 将cPickle模块导入并在此将它简单命名为p,此后直接可以使用p替代cPickle模块原名,这个在介绍文件输入输出时的存储器中使用到 2.2 函数 Python中定义函数时使用到def关键字,如果你当前不想写入真实的函数操作,可以使用pass关键字指代不做任何操作: def JustAFunction: pass 当然,在需要给函数返回值时就用到了return关键字,这里简单提一下Python下的函数返回值可以是多个(接收返回值时用相应数量的变量接收!)! 此外Python下有个神奇的Lambda函数,它允许你定义单行的最小函数,这是从Lisp中借用来的,可以用在任何需要函数的地方。比如: g = lambda x : x*2 # 定义一个Lambda函数用来计算参数的2倍并返回! print g(2) # 使用时使用lambda函数返回的变量作为这个函数的函数名,括号中带入相应参数即可! (不记得本节的童鞋罚复习:python 学习笔记 4 -- 函数篇) 3.异常 对于Python的异常主要包括这些关键字: try except finally raise 异常这一节还是比较简单的,将可能出现的异常放在 try: 后面的语句块中,使用except关键字捕获一定的异常并在接下来的语句块中做相应操作,而finally中接的是无论出现什么异常总在执行最后做finally: 后面的语句块(比如关闭文件等必要的操作!) raise关键字是在一定的情况下引发异常,通常结合自定义的异常类型使用。 (不记得本节的童鞋罚复习:python 学习笔记 6 -- 异常处理) 4.其他 上面的三类过后,还剩下这些关键字: print del global with assert yield exec 首先print 在前面的笔记或者任何地方你都能见到,所以还是比较熟悉的,此处就不多介绍了!del 关键字在前面的笔记中已有所涉及,比如删除列表中的某项,我们使用 “ del mylist[0] ” 可能这些剩下来的关键字你比较陌生,所以下面来介绍一下: 4.1.global 关键字 当你在函数定义内声明变量的时候,它们与函数外具有相同名称的其他变量没有任何关系,即变量名称对于函数来说是 局部 的。这称为变量的 作用域 。所有变量的作用域是它们被定义的块,从它们的名称被定义的那点开始。 eg. ? 1 2 3 4 5 6 7 8 9 10 11 !/usr/bin/python Filename: func_local.py def func(x): print'x is', x x = 2 print'Changed local x to', x x = 50 func(x) print'x is still', x 运行的结果是这样的:? 1 2 3 4 $ python func_local.py x is 50 # 运行func函数时,先打印x的值,此时带的值是作为参数带入的外部定义的50,所以能正常打印 x=50 Changed local x to 2 # 在func函数中将x赋2,并打印 x is still 50 # 运行完func函数,打印x的值,此时x的值仍然是之前赋给的50,而不是func函数中修改过的2,因为在函数中修改的只是函数内的局部变量 那么为什么我们要在这提到局部变量呢?bingo,聪明的你一下就猜到这个global就是用来定义全局变量的。也就是说如果你想要为一个在函数外定义的变量赋值,那么你就得告诉Python这个变量名不是局部的,而是 全局 的。我们使用global语句完成这一功能。没有global语句,是不可能为定义在函数外的变量赋值的。eg.? 1 2 3 4 5 6 7 8 9 10 11 12 !/usr/bin/python Filename: func_global.py def func(): global x print'x is', x x = 2 print'Changed local x to', x x = 50 func() print'Value of x is', x 运行的结果是这样的:? 1 2 3 4 $ python func_global.py x is 50 Changed global x to 2 Value of x is 2 # global语句被用来声明x是全局的——因此,当我们在函数内把值赋给x的时候,这个变化也反映在我们在主块中使用x的值的时候。 你可以使用同一个global语句指定多个全局变量。例如global x, y, z。 4.2.with 关键字 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。如果不用with语句,打开一个文件并读文件的代码如下:? 1 2 3 file = open("/tmp/foo.txt") data = file.read() file.close() 当然这样直接打开有两个问题:一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是添加上异常处理的版本:? 1 2 3 4 5 file = open("/tmp/foo.txt") try: data = file.read() finally: file.close() 虽然这段代码运行良好,但是太冗余了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:? 1 2 with open("/tmp/foo.txt") as file: data = file.read() 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。with语句的执行逻辑如下:紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 下面例子可以具体说明with如何工作:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 !/usr/bin/python with_example01.py classSample: def __enter__(self): print"In __enter__()" return"Foo" def __exit__(self, type, value, trace): print"In __exit__()" def get_sample(): returnSample() with get_sample() as sample: print"sample:", sample 运行代码,输出如下? 1 2 3 4 $python with_example01.py In __enter__() # __enter__()方法被执行 sample: Foo # __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample',执行代码块,打印变量"sample"的值为"Foo" In __exit__() # __exit__()方法被调用 4.3.assert 关键字 assert语句是一种插入调试断点到程序的一种便捷的方式。assert语句用来声明某个条件是真的,当assert语句失败的时候,会引发一AssertionError,所以结合try...except我们就可以处理这样的异常。 mylist # 此时mylist是有三个元素的列表['a', 'b', 'c']assert len(mylist) is not None # 用assert判断列表不为空,正确无返回assert len(mylist) is None # 用assert判断列表为空 Traceback (most recent call last): File "", line 1, in AssertionError # 引发AssertionError异常 4.4.yield 关键字 我们先看一个示例:? 1 2 3 4 5 6 7 8 def fab(max): n, a, b = 0,0,1 whilen < max: yield b # print b a, b = b, a + b n = n + 1 ''' 使用这个函数:? 1 2 3 4 5 6 7 8 forn in fab(5): ... print n ... 1 1 2 3 5 简单地讲,yield 的作用就是把一个函数变成一个 generator(生成器),带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable(可迭代的)对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 f = fab(5) f.next() 1 f.next() 1 f.next() 2 f.next() 3 f.next() 5 f.next() Traceback (most recent call last): File"", line 1, in StopIteration 当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。 我们可以得出以下结论:一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。 yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。 注:如果看完此段你还未明白yield,没问题,因为yield是初学者的一个难点,那么你下一步需要做的就是……看一看下面参考资料中给的关于yield的博文! 4.5.exec 关键字 官方文档对于exec的解释: "This statement supports dynamic execution of Python code."也就是说使用exec可以动态执行Python代码(也可以是文件)。? 1 2 3 4 5 6 7 8 9 10 11 12 13 longer = "print "Hello World ,my name is longer"" # 比如说我们定义了一个字符串 longer 'print "Hello World ,my name is longer"' exec(longer) # 使用exec 动态执行字符串中的代码 Hello World ,my name is longer exec(sayhi) # 使用exec直接打开文件名(指定sayhi,sayhi.py以及"sayhi.py"都会报一定的错,但是我觉得直接带sayhi报错非常典型) Traceback (most recent call last): File"", line 1, in TypeError: exec: arg 1must be a string, file, or code object # python IDE报错,提示exec的第一个参 数必须是一个字符串、文件或者一个代码对象 f = file("sayhi.py") # 使用file打开sayhi.py并创建f实例 exec(f) # 使用exec直接运行文件描述符f,运行正常!! Hi,thisis [''] script 上述给的例子比较简单,注意例子中exec语句的用法和eval_r(), execfile()是不一样的. exec是一个关键字(要不然我怎么会在这里介绍呢~~~), 而eval_r()和execfile()则是内建函数。更多关于exec的使用请详看引用资料或者Google之 在需要在字符中使用特殊字符时,python用反斜杠()转义字符。 原始字符串 有时我们并不想让转义字符生效,我们只想显示字符串原来的意思,这就要用r和R来定义原始字符串。如: print r’tr’ 实际输出为“tr”。 转义字符 描述 (在行尾时) 续行符 反斜杠符号 ’ 单引号 ” 双引号 a 响铃 b 退格(Backspace) e 转义 000 空 n 换行 v 纵向制表符 t 横向制表符 r 回车 f 换页 oyy 八进制数yy代表的字符,例如:o12代表换行 xyy 十进制数yy代表的字符,例如:x0a代表换行 other 其它的字符以普通格式输出

xuning715 2019-12-02 01:10:21 0 浏览量 回答数 0

问题

【今日算法】4月30日-回溯算法详解

游客ih62co2qqq5ww 2020-04-30 14:13:51 9 浏览量 回答数 1

回答

HashMap HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有 不同 其实1.7一个很明显需要优化的地方就是: 当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效 率就会越来越低;时间复杂度为 O(N)。 因此 1.8 中重点优化了这个查询效率。 1.8 HashMap 结构图 JDK 1.8 对 HashMap 进行了修改: 最大的不同就是利用了红黑树,其由数组+链表+红黑树组成。 JDK 1.7 中,查找元素时,根据 hash 值能够快速定位到数组的具体下标, 但之后需要顺着链表依次比较才能查找到需要的元素,时间复杂度取决于链 表的长度,为 O(N)。 为了降低这部分的开销,在 JDK 1.8 中,当链表中的元素超过 8 个以后,会 将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。 JDK 1.8 使用 Node(1.7 为 Entry) 作为链表的数据结点,仍然包含 key, value,hash 和 next 四个属性。 红黑树的情况使用的是 TreeNode。 根据数组元素中,第一个结点数据类型是 Node 还是 TreeNode 可以判断该位 置下是链表还是红黑树。 核心成员变量于 1.7 类似,增加了核心变量,如下表。 属性说明TREEIFY_THRESHOLD用于判断是否需要将链表转换为红黑树的阈值,默认 为 8。 put步骤: 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始 化)。 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可。 如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进 行赋值及返回。 如果当前桶为红黑树,那就要按照红黑树的方式写入数据。 如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的 后面(形成链表)。 接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。 如果在遍历过程中找到 key 相同时直接退出遍历。 如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。 后判断是否需要进行扩容. get 方法看起来就要简单许多了。 首先将 key hash 之后取得所定位的桶。 如果桶为空则直接返回 null 。 否则判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是 就直接返回 value。 如果第一个不匹配,则判断它的下一个是红黑树还是链表。 红黑树就按照树的查找方式返回值。 不然就按照链表的方式遍历匹配返回值。 从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之 后查询效率直接提高到了 O(logn)。 但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。 但是为什么呢?简单分析下。 看过上文的还记得在 HashMap 扩容的时候会调用 resize() 方法,就是这里的并 发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。 如下图: HashTable HashTable 容器使用 synchronized来保证线程安全,但在线程竞争激烈的情况下 HashTable 的效 率非常低下。 当一个线程访问 HashTable 的同步方法时,其他线程访问 HashTable 的同步方 法可能会进入阻塞或轮询状态。 HashTable 容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有 访问它的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容 器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就 不会存在锁竞争,从而可以有效的提高并发访问效率,这就是 ConcurrentHashMap(JDK 1.7) 使用的 锁分段技术。 ConcurrentHashMap 将数据分成一段一段的存储,然后给每一段数据配一把 锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他 线程访问。 有些方法需要跨段,比如 size() 和 containsValue(),它们可能需要锁定整个表 而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所 有段的锁。 按顺序 很重要,否则极有可能出现死锁,在 ConcurrentHashMap 内部,段数 组是 final 的,并且其成员变量实际也是 final 的,但是,仅仅是将数组声明为 final 的并不保证数组成员也是 final 的,需要实现上的保证。这可以确保不会 出现死锁,因为获得锁的顺序是固定的。 HashTable 的迭代器是强一致性的,而 ConcurrentHashMap 是弱一致的。 ConcurrentHashMap 的 get,clear,iterator 方法都是弱一致性的。 初识ConcurrentHashMap Concurrent翻译过来是并发的意思,字面理解它的作用是处理并发情况的 HashMap。 通过前面的学习,我们知道多线程并发下 HashMap 是不安全的(如死循环),更普遍 的是多线程并发下,由于堆内存对于各个线程是共享的,而 HashMap 的 put 方法 不是原子操作,假设Thread1先 put 值,然后 sleep 2秒(也可以是系统时间片切换失 去执行权),在这2秒内值被Thread2改了,Thread1“醒来”再 get 的时候发现已经不 是原来的值了,这就容易出问题。 那么如何避免这种多线程出错的情况呢? 常规思路就是给 HashMap 的 put 方法加锁(synchronized),保证同一个时刻只允 许一个线程拥有对 hashmap 有写的操作权限即可。然而假如线程1中操作耗时,其 他需要操作该 hashmap 的线程就需要在门口排队半天,严重影响用户体验, HashTable 就是这样子做的。 举个生活中的例子,很多银行除了存取钱,还支持存取贵重物品,贵重物品都放在 保险箱里,把 HashMap 和 HashTable 比作银行,结构: 把线程比作人,对应的情况如下: 多线程下用 HashMap 不确定性太高,有破产的风险,不能选;用 HashTable 不会 破产,但是用户体验不太好,那么怎样才能做到多人存取既不影响他人存值,又不 用排队呢? 有人提议搞个「银行者联盟」,多开几个像HashTable 这种「带锁」的银行就好 了,有多少人办理业务,就开多少个银行,一对一服务,这个区都是大老板,开银 行的成本都是小钱,于是「银行者联盟」成立了。 接下来的情况是这样的:比如用户A和用户B一起去银行存各自的项链,这个「银行 者联盟」操作后,然后对用户A说,1号银行现在没人你可以去那存,不用排队,然 后用户A就去1号银行存项链,1号银行把用户A接进门,马上拉闸,然后把用户A的 项链放在第x行第x个保险箱,等用户A办妥离开后,再开闸;对于用户B同理。此时 不管用户A和用户B在各自银行里面待多久都不会影响到彼此,不用担心自己的项链 被人偷换了。这就是ConcurrentHashMap的设计思路,用一个图来理解 从上图可以看出,此时锁的是对应的单个银行,而不是整个「银行者联盟」。分析 下这种设计的特点: 多个银行组成的「银行者联盟」 当有人来办理业务时,「银行者联盟」需要确定这个人去哪个银行 当此人去到指定银行办理业务后,该银行上锁,其他人不能同时执行修改操作,直 到此人离开后解锁. ConcurrentHashMap源码解析 ConcurrentHashMap 同样也分为 1.7 、1.8 版,两者在实现上略有不同。 先来看看 1.7 的实现,下面是结构图: 如图所示,是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组 加链表。主要是通过分段锁实现的。 关于分段锁 段Segment继承了重入锁ReentrantLock,有了锁的功能,每个锁控制的是一段, 当每个Segment越来越大时,锁的粒度就变得有些大了。 分段锁的优势在于保证在操作不同段 map 的时候可以并发执行,操作同段 map 的时候,进行锁的竞争和等待。这相对于直接对整个map同步 synchronized是有优势的。 缺点在于分成很多段时会比较浪费内存空间(不连续,碎片化); 操作map时竞争 同一个分段锁的概率非常小时,分段锁反而会造成更新等操作的长时间等待; 当 某个段很大时,分段锁的性能会下降。 1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存 在 HashMap 在 1.7 版本中的问题。 那就是查询遍历链表效率太低。 因此 1.8 做了一些数据结构上的调整。 首先来看下底层的组成结构: 其实和 1.8 HashMap 结构类似,当链表节点数超过指定阈值的话,也是会转换成红 黑树的,大体结构也是一样的。 那么 JDK 1.8 ConcurrentHashMap 到底是如何实现线程安全的? 答案:其中抛弃了原有的Segment 分段锁,而采用了 CAS + synchronized 来保证 并发安全性。(cas:比较并替换) **① 基本组成 ** 抛弃了 JDK 1.7 中原有的 Segment 分段锁,而采用了 CAS + synchronized 来 保证并发安全性。 将JDK 1.7 中存放数据的 HashEntry 改为 Node,但作用是相同的。、 我们来看看 ConcurrentHashMap 的几个重要属性. 重要组成元素 Node:链表中的元素为 Node 对象。他是链表上的一个节点,内部存储了 key、 value 值,以及他的下一 个节点的引用。这样一系列的 Node 就串成一串,组成一 个链表。 ForwardingNode:当进行扩容时,要把链表迁移到新的哈希表,在做这个操作 时,会在把数组中的头节点替换为 ForwardingNode 对象。ForwardingNode 中不 保存 key 和 value,只保存了扩容后哈希表 (nextTable)的引用。此时查找相应 node 时,需要去 nextTable 中查找。 TreeBin:当链表转为红黑树后,数组中保存的引用为 TreeBin,TreeBin 内部不保 存 key/value,他保存了 TreeNode 的 list 以及红黑树 root。 TreeNode:红黑树的节点。 **② put 方法过程 ** 存储结构定义了容器的 “形状”,那容器内的东西按照什么规则来放呢?换句话讲, 某个 key 是按 照什么逻辑放入容器的对应位置呢? 我们假设要存入的 key 为对象 x,这个过程如下 : 1、通过对象 x 的 hashCode () 方法获取其 hashCode; 2、将 hashCode 映射到数组的某个位置上; 3、把该元素存储到该位置的链表中。 put 方法用来把一个键值对存储到 map 中。代码如下: 实际调用的是 putVal 方 法,第三个参数传入 false,控制 key 存在时覆盖原来的值。 请先看完代码注释,有个大致的了解,然后我们更加详细的学习一下: 判断存储的 key、value 是否为空,若为空,则抛出异常,否则,进入步骤 2。 计算 key 的 hash 值,随后进入自旋,该自旋可以确保成功插入数据,若 table 表为空或者长度为 0,则初始化 table 表,否则,进入步骤 3。 根据 key 的 hash 值取出 table 表中的结点元素,若取出的结点为空(该桶为 空),则使用 CAS 将 key、value、hash 值生成的结点放入桶中。否则,进入 步骤 4。 若该结点的的 hash 值为 MOVED(-1),则对该桶中的结点进行转移,否则, 进入步骤 5。 5 . 对桶中的第一个结点(即 table 表中的结点)进行加锁,对该桶进行遍历,桶中 的结点的 hash 值与 key 值与给定的 hash 值和 key 值相等,则根据标识选择是 否进行更新操作(用给定的 value 值替换该结点的 value 值),若遍历完桶仍 没有找到 hash 值与 key 值和指定的 hash 值与 key 值相等的结点,则直接新生 一个结点并赋值为之前后一个结点的下一个结点。进入步骤 6。 若 binCount 值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储, 后,增加 binCount 的值。 如果桶中的第一个元素的 hash 值大于 0,说明是链表结构,则对链表插入或者 更新。 如果桶中的第一个元素是 TreeBin,说明是红黑树结构,则按照红黑树的方式进 行插入或者更新。 在锁的保护下,插入或者更新完毕后,如果是链表结构,需要判断链表中元素 的数量是否超过 8(默认),一旦超过,就需要考虑进行数组扩容,或者是链表 转红黑树。 扩容 什么时候会扩容? 使用put()添加元素时会调用addCount(),内部检查sizeCtl看是否需要扩容。 tryPresize()被调用,此方法被调用有两个调用点: 链表转红黑树(put()时检查)时如果table容量小于64(MIN_TREEIFY_CAPACITY),则会 触发扩容。 调用putAll()之类一次性加入大量元素,会触发扩容。 addCount() addCount()与tryPresize()实现很相似,我们先以addCount()分析下扩容逻辑: **1.链表转红黑树 ** 首先我们要理解为什么 Map 需要扩容,这是因为我们采用哈希表存储数据,当固定 大小的哈希表存 储数据越来越多时,链表长度会越来越长,这会造成 put 和 get 的 性能下降。此时我们希望哈希表中多一些桶位,预防链表继续堆积的更长。 ConcurrentHashMap 有链表转红黑树的操作,以提高查找的速度,红黑树时间复 杂度为 O (logn),而链表是 O (n/2),因此只在 O (logn)<O (n/2) 时才会进行转换, 也就是以 8 作为分界点。 接下来我们分析 treeifyBin 方法代码,这个代码中会选择是把此时保存数据所在的 链表转为红黑树,还是对整个哈希表扩容。 treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。 构造完TreeBin这个空节点之后,就开始构造红黑树,首先是第一个节点,左右 子节点设置为空,作为红黑树的root节点,设置为黑色,父节点为空。 然后在每次添加完一个节点之后,都会调用balanceInsertion方法来维持这是一 个红黑树的属性和平衡性。红黑树所有操作的复杂度都是O(logn),所以当元素量比 较大的时候,效率也很高。 **数组扩容 ** 我们大致了解了 ConcurrentHashMap 的存储结构,那么我们思考一个问题,当数 组中保存的链表越来越多,那么再存储进来的元素大概率会插入到现有的链表中, 而不是使用数组中剩下的空位。 这样会造成数组中保存的链表越来越长,由此导致 哈希表查找速度下降,从 O (1) 慢慢趋近于链表 的时间复杂度 O (n/2),这显然违背 了哈希表的初衷。 所以 ConcurrentHashMap 会做一个操作, 称为扩容。也就是把数组长度变大,增 加更多的空位出来,终目的就是预防链表过长,这样查找的时间复杂度才会趋向于 O (1)。扩容的操作并不会在数组没有空位时才进行,因为在桶位快满时, 新保存元 素更大的概率会命中已经使用的位置,那么可能后几个桶位很难被使用,而链表却 越来 越长了。ConcurrentHashMap 会在更合适的时机进行扩容,通常是在数组中 75% 的位置被使用 时。 其实以上内容和 HashMap 类似,ConcurrentHashMap 此外提供了线程安全的保 证,它主要是通 过 CAS 和 Synchronized 关键字来实现,我们在源码分析中再详细 来看。 我们做一下总结: 1、ConcurrentHashMap 采用数组 + 链表 + 红黑树的存储结构; 2、存入的 Key 值通过自己的 hashCode 映射到数组的相应位置; 3、ConcurrentHashMap 为保障查询效率,在特定的时候会对数据增加长度,这个 操作叫做扩容; 4、当链表长度增加到 8 时,可能会触发链表转为红黑树(数组长度如果小于 64, 优先扩容,具体 看后面源码分析)。 接下来,我们的源码分析就从 ConcurrentHashMap 的构成、保存元素、哈希算 法、扩容、查找数 据这几个方面来进行 扩容后数组容量为原来的 2 倍。 **数据迁移( 扩容时的线程安全) ** ConcurrentHashMap 的扩容时机和 HashMap 相同,都是在 put 方法的后一步 检查是否需要扩容,如果需要则进行扩容,但两者扩容的过程完全不同, ConcurrentHashMap 扩容的方法叫做 transfer,从 put 方法的 addCount 方法进 去,就能找到 transfer 方法,transfer 方法的主要思路是: 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队尾开始 拷贝; 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷 贝到新数组时,把 原数组槽点赋值为转移节点; 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直 等待,所以在扩容完成之前,该槽点对应的数据是不会发生变化的; 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移 节点; 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷 贝完成 putTreeVal()与此方法遍历方式类似不再介绍。  ④ get 方法过程 ConcurrentHashMap 读的话,就比较简单,先获取数组的下标,然后通过判断数 组下标的 key 是 否和我们的 key 相等,相等的话直接返回,如果下标的槽点是链表 或红黑树的话,分别调用相应的 查找数据的方法,整体思路和 HashMap 很像,源 码如下: 计算 hash 值。 根据 hash 值找到数组对应位置: (n – 1) & h。 根据该位置处结点性质进行相应查找。 如果该位置为 null,那么直接返回 null。 如果该位置处的结点刚好就是需要的,返回该结点的值即可。 如果该位置结点的 hash 值小于 0,说明正在扩容,或者是红黑树。 如果以上 3 条都不满足,那就是链表,进行遍历比对即可。 ** 初始化数组 ** 数组初始化时,首先通过自旋来保证一定可以初始化成功,然后通过 CAS 设置 SIZECTL 变量的值,来保证同一时刻只能有一个线程对数组进行初始化,CAS 成功 之后,还会再次判断当前数组是否已经初始化完成,如果已经初始化完成,就不会 再次初始化,通过自旋 + CAS + 双重 check 等 手段保证了数组初始化时的线程安 全,源码如下: 里面有个关键的值 sizeCtl,这个值有多个含义。 1、-1 代表有线程正在创建 table; 2、-N 代表有 N-1 个线程正在复制 table; 3、在 table 被初始化前,代表 根据构造函数传入的值计算出的应被初始化的大小; 4、在 table 被初始化后,则被 设置为 table 大小 的 75%,代表 table 的容量(数组容量)。 initTable 中使用到 1 和 4,2 和 3 在其它方法中会有使用。下面我们可以先看下 ConcurrentHashMap 的构造方法,里面会使用上面的 3 最后来回顾总结下HashMap和ConcurrentHashMap对比 ConcurrentHashMap 和 HashMap 两者的相同之处: 1.数组、链表结构几乎相同,所以底层对数据结构的操作思路是相同的(只是思路 相同,底层实现 不同); 2.都实现了 Map 接口,继承了 AbstractMap 抽象类,所以大多数的方法也都是相 同的, HashMap 有的方法,ConcurrentHashMap 几乎都有,所以当我们需要从 HashMap 切换到 ConcurrentHashMap 时,无需关心两者之间的兼容问题 不同点: 1.红黑树结构略有不同,HashMap 的红黑树中的节点叫做 TreeNode,TreeNode 不仅仅有属 性,还维护着红黑树的结构,比如说查找,新增等等; ConcurrentHashMap 中红黑树被拆分成 两块,TreeNode 仅仅维护的属性和查找 功能,新增了 TreeBin,来维护红黑树结构,并负责根 节点的加锁和解锁; 2.新增 ForwardingNode (转移)节点,扩容的时候会使用到,通过使用该节点, 来保证扩容时的线程安全。

剑曼红尘 2020-03-25 11:21:44 0 浏览量 回答数 0

回答

转自:阿里云官网 — 知乎 写好代码,阿里专家沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家,相信同样的方法论可以复制到大部分复杂业务场景。 一文教会你如何写复杂业务代码 了解我的人都知道,我一直在致力于应用架构和代码复杂度的治理。 这两天在看零售通商品域的代码。面对零售通如此复杂的业务场景,如何在架构和代码层面进行应对,是一个新课题。针对该命题,我进行了比较细致的思考和研究。结合实际的业务场景,我沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家。 我相信,同样的方法论可以复制到大部分复杂业务场景。 一个复杂业务的处理过程 业务背景 简单的介绍下业务背景,零售通是给线下小店供货的B2B模式,我们希望通过数字化重构传统供应链渠道,提升供应链效率,为新零售助力。阿里在中间是一个平台角色,提供的是Bsbc中的service的功能。 在商品域,运营会操作一个“上架”动作,上架之后,商品就能在零售通上面对小店进行销售了。是零售通业务非常关键的业务操作之一,因此涉及很多的数据校验和关联操作。 针对上架,一个简化的业务流程如下所示: 过程分解 像这么复杂的业务,我想应该没有人会写在一个service方法中吧。一个类解决不了,那就分治吧。 说实话,能想到分而治之的工程师,已经做的不错了,至少比没有分治思维要好很多。我也见过复杂程度相当的业务,连分解都没有,就是一堆方法和类的堆砌。 不过,这里存在一个问题:即很多同学过度的依赖工具或是辅助手段来实现分解。比如在我们的商品域中,类似的分解手段至少有3套以上,有自制的流程引擎,有依赖于数据库配置的流程处理: 本质上来讲,这些辅助手段做的都是一个pipeline的处理流程,没有其它。因此,我建议此处最好保持KISS(Keep It Simple and Stupid),即最好是什么工具都不要用,次之是用一个极简的Pipeline模式,最差是使用像流程引擎这样的重方法。 除非你的应用有极强的流程可视化和编排的诉求,否则我非常不推荐使用流程引擎等工具。第一,它会引入额外的复杂度,特别是那些需要持久化状态的流程引擎;第二,它会割裂代码,导致阅读代码的不顺畅。大胆断言一下,全天下估计80%对流程引擎的使用都是得不偿失的。 回到商品上架的问题,这里问题核心是工具吗?是设计模式带来的代码灵活性吗?显然不是,问题的核心应该是如何分解问题和抽象问题,知道金字塔原理的应该知道,此处,我们可以使用结构化分解将问题解构成一个有层级的金字塔结构: 按照这种分解写的代码,就像一本书,目录和内容清晰明了。以商品上架为例,程序的入口是一个上架命令(OnSaleCommand), 它由三个阶段(Phase)组成。 @Command public class OnSaleNormalItemCmdExe { @Resource private OnSaleContextInitPhase onSaleContextInitPhase; @Resource private OnSaleDataCheckPhase onSaleDataCheckPhase; @Resource private OnSaleProcessPhase onSaleProcessPhase; @Override public Response execute(OnSaleNormalItemCmd cmd) { OnSaleContext onSaleContext = init(cmd); checkData(onSaleContext); process(onSaleContext); return Response.buildSuccess(); } private OnSaleContext init(OnSaleNormalItemCmd cmd) { return onSaleContextInitPhase.init(cmd); } private void checkData(OnSaleContext onSaleContext) { onSaleDataCheckPhase.check(onSaleContext); } private void process(OnSaleContext onSaleContext) { onSaleProcessPhase.process(onSaleContext); } } 每个Phase又可以拆解成多个步骤(Step),以OnSaleProcessPhase为例,它是由一系列Step组成的: @Phase public class OnSaleProcessPhase { @Resource private PublishOfferStep publishOfferStep; @Resource private BackOfferBindStep backOfferBindStep; //省略其它step public void process(OnSaleContext onSaleContext){ SupplierItem supplierItem = onSaleContext.getSupplierItem(); // 生成OfferGroupNo generateOfferGroupNo(supplierItem); // 发布商品 publishOffer(supplierItem); // 前后端库存绑定 backoffer域 bindBackOfferStock(supplierItem); // 同步库存路由 backoffer域 syncStockRoute(supplierItem); // 设置虚拟商品拓展字段 setVirtualProductExtension(supplierItem); // 发货保障打标 offer域 markSendProtection(supplierItem); // 记录变更内容ChangeDetail recordChangeDetail(supplierItem); // 同步供货价到BackOffer syncSupplyPriceToBackOffer(supplierItem); // 如果是组合商品打标,写扩展信息 setCombineProductExtension(supplierItem); // 去售罄标 removeSellOutTag(offerId); // 发送领域事件 fireDomainEvent(supplierItem); // 关闭关联的待办事项 closeIssues(supplierItem); } } 看到了吗,这就是商品上架这个复杂业务的业务流程。需要流程引擎吗?不需要,需要设计模式支撑吗?也不需要。对于这种业务流程的表达,简单朴素的组合方法模式(Composed Method)是再合适不过的了。 因此,在做过程分解的时候,我建议工程师不要把太多精力放在工具上,放在设计模式带来的灵活性上。而是应该多花时间在对问题分析,结构化分解,最后通过合理的抽象,形成合适的阶段(Phase)和步骤(Step)上。 过程分解后的两个问题的确,使用过程分解之后的代码,已经比以前的代码更清晰、更容易维护了。不过,还有两个问题值得我们去关注一下: 1、领域知识被割裂肢解什么叫被肢解? 因为我们到目前为止做的都是过程化拆解,导致没有一个聚合领域知识的地方。每个Use Case的代码只关心自己的处理流程,知识没有沉淀。相同的业务逻辑会在多个Use Case中被重复实现,导致代码重复度高,即使有复用,最多也就是抽取一个util,代码对业务语义的表达能力很弱,从而影响代码的可读性和可理解性。 2、代码的业务表达能力缺失 试想下,在过程式的代码中,所做的事情无外乎就是取数据--做计算--存数据,在这种情况下,要如何通过代码显性化的表达我们的业务呢? 说实话,很难做到,因为我们缺失了模型,以及模型之间的关系。脱离模型的业务表达,是缺少韵律和灵魂的。 举个例子,在上架过程中,有一个校验是检查库存的,其中对于组合品(CombineBackOffer)其库存的处理会和普通品不一样。原来的代码是这么写的: boolean isCombineProduct = supplierItem.getSign().isCombProductQuote(); // supplier.usc warehouse needn't check if (WarehouseTypeEnum.isAliWarehouse(supplierItem.getWarehouseType())) { // quote warehosue check if (CollectionUtil.isEmpty(supplierItem.getWarehouseIdList()) && !isCombineProduct) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } // inventory amount check Long sellableAmount = 0L; if (!isCombineProduct) { sellableAmount = normalBiz.acquireSellableAmount(supplierItem.getBackOfferId(), supplierItem.getWarehouseIdList()); } else { //组套商品 OfferModel backOffer = backOfferQueryService.getBackOffer(supplierItem.getBackOfferId()); if (backOffer != null) { sellableAmount = backOffer.getOffer().getTradeModel().getTradeCondition().getAmountOnSale(); } } if (sellableAmount < 1) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + supplierItem.getId() + "]"); } } 然而,如果我们在系统中引入领域模型之后,其代码会简化为如下: if(backOffer.isCloudWarehouse()){ return; } if (backOffer.isNonInWarehouse()){ throw new BizException("亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } if (backOffer.getStockAmount() < 1){ throw new BizException("亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + backOffer.getSupplierItem().getCspuCode() + "]"); } 有没有发现,使用模型的表达要清晰易懂很多,而且也不需要做关于组合品的判断了,因为我们在系统中引入了更加贴近现实的对象模型(CombineBackOffer继承BackOffer),通过对象的多态可以消除我们代码中的大部分的if-else。 过程分解+对象模型 通过上面的案例,我们可以看到有过程分解要好于没有分解,过程分解+对象模型要好于仅仅是过程分解。对于商品上架这个case,如果采用过程分解+对象模型的方式,最终我们会得到一个如下的系统结构: 写复杂业务的方法论 通过上面案例的讲解,我想说,我已经交代了复杂业务代码要怎么写:即自上而下的结构化分解+自下而上的面向对象分析。 接下来,让我们把上面的案例进行进一步的提炼,形成一个可落地的方法论,从而可以泛化到更多的复杂业务场景。 上下结合 所谓上下结合,是指我们要结合自上而下的过程分解和自下而上的对象建模,螺旋式的构建我们的应用系统。这是一个动态的过程,两个步骤可以交替进行、也可以同时进行。这两个步骤是相辅相成的,上面的分析可以帮助我们更好的理清模型之间的关系,而下面的模型表达可以提升我们代码的复用度和业务语义表达能力。其过程如下图所示: 使用这种上下结合的方式,我们就有可能在面对任何复杂的业务场景,都能写出干净整洁、易维护的代码。 能力下沉 一般来说实践DDD有两个过程: 1. 套概念阶段 了解了一些DDD的概念,然后在代码中“使用”Aggregation Root,Bonded Context,Repository等等这些概念。更进一步,也会使用一定的分层策略。然而这种做法一般对复杂度的治理并没有多大作用。 2. 融会贯通阶段 术语已经不再重要,理解DDD的本质是统一语言、边界划分和面向对象分析的方法。 大体上而言,我大概是在1.7的阶段,因为有一个问题一直在困扰我,就是哪些能力应该放在Domain层,是不是按照传统的做法,将所有的业务都收拢到Domain上,这样做合理吗?说实话,这个问题我一直没有想清楚。 因为在现实业务中,很多的功能都是用例特有的(Use case specific)的,如果“盲目”的使用Domain收拢业务并不见得能带来多大的益处。相反,这种收拢会导致Domain层的膨胀过厚,不够纯粹,反而会影响复用性和表达能力。 鉴于此,我最近的思考是我们应该采用能力下沉的策略。 所谓的能力下沉,是指我们不强求一次就能设计出Domain的能力,也不需要强制要求把所有的业务功能都放到Domain层,而是采用实用主义的态度,即只对那些需要在多个场景中需要被复用的能力进行抽象下沉,而不需要复用的,就暂时放在App层的Use Case里就好了。 注:Use Case是《架构整洁之道》里面的术语,简单理解就是响应一个Request的处理过程 通过实践,我发现这种循序渐进的能力下沉策略,应该是一种更符合实际、更敏捷的方法。因为我们承认模型不是一次性设计出来的,而是迭代演化出来的。 下沉的过程如下图所示,假设两个use case中,我们发现uc1的step3和uc2的step1有类似的功能,我们就可以考虑让其下沉到Domain层,从而增加代码的复用性。 指导下沉有两个关键指标:代码的复用性和内聚性。 复用性是告诉我们When(什么时候该下沉了),即有重复代码的时候。 内聚性是告诉我们How(要下沉到哪里),功能有没有内聚到恰当的实体上,有没有放到合适的层次上(因为Domain层的能力也是有两个层次的,一个是Domain Service这是相对比较粗的粒度,另一个是Domain的Model这个是最细粒度的复用)。 比如,在我们的商品域,经常需要判断一个商品是不是最小单位,是不是中包商品。像这种能力就非常有必要直接挂载在Model上。 public class CSPU { private String code; private String baseCode; //省略其它属性 /** * 单品是否为最小单位。 * */ public boolean isMinimumUnit(){ return StringUtils.equals(code, baseCode); } /** * 针对中包的特殊处理 * */ public boolean isMidPackage(){ return StringUtils.equals(code, midPackageCode); } } 之前,因为老系统中没有领域模型,没有CSPU这个实体。你会发现像判断单品是否为最小单位的逻辑是以StringUtils.equals(code, baseCode)的形式散落在代码的各个角落。这种代码的可理解性是可想而知的,至少我在第一眼看到这个代码的时候,是完全不知道什么意思。 业务技术要怎么做 写到这里,我想顺便回答一下很多业务技术同学的困惑,也是我之前的困惑:即业务技术到底是在做业务,还是做技术?业务技术的技术性体现在哪里? 通过上面的案例,我们可以看到业务所面临的复杂性并不亚于底层技术,要想写好业务代码也不是一件容易的事情。 业务技术和底层技术人员唯一的区别是他们所面临的问题域不一样。业务技术面对的问题域变化更多、面对的人更加庞杂。而底层技术面对的问题域更加稳定、但对技术的要求更加深。比如,如果你需要去开发Pandora,你就要对Classloader有更加深入的了解才行。 但是,不管是业务技术还是底层技术人员,有一些思维和能力都是共通的。比如,分解问题的能力,抽象思维,结构化思维等等。 用我的话说就是:“做不好业务开发的,也做不好技术底层开发,反之亦然。业务开发一点都不简单,只是我们很多人把它做“简单”了因此,如果从变化的角度来看,业务技术的难度一点不逊色于底层技术,其面临的挑战甚至更大。 因此,我想对广大的从事业务技术开发的同学说:沉下心来,夯实自己的基础技术能力、OO能力、建模能力... 不断提升抽象思维、结构化思维、思辨思维... 持续学习精进,写好代码。我们可以在业务技术岗做的很”技术“!。

茶什i 2020-01-10 11:53:44 0 浏览量 回答数 0

问题

达达O2O后台架构演进实践:从0到4000高并发请求背后的努力:报错

kun坤 2020-06-09 15:20:48 4 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站