• 关于

    过程表示出问题什么情况

    的搜索结果

回答

算法是比较复杂又基础的学科,每个学编程的人都会学习大量的算法。而根据统计,以下这18个问题是面试中最容易遇到的,本文给出了一些基本答案,供算法方向工程师或对此感兴趣的程序员参考。 1)请简单解释算法是什么? 算法是一个定义良好的计算过程,它将一些值作为输入并产生相应的输出值。简单来说,它是将输入转换为输出的一系列计算步骤。 2)解释什么是快速排序算法? 快速排序算法能够快速排序列表或查询。它基于分割交换排序的原则,这种类型的算法占用空间较小,它将待排序列表分为三个主要部分: ·小于Pivot的元素 ·枢轴元素Pivot(选定的比较值) ·大于Pivot的元素 3)解释算法的时间复杂度? 算法的时间复杂度表示程序运行完成所需的总时间,它通常用大O表示法来表示。 4)请问用于时间复杂度的符号类型是什么? 用于时间复杂度的符号类型包括: ·Big Oh:它表示小于或等于目标多项式 ·Big Omega:它表示大于或等于目标多项式 ·Big Theta:它表示与目标多项式相等 ·Little Oh:它表示小于目标多项式 ·Little Omega:它表示大于目标多项式 5)解释二分法检索如何工作? 在二分法检索中,我们先确定数组的中间位置,然后将要查找的值与数组中间位置的值进行比较,若小于数组中间值,则要查找的值应位于该中间值之前,依此类推,不断缩小查找范围,直至得到最终结果。 6)解释是否可以使用二分法检索链表? 由于随机访问在链表中是不可接受的,所以不可能到达O(1)时间的中间元素。因此,对于链表来说,二分法检索是不可以的(对顺序链表或排序后的链表是可以用的)。 7)解释什么是堆排序? 堆排序可以看成是选择排序的改进,它可以定义为基于比较的排序算法。它将其输入划分为未排序和排序的区域,通过不断消除最小元素并将其移动到排序区域来收缩未排序区域。 8)说明什么是Skip list? Skip list数据结构化的方法,它允许算法在符号表或字典中搜索、删除和插入元素。在Skip list中,每个元素由一个节点表示。搜索函数返回与key相关的值的内容。插入操作将指定的键与新值相关联,删除操作可删除指定的键。 9)解释插入排序算法的空间复杂度是多少? 插入排序是一种就地排序算法,这意味着它不需要额外的或仅需要少量的存储空间。对于插入排序,它只需要将单个列表元素存储在初始数据的外侧,从而使空间复杂度为O(1)。 10)解释什么是“哈希算法”,它们用于什么? “哈希算法”是一个哈希函数,它使用任意长度的字符串,并将其减少为唯一的固定长度字符串。它用于密码有效性、消息和数据完整性以及许多其他加密系统。 11)解释如何查找链表是否有循环? 要知道链表是否有循环,我们将采用两个指针的方法。如果保留两个指针,并且在处理两个节点之后增加一个指针,并且在处理每个节点之后,遇到指针指向同一个节点的情况,这只有在链表有循环时才会发生。 12)解释加密算法的工作原理? 加密是将明文转换为称为“密文”的密码格式的过程。要转换文本,算法使用一系列被称为“键”的位来进行计算。密钥越大,创建密文的潜在模式数越多。大多数加密算法使用长度约为64到128位的固定输入块,而有些则使用流方法。 13)列出一些常用的加密算法? 一些常用的加密算法是: ·3-way ·Blowfish ·CAST ·CMEA ·GOST ·DES 和Triple DES ·IDEA ·LOKI等等 14)解释一个算法的最佳情况和最坏情况之间有什么区别? ·最佳情况:算法的最佳情况解释为算法执行最佳的数据排列。例如,我们进行二分法检索,如果目标值位于正在搜索的数据中心,则这就是最佳情况,最佳情况时间复杂度为0。 ·最差情况:给定算法的最差输入参考。例如快速排序,如果选择关键值的子列表的最大或最小元素,则会导致最差情况出现,这将导致时间复杂度快速退化到O(n2)。 15)解释什么是基数排序算法? 基数排序又称“桶子法”,是通过比较数字将其分配到不同的“桶里”来排序元素的。它是线性排序算法之一。 16)解释什么是递归算法? 递归算法是一个解决复杂问题的方法,将问题分解成较小的子问题,直到分解的足够小,可以轻松解决问题为止。通常,它涉及一个调用自身的函数。 17)提到递归算法的三个定律是什么? 所有递归算法必须遵循三个规律: ·递归算法必须有一个基点 ·递归算法必须有一个趋向基点的状态变化过程 ·递归算法必须自我调用 18)解释什么是冒泡排序算法? 冒泡排序算法也称为下沉排序。在这种类型的排序中,要排序的列表的相邻元素之间互相比较。如果它们按顺序排列错误,将交换值并以正确的顺序排列,直到最终结果“浮”出水面。 满意记得采纳哈

玄学酱 2019-12-02 01:18:44 0 浏览量 回答数 0

回答

面试经历: 一面内容: 1,上来面试官就说,先做道题:f(n)=f(n-1)+f(n-2)+f(n-3) ,n>=3 写一个高效算法求f(n),最后再其指引过程中做了个较好的结果,最好的没想出来 2, 叫我讲述A*算法,因为我游戏里用到了 3, 求 二叉树的最大子树和,没见过的题目,不过居然想出来了,然后面试官对此题目扩展,如果答出最难的,评级就是A+ 4,介绍项目相关,画了个图解释了下就过了 二面内容: 1, 问了一大堆tcp相关的问题,RST在tcp协议中有啥作用,线程进程问题,线程安全之类的,表示不太会 2, 设计一个类,给出了2个函数,要你实现,给你一个结构体数组,结构体如下:struct Node{int id, Data data},输入一个结构体数组,实现2个函数,vector<Node> getAll() 返回这 结构体数组中相同id项的最后一次出现的那个结构体,void add(Node node);添加一个结构体到类的private数据结构里。用hash可以解决 3,如果给o你一个网易游戏的offer和阿里的offer,你选哪个。这问题问的可以。。。。。。 4还问了道算法题,具体忘了,有点难 面内容: 三面时面试官的桌子上写着算法工程师,当时直接吓尿,算法蒟蒻表示压力山大,结果出了2道智力题。。。。。 1, 给你2k+1个连续格子,2人下棋,规则是,当一个人在某个格子下子的时候,该棋子左右2边的格子都会被占掉,也就是说不能在这里下棋了,当一个人下子后这个棋盘没有空余位 置则该人获胜,问这个游戏是否有必胜策略,当时我觉得好难,最后我从1个格子,3个格子,5个格子这样一次找规律,然后面试官提示了对称性,最后居然解决了 2,A ,B,C3人坐在一个圆桌旁,每人帽子上有个数字,每个人都可以看到其他2人的数字,不知道自己的数字,并且都知道这3个数字呈等比数列这一关系。这是第四者问A,你知道你 的数字是啥么。A说不知道,然后问B,B说不知道,然后问C,C说知道了。。。。。。。请问:这时你能推断出什么。 我在纸上列出了可能的情况,但是还是找不到突破口,最 后面试官解释了,我没听懂,太绕了,这题目需要很强的逻辑能力, 3面就这样结束了 四面内容: hr面,各种人生和价值观问题 1,你为什么选择阿里,阿里文化是什么,我说了几个,扯了下马云自传 2,你有女朋友么。当然回答没有,理由:找女朋友这事不要急,你现在要做的只是设法提升自己,不断让自己更强,等到时机成熟,就不是你去找别人了,而是别人来找你 3,你有参加过集体活动么。怎么处理人际间的矛盾,怎么为人处事之类的 4,父母是干啥的。这个也问我也是醉了。

祁同伟 2019-12-02 01:21:33 0 浏览量 回答数 0

回答

迭代法  迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。   迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。   利用迭代算法解决问题,需要做好以下三个方面的工作:   一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。   二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。   三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。   例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。   分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有   u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……   根据这个规律,可以归纳出下面的递推公式:   u n = u n - 1 × 2 (n ≥ 2)   对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:   y=x*2   x=y   让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:   cls   x=1   for i=2 to 12   y=x*2   x=y   next i   print y   end   例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 220,220个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。   分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂 15 次以后得到的个数是 2^20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2^20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。   设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有   x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)   因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:   x=x/2 ( x 的初值为第 15 次分裂之后的个数 2^20 )   让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:   cls   x=2^20   for i=1 to 15   x=x/2   next i   print x   end   ps:java中幂的算法是Math.pow(2, 20);返回double,稍微注意一下   例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。   要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。   分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:   if n 为偶数 then   n=n/2   else   n=n*3+1   end if   这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:   cls   input "Please input n=";n   do until n=1   if n mod 2=0 then   rem 如果 n 为偶数,则调用迭代公式 n=n/2   n=n/2   print "—";n;   else   n=n*3+1   print "—";n;   end if   loop   end   迭代法   迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:   (1) 选一个方程的近似根,赋给变量x0;   (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;   (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。   若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:   【算法】迭代法求方程的根   { x0=初始近似根;   do {   x1=x0;   x0=g(x1); /*按特定的方程计算新的近似根*/   } while ( fabs(x0-x1)>Epsilon);   printf(“方程的近似根是%f\n”,x0);   }   迭代算法也常用于求方程组的根,令   X=(x0,x1,…,xn-1)   设方程组为:   xi=gi(X) (I=0,1,…,n-1)   则求方程组根的迭代算法可描述如下:   【算法】迭代法求方程组的根   { for (i=0;i   x=初始近似根;   do {   for (i=0;i   y=x;   for (i=0;i   x=gi(X);   for (delta=0.0,i=0;i   if (fabs(y-x)>delta) delta=fabs(y-x);   } while (delta>Epsilon);   for (i=0;i   printf(“变量x[%d]的近似根是 %f”,I,x);   printf(“\n”);   }   具体使用迭代法求根时应注意以下两种可能发生的情况:   (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;   (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。   递归   递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。   能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。   【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。   斐波那契数列为:0、1、1、2、3、……,即:   fib(0)=0;   fib(1)=1;   fib(n)=fib(n-1)+fib(n-2) (当n>1时)。   写成递归函数有:   int fib(int n)   { if (n==0) return 0;   if (n==1) return 1;   if (n>1) return fib(n-1)+fib(n-2);   }   递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。   在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。   在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。   由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。   【问题】 组合问题   问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1   (4)5、3、2 (5)5、3、1 (6)5、2、1   (7)4、3、2 (8)4、3、1 (9)4、2、1   (10)3、2、1   分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。   【程序】   # include   # define MAXN 100   int a[MAXN];   void comb(int m,int k)   { int i,j;   for (i=m;i>=k;i--)   { a[k]=i;   if (k>1)   comb(i-1,k-1);   else   { for (j=a[0];j>0;j--)   printf(“%4d”,a[j]);   printf(“\n”);   }   }   }   void main()   { a[0]=3;   comb(5,3);   }   【问题】 背包问题   问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。   设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。   对于第i件物品的选择考虑有两种可能:   (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。   (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。   按以上思想写出递归算法如下:   try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)   { /*考虑物品i包含在当前方案中的可能性*/   if(包含物品i是可以接受的)   { 将物品i包含在当前方案中;   if (i   try(i+1,tw+物品i的重量,tv);   else   /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   恢复物品i不包含状态;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (不包含物品i仅是可男考虑的)   if (i   try(i+1,tw,tv-物品i的价值);   else   /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   }

沉默术士 2019-12-02 01:25:10 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。 分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u n - 1 × 2 (n ≥ 2) 对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。 分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 ) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: cls x=2^20 for i=1 to 15 x=x/2 next i print x end 例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 迭代法 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1) 选一个方程的近似根,赋给变量x0; (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while ( fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1 (4)5、3、2 (5)5、3、1 (6)5、2、1 (7)4、3、2 (8)4、3、1 (9)4、2、1 (10)3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“\n”); } } } void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i else { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\n”); for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int ; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv.=1; twv.tw=tw; twv.tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv.; tw=twv.tw; tv=twv.tv; switch(f) { case 1: twv.++; if (tw+a.weight<=limitW) if (i { next(i+1,tw+a.weight,tv); i++; } else { maxv=tv; for (k=0;k cop[k]=twv[k].!=0; } break; case 0: i--; break; default: twv.=0; if (tv-a.value>maxv) if (i { next(i+1,tw,tv-a.value); i++; } else { maxv=tv-a.value; for (k=0;k cop[k]=twv[k].!=0; } break; } } return maxv; } void main() { double maxv; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入限制重量\n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值\n”); for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“\n选中的物品为\n”); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 递归的基本概念和特点 程序调用自身的编程技巧称为递归( recursion)。 一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。 一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。 注意: (1) 递归就是在过程或函数里调用自身; (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

马铭芳 2019-12-02 01:24:44 0 浏览量 回答数 0

回答

  迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。   利用迭代算法解决问题,需要做好以下三个方面的工作:   一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。   二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。   三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。   例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。   分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有   u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……   根据这个规律,可以归纳出下面的递推公式:   u n = u n - 1 × 2 (n ≥ 2)   对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:   y=x*2   x=y   让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:   cls   x=1   for i=2 to 12   y=x*2   x=y   next i   print y   end   例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。   分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。   设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有   x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)   因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:   x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 )   让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:   cls   x=2^20   for i=1 to 15   x=x/2   next i   print x   end   例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。   要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。   分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:   if n 为偶数 then   n=n/2   else   n=n*3+1   end if   这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:   cls   input "Please input n=";n   do until n=1   if n mod 2=0 then   rem 如果 n 为偶数,则调用迭代公式 n=n/2   n=n/2   print "—";n;   else   n=n*3+1   print "—";n;   end if   loop   end   迭代法   迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:   (1) 选一个方程的近似根,赋给变量x0;   (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;   (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。   若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:   【算法】迭代法求方程的根   { x0=初始近似根;   do {   x1=x0;   x0=g(x1); /*按特定的方程计算新的近似根*/   } while ( fabs(x0-x1)>Epsilon);   printf(“方程的近似根是%f\n”,x0);   }   迭代算法也常用于求方程组的根,令   X=(x0,x1,…,xn-1)   设方程组为:   xi=gi(X) (I=0,1,…,n-1)   则求方程组根的迭代算法可描述如下:   【算法】迭代法求方程组的根   { for (i=0;i   x=初始近似根;   do {   for (i=0;i   y=x;   for (i=0;i   x=gi(X);   for (delta=0.0,i=0;i   if (fabs(y-x)>delta) delta=fabs(y-x);   } while (delta>Epsilon);   for (i=0;i   printf(“变量x[%d]的近似根是 %f”,I,x);   printf(“\n”);   }   具体使用迭代法求根时应注意以下两种可能发生的情况:   (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;   (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。   递归   递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。   能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。   【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。   斐波那契数列为:0、1、1、2、3、……,即:   fib(0)=0;   fib(1)=1;   fib(n)=fib(n-1)+fib(n-2) (当n>1时)。   写成递归函数有:   int fib(int n)   { if (n==0) return 0;   if (n==1) return 1;   if (n>1) return fib(n-1)+fib(n-2);   }   递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。   在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。   在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。   由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。   【问题】 组合问题   问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1   (4)5、3、2 (5)5、3、1 (6)5、2、1   (7)4、3、2 (8)4、3、1 (9)4、2、1   (10)3、2、1   分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。   【程序】   # include   # define MAXN 100   int a[MAXN];   void comb(int m,int k)   { int i,j;   for (i=m;i>=k;i--)   { a[k]=i;   if (k>1)   comb(i-1,k-1);   else   { for (j=a[0];j>0;j--)   printf(“%4d”,a[j]);   printf(“\n”);   }   }   }   void main()   { a[0]=3;   comb(5,3);   }   【问题】 背包问题   问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。   设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。   对于第i件物品的选择考虑有两种可能:   (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。   (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。   按以上思想写出递归算法如下:   try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)   { /*考虑物品i包含在当前方案中的可能性*/   if(包含物品i是可以接受的)   { 将物品i包含在当前方案中;   if (i   try(i+1,tw+物品i的重量,tv);   else   /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   恢复物品i不包含状态;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (不包含物品i仅是可男考虑的)   if (i   try(i+1,tw,tv-物品i的价值);   else   /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   }   为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:   物品 0 1 2 3   重量 5 3 2 1   价值 4 4 3 1   并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。   按上述算法编写函数和程序如下:   【程序】   # include   # define N 100   double limitW,totV,maxV;   int option[N],cop[N];   struct { double weight;   double value;   }a[N];   int n;   void find(int i,double tw,double tv)   { int k;   /*考虑物品i包含在当前方案中的可能性*/   if (tw+a.weight<=limitW)   { cop=1;   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv;   }   cop=0;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (tv-a.value>maxV)   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv-a.value;   }   }   void main()   { int k;   double w,v;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入各物品的重量和价值\n”);   for (totv=0.0,k=0;k   { scanf(“%1f%1f”,&w,&v);   a[k].weight=w;   a[k].value=v;   totV+=V;   }   printf(“输入限制重量\n”);   scanf(“%1f”,&limitV);   maxv=0.0;   for (k=0;k find(0,0.0,totV);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。   【程序】   # include   # define N 100   double limitW;   int cop[N];   struct ele { double weight;   double value;   } a[N];   int k,n;   struct { int ;   double tw;   double tv;   }twv[N];   void next(int i,double tw,double tv)   { twv.=1;   twv.tw=tw;   twv.tv=tv;   }   double find(struct ele *a,int n)   { int i,k,f;   double maxv,tw,tv,totv;   maxv=0;   for (totv=0.0,k=0;k   totv+=a[k].value;   next(0,0.0,totv);   i=0;   While (i>=0)   { f=twv.;   tw=twv.tw;   tv=twv.tv;   switch(f)   { case 1: twv.++;   if (tw+a.weight<=limitW)   if (i   { next(i+1,tw+a.weight,tv);   i++;   }   else   { maxv=tv;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   case 0: i--;   break;   default: twv.=0;   if (tv-a.value>maxv)   if (i   { next(i+1,tw,tv-a.value);   i++;   }   else   { maxv=tv-a.value;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   }   }   return maxv;   }   void main()   { double maxv;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入限制重量\n”);   scanf(“%1f”,&limitW);   printf(“输入各物品的重量和价值\n”);   for (k=0;k   scanf(“%1f%1f”,&a[k].weight,&a[k].value);   maxv=find(a,n);   printf(“\n选中的物品为\n”);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   递归的基本概念和特点   程序调用自身的编程技巧称为递归( recursion)。   一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。   一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。   注意:   (1) 递归就是在过程或函数里调用自身;   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

小哇 2019-12-02 01:25:19 0 浏览量 回答数 0

回答

关于二十四点游戏的编程思路与基本算法 漫长的假期对于我来说总是枯燥无味的,闲来无聊便和同学玩起童年时经常玩的二十四点牌游戏来。此游戏说来简单,就是利用加减乘除以及括号将给出的四张牌组成一个值为24的表达式。但是其中却不乏一些有趣的题目,这不,我们刚玩了一会儿,便遇到了一个难题——3、6、6、10(其实后来想想,这也不算是个太难的题,只是当时我们的脑筋都没有转弯而已,呵呵)。 问题既然出现了,我们当然要解决。冥思苦想之际,我的脑中掠过一丝念头——何不编个程序来解决这个问题呢。文曲星中不就有这样的程序吗。所以这个想法应该是可行。想到这里我立刻开始思索这个程序的算法,最先想到的自然是穷举法(后来发现我再也想不到更好的方法了,悲哀呀,呵呵),因为在这学期我曾经写过一个小程序——计算有括号的简单表达式。只要我能编程实现四个数加上运算符号所构成的表达式的穷举,不就可以利用这个计算程序来完成这个计算二十四点的程序吗。确定了这个思路之后,我开始想这个问题的细节。 首先穷举的可行性问题。我把表达式如下分成三类—— 1、 无括号的简单表达式。 2、 有一个括号的简单表达式。 3、 有两个括号的较复4、 杂表达式。 穷举的开始我对给出的四个数进行排列,其可能的种数为4*3*2*1=24。我利用一个嵌套函数实现四个数的排列,算法如下: /* ans[] 用来存放各种排列组合的数组 */ /* c[] 存放四张牌的数组 */ /* k[] c[]种四张牌的代号,其中k[I]=I+1。 用它来代替c[]做处理,考虑到c[]中有可能出现相同数的情况 */ /* kans[] 暂存生成的排列组合 */ /* j 嵌套循环的次数 */ int fans(c,k,ans,kans,j) int j,k[],c[];char ans[],kans[]; { int i,p,q,r,h,flag,s[4],t[4][4]; for(p=0,q=0;p<4;p++) { for(r=0,flag=0;r if(k[p]!=kans[r]) flag++; if(flag==j) t[j][q++]=k[p]; } for(s[j]=0;s[j]<4-j;s[j]++) { kans[j]=t[j][s[j>; if(j==3) { for(h=0;h<4;h++) ans[2*h]=c[kans[h]-1]; /* 调整生成的排列组合在最终的表 达式中的位置 */ for(h=0;h<3;h++) symbol(ans,h); /* 在表达式中添加运算符号 */ } else { j++; fans(c,k,ans,kans,j); j--; } } } 正如上面函数中提到的,在完成四张牌的排列之后,在表达式中添加运算符号。由于只有四张牌,所以只要添加三个运算符号就可以了。由于每一个运算符号可重复,所以计算出其可能的种数为4*4*4=64种。仍然利用嵌套函数实现添加运算符号的穷举,算法如下: /* ans[],j同上。sy[]存放四个运算符号。h为表达式形式。*/ int sans(ans,sy,j,h) char ans[],sy[];int j,h; { int i,p,k[3],m,n; char ktans[20]; for(k[j]=0;k[j]<4;k[j]++) { ans[2*j+1]=sy[k[j>; /* 刚才的四个数分别存放在0、2、4、6位 这里的三个运算符号分别存放在1、3、5位*/ if(j==2) { ans[5]=sy[k[j>; /* 此处根据不同的表达式形式再进行相应的处理 */ } else } } 好了,接下来我再考虑不同表达式的处理。刚才我已经将表达式分为三类,是因为添加三个括号对于四张牌来说肯定是重复的。对于第一种,无括号自然不用另行处理;而第二种情况由以下代码可以得出其可能性有六种,其中还有一种是多余的。 for(m=0;m<=4;m+=2) for(n=m+4;n<=8;n+=2) 这个for循环给出了添加一个括号的可能性的种数,其中m、n分别为添加在表达式中的左右括号的位置。我所说的多余的是指m=0,n=8,也就是放在表达式的两端。这真是多此一举,呵呵。最后一种情况是添加两个括号,我分析了一下,发现只可能是这种形式才不会是重复的——(a b)(c d)。为什么不会出现嵌套括号的情况呢。因为如果是嵌套括号,那么外面的括号肯定是包含三个数字的(四个没有必要),也就是说这个括号里面包含了两个运算符号,而这两个运算符号是被另外一个括号隔开的。那么如果这两个运算符号是同一优先级的,则肯定可以通过一些转换去掉括号(你不妨举一些例子来试试),也就是说这一个括号没有必要;如果这两个运算符号不是同一优先级,也必然是这种形式((a+-b)*/c)。而*和/在这几个运算符号中优先级最高,自然就没有必要在它的外面添加括号了。 综上所述,所有可能的表达式的种数为24*64*(1+6+1)=12288种。哈哈,只有一万多种可能性(这其中还有重复),这对于电脑来说可是小case哟。所以,对于穷举的可行性分析和实现也就完成了。 接下来的问题就是如何对有符号的简单表达式进行处理。这是栈的一个著名应用,那么什么是栈呢。栈的概念是从日常生活中货物在货栈种的存取过程抽象出来的,即最后存放入栈的货物(堆在靠出口处)先被提取出去,符合“先进后出,后进先出”的原则。这种结构犹如子弹夹。 在栈中,元素的插入称为压入(push)或入栈,元素的删除称为弹出(pop)或退栈。 栈的基本运算有三种,其中包括入栈运算、退栈运算以及读栈顶元素,这些请参考相关数据结构资料。根据这些基本运算就可以用数组模拟出栈来。 那么作为栈的著名应用,表达式的计算可以有两种方法。 第一种方法—— 首先建立两个栈,操作数栈OVS和运算符栈OPS。其中,操作数栈用来记忆表达式中的操作数,其栈顶指针为topv,初始时为空,即topv=0;运算符栈用来记忆表达式中的运算符,其栈顶指针为topp,初始时,栈中只有一个表达式结束符,即topp=1,且OPS(1)=‘;’。此处的‘;’即表达式结束符。 然后自左至右的扫描待处理的表达式,并假设当前扫描到的符号为W,根据不同的符号W做如下不同的处理: 1、 若W为操作数 2、 则将W压入操作数栈OVS 3、 且继续扫描下一个字符 4、 若W为运算符 5、 则根据运算符的性质做相应的处理: (1)、若运算符为左括号或者运算符的优先级大于运算符栈栈顶的运算符(即OPS(top)),则将运算符W压入运算符栈OPS,并继续扫描下一个字符。 (2)、若运算符W为表达式结束符‘;’且运算符栈栈顶的运算符也为表达式结束符(即OPS(topp)=’;’),则处理过程结束,此时,操作数栈栈顶元素(即OVS(topv))即为表达式的值。 (3)、若运算符W为右括号且运算符栈栈顶的运算符为左括号(即OPS(topp)=’(‘),则将左括号从运算符栈谈出,且继续扫描下一个符号。 (4)、若运算符的右不大于运算符栈栈顶的运算符(即OPS(topp)),则从操作数栈OVS中弹出两个操作数,设先后弹出的操作数为a、b,再从运算符栈OPS中弹出一个运算符,设为+,然后作运算a+b,并将运算结果压入操作数栈OVS。本次的运算符下次将重新考虑。 第二种方法—— 首先对表达式进行线性化,然后将线性表达式转换成机器指令序列以便进行求值。 那么什么是表达式的线性化呢。人们所习惯的表达式的表达方法称为中缀表示。中缀表示的特点是运算符位于运算对象的中间。但这种表示方式,有时必须借助括号才能将运算顺序表达清楚,而且处理也比较复杂。 1929年,波兰逻辑学家Lukasiewicz提出一种不用括号的逻辑符号体系,后来人们称之为波兰表示法(Polish notation)。波兰表达式的特点是运算符位于运算对象的后面,因此称为后缀表示。在对波兰表达式进行运算,严格按照自左至右的顺序进行。下面给出一些表达式及其相应的波兰表达式。 表达式 波兰表达式 A-B AB- (A-B)*C+D AB-C*D+ A*(B+C/D)-E*F ABCD/+*EF*- (B+C)/(A-D) BC+AD-/ OK,所谓表达式的线性化是指将中缀表达的表达式转化为波兰表达式。对于每一个表达式,利用栈可以把表达式变换成波兰表达式,也可以利用栈来计算波兰表达式的值。 至于转换和计算的过程和第一种方法大同小异,这里就不再赘述了。 下面给出转换和计算的具体实现程序—— /* first函数给出各个运算符的优先级,其中=为表达式结束符 */ int first(char c) { int p; switch(c) { case '*': p=2; break; case '/': p=2; break; case '+': p=1; break; case '-': p=1; break; case '(': p=0; break; case '=': p=-1; break; } return(p); } /* 此函数实现中缀到后缀的转换 */ /* M的值宏定义为20 */ /* sp[]为表达式数组 */ int mid_last() { int i=0,j=0; char c,sm[M]; c=s[0]; sm[0]='='; top=0; while(c!='\0') { if(islower(c)) sp[j++]=c; else switch(c) { case '+': case '-': case '*': case '/': while(first(c)<=first(sm[top])) sp[j++]=sm[top--]; sm[++top]=c; break; case '(': sm[++top]=c; break; case ')': while(sm[top]!='(') sp[j++]=sm[top--]; top--; break; default :return(1); } c=s[++i]; } while(top>0) sp[j++]=sm[top--]; sp[j]='\0'; return(0); } /* 由后缀表达式来计算表达式的值 */ int calc() { int i=0,sm[M],tr; char c; c=sp[0]; top=-1; while(c!='\0') { if(islower(c)) sm[++top]=ver[c-'a'];/*在转换过程中用abcd等来代替数, 这样才可以更方便的处理非一位数, ver数组中存放着这些字母所代替的数*/ else switch(c) { case '+': tr=sm[top--]; sm[top]+=tr; break; case '-': tr=sm[top--]; sm[top]-=tr; break; case '*': tr=sm[top--]; sm[top]*=tr; break; case '/': tr=sm[top--];sm[top]/=tr;break; default : return(1); } c=sp[++i]; } if(top>0) return(1); else } 这样这个程序基本上就算解决了,回过头来拿这个程序来算一算文章开始的那个问题。哈哈,算出来了,原来如此简单——(6-3)*10-6=24。 最后我总结了一下这其中容易出错的地方—— 1、 排列的时候由于一个数只能出现一次, 所以必然有一个判断语句。但是用什么来判断,用大小显然不行,因为有可能这四个数中有两个或者以上的数是相同的。我的方法是给每一个数设置一个代号,在排列结束时,通过这个代号找到这个数。 2、在应用嵌套函数时,需仔细分析程序的执行过程,并对个别变量进行适当的调整(如j的值),程序才能正确的执行。 3、在分析括号问题的时候要认真仔细,不要错过任何一个可能的机会,也要尽量使程序变得简单一些。不过我的分析可能也有问题,还请高手指点。 4、在用函数对一个数组进行处理的时候,一定要注意如果这个数组还需要再应用,就必须将它先保存起来,否则会出错,而且是很严重的错误。 5、在处理用户输入的表达式时,由于一个十位数或者更高位数是被分解成各位数存放在数组中,所以需对它们进行处理,将它们转化成实际的整型变量。另外,在转化过程中,用一个字母来代替这个数,并将这个数存在一个数组中,且它在数组中的位置和代替它的这个字母有一定的联系,这样才能取回这个数。 6、由于在穷举过程难免会出现计算过程中有除以0的计算,所以我们必须对calc函数种对于除的运算加以处理,否则程序会因为出错而退出(Divide by 0)。 7、最后一个问题,本程序尚未解决。对于一些比较著名的题目,本程序无法解答。比如说5、5、5、1或者8、8、3、3。这是由于这些题目在计算的过程用到了小数,而本程序并没有考虑到小数。

知与谁同 2019-12-02 01:22:19 0 浏览量 回答数 0

回答

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法,即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。 一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。显然x*就是此方程组的解,否则称为迭代法发散。 跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。一般如果可能,直接解法总是优先考虑的。但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。 最常见的迭代法是牛顿法。其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。 利用迭代算法解决问题,需要做好以下三个方面的工作: 确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以顺推或倒推的方法来完成。 对迭代过程进行控制 在 什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数 是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需 要进一步分析出用来结束迭代过程的条件。 举例 例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。 分析:这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u(n - 1)× 2 (n ≥ 2) 对应 u n 和 u(n - 1),定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 :阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 220,220个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。 分析:根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂 15 次以后得到的个数是 2^20。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2^20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 (x 的初值为第 15 次分裂之后的个数 2^20) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: cls x=2^20 for i=1 to 15 x=x/2 next i print x end ps:java中幂的算法是Math.pow(2,20);返回double,稍微注意一下 例 3 :验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1。如此经过有限次运算后,总可以得到自然数 1。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析:定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1。用 QBASIC 语言把它描述出来就是: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为:n=1。参考程序如下: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 迭代法开平方: #include<stdio.h> #include<math.h> void main() { double a,x0,x1; printf("Input a:\n"); scanf("%lf",&a);//为什么在VC6.0中不能写成“scanf("%f",&a);”。 if(a<0) printf("Error!\n"); else { x0=a/2; x1=(x0+a/x0)/2; do { x0=x1; x1=(x0+a/x0)/2; }while(fabs(x0-x1)>=1e-6); } printf("Result:\n"); printf("sqrt(%g)=%g\n",a,x1); } 求平方根的迭代公式:x1=1/2*(x0+a/x0)。 算法:1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为a的初值;利用迭代公式求出一个x1。此值与真正的a的平方根值相比,误差很大。 ⒉把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1. ⒊利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。 ⒋比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: ⑴ 选一个方程的近似根,赋给变量x0; ⑵ 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; ⑶ 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤⑵的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while (fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: ⑴ 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; ⑵ 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib⑴=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问 题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算 fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib⑴和fib(0),分别能 立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib⑴和fib(0)后,返回得到fib⑵的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为:⑴5、4、3 ⑵5、4、2 ⑶5、4、1 ⑷5、3、2 ⑸5、3、1 ⑹5、2、1 ⑺4、3、2 ⑻4、3、1 ⑼4、2、1 ⑽3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递 归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“\n”); } } } void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并 保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达 到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止 当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: ⑴ 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 ⑵ 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i else { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\n”); for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是 从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选 解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在 候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。 对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int ; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv.=1; twv tw=tw; twv tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv.; tw=twv tw; tv=twv tv; switch(f) { case 1: twv.++; if (tw+a.weight<=limitW) if (i { next(i+1,tw+a.weight,tv); i++; } else { maxv=tv; for (k=0;k cop[k]=twv[k].!=0; } break; case 0: i--; break; default: twv.=0; if (tv-a.value>maxv) if (i { next(i+1,tw,tv-a.value); i++; } else { maxv=tv-a.value; for (k=0;k cop[k]=twv[k].!=0; } break; } } return maxv; } void main() { double maxv; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入限制重量\n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值\n”); for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“\n选中的物品为\n”); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); }

云篆 2019-12-02 01:25:10 0 浏览量 回答数 0

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

用 Git 来讲讲二叉树最近公共祖先 6月9日 【今日算法】

游客ih62co2qqq5ww 2020-06-09 15:15:00 12 浏览量 回答数 1

问题

Vue面试题汇总【精品问答】

问问小秘 2020-05-25 18:02:28 11132 浏览量 回答数 2

问题

阿里云的远程经常断开,无法解决

boerthaaa 2019-12-01 21:59:01 10536 浏览量 回答数 4

问题

《公交线路客流预测》攻略-附平台mr示例代码

楠兮 2019-12-01 21:31:10 16683 浏览量 回答数 5

问题

【算法】五分钟算法小知识:动态规划详解

游客ih62co2qqq5ww 2020-05-07 14:48:09 25 浏览量 回答数 1

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11

回答

    using System;     using System.Collections.Generic;     using System.Linq;     using System.Text;    namespace test{    class QuickSort    {        static void Main(string[] args)        {            int[] array = { 49, 38, 65, 97, 76, 13, 27 };            sort(array, 0, array.Length - 1);            Console.ReadLine();        }        /**一次排序单元,完成此方法,key左边都比key小,key右边都比key大。         **@param array排序数组          **@param low排序起始位置          **@param high排序结束位置         **@return单元排序后的数组 */        private static int sortUnit(int[] array, int low, int high)        {            int key = array[low];            while (low < high)            {                /*从后向前搜索比key小的值*/                while (array[high] >= key && high > low)                    --high;                 /*比key小的放左边*/                array[low] = array[high];                   /*从前向后搜索比key大的值,比key大的放右边*/                while (array[low] <= key && high > low)                    ++low;                 /*比key大的放右边*/                array[high] = array[low];            }            /*左边都比key小,右边都比key大。//将key放在游标当前位置。//此时low等于high */            array[low] = key;            foreach (int i in array)            {                Console.Write({0}\t, i);            }            Console.WriteLine();            return high;        }            /**快速排序 *@paramarry *@return */        public static void sort(int[] array, int low, int high)        {            if (low >= high)                return;             /*完成一次单元排序*/            int index = sortUnit(array, low, high);             /*对左边单元进行排序*/            sort(array, low, index - 1);            /*对右边单元进行排序*/            sort(array, index + 1, high);        }    }} 运行结果:27 38 13 49 76 97 6513 27 38 49 76 97 65  13 27 38 49 65 76 97快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:初始状态 {49 38 65 97 76 13 27} 进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65} 分别对前后两部分进行快速排序{27 38 13} 经第三步和第四步交换后变成 {13 27 38} 完成排序。{76 97 65} 经第三步和第四步交换后变成 {65 76 97} 完成排序。图示 快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。 QUICKSORT(A,p,r)1 if p<r2 then q ←PARTITION(A,p,r)3 QUICKSORT(A,p,q-1)4 QUICKSORT(A,q+1,r)为排序一个完整的数组A,最初的调用是QUICKSORT(A,1,length[A])。快速排序算法的关键是PARTITION过程,它对子数组A[p..r]进行就地重排:PARTITION(A,p,r)1 x←A[r]2 i←p-13 for j←p to r-14 do if A[j]≤x5 then i←i+16 exchange A[i]←→A[j]7 exchange A[i+1]←→A[r]8 return i+1 对PARTITION和QUICKSORT所作的改动比较小。在新的划分过程中,我们在真正进行划分之前实现交换:(其中PARTITION过程同快速排序伪代码(非随机))RANDOMIZED-PARTITION(A,p,r)1 i← RANDOM(p,r)2 exchange A[r]←→A[i]3 return PARTITION(A,p,r)新的快速排序过程不再调用PARTITION,而是调用RANDOMIZED-PARTITION。RANDOMIZED-QUICKSORT(A,p,r)1 if p<r2 then q← RANDOMIZED-PARTITION(A,p,r)3 RANDOMIZED-QUICKSORT(A,p,q-1)4 RANDOMIZED-QUICKSORT(A,q+1,r) 这里为方便起见,我们假设算法Quick_Sort的范围阈值为1(即一直将线性表分解到只剩一个元素),这对该算法复杂性的分析没有本质的影响。我们先分析函数partition的性能,该函数对于确定的输入复杂性是确定的。观察该函数,我们发现,对于有n个元素的确定输入L[p..r],该函数运行时间显然为θ(n)。最坏情况无论适用哪一种方法来选择pivot,由于我们不知道各个元素间的相对大小关系(若知道就已经排好序了),所以我们无法确定pivot的选择对划分造成的影响。因此对各种pivot选择法而言,最坏情况和最好情况都是相同的。我们从直觉上可以判断出最坏情况发生在每次划分过程产生的两个区间分别包含n-1个元素和1个元素的时候(设输入的表有n个元素)。下面我们暂时认为该猜测正确,在后文我们再详细证明该猜测。对于有n个元素的表L[p..r],由于函数Partition的计算时间为θ(n),所以快速排序在序坏情况下的复杂性有递归式如下:T(1)=θ(1),T(n)=T(n-1)+T(1)+θ(n) (1)用迭代法可以解出上式的解为T(n)=θ(n2)。这个最坏情况运行时间与插入排序是一样的。下面我们来证明这种每次划分过程产生的两个区间分别包含n-1个元素和1个元素的情况就是最坏情况。设T(n)是过程Quick_Sort作用于规模为n的输入上的最坏情况的时间,则T(n)=max(T(q)+T(n-q))+θ(n),其中1≤q≤n-1 (2)我们假设对于任何k<n,总有T(k)≤ck,其中c为常数;显然当k=1时是成立的。将归纳假设代入(2),得到:T(n)≤max(cq2+c(n-q)2)+θ(n)=c*max(q2+(n-q)2)+θ(n)因为在[1,n-1]上q2+(n-q)2关于q递减,所以当q=1时q2+(n-q)2有最大值n2-2(n-1)。于是有:T(n)≤cn2-2c(n-1)+θ(n)≤cn2只要c足够大,上面的第二个小于等于号就可以成立。于是对于所有的n都有T(n)≤cn。这样,排序算法的最坏情况运行时间为θ(n2),且最坏情况发生在每次划分过程产生的两个区间分别包含n-1个元素和1个元素的时候。时间复杂度为o(n2)。最好情况如果每次划分过程产生的区间大小都为n/2,则快速排序法运行就快得多了。这时有:T(n)=2T(n/2)+θ(n),T(1)=θ(1) (3)解得:T(n)=θ(nlogn)快速排序法最佳情况下执行过程的递归树如下图所示,图中lgn表示以10为底的对数,而本文中用logn表示以2为底的对数.由于快速排序法也是基于比较的排序法,其运行时间为Ω(nlogn),所以如果每次划分过程产生的区间大小都为n/2,则运行时间θ(nlogn)就是最好情况运行时间。但是,是否一定要每次平均划分才能达到最好情况呢。要理解这一点就必须理解对称性是如何在描述运行时间的递归式中反映的。我们假设每次划分过程都产生9:1的划分,乍一看该划分很不对称。我们可以得到递归式:T(n)=T(n/10)+T(9n/10)+θ(n),T(1)=θ(1) (4)请注意树的每一层都有代价n,直到在深度log10n=θ(logn)处达到边界条件,以后各层代价至多为n。递归于深度log10/9n=θ(logn)处结束。这样,快速排序的总时间代价为T(n)=θ(nlogn),从渐进意义上看就和划分是在中间进行的一样。事实上,即使是99:1的划分时间代价也为θ(nlogn)。其原因在于,任何一种按常数比例进行划分所产生的递归树的深度都为θ(nlogn),其中每一层的代价为O(n),因而不管常数比例是什么,总的运行时间都为θ(nlogn),只不过其中隐含的常数因子有所不同。(关于算法复杂性的渐进阶,请参阅算法的复杂性)平均情况快速排序的平均运行时间为θ(nlogn)。我们对平均情况下的性能作直觉上的分析。要想对快速排序的平均情况有个较为清楚的概念,我们就要对遇到的各种输入作个假设。通常都假设输入数据的所有排列都是等可能的。后文中我们要讨论这个假设。当我们对一个随机的输入数组应用快速排序时,要想在每一层上都有同样的划分是不太可能的。我们所能期望的是某些划分较对称,另一些则很不对称。事实上,我们可以证明,如果选择L[p..r]的第一个元素作为支点元素,Partition所产生的划分80%以上都比9:1更对称,而另20%则比9:1差,这里证明从略。平均情况下,Partition产生的划分中既有“好的”,又有“差的”。这时,与Partition执行过程对应的递归树中,好、差划分是随机地分布在树的各层上的。为与我们的直觉相一致,假设好、差划分交替出现在树的各层上,且好的划分是最佳情况划分,而差的划分是最坏情况下的划分。在根节点处,划分的代价为n,划分出来的两个子表的大小为n-1和1,即最坏情况。在根的下一层,大小为n-1的子表按最佳情况划分成大小各为(n-1)/2的两个子表。这儿我们假设含1个元素的子表的边界条件代价为1。在一个差的划分后接一个好的划分后,产生出三个子表,大小各为1,(n-1)/2和(n-1)/2,代价共为2n-1=θ(n)。一层划分就产生出大小为(n-1)/2+1和(n-1)/2的两个子表,代价为n=θ(n)。这种划分差不多是完全对称的,比9:1的划分要好。从直觉上看,差的划分的代价θ(n)可被吸收到好的划分的代价θ(n)中去,结果是一个好的划分。这样,当好、差划分交替分布划分都是好的一样:仍是θ(nlogn),但θ记号中隐含的常数因子要略大一些。关于平均情况的严格分析将在后文给出。在前文从直觉上探讨快速排序的平均性态过程中,我们已假定输入数据的所有排列都是等可能的。如果输入的分布满足这个假设时,快速排序是对足够大的输入的理想选择。但在实际应用中,这个假设就不会总是成立。解决的方法是,利用随机化策略,能够克服分布的等可能性假设所带来的问题。一种随机化策略是:与对输入的分布作“假设”不同的是对输入的分布作“规定”。具体地说,在排序输入的线性表前,对其元素加以随机排列,以强制的方法使每种排列满足等可能性。事实上,我们可以找到一个能在O(n)时间内对含n个元素的数组加以随机排列的算法。这种修改不改变算法的最坏情况运行时间,但它却使得运行时间能够独立于输入数据已排序的情况。另一种随机化策略是:利用前文介绍的选择支点元素pivot的第四种方法,即随机地在L[p..r]中选择一个元素作为支点元素pivot。实际应用中通常采用这种方法。快速排序的随机化版本有一个和其他随机化算法一样的有趣性质:没有一个特别的输入会导致最坏情况性态。这种算法的最坏情况性态是由随机数产生器决定的。你即使有意给出一个坏的输入也没用,因为随机化排列会使得输入数据的次序对算法不产生影响。只有在随机数产生器给出了一个很不巧的排列时,随机化算法的最坏情况性态才会出现。事实上可以证明几乎所有的排列都可使快速排序接近平均情况性态,只有非常少的几个排列才会导致算法的近最坏情况性态。一般来说,当一个算法可按多条路子做下去,但又很难决定哪一条保证是好的选择时,随机化策略是很有用的。如果大部分选择都是好的,则随机地选一个就行了。通常,一个算法在其执行过程中要做很多选择。如果一个好的选择的获益大于坏的选择的代价,那么随机地做一个选择就能得到一个很有效的算法。我们在前文已经了解到,对快速排序来说,一组好坏相杂的划分仍能产生很好的运行时间 。因此我们可以认为该算法的随机化版本也能具有较好的性态。

liujae 2019-12-02 01:18:45 0 浏览量 回答数 0

回答

一、ping基本使用详解 在网络中ping是一个十分强大的TCP/IP工具。它的作用主要为: 1、用来检测网络的连通情况和分析网络速度 2、根据域名得到服务器IP 3、根据ping返回的TTL值来判断对方所使用的操作系统及数据包经过路由器数量。 我们通常会用它来直接ping ip地址,来测试网络的连通情况。 类如这种,直接ping ip地址或网关,ping通会显示出以上数据,有朋友可能会问,bytes=32;time<1ms;TTL=128 这些是什么意思。 bytes值:数据包大小,也就是字节。 time值:响应时间,这个时间越小,说明你连接这个地址速度越快。 TTL值:Time To Live,表示DNS记录在DNS服务器上存在的时间,它是IP协议包的一个值,告诉路由器该数据包何时需要被丢弃。可以通过Ping返回的TTL值大小,粗略地判断目标系统类型是Windows系列还是UNIX/Linux系列。 默认情况下,Linux系统的TTL值为64或255,WindowsNT/2000/XP系统的TTL值为128,Windows98系统的TTL值为32,UNIX主机的TTL值为255。 因此一般TTL值: 100~130ms之间,Windows系统 ; 240~255ms之间,UNIX/Linux系统。 当然,我们今天主要了解并不是这些,而是ping的其它参考。 ping命令除了直接ping网络的ip地址,验证网络畅通和速度之外,它还有这些用法。 二、ping -t的使用 不间断地Ping指定计算机,直到管理员中断。 这就说明电脑连接路由器是通的,网络效果很好。下面按按住键盘的Ctrl+c终止它继续ping下去,就会停止了,会总结出运行的数据包有多少,通断的有多少了。 三、ping -a的使用 ping-a解析计算机名与NetBios名。就是可以通过ping它的ip地址,可以解析出主机名。 四、ping -n的使用 在默认情况下,一般都只发送四个数据包,通过这个命令可以自己定义发送的个数,对衡量网络速度很有帮助,比如我想测试发送10个数据包的返回的平均时间为多少,最快时间为多少,最慢时间为多少就可以通过以下获知: 从以上我就可以知道在给47.93.187.142发送10个数据包的过程当中,返回了10个,没有丢失,这10个数据包当中返回速度最快为32ms,最慢为55ms,平均速度为37ms。说明我的网络良好。 如果对于一些不好的网络,比如监控系统中非常卡顿,这样测试,返回的结果可能会显示出丢失出一部分,如果丢失的比较多的话,那么就说明网络不好,可以很直观的判断出网络的情况。 五、ping -l size的使用 -l size:发送size指定大小的到目标主机的数据包。 在默认的情况下Windows的ping发送的数据包大小为32byt,最大能发送65500byt。当一次发送的数据包大于或等于65500byt时,将可能导致接收方计算机宕机。所以微软限制了这一数值;这个参数配合其它参数以后危害非常强大,比如攻击者可以结合-t参数实施DOS攻击。(所以它具有危险性,不要轻易向别人计算机使用)。 例如:ping -l 65500 -t 211.84.7.46 会连续对IP地址执行ping命令,直到被用户以Ctrl+C中断. 这样它就会不停的向211.84.7.46计算机发送大小为65500byt的数据包,如果你只有一台计算机也许没有什么效果,但如果有很多计算机那么就可以使对方完全瘫痪,网络严重堵塞,由此可见威力非同小可。 六、ping -r count 的使用 在“记录路由”字段中记录传出和返回数据包的路由,探测经过的 路由个数,但最多只能跟踪到9个路由。 ping -n 1 -r 9 202.102.224.25 (发送一个数据包,最多记录9个路由) 将经过 9个路由都显示出来了,可以看上图。 ping命令用的较多的就这6类的,大家有可能在项目中会用到的。 七、批量ping网段 对于一个网段ip地址众多,如果单个检测实在麻烦,那么我们可以直接批量ping网段检测,那个ip地址出了问题,一目了然。 先看代码,直接在命令行窗口输入: for /L %D in (1,1,255) do ping 10.168.1.%D IP地址段修改成你要检查的IP地址段。 当输入批量命令后,那么它就自动把网段内所有的ip地址都ping完为止。 那么这段“for /L %D in(1,1,255) do ping 10.168.1.%D” 代码是什么意思呢? 代码中的这个(1,1,255)就是网段起与始,就是检测网段192.168.1.1到192.168.1.255之间的所有的ip地址,每次逐增1,直接到1到255这255个ip检测完为止。

剑曼红尘 2020-03-23 15:44:54 0 浏览量 回答数 0

回答

首先去python官网下载python3的源码包,网址:https://www.python.org/  进去之后点击导航栏的Downloads,也可以鼠标放到Downloads上弹出菜单选择Source code,表示源码包,这里选择最新版本3.5.1,当然下面也有很多其他历史版本,点进去之后页面下方可以看到下载链接,包括源码包、Mac OSX安装包、Windows安装包    这里选择第一个下载即可,下载的就是源码包:Python-3.5.1.tgz,下载好之后上传到linux系统,准备安装  python安装之前需要一些必要的模块,比如openssl,readline等,如果没有这些模块后来使用会出现一些问题,比如没有openssl则不支持ssl相关的功能,并且pip3在安装模块的时候会直接报错;没有readline则python交互式界面删除键和方向键都无法正常使用,至于需要什么模块在make完之后python会给出提示,通过提示进行安装即可装全, 另外感谢园友的Glory_Lion的回复;下面是需要提前预装的依赖:复制代码yum -y install zlib zlib-develyum -y install bzip2 bzip2-develyum -y install ncurses ncurses-develyum -y install readline readline-develyum -y install openssl openssl-develyum -y install openssl-staticyum -y install xz lzma xz-develyum -y install sqlite sqlite-develyum -y install gdbm gdbm-develyum -y install tk tk-develyum -y install libffi libffi-devel复制代码 安装上面这些python内置模块基本上就比较全了,如果后续有其他必要的模块,会继续补充的,接下来可以安装python了,编译过程中会自动包含这些依赖.   释放文件:tar -xvzf Python-3.5.1.tgz  进入目录:cd Python-3.5.1/  配置编译,因为上面依赖包是用yum安装而不是自己编译的,所以都是安装在系统默认目录下,因此各种选项不用加默认即可生效:./configure --prefix=/usr/python --enable-shared CFLAGS=-fPIC 补充一下:这里加上--enable-shared和-fPIC之后可以将python3的动态链接库编译出来,默认情况编译完lib下面只有python3.xm.a这样的文件,python本身可以正常使用,但是如果编译第三方库需要python接口的比如caffe等,则会报错;所以这里建议按照上面的方式配置,另外如果openssl不使用系统yum安装的,而是使用自己编译的比较新的版本可以使用--with-openssl=/usr/local/openssl这种方式指定,后面目录为openssl实际安装的目录,另外编译完还要将openssl的lib目录加入ld运行时目录中即可.   接下来编译源码:make  执行安装:make install  整个过程大约5-10分钟,安装成功之后,安装目录就在/usr/python 安装完成之后要简单做一下配置:即将python库路径添加到/etc/ld.so.conf配置中,然后执行ldconfig生效;或者添加到$LD_LIBRARY_PATH中,这样在接下来运行python3是就不会报找不到库文件的错误了.   系统中原来的python在/usr/bin/python,通过ls -l可以看到,python是一个软链接,链接到本目录下的python2.7  这里不要把这个删除,不对原来默认的环境做任何修改,只新建一个python3的软链接即可,只是需要执行python3代码时python要改成python3,或者python脚本头部解释器要改为#!/usr/bin/python3  这里建立有关的软链接如下:ln -s /usr/python/bin/python3 /usr/bin/python3ln -s /usr/python/bin/pip3 /usr/bin/pip3  这样就建立好了,以后直接执行python3命令就可以调用python3了,执行pip3可以安装需要的python3模块;另外如果仔细看python安装目录下的bin目录,实际上python3也是个软链接,链接到python3.5.1,这样多次链接也是为了多个版本的管理更加方便,  python3新版本的安装就是这些,因为我们之前安装了完整的依赖,所以下面问题不存在了,忽略即可,其中的python readline模块也早已经停止更新了,会出现崩溃问题;这里基础环境都是使用系统的依赖,更稳定.

小六码奴 2019-12-02 01:05:53 0 浏览量 回答数 0

问题

算法分析中的空间复杂度 7月3日 【今日算法】

游客ih62co2qqq5ww 2020-07-03 13:47:20 1 浏览量 回答数 1

问题

可测试性如何帮助团队提升效率

技术小菜鸟 2019-12-01 21:05:18 2886 浏览量 回答数 3

问题

迁云工具FAQ

chenchuan 2019-12-01 21:36:31 659 浏览量 回答数 0

问题

动态规划的实际应用:图片压缩算法 6月15日 【今日算法】

游客ih62co2qqq5ww 2020-06-17 02:16:53 12 浏览量 回答数 1

问题

搞了一天云服务回滚,不成功,晚上突然好了!谁能告诉我真正的原因?

luopingbj 2019-12-01 21:29:11 5633 浏览量 回答数 2

回答

我们都知道JVM的内存管理是自动化的,Java语言的程序指针也不需要开发人员手工释放,JVM的GC会自动的进行回收,但是,如果编程不当,JVM仍然会发生内存泄露,导致Java程序产生了OutOfMemoryError(OOM)错误。 产生OutOfMemoryError错误的原因包括: java.lang.OutOfMemoryError: Java heap spacejava.lang.OutOfMemoryError: PermGen space及其解决方法java.lang.OutOfMemoryError: unable to create new native threadjava.lang.OutOfMemoryError:GC overhead limit exceeded对于第1种异常,表示Java堆空间不够,当应用程序申请更多的内存,而Java堆内存已经无法满足应用程序对内存的需要,将抛出这种异常。 对于第2种异常,表示Java永久带(方法区)空间不够,永久带用于存放类的字节码和长常量池,类的字节码加载后存放在这个区域,这和存放对象实例的堆区是不同的,大多数JVM的实现都不会对永久带进行垃圾回收,因此,只要类加载的过多就会出现这个问题。一般的应用程序都不会产生这个错误,然而,对于Web服务器来讲,会产生有大量的JSP,JSP在运行时被动态的编译成Java Servlet类,然后加载到方法区,因此,太多的JSP的Web工程可能产生这个异常。 对于第3种异常,本质原因是创建了太多的线程,而能创建的线程数是有限制的,导致了这种异常的发生。 对于第4种异常,是在并行或者并发回收器在GC回收时间过长、超过98%的时间用来做GC并且回收了不到2%的堆内存,然后抛出这种异常进行提前预警,用来避免内存过小造成应用不能正常工作。 下面两个异常与OOM有关系,但是,又没有绝对关系。 java.lang.StackOverflowError ...java.net.SocketException: Too many open files对于第1种异常,是JVM的线程由于递归或者方法调用层次太多,占满了线程堆栈而导致的,线程堆栈默认大小为1M。 对于第2种异常,是由于系统对文件句柄的使用是有限制的,而某个应用程序使用的文件句柄超过了这个限制,就会导致这个问题。 上面介绍了OOM相关的基础知识,接下来我们开始讲述笔者经历的一次OOM问题的定位和解决的过程。 产生问题的现象 在某一段时间内,我们发现不同的业务服务开始偶发的报OOM的异常,有的时候是白天发生,有的时候是晚上发生,有的时候是基础服务A发生,有的时候是上层服务B发生,有的时候是上层服务C发生,有的时候是下层服务D发生,丝毫看不到一点规律。 产生问题的异常如下: Caused by: java.lang.OutOfMemoryError: unable to create new native thread at java.lang.Thread.start0(Native Method)at java.lang.Thread.start(Thread.java:597)at java.util.Timer.(Timer.java:154) 解决问题的思路和过程 经过细心观察发现,产生问题虽然在不同的时间发生在不同的服务池,但是,晚上0点发生的时候概率较大,也有其他时间偶发,但是都在整点。 这个规律很重要,虽然不是一个时间,但是基本都在整点左右发生,并且晚上0点居多。从这个角度思考,整点或者0点系统是否有定时,与出问题的每个业务系统技术负责人核实,0点没有定时任务,其他时间的整点有定时任务,但是与发生问题的时间不吻合,这个思路行不通。 到现在为止,从现象的规律上我们已经没法继续分析下去了,那我们回顾一下错误本身: java.lang.OutOfMemoryError: unable to create new native thread 顾名思义,错误产生的原因就是应用不能创建线程了,但是,应用还需要创建线程。为什么程序不能创建线程呢? 有两个具体原因造成这个异常: 由于线程使用的资源过多,操作系统已经不能再提供给应用资源了。操作系统设置了应用创建线程的最大数量,并且已经达到了最大允许数量。上面第1条资源指的是内存,而第2条中,在Linux下线程使用轻量级进程实现的,因此线程的最大数量也是操作系统允许的进程的最大数量。 内存计算 操作系统中的最大可用内存除去操作系统本身使用的部分,剩下的都可以为某一个进程服务,在JVM进程中,内存又被分为堆、本地内存和栈等三大块,Java堆是JVM自动管理的内存,应用的对象的创建和销毁、类的装载等都发生在这里,本地内存是Java应用使用的一种特殊内存,JVM并不直接管理其生命周期,每个线程也会有一个栈,是用来存储线程工作过程中产生的方法局部变量、方法参数和返回值的,每个线程对应的栈的默认大小为1M。 Linux和JVM的内存管理示意图如下: 内存结构模型因此,从内存角度来看创建线程需要内存空间,如果JVM进程正当一个应用创建线程,而操作系统没有剩余的内存分配给此JVM进程,则会抛出问题中的OOM异常:unable to create new native thread。 如下公式可以用来从内存角度计算允许创建的最大线程数: 最大线程数 = (操作系统最大可用内存 - JVM内存 - 操作系统预留内存)/ 线程栈大小 根据这个公式,我们可以通过剩余内存计算可以创建线程的数量。 下面是问题出现的时候,从生产机器上执行前面小节介绍的Linux命令free的输出: free -m >> /tmp/free.log total used free shared buffers cached Mem: 7872 7163 709 0 31 3807-/+ buffers/cache: 3324 4547Swap: 4095 173 3922Tue Jul 5 00:27:51 CST 2016从上面输出可以得出,生产机器8G内存,使用了7G,剩余700M可用,其中操作系统cache使用3.8G。操作系统cache使用的3.8G是用来缓存IO数据的,如果进程内存不够用,这些内存是可以释放出来优先分配给进程使用。然而,我们暂时并不需要考虑这块内存,剩余的700M空间完全可以继续用来创建线程数: 700M / 1M = 700个线程 因此,根据内存可用计算,当OOM异常:unable to create new native thread问题发生的时候,还有700M可用内存,可以创建700个线程。 到现在为止可以证明此次OOM异常不是因为线程吃光所有的内存而导致的。 线程数对比 上面提到,有两个具体原因造成这个异常,我们上面已经排除了第1个原因,那我们现在从第2个原因入手,评估是否操作系统设置了应用创建线程的最大数量,并且已经达到了最大允许数量。 在问题出现的生产机器上使用ulimit -a来显示当前的各种系统对用户使用资源的限制: robert@robert-ubuntu1410:~$ ulimit -acore file size (blocks, -c) 0data seg size (kbytes, -d) unlimitedscheduling priority (-e) 0file size (blocks, -f) unlimitedpending signals (-i) 62819max locked memory (kbytes, -l) 64max memory size (kbytes, -m) unlimitedopen files (-n) 65535pipe size (512 bytes, -p) 8POSIX message queues (bytes, -q) 819200real-time priority (-r) 0stack size (kbytes, -s) 10240cpu time (seconds, -t) unlimitedmax user processes (-u) 1024virtual memory (kbytes, -v) unlimitedfile locks (-x) unlimited这里面我们看到生产机器设置的允许使用的最大用户进程数为1024: max user processes (-u) 1024现在,我们必须获得问题出现的时候,用户下创建的线程情况。 在问题产生的时候,我们使用前面小结介绍的JVM监控命令jstack命令打印出了Java线程情况,jstack命令的示例输出如下: robert@robert-ubuntu1410:~$ jstack 27432017-04-09 12:06:51Full thread dump Java HotSpot(TM) Server VM (25.20-b23 mixed mode): "Attach Listener" #23 daemon prio=9 os_prio=0 tid=0xc09adc00 nid=0xb4c waiting on condition [0x00000000] java.lang.Thread.State: RUNNABLE "http-nio-8080-Acceptor-0" #22 daemon prio=5 os_prio=0 tid=0xc3341000 nid=0xb02 runnable [0xbf1bd000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.ServerSocketChannelImpl.accept0(Native Method) at sun.nio.ch.ServerSocketChannelImpl.accept(ServerSocketChannelImpl.java:241) - locked <0xcf8938d8> (a java.lang.Object) at org.apache.tomcat.util.net.NioEndpoint$Acceptor.run(NioEndpoint.java:688) at java.lang.Thread.run(Thread.java:745) "http-nio-8080-ClientPoller-1" #21 daemon prio=5 os_prio=0 tid=0xc35bc400 nid=0xb01 runnable [0xbf1fe000] java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:79) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked <0xcf99b100> (a sun.nio.ch.Util$2) - locked <0xcf99b0f0> (a java.util.Collections$UnmodifiableSet) - locked <0xcf99aff8> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97) at org.apache.tomcat.util.net.NioEndpoint$Poller.run(NioEndpoint.java:1052) at java.lang.Thread.run(Thread.java:745) ......从jstack命令的输出并统计后,我们得知,JVM一共创建了904个线程,但是,这还没有到最大的进程限制1024。 robert@robert-ubuntu1410:~$ grep "Thread " js.log | wc -l 904 这是我们思考,除了JVM创建的应用层线程,JVM本身可能会有一些管理线程存在,而且操作系统内用户下可能也会有守护线程在运行。 我们继续从操作系统的角度来统计线程数,我们使用上面小结介绍的Linux操作系统命令pstack,并得到如下的输出: PID LWP USER %CPU %MEM CMD 1 1 root 0.0 0.0 /sbin/init 2 2 root 0.0 0.0 [kthreadd] 3 3 root 0.0 0.0 [migration/0] 4 4 root 0.0 0.0 [ksoftirqd/0] 5 5 root 0.0 0.0 [migration/0] 6 6 root 0.0 0.0 [watchdog/0] 7 7 root 0.0 0.0 [migration/1] 8 8 root 0.0 0.0 [migration/1] 9 9 root 0.0 0.0 [ksoftirqd/1] 10 10 root 0.0 0.0 [watchdog/1] 11 11 root 0.0 0.0 [migration/2] 12 12 root 0.0 0.0 [migration/2] 13 13 root 0.0 0.0 [ksoftirqd/2] 14 14 root 0.0 0.0 [watchdog/2] 15 15 root 0.0 0.0 [migration/3] 16 16 root 0.0 0.0 [migration/3] 17 17 root 0.0 0.0 [ksoftirqd/3] 18 18 root 0.0 0.0 [watchdog/3] 19 19 root 0.0 0.0 [events/0] 20 20 root 0.0 0.0 [events/1] 21 21 root 0.0 0.0 [events/2] 22 22 root 0.0 0.0 [events/3] 23 23 root 0.0 0.0 [cgroup] 24 24 root 0.0 0.0 [khelper] ...... 7257 7257 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #2 [idle 1 sec] 7258 7258 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #3 [idle 1 sec] 7259 7259 zabbix 0.0 0.0 /usr/local/zabbix/sbin/zabbix_agentd: active checks #4 [idle 1 sec] ...... 9040 9040 app 0.0 30.5 /apps/prod/jdk1.6.0_24/bin/java -Dnop -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Ddbconfigpath=/apps/dbconfig/ -Djava.io.tmpdir=/apps/data/java-tmpdir -server -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m -Dcom.sun.management.jmxremote -Djava.rmi.server.hostname=192.168.10.194 -Dcom.sun.management.jmxremote.port=6969 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp -Xshare:off -Dhostname=sjsa-trade04 -Djute.maxbuffer=41943040 -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Dworkdir=/apps/data/tomcat-work -Djava.endorsed.dirs=/apps/product/tomcat-trade/endorsed -classpath commonlib:/apps/product/tomcat-trade/bin/bootstrap.jar:/apps/product/tomcat-trade/bin/tomcat-juli.jar -Dcatalina.base=/apps/product/tomcat-trade -Dcatalina.home=/apps/product/tomcat-trade -Djava.io.tmpdir=/apps/data/tomcat-temp/ org.apache.catalina.startup.Bootstrap start 9040 9041 app 0.0 30.5 /apps/prod/jdk1.6.0_24/bin/java -Dnop -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Ddbconfigpath=/apps/dbconfig/ -Djava.io.tmpdir=/apps/data/java-tmpdir -server -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m -Dcom.sun.management.jmxremote -Djava.rmi.server.hostname=192.168.10.194 -Dcom.sun.management.jmxremote.port=6969 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp -Xshare:off -Dhostname=sjsa-trade04 -Djute.maxbuffer=41943040 -Djava.net.preferIPv4Stack=true -Dfile.encoding=UTF-8 -Dworkdir=/apps/data/tomcat-work -Djava.endorsed.dirs=/apps/product/tomcat-trade/endorsed -classpath commonlib:/apps/product/tomcat-trade/bin/bootstrap.jar:/apps/product/tomcat-trade/bin/tomcat-juli.jar -Dcatalina.base=/apps/product/tomcat-trade -Dcatalina.home=/apps/product/tomcat-trade -Djava.io.tmpdir=/apps/data/tomcat-temp/ org.apache.catalina.startup.Bootstrap start ......通过命令统计用户下已经创建的线程数为1021。 $ grep app pthreads.log | wc -l 1021 现在我们确定,1021的数字已经相当的接近1021的最大进程数了,正如前面我们提到,在Linux操作系统里,线程是通过轻量级的进程实现的,因此,限制用户的最大进程数,就是限制用户的最大线程数,至于为什么没有精确达到1024这个最大值就已经报出异常,应该是系统的自我保护功能,在还剩下3个线程的前提下,就开始报错。 到此为止,我们已经通过分析来找到问题的原因,但是,我们还是不知道为什么会创建这么多的线程,从第一个输出得知,JVM已经创建的应用线程有907个,那么他们都在做什么事情呢? 于是,在问题发生的时候,我们又使用JVM的jstack命令,查看输出得知,每个线程都阻塞在打印日志的语句上,log4j中打印日志的代码实现如下: public void callAppenders(LoggingEvent event) { int writes = 0; for(Category c = this; c != null; c=c.parent) { // Protected against simultaneous call to addAppender, removeAppender,... synchronized(c) { if(c.aai != null) { writes += c.aai.appendLoopOnAppenders(event); } if(!c.additive) { break; } } } if(writes == 0) { repository.emitNoAppenderWarning(this); } }在log4j中,打印日志有一个锁,锁的作用是让打印日志可以串行,保证日志在日志文件中的正确性和顺序性。 那么,新的问题又来了,为什么只有凌晨0点会出现打印日志阻塞,其他时间会偶尔发生呢?这时,我们带着新的线索又回到问题开始的思路,凌晨12点应用没有定时任务,系统会不会有其他的IO密集型的任务,比如说归档日志、磁盘备份等? 经过与运维部门碰头,基本确定是每天凌晨0点日志切割导致磁盘IO被占用,于是堵塞打印日志,日志是每个工作任务都必须的,日志阻塞,线程池就阻塞,线程池阻塞就导致线程池被撑大,线程池里面的线程数超过1024就会报错。 到这里,我们基本确定了问题的原因,但是还需要对日志切割导致IO增大进行分析和论证。 首先我们使用前面小结介绍的vmstat查看问题发生时IO等待数据: vmstat 2 1 >> /tmp/vm.logprocs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 3 0 177608 725636 31856 3899144 0 0 2 10 0 0 39 1 1 59 0 Tue Jul 5 00:27:51 CST 2016可见,问题发生的时候,CPU的IO等待为59%,同时又与运维部门同事复盘,运维同事确认,脚本切割通过cat命令方法,先把日志文件cat后,通过管道打印到另外一个文件,再清空原文件,因此,一定会导致IO的上升。 其实,问题的过程中,还有一个疑惑,我们认为线程被IO阻塞,线程池被撑开,导致线程增多,于是,我们查看了一下Tomcat线程池的设置,我们发现Tomcat线程池设置了800,按理说,永远不会超过1024。 maxThreads="800" minSpareThreads="25" maxSpareThreads="75" enableLookups="false" redirectPort="8443" acceptCount="100" debug="0" connectionTimeout="20000" disableUploadTimeout="true" /> 关键在于,笔者所在的支付平台服务化架构中,使用了两套服务化框架,一个是基于dubbo的框架,一个是点对点的RPC,用来紧急情况下dubbo服务出现问题,服务降级使用。 每个服务都配置了点对点的RPC服务,并且独享一个线程池: maxThreads="800" minSpareThreads="25" maxSpareThreads="75" enableLookups="false" redirectPort="8443" acceptCount="100" debug="0" connectionTimeout="20000" disableUploadTimeout="true" /> 由于我们在对dubbo服务框架进行定制化的时候,设计了自动降级原则,如果dubbo服务负载变高,会自动切换到点对点的RPC框架,这也符合微服务的失效转移原则,但是设计中没有进行全面的考虑,一旦一部分服务切换到了点对点的RPC,而一部分的服务没有切换,就导致两个现场池都被撑满,于是超过了1024的限制,就出了问题。 到这里,我们基本可以验证,问题的根源是日志切割导致IO负载增加,然后阻塞线程池,最后发生OOM:unable to create new native thread。 剩下的任务就是最小化重现的问题,通过实践来验证问题的原因。我们与性能压测部门沟通,提出压测需求: Tomcat线程池最大设置为1500.操作系统允许的最大用户进程数1024.在给服务加压的过程中,需要人工制造繁忙的IO操作,IO等待不得低于50%。经过压测压测部门的一下午努力,环境搞定,结果证明完全可以重现此问题。 最后,与所有相关部门讨论和复盘,应用解决方案,解决方案包括: 全部应用改成按照小时切割,或者直接使用log4j的日志滚动功能。Tomcat线程池的线程数设置与操作系统的线程数设置不合理,适当的减少Tomcat线程池线程数量的大小。升级log4j日志,使用logback或者log4j2。这次OOM问题的可以归结为“多个因、多个果、多台机器、多个服务池、不同时间”,针对这个问题,与运维部、监控部和性能压测部门的同事奋斗了几天几夜,终于通过在线上抓取信息、分析问题、在性能压测部门同事的帮助下,最小化重现问题并找到问题的根源原因,最后,针对问题产生的根源提供了有效的方案。 与监控同事现场编写的脚本 本节提供一个笔者在实践过程中解决OOM问题的一个简单脚本,这个脚本是为了解决OOM(unable to create native thread)的问题而在问题机器上临时编写,并临时使用的,脚本并没有写的很专业,笔者也没有进行优化,保持原汁原味的风格,这样能让读者有种身临其境的感觉,只是为了抓取需要的信息并解决问题,但是在线上问题十分火急的情况下,这个脚本会有大用处。 !/bin/bash ps -Leo pid,lwp,user,pcpu,pmem,cmd >> /tmp/pthreads.logecho "ps -Leo pid,lwp,user,pcpu,pmem,cmd >> /tmp/pthreads.log" >> /tmp/pthreads.logecho date >> /tmp/pthreads.logecho 1 pid=ps aux|grep tomcat|grep cwh|awk -F ' ' '{print $2}'echo 2 echo "pstack $pid >> /tmp/pstack.log" >> /tmp/pstack.logpstack $pid >> /tmp/pstack.logecho date >> /tmp/pstack.logecho 3 echo "lsof >> /tmp/sys-o-files.log" >> /tmp/sys-o-files.loglsof >> /tmp/sys-o-files.logecho date >> /tmp/sys-o-files.logecho 4 echo "lsof -p $pid >> /tmp/service-o-files.log" >> /tmp/service-o-files.loglsof -p $pid >> /tmp/service-o-files.logecho date >> /tmp/service-o-files.logecho 5 echo "jstack -l $pid >> /tmp/js.log" >> /tmp/js.logjstack -l -F $pid >> /tmp/js.logecho date >> /tmp/js.logecho 6 echo "free -m >> /tmp/free.log" >> /tmp/free.logfree -m >> /tmp/free.logecho date >> /tmp/free.logecho 7 echo "vmstat 2 1 >> /tmp/vm.log" >> /tmp/vm.logvmstat 2 1 >> /tmp/vm.logecho date >> /tmp/vm.logecho 8 echo "jmap -dump:format=b,file=/tmp/heap.hprof 2743" >> /tmp/jmap.logjmap -dump:format=b,file=/tmp/heap.hprof >> /tmp/jmap.logecho date >> /tmp/jmap.logecho 9 echo end

hiekay 2019-12-02 01:39:43 0 浏览量 回答数 0

问题

监控任务故障诊断最佳实践

猫饭先生 2019-12-01 21:24:32 1245 浏览量 回答数 0

问题

中间件性能初赛关于windows环境下的一些文档汇总

玄弟 2019-12-01 21:45:14 10515 浏览量 回答数 4

回答

递归4—递归的弱点 之所以没有把这段归为算法的讨论,因为这里讨论的不在是算法,而只是讨论一下滥用递归的不好的一面。 递归的用法似乎是很容易的,但是递归还是有她的致命弱点,那就是如果运用不恰当,滥用递归,程序的运行效率会非常的低,低到什么程度,低到出乎你的想像。当然,平时的小程序是看不出什么的,但是一旦在大项目里滥用递归,效率问题将引起程序的实用性的大大降低。 例子:求1到200的自然数的和。 第一种做法: #include <stdio.h> void main() { int i; int sum=0; for(i=1;i<=200;i++) { sum+=i; } printf("%d\n",sum); } 该代码中使用变量2个,计算200次。再看下个代码: #include <stdio.h> int add(int i) { if(i==1) { return i; } else { return i+add(i-1); } } void main() { int i; int sum=0; sum=add(200); printf("%d\n",sum); } 但看add()函数,每次调用要声明一个变量,每次调用要计算一次,所以应该是200个变量,200次计算,对比一下想想,如果程序要求递归次数非常多的时候,而且类似与这种情况,我们还能用递归去做吗。这个时候宁愿麻烦点去考虑其他办法,也要尝试摆脱递归的干扰。 21:21 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 程序算法5—递归3—递归的再次挖掘 递归的魅力就在于递归的代码,写出来实在是太简练了,而且能解决很多看起来似乎有规律但是又不是一下子能表达清楚的一些问题。思路清晰了,递归一写出来问题立即就解决了,给人一重感觉,递归这么好用。我们在此再更深的挖掘一下递归的用法。 之前再强调一点,也许有人会问,你前边的例子用递归似乎是更麻烦了。是,是麻烦了,因为为了方便理解,只能举一些容易理解的例子,一般等实际应用递归的时候,远远不是这种状态。 好了我们现在看一个数字的序列;有一组数的集合{1,2,4,7,11,16,22,29,37,46,56……}我故意多给几项,一般是只给前4项让你找规律的。序列给了,要求是求前50项的和。规律。有。还是没有。一看就象有,但是又看不出来,我多给了几项,应该很快看出来了,哦,原来每相邻的两项的差是个自然数排列,2-1=1,4-2=2,7-4=3,11-7=4,16-11=5…… 好了,把规律找出来了,一开始可能觉得没头绪,没问题,咱们把这个序列存放到一个数组总可以吧。那我们就声明一个数组,存放前50个数据,一个一个相加总可以了。于是有了下边的写法: #include <stdio.h> void main() { int i,a[50],sum=0; a[0]=1; for(i=1;i<50;i++) { a[i]=a[i-1]+i; } for(i=0;i<50;i++) { sum+=a[i]; } printf("%d\n",sum); } 好了,代码运行一下,结果出来了,正确不正确呢。自己测试吧,把50项改成1、2、3、4、5……项,试试前多少项是不是正确,虽然这不是正确的测试方法,但是的确是常用的测试方法。 等到这个代码已经完全理解了,完全明白了正个计算过程,我们就应该对这段代码进行改写优化了,毕竟这个代码还是不值得用一个数组的,那么我们尝试着只用变量去做一下: #include <stdio.h> void main() { int i; int number=1; int sum=0; for(i=0;i<50;i++) { number+=i; sum+=number; } printf("%d\n",sum); } 不知道我这样写是不是跨度大了点,但是我不准备详细解释了,很多东西需要你去认真分析的,所以很多东西如果不懂,自己想清楚比别人解释的效果会更好,因为别人讲只能让你理解,如果你自己去想,你就在理解的同时学会了思考。 这个代码写出来,不要继续看下去,先自己尝试着把这个题目用递归做一下看看自己能不能写出来,当然,递归并不是那么轻松就能使用的,有时候也是需要去细心设计的。如果做出来了,对比一下下边的代码,如果没有写出来,建议认真分析后边的代码,然后最好是能完全掌握,能自己随时把这行代码写出来: #include <stdio.h> int add(int n,int num,int i) { num+=i; if(i>=n-1) { return num; } else { return num+add(n,num,i+1); } } void main() { int sum; sum=add(50,1,0); /*50表示前50象项*/ printf("%d\n",sum); } 当然这个代码中的n只是一个参考变量,如果把if(i>=n-1)中的n该成50,那么就不需要这个n了,函数两个参数就可以了,这样写是为了修改方便。 20:28 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 程序算法4—递归2—递归的魅力 两天没有再写下去,因为毕竟有时候会有点心情问题,有时候觉得心情不好,一下子什么东西都想不起来了,很多时候写一些东西是需要状态的,一旦状态有了,想的东西才能顺利的写出来,虽然有些东西写出来在别人看来很垃圾,但是起码自己觉得还是相当满意的,我写这个本来就没有多少技术含量,只是想给初学程序的人一些指引,加快他们对程序的领悟。 好了,言归正传,继续上次递归的讨论,看看递归的魅力所在。 有这样一个问题,说一个猴子和一堆苹果,猴子一天吃一半,然后再吃一个,10天后剩下一个了,也就是说吃了10次,剩下1个了。问原来一共有多少苹果。 当然我们的目的不是求出苹果的数量,而是寻求一种解决问题的方法,这个问题一出来,通常对程序掌握深度不一样的朋友对这个题会有不同的认识,首先介绍一种解决方法,这种人脑袋还是比较聪明的,思路非常的明确,也有可能语言工具掌握的也不错,代码写出来非常准确,先看一下代码再做评价吧: #include <stdio.h> void main() { int day=10; int apple; int i,j; for(i=1;;i++) { apple=i; for(j=0;j<day;j++) { if(apple%2==0&&apple>0) { apple/=2; apple--; } else { break; } } if(j==day&&apple==1) { printf("%d\n",i); return; } } } 程序的大概思路很明确,简单介绍一下,这种写法就是从一个苹果开始算起,for(i=1;;i++)的作用就是改变苹果的数量,如果1个符合条件,那就试试2个,然后3个、4个一直到适合为止,里边的for循环就是把每一次取得的苹果的数目进行计算,如果每次都能顺利的被2整除(也就是说每次都能保证猴子能正好吃一半),然后再减一一直到最后,如果最后苹果剩下是一个而且天数正好是10天,那么就输出一下苹果的数目,整个程序退出,如果看不明白的没关系,这个写法非常的不适用,我们叫写出这种算法的人傻X,虽然这种人脑袋也挺聪明,能写出一些新鲜的写法,但是又脏又臭,代码既不简练又不高效。 所以说,有时候有些人以为自己学的很好了,自己所做的一切都是最好的,这种想法是不正确的,也许有些初学者没有什么经验写出来的代码却更让人容易明白点,那么也是先看看代码: #include <stdio.h> void main() { int day[11]; int i; day[0]=1; for(i=1;i<11;i++) { day[i]=(day[i-1]+1)*2; } printf("%d\n",day[10]); } 代码不长,而且也恰当的应用了题目中的规律,不是说要吃一半然后再吃一个吗。那我用数组来存放每天苹果的数量,用day[0]表示最后一天的苹果数量,那就是剩下的一个,然后就是找规律了,什么规律。就是如果猴子不多吃一个的话,那就是正好吃了一半,也就是说猴子当天吃了之后剩余的苹果的数目加1个然后再乘以2就是前一天的数目了,这样一想这个题目就简单的多了,于是这个题用数组就轻松的做出来了。 那么这个代码究竟是不是已经很好了呢,我们注意到,这里边每个数组元素只用了一次并没有被重复使用,再这种情况下我们是不是可以用一种方法代替数组呢。于是就有了更优化的写法,这个写法似乎已经是相当简练了: #include <stdio.h> void main() { int apple=1; int i; for(i=0;i<10;i++) { apple=(apple+1)*2; } printf("%d\n",apple); } 代码写到这里已经把问题完全抽象化了,所以我们就应该站在数学的角度去分析了。也许我们就应该结束了讨论,但是偏偏这个时候,又来了递归,悄悄的通过美丽的调用显示了一下她的魅力: #include <stdio.h> int apple(int i) { if(i==0) { return 1; } else { return (apple(i-1)+1)*2; } } void main() { int i; i=apple(10); printf("%d\n",i); } 原理都还是一样的,但是写出来的格式已经完全变掉了,没有了for循环。假想一个复杂的问题远比这个问题复杂,而且没有固定循环次数,那么我们再使用循环虽然也能解决问题,但是可能面临循环难以设计、控制等问题,这个时候用递归可能就会让问题变的非常的清晰。 另外说一点,一般我这里的代码,并不是从最差到最好的,基本排列是从最差到最合适的代码(当然是本人认为最合适的,也许还有更好的,本人能力所限了),然后最后给出一种比较违反常规的代码,一般是不赞成用最后一种代码的,当然有时候最后一种代码也许是最好的选择,看情况吧。 20:25 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 10月15日 程序算法3—递归1—递归小显威力 现在用C语言实现一个字符串的倒序输出,当然,方法也是很多的,但是如果程序中能有相对优化的方法或者简单明了易读的方法,那对你自己或者别人都是一种幸福。 第一种写法,这类写法既浪费内存又不实用,一般是刚学程序的才这样做,程序的结构很简单,利用的是数组: #include <stdio.h> void main() { char c[2000]; int i,length=0; for(i=0;i<2000;i++) { scanf("%c",&c[i]); if(c[i]=='\n') { break; } else { length++; } } for(i=length;i>0;i--) { printf("%c",c[i-1]); } printf("\n"); } 这段代码中的数组,声明大了浪费内存空间,声明小了又怕不够,所以写这种代码的人一般写完之后会祈祷,祈祷测试的人不要输入的太多,太多就不能完全显示了。 与其这么提心吊胆,于是又有人想出了第二种方法,终于解决了一些问题,而且完全实现了程序的实际要求,于是,这种人经过一番苦想,觉得问题终于可以解决了,这种方法看起来是一种很不错的方法。 #include <stdio.h> #include <malloc.h> void main() { int i; char *c; c=(char *)malloc(1*sizeof(char)); for(i=0;;i++) { *(c+i)=getchar(); if(*(c+i)=='\n') { *(c+i)='\0'; break; } else c=(char *)realloc(c,(i+2)*sizeof(char)); } for(--i;i>=0;i--) { putchar(*(c+i)); } printf("\n"); free(c); } 怎么样。不错,准确的应用内存,几乎没有浪费什么空间,这种方法也体现了一下指针的强大功能,写这个程序虽然不敢说这个人已经掌握了指针的应用,但是起码可以说他已经会用指针了。代码写出来,看起来已经有点美感。 但是也有一些人还是比较喜欢动脑筋的,经过一番思考,终于想出了第三种比较容易写的方法,也许有写初学者可能觉得有些难度,但是事实上这个东西一点都不难,如果稍微有点程序功底之后再看这段代码,应该是相当轻松。 #include <stdio.h> void run() { char c; c=getchar(); if(c!='\n') { run(); } else { return; } putchar(c); } void main() { run(); printf("\n"); } 写出的代码让人眼前一亮,哇。原来递归功能简单而又好用,那我们为什么不好好利用呢。但是递归也不一定就是最好的选择,因为有时候虽然递归用起来很方便,但是效率却不高,以后的讨论中还会详细说明。

一键天涯 2019-12-02 01:24:01 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

问题

详解递归 6月18日【今日算法】

游客ih62co2qqq5ww 2020-06-20 12:04:38 2 浏览量 回答数 0

问题

ES 写入数据的工作原理是什么啊?ES 查询数据的工作原理是什么啊?【Java问答学堂】27期

剑曼红尘 2020-05-27 20:28:45 22 浏览量 回答数 1

问题

图解九大数据结构 6月13日 【今日算法】

游客ih62co2qqq5ww 2020-06-17 13:17:00 29 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站