• 关于

    成像过程可以做什么

    的搜索结果

问题

学长学姐们加入阿里云后有哪些感受?

琛琛轴子 2020-09-06 23:26:01 6 浏览量 回答数 0

回答

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 大数据拥抱云计算 在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢? 1 数据不大也包含智慧 一开始这个大数据并不大。原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书、看看报,一个星期的报纸加起来才有多少字?如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。 首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。 结构化的数据:即有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。 非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页,有时候非常长,有时候几句话就没了;例如语音,视频都是非结构化的数据。 半结构化数据:是一些XML或者HTML的格式的,不从事技术的可能不了解,但也没有关系。 其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data。数据本身没有什么用处,但数据里面包含一个很重要的东西,叫做信息(Information)。 数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识(Knowledge),而知识改变命运。信息是很多的,但有人看到了信息相当于白看,但有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了。如果你没有从信息中提取出知识,天天看朋友圈也只能在互联网滚滚大潮中做个看客。 所以数据的应用分这四个步骤:数据、信息、知识、智慧。 最终的阶段是很多商家都想要的。你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品。例如让用户看视频的时候旁边弹出广告,正好是他想买的东西;再如让用户听音乐时,另外推荐一些他非常想听的其他音乐。 用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来、指导实践、形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停地点、不停地买。 很多人说双十一我都想断网了,我老婆在上面不断地买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢? 2 数据如何升华为智慧 数据的处理分几个步骤,完成了才最后会有智慧。 第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式: 第一个方式是拿,专业点的说法叫抓取或者爬取。例如搜索引擎就是这么做的:它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面?就是因为他把数据都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,你不点的时候,那一页在百度数据中心,一点出来的网页就是在新浪的数据中心了。 第二个方式是推送,有很多终端可以帮我收集数据。比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。 第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用。可系统处理不过来,只好排好队,慢慢处理。 第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么?就是因为它有你历史的交易的数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。 第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。 比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们的购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。 第五个步骤是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问Google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,因此人们想寻找信息的时候,一搜就有了。 另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票发现涨的特别好,于是你就去买了,其实其高管发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。 3 大数据时代,众人拾柴火焰高 当数据量很小时,很少的几台机器就能解决。慢慢的,当数据量越来越大,最牛的服务器都解决不了问题时,怎么办呢?这时就要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。 对于数据的收集:就IoT来讲,外面部署这成千上万的检测设备,将大量的温度、湿度、监控、电力等数据统统收集上来;就互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来。这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。 对于数据的传输:一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。 对于数据的存储:一台机器的文件系统肯定是放不下的,所以需要一个很大的分布 式文件系统来做这件事情,把多台机器的硬盘打成一块大的文件系统。 对于数据的分析:可能需要对大量的数据做分解、统计、汇总,一台机器肯定搞不定,处理到猴年马月也分析不完。于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1000G,如果单机处理,怎么也要几个小时,但并行处理209秒就完成了。 所以说什么叫做大数据?说白了就是一台机器干不完,大家一起干。可是随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢? 4 大数据需要云计算,云计算需要大数据 说到这里,大家想起云计算了吧。当想要干这些活时,需要很多的机器一块做,真的是想什么时候要就什么时候要,想要多少就要多少。 例如大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次非常浪费。那能不能需要计算的时候,把这一千台机器拿出来;不算的时候,让这一千台机器去干别的事情? 谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算也会部署大数据放到它的PaaS平台上,作为一个非常非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来。 所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。 云计算需要大数据,大数据需要云计算,二者就这样结合了。 人工智能拥抱大数据 机器什么时候才能懂人心 虽说有了大数据,人的欲望却不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西一搜就出来了。但也存在这样的情况:我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。 例如音乐软件推荐了一首歌,这首歌我没听过,当然不知道名字,也没法搜。但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用时,会发现机器知道我想要什么,而不是说当我想要时,去机器里面搜索。这个机器真像我的朋友一样懂我,这就有点人工智能的意思了。 人们很早就在想这个事情了。最早的时候,人们想象,要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应。如果我感觉不出它那边是人还是机器,那它就真的是一个人工智能的东西了。 让机器学会推理 怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类的推理的能力。你看人重要的是什么?人和动物的区别在什么?就是能推理。要是把我这个推理的能力告诉机器,让机器根据你的提问,推理出相应的回答,这样多好? 其实目前人们慢慢地让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但慢慢又发现其实这个结果也没有那么令人惊喜。因为大家发现了一个问题:数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器来进行表达,程序也相对容易表达。 教给机器知识 因此,仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但告诉机器知识这个事情,一般人可能就做不来了。可能专家可以,比如语言领域的专家或者财经领域的专家。 语言领域和财经领域知识能不能表示成像数学公式一样稍微严格点呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。 人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以交给计算机。因为你自己还迷迷糊糊,觉得似乎有规律,就是说不出来,又怎么能够通过编程教给计算机呢? 算了,教不会你自己学吧 于是人们想到:机器是和人完全不一样的物种,干脆让机器自己学习好了。

茶什i 2019-12-31 13:13:50 0 浏览量 回答数 0

回答

break; 11 case "0002,0013"://文件生成程序的标题 12 return "SH"; 13 break; 14 case "0008,0005"://文本编码 15 return "CS"; 16 break; 17 case "0008,0008": 18 return "CS"; 19 break; 20 case "0008,1032"://成像时间 21 return "SQ"; 22 break; 23 case "0008,1111": 24 return "SQ"; 25 break; 26 case "0008,0020"://检查日期 27 return "DA"; 28 break; 29 case "0008,0060"://成像仪器 30 return "CS"; 31 break; 32 case "0008,0070"://成像仪厂商 33 return "LO"; 34 break; 35 case "0008,0080": 36 return "LO"; 37 break; 38 case "0010,0010"://病人姓名 39 return "PN"; 40 break; 41 case "0010,0020"://病人id 42 return "LO"; 43 break; 44 case "0010,0030"://病人生日 45 return "DA"; 46 break; 47 case "0018,0060"://电压 48 return "DS"; 49 break; 50 case "0018,1030"://协议名 51 return "LO"; 52 break; 53 case "0018,1151": 54 return "IS"; 55 break; 56 case "0020,0010"://检查ID 57 return "SH"; 58 break; 59 case "0020,0011"://序列 60 return "IS"; 61 break; 62 case "0020,0012"://成像编号 63 return "IS"; 64 break; 65 case "0020,0013"://影像编号 66 return "IS"; 67 break; 68 case "0028,0002"://像素采样1为灰度3为彩色 69 return "US"; 70 break; 71 case "0028,0004"://图像模式MONOCHROME2为灰度 72 return "CS"; 73 break; 74 case "0028,0010"://row高 75 return "US"; 76 break; 77 case "0028,0011"://col宽 78 return "US"; 79 break; 80 case "0028,0100"://单个采样数据长度 81 return "US"; 82 break; 83 case "0028,0101"://实际长度 84 return "US"; 85 break; 86 case "0028,0102"://采样最大值 87 return "US"; 88 break; 89 case "0028,1050"://窗位 90 return "DS"; 91 break; 92 case "0028,1051"://窗宽 93 return "DS"; 94 break; 95 case "0028,1052": 96 return "DS"; 97 break; 98 case "0028,1053": 99 return "DS"; 100 break; 101 case "0040,0008"://文件夹标签 102 return "SQ"; 103 break; 104 case "0040,0260"://文件夹标签 105 return "SQ"; 106 break; 107 case "0040,0275"://文件夹标签 108 return "SQ"; 109 break; 110 case "7fe0,0010"://像素数据开始处 111 return "OW"; 112 break; 113 default: 114 return "UN"; 115 break; 116 } 117 } 复制代码 最关键的两个tag: 0002,0010 普通tag的读取方式 little字节序还是big字节序 隐式VR还是显示VR。由它的值决定 复制代码 1 switch (VFStr) 2 { 3 case "1.2.840.10008.1.2.10"://显示little 4 isLitteEndian = true; 5 isExplicitVR = true; 6 break; 7 case "1.2.840.10008.1.2.20"://显示big 8 isLitteEndian = false; 9 isExplicitVR = true; 10 break; 11 case "1.2.840.10008.1.20"://隐式little 12 isLitteEndian = true; 13 isExplicitVR = false; 14 break; 15 default: 16 break; 17 } 复制代码 7fe0,0010 像素数据开始处 整理 根据以上的分析相信解析一个dicom格式文件的过程已经很清晰了吧 第一步:跳过128字节导言部分,并读取"DICM"4个字符 以确认是dicom格式文件 第二步:读取第一部分 也就是非常重要的文件元dataElement 。读取所有0002开头的tag 并根据0002,0010的值确定传输语法。文件元tag部分的数据元素都是以显示VR的方式表示的 读取它的值 也就是字节码处理 别告诉我说你不会字节码处理哈。传输语法 说得那么官方,你就忽悠吧 其实就确定两个东西而已 1字节序 这个基本上都是little字节序。举个例子吧十进制数 35280 用十六进制表示是0xff00 但是存储到文件中你用十六进制编辑器打开你看到的是这个样子00ff 这就是little字节序。平常我们用的x86PC在windows下都是little字节序 包括AMD的CPU。别太较真 较真的话这个问题又可以写篇博客了。 2确定从0002以后的dataElement的VR是显示还是隐式。说来说去0002,0010的值就 那么固定几个 并且只能是那么几个 这些都在那个北美放射学会定义的dicom标准的第六章 有说明 : 1.2.840.10008.1.2 Implicit VR Little Endian: Default Transfer Syntax for DICOM Transfer Syntax 1.2.840.10008.1.2.1 Explicit VR Little Endian Transfer Syntax 1.2.840.10008.1.2.2 Explicit VR Big Endian Transfer Syntax 上面的那段代码其实就是这个表格的实现,讲到这里你会觉得多么的坑爹啊 是的dicom面向对象的破概念非常烦的。 第三步:读取普通tag 直到搜寻到7fe0,0010 这个最巨体的存储图像数据的 dataElement 它一个顶别人几十个 上百个。我们在前一步已经把VR是显示还是隐式确定 通过前面的图 ,也就是字节码处理而已无任何压力。显示情况下根据VR 和Len 确定数据类型 跟数据长度直接读取就可以了。隐式情况下这破玩艺儿有点烦,只能根据tag 字典确定它是什么VR再才能读取。关于这个字典也在dicom标准的第六章。上面倒数第二段代码已经把重要的字典都列了出来。 第四步:读取灰度像素数据并调窗 以GDI的方式显示出来。 说实话开始我还以为dicom这种号称医学什么影像的专家制定出来的标准 读取像素数据应该有难度吧 结果没想到这么的傻瓜。直接按像素从左到右从上到下 一行行依次扫描。两个字节表示1个像素普通Dicom格式存储的是16位的灰度图像,其实有效数据只有12位,除去0 所以最高值是2047。比如CT值 从-1000到+1000,空气的密度为-1000 水的密度为0 金属的密度为+1000 总共的值为2000 调窗技术: 即把12级灰度的数据 通过调节窗宽窗位并让他在RGB模式下显示出来。还技术呢 说实话这个也是没什么技术含量的所谓的技术,两句代码给你整明白。 调节窗宽窗位到底什么意思,12位的数据那么它总共有2047个等级的灰度 没有显示设备可以体现两千多级的明暗度 就算有我们肉眼也无法分辨更无法诊断。我们要诊断是要提取关键密度值的数据 在医院放射科呆久了你一定经常听医生讲什么骨窗 肺窗 之类的词儿,这就是指的这个“窗”。比如有病人骨折了打了钢板我们想看金属部分来诊断 那么我们应该抓取CT值从800到1000 密度的像素 也就是灰度值 然后把它放到RGB模式下显示,低于800的不论值大小都显示黑色 高于1000的不论值大小都显示白色。 通过以上例子那么这个范围1000-800=200 这个200表示窗宽,800+(200/2)这个表示窗位 一句话,从2047个等级的灰度里选取一个范围放到0~255的灰度环境里显示。 怎样把12位灰度影射到8位灰度显示出来呢,还怎么显示 上面方法都给说明了基本上算半成品了。联想到角度制弧度制,设要求的8位灰度值为x 已知的12位灰度值为y那么:x/255=y/2047 那么x=255y/2047 原理不多讲 等比中项十字相乘法 这个是初中的知识哈。初中没读过的童鞋飘过。。。 原理过程讲完了 代码走起 复制代码 1 class DicomHandler 2 { 3 string fileName = ""; 4 Dictionary tags = new Dictionary();//dicom文件中的标签 5 BinaryReader dicomFile;//dicom文件流 6 7 //文件元信息 8 public Bitmap gdiImg;//转换后的gdi图像 9 UInt32 fileHeadLen;//文件头长度 10 long fileHeadOffset;//文件数据开始位置 11 UInt32 pixDatalen;//像素数据长度 12 long pixDataOffset = 0;//像素数据开始位置 13 bool isLitteEndian = true;//是否小字节序(小端在前 、大端在前) 14 bool isExplicitVR = true;//有无VR 15 16 //像素信息 17 int colors;//颜色数 RGB为3 黑白为1 18 public int windowWith = 2048, windowCenter = 2048 / 2;//窗宽窗位 19 int rows, cols; 20 public void readAndShow(TextBox textBox1) 21 { 22 if (fileName == string.Empty) 23 return; 24 dicomFile = new BinaryReader(File.OpenRead(fileName)); 25 26 //跳过128字节导言部分 27 dicomFile.BaseStream.Seek(128, SeekOrigin.Begin); 28 29 if (new string(dicomFile.ReadChars(4)) != "DICM") 30 { 31 MessageBox.Show("没有dicom标识头,文件格式错误"); 32 return; 33 } 34 35 36 tagRead(); 37 38 IDictionaryEnumerator enor = tags.GetEnumerator(); 39 while (enor.MoveNext()) 40 { 41 if (enor.Key.ToString().Length > 9) 42 { 43 textBox1.Text += enor.Key.ToString() + "rn"; 44 textBox1.Text += enor.Value.ToString().Replace('0', ' '); 45 } 46 else 47 textBox1.Text += enor.Key.ToString() + enor.Value.ToString().Replace('0', ' ') + "rn"; 48 } 49 dicomFile.Close(); 50 } 51 public DicomHandler(string _filename) 52 { 53 fileName = _filename; 54 } 55 56 public void saveAs(string filename) 57 { 58 switch (filename.Substring(filename.LastIndexOf('.'))) 59 { 60 case ".jpg": 61 gdiImg.Save(filename, System.Drawing.Imaging.ImageFormat.Jpeg); 62 break; 63 case ".bmp": 64 gdiImg.Save(filename, System.Drawing.Imaging.ImageFormat.Bmp); 65 break; 66 case ".png": 67 gdiImg.Save(filename, System.Drawing.Imaging.ImageFormat.Png); 68 break; 69 default: 70 break; 71 } 72 } 73 public bool getImg( )//获取图像 在图像数据偏移量已经确定的情况下 74 { 75 if (fileName == string.Empty) 76 return false; 77 78 int dataLen, validLen;//数据长度 有效位 79 int imgNum;//帧数 80 81 rows = int.Parse(tags["0028,0010"].Substring(5)); 82 cols = int.Parse(tags["0028,0011"].Substring(5)); 83 84 colors = int.Parse(tags["0028,0002"].Substring(5)); 85 dataLen = int.Parse(tags["0028,0100"].Substring(5)); 86 validLen = int.Parse(tags["0028,0101"].Substring(5)); 87 88 gdiImg = new Bitmap(cols, rows); 89 90 BinaryReader dicomFile = new BinaryReader(File.OpenRead(fileName)); 91 92 dicomFile.BaseStream.Seek(pixDataOffset, SeekOrigin.Begin); 93 94 long reads = 0; 95 for (int i = 0; i < gdiImg.Height; i++) 96 { 97 for (int j = 0; j < gdiImg.Width; j++) 98 { 99 if (reads >= pixDatalen) 100 break; 101 byte[] pixData = dicomFile.ReadBytes(dataLen / 8 * colors); 102 reads += pixData.Length; 103 104 Color c = Color.Empty; 105 if (colors == 1) 106 { 107 int grayGDI; 108 109 double gray = BitConverter.ToUInt16(pixData, 0); 110 //调窗代码,就这么几句而已 111 //1先确定窗口范围 2映射到8位灰度 112 int grayStart = (windowCenter - windowWith / 2); 113 int grayEnd = (windowCenter + windowWith / 2); 114 115 if (gray < grayStart) 116 grayGDI = 0; 117 else if (gray > grayEnd) 118 grayGDI = 255; 119 else 120 { 121 grayGDI = (int)((gray - grayStart) * 255 / windowWith); 122 } 123 124 if (grayGDI > 255) 125 grayGDI = 255; 126 else if (grayGDI < 0) 127 grayGDI = 0; 128 c = Color.FromArgb(grayGDI, grayGDI, grayGDI); 129 } 130 else if (colors == 3) 131 { 132 c = Color.FromArgb(pixData[0], pixData[1], pixData[2]); 133 } 134 135 gdiImg.SetPixel(j, i, c); 136 } 137 } 138 139 dicomFile.Close(); 140 return true; 141 } 142 void tagRead()//不断读取所有tag 及其值 直到碰到图像数据 (7fe0 0010 ) 143 { 144 bool enDir = false; 145 int leve = 0; 146 StringBuilder folderData = new StringBuilder();//该死的文件夹标签 147 string folderTag = ""; 148 while (dicomFile.BaseStream.Position + 6 < dicomFile.BaseStream.Length) 149 { 150 //读取tag 151 string tag = dicomFile.ReadUInt16().ToString("x4") + "," + 152 dicomFile.ReadUInt16().ToString("x4"); 153 154 string VR = string.Empty; 155 UInt32 Len = 0; 156 //读取VR跟Len 157 //对OB OW SQ 要做特殊处理 先置两个字节0 然后4字节值长度 158 //------------------------------------------------------这些都是在读取VR一步被阻断的情况 159 if (tag.Substring(0, 4) == "0002")//文件头 特殊情况 160 { 161 VR = new string(dicomFile.ReadChars(2)); 162 163 if (VR == "OB" || VR == "OW" || VR == "SQ" || VR == "OF" || VR == "UT" || VR == "UN") 164 { 165 dicomFile.BaseStream.Seek(2, SeekOrigin.Current); 166 Len = dicomFile.ReadUInt32(); 167 } 168 else 169 Len = dicomFile.ReadUInt16(); 170 } 171 else if (tag == "fffe,e000" || tag == "fffe,e00d" || tag == "fffe,e0dd")//文件夹标签 172 { 173 VR = "**"; 174 Len = dicomFile.ReadUInt32(); 175 } 176 else if (isExplicitVR == true)//有无VR的情况 177 { 178 VR = new string(dicomFile.ReadChars(2)); 179 180 if (VR == "OB" || VR == "OW" || VR == "SQ" || VR == "OF" || VR == "UT" || VR == "UN") 181 { 182 dicomFile.BaseStream.Seek(2, SeekOrigin.Current); 183 Len = dicomFile.ReadUInt32(); 184 } 185 else 186 Len = dicomFile.ReadUInt16(); 187 } 188 else if (isExplicitVR == false) 189 { 190 VR = getVR(tag);//无显示VR时根据tag一个一个去找 真烦啊。 191 Len = dicomFile.ReadUInt32(); 192 } 193 //判断是否应该读取VF 以何种方式读取VF 194 //-------------------------------------------------------这些都是在读取VF一步被阻断的情况 195 byte[] VF = { 0x00 }; 196 197 if (tag == "7fe0,0010")//图像数据开始了 198 { 199 pixDatalen = Len; 200 pixDataOffset = dicomFile.BaseStream.Position; 201 dicomFile.BaseStream.Seek(Len, SeekOrigin.Current); 202 VR = "UL"; 203 VF = BitConverter.GetBytes(Len); 204 } 205 else if ((VR == "SQ" && Len == UInt32.MaxValue) || (tag == "fffe,e000" && Len == UInt32.MaxValue))//靠 遇到文件夹开始标签了 206 { 207 if (enDir == false) 208 { 209 enDir = true; 210 folderData.Remove(0, folderData.Length); 211 folderTag = tag; 212 } 213 else 214 { 215 leve++;//VF不赋值 216 } 217 } 218 else if ((tag == "fffe,e00d" && Len == UInt32.MinValue) || (tag == "fffe,e0dd" && Len == UInt32.MinValue))//文件夹结束标签 219 { 220 if (enDir == true) 221 { 222 enDir = false; 223 } 224 else 225 { 226 leve--; 227 } 228 } 229 else 230 VF = dicomFile.ReadBytes((int)Len); 231 232 string VFStr; 233 234 VFStr = getVF(VR, VF); 235 236 //----------------------------------------------------------------针对特殊的tag的值的处理 237 //特别针对文件头信息处理 238 if (tag == "0002,0000") 239 { 240 fileHeadLen = Len; 241 fileHeadOffset = dicomFile.BaseStream.Position; 242 } 243 else if (tag == "0002,0010")//传输语法 关系到后面的数据读取 244 { 245 switch (VFStr) 246 { 247 case "1.2.840.10008.1.2.10"://显示little 248 isLitteEndian = true; 249 isExplicitVR = true; 250 break; 251 case "1.2.840.10008.1.2.20"://显示big 252 isLitteEndian = false; 253 isExplicitVR = true; 254 break; 255 case "1.2.840.10008.1.20"://隐式little 256 isLitteEndian = true; 257 isExplicitVR = false; 258 break; 259 default: 260 break; 261 } 262 } 263 for (int i = 1; i <= leve; i++) 264 tag = "--" + tag; 265 //------------------------------------数据搜集代码 266 if ((VR == "SQ" && Len == UInt32.MaxValue) || (tag == "fffe,e000" && Len == UInt32.MaxValue) || leve > 0)//文件夹标签代码 267 { 268 folderData.AppendLine(tag + "(" + VR + "):" + VFStr); 269 } 270 else if (((tag == "fffe,e00d" && Len == UInt32.MinValue) || (tag == "fffe,e0dd" && Len == UInt32.MinValue)) && leve == 0)//文件夹结束标签 271 { 272 folderData.AppendLine(tag + "(" + VR + "):" + VFStr); 273 tags.Add(folderTag + "SQ", folderData.ToString()); 274 } 275 else 276 tags.Add(tag, "(" + VR + "):" + VFStr); 277 } 278 } 279 } 复制代码 好了收工。 测试下成果 复制代码 1 if (openFileDialog1.ShowDialog() != DialogResult.OK) 2 return; 3 4 string fileName = openFileDialog1.FileName; 5 6 handler = new DicomHandler(fileName); 7 8 handler.readAndShow(textBox1); 9 10 this.Text = "DicomViewer-" + openFileDialog1.FileName; 11 12 13 backgroundWorker1.RunWorkerAsync(); 复制代码 这里处理gdi位图的时候直接用的setPix 处理速度比较慢所以用了backgroundWorker,实际应用中请使用内存缓冲跟指针的方式 否则效率低了是得不到客户的认可的哦,gdi位图操作可使用lockBits加指针的方式 ,12位的灰度像素数据可以第一次读取后缓存到内存中 以方便后面调窗的快速读取 优化这点代码也不难哈 对指针什么的熟点就行了,前几章都有。 这是ezDicom 经过公认测试的软件 我们来跟他对比一下,打开 调窗测试,我们注意到两个东西 在没有窗宽窗位时 默认窗宽是2047+1即2048 窗位是2048/2即1024 直观的感受是调窗宽像在调图像对比度 ,调窗位像在调图像亮度。 窗宽为255的时候图像是最瑞丽的 因为255其实就是8位图像的默认窗宽。 注意窗位那里有小小区别,ez窗位显示的是根据1024那里为0开始偏移 而我的程序是根据窗宽中间值没有偏移 没有偏移的情况稍微符合逻辑点吧。 但是可以看到原理是一样的 结果是一样的。

爵霸 2019-12-02 02:13:35 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站