• 关于

    空间分析算法不可用

    的搜索结果

回答

选择一门编程语言,例如C之类的。如果不想学编程,就尝试下Excel里面的公式。-------------------------算法的定义 算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。 算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 一个算法应该具有以下五个重要的特征: 1、有穷性: 一个算法必须保证执行有限步之后结束; 2、确切性: 算法的每一步骤必须有确切的定义; 3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件; 4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的; 5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。 计算机科学家尼克劳斯-沃思曾著过一本著名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。 [编辑本段]算法的复杂度 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 时间复杂度 算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做 T(n)=Ο(f(n)) 因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。 空间复杂度 算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。 详见百度百科词条"算法复杂度" [编辑本段]算法设计与分析的基本方法 1.递推法 递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。 2.递归 递归指的是一个过程:函数不断引用自身,直到引用的对象已知 3.穷举搜索法 穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。 4.贪婪法 贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。 5.分治法 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。 6.动态规划法 动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。 7.迭代法 迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。 [编辑本段]算法分类 算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。 算法可以宏泛的分为三类: 有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。 有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。 无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。 [编辑本段]举例 经典的算法有很多,如:"欧几里德算法,割圆术,秦九韶算法"。 [编辑本段]算法经典专著 目前市面上有许多论述算法的书籍,其中最著名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introduction To Algorithms)。 [编辑本段]算法的历史 “算法”即演算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procedure"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了著名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。

马铭芳 2019-12-02 01:19:58 0 浏览量 回答数 0

回答

最坏情况下快排将脱变为冒泡时间复杂度同为n^2比较次数为n(n-1)/2 比较次数很容易理解:就是说进行了多少次比较操作。 来看看时间复杂度,这是个软件工程方面的概念。 时间复杂度 算法分析 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。 按数量级递增排列,常见的时间复杂度有: 常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。 2、空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。

小旋风柴进 2019-12-02 01:18:42 0 浏览量 回答数 0

回答

本人学习数据结构时看到的不错的总结,共享一下了 文件有一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字; 排序是将文件按关键字的递增(减)顺序排列; 排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序; 在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内部排序,反之称外部排序; 排序算法的基本操作:1)比较关键字的大小;2)改变指向记录的指针或移动记录本身。 评价排序方法的标准:1)执行时间;2)所需辅助空间,辅助空间为O(1)称就地排序;另要注意算法的复杂程度。 若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算。 8.2插入排序 8.2.1直接插入排序 实现过程: void insertsort(seqlist R) { int i, j; for(i=2;i<=n;i++) if(R[i].key< R[i-1].key{ R[0]=R[i];j=i-1; do{R[j+1]=R[j];j--;} while(R[0].key R[j+1]=R[0]; } } 复制代码 算法中引入监视哨R[0]的作用是:1)保存 R[i] 复制代码 的副本;2)简化边界条件,防止循环下标越界。 关键字比较次数最大为(n+2)(n-1)/2;记录移动次数最大为(n+4)(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.2.2希尔排序 实现过程:是将直接插入排序的间隔变为d。d的取值要注意:1)最后一次必为1;2)避免d值互为倍数; 关键字比较次数最大为n^1.25;记录移动次数最大为1.6n^1.25; 算法的平均时间是O(n^1.25);是一种就地的不稳定的排序; 8.3交换排序 8.3.1冒泡排序 实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次。 关键字比较次数最小为n-1、最大为n(n-1)/2;记录移动次数最小为0,最大为3n(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.3.2快速排序 实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i。i=j时确定基准,并以其为界限将序列分为两段。重复以上步骤。 关键字比较次数最好为nlog2n+nC(1)、最坏为n(n-1)/2; 算法的最好时间是O(nlog2n);最坏时间是O(n^2);平均时间是O(nlog2n);辅助空间为O(log2n);是一种不稳定排序; 8.4选择排序 8.4.1直接选择排序 实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次。 关键字比较次数为n(n-1)/2;记录移动次数最小为0,最大为3(n-1); 算法的最好时间是O(n^2);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的不稳定的排序; 8.4.2堆排序 实现过程:把序列按层次填入完全二叉树,调整位置使双亲大于或小于孩子,建立初始大根或小根堆,调整树根与最后一个叶子的位置,排除该叶子重新调整位置。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);是一种就地的不稳定排序; 8.5归并排序 实现过程:将初始序列分为2个一组,最后单数轮空,对每一组排序后作为一个单元,对2个单元排序,直到结束。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);辅助空间为O(n);是一种稳定排序; 8.6分配排序 8.6.1箱排序 实现过程:按关键字的取值范围确定箱子的个数,将序列按关键字放入箱中,输出非空箱的关键字。 在桶内分配和收集,及对各桶进行插入排序的时间为O(n),算法的期望时间是O(n),最坏时间是O(n^2)。 8.6.2基数排序 实现过程:按基数设置箱子,对关键字从低位到高位依次进行箱排序。 算法的最好时间是O(d*n+d*rd);最坏时间是O(d*n+d*rd);平均时间是O(d*n+d*rd);辅助空间O(n+rd);是一种稳定排序; 8.7各种内部排序方法的比较和选择 按平均时间复杂度分为: 1) 平方阶排序:直接插入、直接选择、冒泡排序; 2) 线性对数阶:快速排序、堆排序、归并排序; 3) 指数阶:希尔排序; 4) 线性阶:箱排序、基数排序。 选择合适排序方法的因素:1)待排序的记录数;2)记录的大小;3)关键字的结构和初始状态;4)对稳定性的要求;5)语言工具的条件;6)存储结构;7)时间和辅助空间复杂度。 结论: 1) 若规模较小可采用直接插入或直接选择排序; 2) 若文件初始状态基本有序可采用直接插入、冒泡或随机快速排序; 3) 若规模较大可采用快速排序、堆排序或归并排序; 4) 任何借助于比较的排序,至少需要O(nlog2n)的时间,箱排序和基数排序只适用于有明显结构特征的关键字; 5) 有的语言没有提供指针及递归,使归并、快速、基数排序算法复杂; 6) 记录规模较大时为避免大量移动记录可用链表作为存储结构,如插入、归并、基数排序,但快速、堆排序在链表上难以实现,可提取关键字建立索引表,然后对索引表排序。 附二: 第八章排序 ************************************************************************************* 记录中可用某一项来标识一个记录,则称为关键字项,该数据项的值称为关键字。 排序是使文件中的记录按关键字递增(或递减)次序排列起来。·基本操作:比较关键字大小;改变指向记录的指针或移动记录。 ·存储结构:顺序结构、链表结构、索引结构。 经过排序后这些具有相同关键字的记录之间的相对次序保持不变,则称这种排序方法是稳定的,否则排序算法是不稳定的。 排序过程中不涉及数据的内、外存交换则称之为"内部排序"(内排序),反之,若存在数据的内外存交换,则称之为外排序。 内部排序方法可分五类:插入排序、选择排序、交换排序、归并排序和分配排序。 评价排序算法好坏的标准主要有两条:执行时间和所需的辅助空间,另外算法的复杂程序也是要考虑的一个因素。 ************************************************************************************* 插入排序:·直接插入排序: ·逐个向前插入到合适位置。 ·哨兵(监视哨)有两个作用: ·作为临变量存放 R[i] 复制代码 ·是在查找循环中用来监视下标变量j是否越界。 ·直接插入排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为(n+2)(n-1)/2;移动次数为(n+4)(n-1)/2; ·希尔排序: ·等间隔的数据比较并按要求顺序排列,最后间隔为1。 ·希尔排序是就地的不稳定排序。时间复杂度为O(n^1.25),比较次数为(n^1.25);移动次数为(1.6n^1.25); 交换排序:·冒泡排序:·自下向上确定最轻的一个。·自上向下确定最重的一个。·自下向上确定最轻的一个,后自上向下确定最重的一个。 ·冒泡排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为n(n-1)/2;移动次数为3n(n-1)/2; ·快速排序:·以第一个元素为参考基准,设定、动两个指针,发生交换后指针交换位置,直到指针重合。重复直到排序完成。 ·快速排序是非就地的不稳定排序。时间复杂度为O(nlog2n),比较次数为n(n-1)/2; 选择排序:·直接选择排序: ·选择最小的放在比较区前。 ·直接选择排序就地的不稳定排序。时间复杂度为O(n^2)。比较次数为n(n-1)/2; ·堆排序 ·建堆:按层次将数据填入完全二叉树,从int(n/2)处向前逐个调整位置。 ·然后将树根与最后一个叶子交换值并断开与树的连接并重建堆,直到全断开。 ·堆排序是就地不稳定的排序,时间复杂度为O(nlog2n),不适宜于记录数较少的文件。。 归并排序: ·先两个一组排序,形成(n+1)/2组,再将两组并一组,直到剩下一组为止。 ·归并排序是非就地稳定排序,时间复杂度是O(nlog2n), 分配排序:·箱排序: ·按关键字的取值范围确定箱子数,按关键字投入箱子,链接所有非空箱。 ·箱排序的平均时间复杂度是线性的O(n). ·基数排序:·从低位到高位依次对关键字进行箱排序。 ·基数排序是非就稳定的排序,时间复杂度是O(d*n+d*rd)。 各种排序方法的比较和选择: ·.待排序的记录数目n;n较大的要用时间复杂度为O(nlog2n)的排序方法; ·记录的大小(规模);记录大最好用链表作为存储结构,而快速排序和堆排序在链表上难于实现; ·关键字的结构及其初始状态; ·对稳定性的要求; ·语言工具的条件; ·存储结构; ·时间和辅助空间复杂度。 排序(sort)或分类 所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下: 输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。 输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。 1.被排序对象--文件 被排序的对象--文件由一组记录组成。 记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。 注意: 在不易产生混淆时,将关键字项简称为关键字。 2.排序运算的依据--关键字 用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。 关键字的选取应根据问题的要求而定。 【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。 排序的稳定性 当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。 注意: 排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。 排序方法的分类 1.按是否涉及数据的内、外存交换分 在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。 注意: ① 内排序适用于记录个数不很多的小文件 ② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。 2.按策略划分内部排序方法 可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。 排序算法分析 1.排序算法的基本操作 大多数排序算法都有两个基本的操作: (1) 比较两个关键字的大小; (2) 改变指向记录的指针或移动记录本身。 注意: 第(2)种基本操作的实现依赖于待排序记录的存储方式。 2.待排文件的常用存储方式 (1) 以顺序表(或直接用向量)作为存储结构 排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置) (2) 以链表作为存储结构 排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序; (3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表) 排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。 3.排序算法性能评价 (1) 评价排序算法好坏的标准 评价排序算法好坏的标准主要有两条: ① 执行时间和所需的辅助空间 ② 算法本身的复杂程度 (2) 排序算法的空间复杂度 若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。 非就地排序一般要求的辅助空间为O(n)。 (3) 排序算法的时间开销 大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

马铭芳 2019-12-02 01:19:07 0 浏览量 回答数 0

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

递归是一种算法结构,回溯是一种算法思想,一个递归就是在函数中调用函数本身来解决问题,回溯就是通过不同的尝试来生成问题的解,有点类似于穷举,但是和穷举不同的是回溯会“剪枝”,意思就是对已经知道错误的结果没必要再枚举接下来的答案了,比如一个有序数列1,2,3,4,5,要找和为5的所有集合,从前往后搜索我选了1,然后2,然后选3 的时候发现和已经大于预期,那么4,5肯定也不行,这就是一种对搜索过程的优化。 回溯分析是追踪决策的特性之一。 是指对原始决策的产生机制、决策内容、主客观环境等进行分析.从起点开始,按顺序考察导致决策失误的原因、问题的性质、失误的程度等。 [算法分析] 为了描述问题的某一状态,必须用到它的上一状态,而描述上一状态,又必须用到它的上一状态……这种用自已来定义自己的方法,称为递归定义。例如:定义函数f(n)为: f(n)=n*f(n-1) (n>0) f(n)=1 (n=0) 则当0时,须用f(n-1)来定义f(n),用f(n-1-1)来定义f(n-1)……当n=0时,f(n)=1。 由上例我们可看出,递归定义有两个要素: (1)递归边界条件。也就是所描述问题的最简单情况,它本身不再使用递归的定义。 如上例,当n=0时,f(n)=1,不使用f(n-1)来定义。 (2)递归定义:使问题向边界条件转化的规则。递归定义必须能使问题越来越简单。 如上例:f(n)由f(n-1)定义,越来越靠近f(0),也即边界条件。最简单的情况是f(0)=1。 递归算法的效率往往很低, 费时和费内存空间. 但是递归也有其长处, 它能使一个蕴含递归关系且结构复杂的程序简介精炼, 增加可读性. 特别是在难于找到从边界到解的全过程的情况下, 如果把问题推进一步,其结果仍维持原问题的关系, 则采用递归算法编程比较合适. 递归按其调用方式分为: 1. 直接递归, 递归过程P直接自己调用自己; 2. 间接递归, 即P包含另一过程D, 而D又调用P. 递归算法适用的一般场合为: 1. 数据的定义形式按递归定义. 如裴波那契数列的定义: f(n)=f(n-1)+f(n-2); f(0)=1; f(1)=2. 对应的递归程序为: Function fib(n : integer) : integer; Begin if n = 0 then fib := 1 { 递归边界 } else if n = 1 then fib := 2 else fib := fib(n-2) + fib(n-1) { 递归 } End; 这类递归问题可转化为递推算法, 递归边界作为递推的边界条件. 2. 数据之间的关系(即数据结构)按递归定义. 如树的遍历, 图的搜索等. 3. 问题解法按递归算法实现. 例如回溯法等. 从问题的某一种可能出发, 搜索从这种情况出发所能达到的所有可能, 当这一条路走到" 尽头 " 的时候, 再倒回出发点, 从另一个可能出发, 继续搜索. 这种不断" 回溯 "寻找解的方法, 称作 " 回溯法 ". [参考程序] 下面给出用回溯法求所有路径的算法框架. 注释已经写得非常清楚, 请读者仔细理解. Const maxdepth = ????; Type statetype = ??????; { 状态类型定义 } operatertype = ??????; { 算符类型定义 } node = Record { 结点类型 } state : statetype; { 状态域 } operater :operatertype { 算符域 } End; { 注: 结点的数据类型可以根据试题需要简化 } Var stack : Array [1..maxdepth] of node; { 存当前路径 } total : integer; { 路径数 } Procedure make(l : integer); Var i : integer; Begin if stack[L-1]是目标结点 then Begin total := total+1; { 路径数+1 } 打印当前路径[1..L-1]; Exit End; for i := 1 to 解答树次数 do Begin 生成 stack[l].operater; stack[l].operater 作用于 stack[l-1].state, 产生新状态 stack[l].state; if stack[l].state 满足约束条件 then make(k+1); { 若不满足约束条件, 则通过for循环换一个算符扩展 } { 递归返回该处时, 系统自动恢复调用前的栈指针和算符, 再通过for循环换一个算符扩展 } { 注: 若在扩展stack[l].state时曾使用过全局变量, 则应插入若干语句, 恢复全局变量在 stack[l-1].state时的值. } End; { 再无算符可用, 回溯 } End; Begin total := 0; { 路径数初始化为0 } 初始化处理; make(l); 打印路径数total End.

寒凝雪 2019-12-02 01:24:19 0 浏览量 回答数 0

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

问题

Redis 集群模式的工作原理能说一下么?【Java问答】36期

剑曼红尘 2020-06-12 15:07:18 2 浏览量 回答数 1

问题

学术界关于HBase在物联网/车联网/互联网/金融/高能物理等八大场景的理论研究

pandacats 2019-12-18 16:06:18 1 浏览量 回答数 0

回答

本文介绍AliSQL的内核版本更新说明。 MySQL 8.0 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 允许在只读实例上进行语句级并发控制(CCL)操作。 备实例支持Outline。 Proxy短连接优化。 优化不同CPU架构下的pause指令执行时间。 添加内存表查看线程池运行情况。 Bug修复 在低于4.9的Linux Kenerls中禁用ppoll,使用poll代替。 修复wrap_sm4_encrypt函数调用错误问题。 修复在滚动审核日志时持有全局变量锁的问题。 修复恢复不一致性检查的问题。 修复io_statistics表出现错误time值的问题。 修复无效压缩算法导致崩溃的问题。 修复用户列与5.6不兼容的问题。 20200110 新特性 Inventory Hint:新增了三个hint, 支持SELECT、UPDATE、INSERT、DELETE 语句,快速提交/回滚事务,提高业务吞吐能力。 性能优化 启动实例时,先初始化Concurrency Control队列结构,再初始化Concurrency Control规则。 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 默认情况下禁用恢复不一致性检查。 更改设置变量所需的权限: 设置以下变量所需的权限已更改为普通用户权限: auto_increment_increment auto_increment_offset bulk_insert_buffer_size binlog_rows_query_log_events 设置以下变量所需的权限已更改为超级用户或系统变量管理用户权限: binlog_format binlog_row_image binlog_direct sql_log_off sql_log_bin 20191225 新特性 Recycle Bin:临时将删除的表转移到回收站,还可以设置保留的时间,方便您找回数据。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 通过Redo刷新Binlog时出现错误会显式释放文件同步锁。 删除不必要的TCP错误日志。 默认情况下启用线程池。 Bug修复 修复慢日志刷新的问题。 修复锁定范围不正确的问题。 修复TDE的Select函数导致的核心转储问题。 20191115 新特性 Statement Queue:针对语句的排队机制,将语句进行分桶排队,尽量把可能具有相同冲突的语句放在一个桶内排队,减少冲突的开销。 20191101 新特性 为TDE添加SM4加密算法。 保护备实例信息:拥有SUPER或REPLICATION_SLAVE_ADMIN权限的用户才能插入/删除/修改表slave_master_info、slave_relay_log_info、slave_worker_info。 提高自动递增键的优先级:如果表中没有主键或非空唯一键,具有自动增量的非空键将是第一候选项。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 Redo Log刷新到磁盘之前先将Binlog文件刷新到磁盘。 实例被锁定时也会影响临时表。 添加新的基于LSM树的事务存储引擎X-Engine。 性能优化 Thread Pool:互斥优化。 Performance Insight:性能点支持线程池。 参数调整: primary_fast_lookup:会话参数,默认值为true。 thread_pool_enabled:全局参数,默认值为true。 20191015 新特性 TDE:支持透明数据加密TDE(Transparent Data Encryption)功能,可对数据文件执行实时I/O加密和解密,数据在写入磁盘之前进行加密,从磁盘读入内存时进行解密。 Returning:Returning功能支持DML语句返回Resultset,同时提供了工具包(DBMS_TRANS)便于您快捷使用。 强制将引擎从MyISAM/MEMORY转换为InnoDB:如果全局变量force_memory/mysiam_to_innodb为ON,则创建/修改表时会将表引擎从MyISAM/MEMORY转换为InnoDB。 禁止非高权限账号切换主备实例。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮循方式,保留最近的秒级性能数据。 Innodb mutex timeout cofigurable:可配置全局变量innodb_fatal_semaphore_wait_threshold,默认值:600。 忽略索引提示错误:可配置全局变量ignore_index_hint_error,默认值:false。 可关闭SSL加密功能。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 支持本地AIO的Linux系统内,在触发线性预读之前会合并AIO请求。 优化表/索引统计信息。 如果指定了主键,则直接访问主索引。 20190915 Bug修复 修复Cmd_set_current_connection内存泄露问题。 20190816 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 Statement Concurrency Control:通过控制并发数应对突发的数据库请求流量、资源消耗过高的语句访问以及SQL访问模型的变化,保证MySQL实例持续稳定运行。 Statement Outline:利用Optimizer Hint和Index Hint让MySQL稳定执行计划。 Sequence Engine:简化获取序列值的复杂度。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 修复文件大小计算错误的问题。 修复偶尔出现的内存空闲后再次使用的问题。 修复主机缓存大小为0时的崩溃问题。 修复隐式主键与CTS语句的冲突问题。 修复慢查询导致的slog出错问题。 20190601 性能优化 缩短日志表MDL范围,减少MDL阻塞的可能性。 重构终止选项的代码。 Bug修复 修复审计日志中没有记录预编译语句的问题。 屏蔽无效表名的错误日志。 MySQL 5.7基础版/高可用版 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 优化不同CPU架构下的pause指令执行时间。 Proxy短连接优化。 添加内存表查看线程池运行情况。 Bug修复 修复DDL重做日志不安全的问题。 修复io_statistics表出现错误time值的问题。 修复更改表导致服务器崩溃的问题。 修复MySQL测试用例。 20200110 性能优化 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 thread_pool_enabled参数的默认值调整为OFF。 20191225 新特性 内部账户管理与防范:调整用户权限保护数据安全。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 删除不必要的TCP错误日志。 优化线程池。 Bug修复 修复读写分离时mysqld进程崩溃问题。 修复密钥环引起的核心转储问题。 20191115 Bug修复 修复主备切换后审计日志显示变量的问题。 20191101 新特性 为TDE添加SM4加密算法。 如果指定了主键,则直接访问主索引。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 性能优化 Thread Pool:互斥优化。 引入审计日志缓冲机制,提高审计日志的性能。 Performance Insight:性能点支持线程池。 默认开启Thread Pool。 Bug修复 在处理维护用户列表时释放锁。 补充更多TCP错误信息。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮轮循方式,保留最近的秒级性能数据。 强制将引擎从MEMORY转换为InnoDB:如果全局变量rds_force_memory_to_innodb为ON,则创建/修改表时会将表引擎从MEMORY转换为InnoDB。 TDE机制优化:添加keyring-rds插件与管控系统/密钥管理服务进行交互。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 修复DDL中的意外错误Error 1290。 20190925 参数修改 将系统变量auto_generate_certs的默认值由true改为false。 增加全局只读变量auto_detact_certs,默认值为false,有效值为[true | false]。 该系统变量在Server端使用OpenSSL编译时可用,用于控制Server端在启动时是否在数据目录下自动查找SSL加密证书和密钥文件,即控制是否开启Server端的证书和密钥的自动查找功能。 20190915 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 20190815 新特性 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 禁止在set rds_current_connection命令中设置rds_prepare_begin_id。 允许更改已锁定用户的信息。 禁止用关键字actual作为表名。 修复慢日志导致时间字段溢出的问题。 20190510版本 新特性:允许在事务内创建临时表。 20190319版本 新特性:支持在handshake报文内代理设置threadID。 20190131版本 升级到官方5.7.25版本。 关闭内存管理功能jemalloc。 修复内部变量net_lenth_size计算错误问题。 20181226版本 新特性:支持动态修改binlog-row-event-max-size,加速无主键表的复制。 修复Proxy实例内存申请异常的问题。 20181010版本 支持隐式主键。 加快无主键表的主备复制。 支持Native AIO,提升I/O性能。 20180431版本 新特性: 支持高可用版。 支持SQL审计。 增强对处于快照备份状态的实例的保护。 MySQL 5.7三节点企业版 20191128 新特性 支持读写分离。 Bug修复 修复部分场景下Follower Second_Behind_Master计算错误问题。 修复表级并行复制事务重试时死锁问题。 修复XA相关bug。 20191016 新特性 支持MySQL 5.7高可用版(本地SSD盘)升级到三节点企业版。 兼容MySQL官方GTID功能,默认不开启。 合并AliSQL MySQL 5.7基础版/高可用版 20190915版本及之前的自研功能。 Bug修复 修复重置备实例导致binlog被关闭问题。 20190909 新特性 优化大事务在三节点强一致状态下的执行效率。 支持从Leader/Follower进行Binlog转储。 支持创建只读实例。 系统表默认使用InnoDB引擎。 Bug修复 修复Follower日志清理命令失效问题。 修复参数slave_sql_verify_checksum=OFF和binlog_checksum=crc32时Slave线程异常退出问题。 20190709 新特性 支持三节点功能。 禁用semi-sync插件。 支持表级并行复制、Writeset并行复制。 支持pk_access主键查询加速。 支持线程池。 合并AliSQL MySQL 5.7基础版/高可用版 20190510版本及之前的自研功能。 MySQL 5.6 20200229 新特性 支持Proxy读写分离功能。 性能优化 优化线程池功能。 优化不同CPU架构下的pause指令执行时间。 Bug修复 修复XA事务部分提交的问题。 20200110 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 性能优化 异步清除文件时继续取消小文件的链接。 Bug修复 修复页面清理程序的睡眠时间计算不正确问题。 修复SELECT @@global.gtid_executed导致的故障转移失败问题。 修复IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS COMMITTED问题。 20191212 性能优化 删除不必要的tcp错误日志 20191115 Bug修复 修复慢日志时间戳溢出问题。 20191101 Bug修复 修复刷新日志时切换慢日志的问题,仅在执行刷新慢日志时切换慢日志。 修正部分显示错误。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 SM4加密算法:添加新的SM4加密算法,取代旧的SM加密算法。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 引入审计日志缓冲机制,提高审计日志的性能。。 Bug修复 禁用pstack,避免存在大量连接时可能导致pstack无响应。 修复隐式主键与create table as select语句之间的冲突。 自动清除由二进制日志创建的临时文件。 20190815 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 20190130版本 修复部分可能导致系统不稳定的bug。 20181010版本 添加参数rocksdb_ddl_commit_in_the_middle(MyRocks)。如果这个参数被打开,部分DDL在执行过程中将会执行commit操作。 201806** (5.6.16)版本 新特性:slow log精度提升为微秒。 20180426(5.6.16)版本 新特性:引入隐藏索引,支持将索引设置为不可见,详情请参见参考文档。 修复备库apply线程的bug。 修复备库apply分区表更新时性能下降问题。 修复TokuDB下alter table comment重建整张表问题,详情请参见参考文档。 修复由show slave status/show status可能触发的死锁问题。 20171205(5.6.16)版本 修复OPTIMIZE TABLE和ONLINE ALTER TABLE同时执行时会触发死锁的问题。 修复SEQUENCE与隐含主键冲突的问题。 修复SHOW CREATE SEQUENCE问题。 修复TokuDB引擎的表统计信息错误。 修复并行OPTIMIZE表引入的死锁问题。 修复QUERY_LOG_EVENT中记录的字符集问题。 修复信号处理引起的数据库无法停止问题,详情请参见参考文档。 修复RESET MASTER引入的问题。 修复备库陷入等待的问题。 修复SHOW CREATE TABLE可能触发的进程崩溃问题。 20170927(5.6.16)版本 修复TokuDB表查询时使用错误索引问题。 20170901(5.6.16)版本 新特性: 升级SSL加密版本到TLS 1.2,详情请参见参考文档。 支持Sequence。 修复NOT IN查询在特定场景下返回结果集有误的问题。 20170530 (5.6.16)版本 新特性:支持高权限账号Kill其他账号下的连接。 20170221(5.6.16)版本 新特性:支持读写分离简介。 MySQL 5.5 20181212 修复调用系统函数gettimeofday(2) 返回值不准确的问题。该系统函数返回值为时间,常用来计算等待超时,时间不准确时会导致一些操作永不超时。

游客yl2rjx5yxwcam 2020-03-08 13:18:55 0 浏览量 回答数 0

问题

Redis 过期策略都有哪些?内存淘汰机制都有哪些?手写下 LRU 代码实现?【Java问答】33期

剑曼红尘 2020-06-10 21:02:18 20 浏览量 回答数 1

问题

比较Apache Hadoop生态系统中不同的文件格式和存储引擎的性能

anrui2016 2019-12-01 22:03:39 2706 浏览量 回答数 0

问题

用位运算来解下八皇后问题 6月11日 【今日算法】

游客ih62co2qqq5ww 2020-06-15 16:24:16 2 浏览量 回答数 1

回答

没有一个初步的战略 大多数没有计算机科学或数据分析背景的工程师想要在数据科学中开始一个新的职业生涯,他们没有一个明确的战略,没有成为数据科学家、分析师或工程师的明确步骤。他们试图尽可能快地用信息填满自己的脑袋,而不是真正深入到特定的主题;他们倾向于一次注册多个在线课程,从不同的网站下载几个备忘单,阅读许多作者的文章,但没有一个结构化的计划。在开始这段旅程之前,我强烈建议你制定一个学习计划,并列出一些日常习惯,以实现你的目标,增强你的分析和编程技能。对你想从事的行业使用的最流行的编程语言和软件进行自己的研究,搜索最广泛使用的库和包,并根据你的目标选择最适合你的编程语言和软件。坚持和练习会使你成为大师。 尝试同时学习几种编程语言和软件 新程序员常常会受到诱惑,想要同时学习几种编程语言和软件,把它们作为技术技能写进简历。虽然你可能认为这是一种营销自己的策略,但它往往会适得其反。拥有数据科学、数据分析师和数据工程职位的公司和组织更有可能要求应聘者具备一种或两种或最多三种编程语言和软件的坚实背景。很少有职位要求你同时精通Python, R, SQL, C, c , c#, Matlab, Java, Ruby。相反,你应该研究一下你更可能在某个特定行业或公司使用的编程语言和软件;掌握你的编程和分析技能,并成为真正的专家。你将认识到,所有编程语言之间共享一个公共逻辑和类似的函数,在此之后,从一种语言到另一种语言的转换只需要学习一种不同的语法,而不需要学习它背后的整个逻辑。 没有在代码上写注释 尽管这听起来很明显,而且是一个无关紧要的任务,但它代表了一种很好的策略,可以跟踪每一行或每一块代码执行的操作,以便返回到暂停的项目。在最初的代码编写过程中,程序员对项目的目的和目标有了清晰而清晰的认识;他们知道自己想要编写的程序背后的逻辑步骤和追求的结果。然而,由于多种原因(经济约束、信息缺失、优先级的改变),所有的项目都很容易暂停,这将迫使程序员切换到不同的任务,而让先前的任务保持不变。一个中断的项目需要的时间越长,就越不容易记住它的位置和缺失的点。这里是注释发挥作用的地方。试着在你认为有必要的地方使用它们;记住要足够清晰,并记住它们应该允许代码程序员和执行者理解代码背后的逻辑步骤。 在代码编写过程中不要求反馈 在你的经理要求你做什么,他/她希望你做什么,客户要求什么,和你实际做什么之间总是有很大的差距。当你在开发一个程序或新代码时,试着把它分成几个阶段,并在进入下一个阶段之前征求反馈。在每个阶段结束后得到反馈,这将让你知道你是否正确,或者是否需要根据客户的要求进行更改。这并不意味着你无法理解其他人的要求,而是将其视为利益相关者之间的想法和期望的统一。如果在偏离正轨的情况下,你收到反馈的频率越高,你需要进行的修改就越少。请记住,持续的沟通对于每一个项目的成功实施都是至关重要的。 没有测试你当前的知识 你可能已经看了很多逐步编程教程。你可能也读过许多数据科学书籍和编程书。你可能已经完成了许多编程训练营的练习。下一步是什么?测试你目前的知识。这种训练营和课程的真正价值不在于证书本身,而在于你学到的知识,并能成功地应用于解决某个问题。老实说,每个人都可以通过参加在线课程来获得证书,只要跳过大部分的课程就可以了;公司和组织都非常清楚这一点。尝试把自己推向新的极限,在网上寻找编程挑战,尝试头脑风暴,在没有太多帮助资源的情况下编写代码。这并不意味着你在实际工作中不会用到它们,但它会让你感觉更舒服,更安全,更少依赖它们。 没有充分利用优缺点 在某种程度上,你可能会觉得使用一种特定的编程语言和软件是很舒服的,而你可能会发现学习一种新的语言和软件是没有用的。我曾多次听到数据分析师争论哪种编程语言在能力、可用库和包、在线资源和流行程度方面是最好的。但是,你必须足够谦虚,认识到总有从另一种语言、库、包或软件中学习新东西的空间。每种编程语言和软件都有其优点和缺点,但是我们的目标是充分利用它们,并具有足够的灵活性,以确定最适合用于特定任务以解决特定问题的语言和软件。 假设你什么都知道 相信我,没有人什么都知道。数据科学领域非常广泛,每天都要学习新东西。库、包、函数、方法和算法的总数非常多。永远保持好奇,保持谦虚,如果你认为你知道的很多,你实际知道的就很少。 原文链接: https://blog.csdn.net/fendouaini/article/details/103252444

茶什i 2020-01-15 11:57:21 0 浏览量 回答数 0

问题

Windows Server 下安装 SQL Server 2016 —— 介绍

妙正灰 2019-12-01 21:43:05 9808 浏览量 回答数 0

回答

没有一个初步的战略 大多数没有计算机科学或数据分析背景的工程师想要在数据科学中开始一个新的职业生涯,他们没有一个明确的战略,没有成为数据科学家、分析师或工程师的明确步骤。他们试图尽可能快地用信息填满自己的脑袋,而不是真正深入到特定的主题;他们倾向于一次注册多个在线课程,从不同的网站下载几个备忘单,阅读许多作者的文章,但没有一个结构化的计划。在开始这段旅程之前,我强烈建议你制定一个学习计划,并列出一些日常习惯,以实现你的目标,增强你的分析和编程技能。对你想从事的行业使用的最流行的编程语言和软件进行自己的研究,搜索最广泛使用的库和包,并根据你的目标选择最适合你的编程语言和软件。坚持和练习会使你成为大师。 尝试同时学习几种编程语言和软件 新程序员常常会受到诱惑,想要同时学习几种编程语言和软件,把它们作为技术技能写进简历。虽然你可能认为这是一种营销自己的策略,但它往往会适得其反。拥有数据科学、数据分析师和数据工程职位的公司和组织更有可能要求应聘者具备一种或两种或最多三种编程语言和软件的坚实背景。很少有职位要求你同时精通Python, R, SQL, C, c , c#, Matlab, Java, Ruby。相反,你应该研究一下你更可能在某个特定行业或公司使用的编程语言和软件;掌握你的编程和分析技能,并成为真正的专家。你将认识到,所有编程语言之间共享一个公共逻辑和类似的函数,在此之后,从一种语言到另一种语言的转换只需要学习一种不同的语法,而不需要学习它背后的整个逻辑。 3.没有在代码上写注释 尽管这听起来很明显,而且是一个无关紧要的任务,但它代表了一种很好的策略,可以跟踪每一行或每一块代码执行的操作,以便返回到暂停的项目。在最初的代码编写过程中,程序员对项目的目的和目标有了清晰而清晰的认识;他们知道自己想要编写的程序背后的逻辑步骤和追求的结果。然而,由于多种原因(经济约束、信息缺失、优先级的改变),所有的项目都很容易暂停,这将迫使程序员切换到不同的任务,而让先前的任务保持不变。一个中断的项目需要的时间越长,就越不容易记住它的位置和缺失的点。这里是注释发挥作用的地方。试着在你认为有必要的地方使用它们;记住要足够清晰,并记住它们应该允许代码程序员和执行者理解代码背后的逻辑步骤。 在代码编写过程中不要求反馈 在你的经理要求你做什么,他/她希望你做什么,客户要求什么,和你实际做什么之间总是有很大的差距。当你在开发一个程序或新代码时,试着把它分成几个阶段,并在进入下一个阶段之前征求反馈。在每个阶段结束后得到反馈,这将让你知道你是否正确,或者是否需要根据客户的要求进行更改。这并不意味着你无法理解其他人的要求,而是将其视为利益相关者之间的想法和期望的统一。如果在偏离正轨的情况下,你收到反馈的频率越高,你需要进行的修改就越少。请记住,持续的沟通对于每一个项目的成功实施都是至关重要的。 没有测试你当前的知识 你可能已经看了很多逐步编程教程。你可能也读过许多数据科学书籍和编程书。你可能已经完成了许多编程训练营的练习。下一步是什么?测试你目前的知识。这种训练营和课程的真正价值不在于证书本身,而在于你学到的知识,并能成功地应用于解决某个问题。老实说,每个人都可以通过参加在线课程来获得证书,只要跳过大部分的课程就可以了;公司和组织都非常清楚这一点。尝试把自己推向新的极限,在网上寻找编程挑战,尝试头脑风暴,在没有太多帮助资源的情况下编写代码。这并不意味着你在实际工作中不会用到它们,但它会让你感觉更舒服,更安全,更少依赖它们。 没有充分利用优缺点 在某种程度上,你可能会觉得使用一种特定的编程语言和软件是很舒服的,而你可能会发现学习一种新的语言和软件是没有用的。我曾多次听到数据分析师争论哪种编程语言在能力、可用库和包、在线资源和流行程度方面是最好的。但是,你必须足够谦虚,认识到总有从另一种语言、库、包或软件中学习新东西的空间。每种编程语言和软件都有其优点和缺点,但是我们的目标是充分利用它们,并具有足够的灵活性,以确定最适合用于特定任务以解决特定问题的语言和软件。 假设你什么都知道 相信我,没有人什么都知道。数据科学领域非常广泛,每天都要学习新东西。库、包、函数、方法和算法的总数非常多。永远保持好奇,保持谦虚,如果你认为你知道的很多,你实际知道的就很少。 ———————————————— 版权声明:本文为CSDN博主「磐创 AI」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/fendouaini/article/details/103252444

jiewuyu 2020-01-15 10:01:22 0 浏览量 回答数 0

问题

分库分表之后,id 主键如何处理?【Java问答】43期

剑曼红尘 2020-06-23 11:48:33 23 浏览量 回答数 1

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:56 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:57 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:57 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 注意:无法打开网站时,应该先搜索排查报错提示的含义,本文列举了一些常见的报错情况。 无法访问 ECS 实例上的网站时的分析思路: 根据报错情况分析网络通信问题 ECS Linux 实例网络通信问题排查ECS Windows 实例网络通信问题排查 端口通信问题 ECS Linux 实例端口通信问题ECS Windows 实例端口通信问题 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 重新配置安全组公网规则 网络通信问题 ECS Linux 实例网络通信问题排查 执行 ifconfig 和 ip addr 网络检测命令查看 IP 地址。 执行命令 route -n 通过实例路由表查看网关。 ECS Windows 实例网络通信问题排查 打开 CMD,执行 ipconfig 网络检测命令查看 IP 地址。 执行命令 route print 通过实例路由表查看网关。 注意: 若网卡驱动未开启或网卡配置有问题,请检查网卡驱动,并重新安装。 关于网络相关问题的测试工具,详见 ping 丢包或不通时链路测试说明。 端口通信问题 ECS Linux 实例端口通信问题 执行命令 netstat –antpu | grep sshd 检测 sshd 服务的运行状态,确认端口是否有正常监听。 执行下列命令查看服务运行状态: CentOS6:service sshd statusCentOS7:systemctl status sshd 如果 sshd 服务没有正常运行,执行下列命令手动启动 sshd 服务: CentOS6:service sshd restartCentOS7:systemctl restart sshd 查看 sshd 程序日志 如果无法正常启动 sshd 服务,CentOS 6 系统一般会直接输出错误信息,而CentOS 7 启动时没有输出信息,需要通过 secure 日志进行查看。sshd 日志:/var/log/secure。 通过 secure 日志的报错信息,一般是可以定位绝大部分 sshd 启动异常的问题。 ECS Windows 实例端口通信问题 执行远程端口检测命令: Tasklist /svc | findstr “Ter”netstat –ano | findstr “$PID” 防火墙配置异常 ECS Windows 实例远程无法连接,关闭防火墙后连接恢复正常 前提条件:您只有在已授权可关闭防火墙的情况下,才能做该项排查。 调整防火墙配置策略,详见:ECS Windows 远程连接之防火墙设置。 调整后,重新进行远程连接。 ECS Linux 实例 SSH 无法连接,关闭 Iptables 后连接恢复正常 前提条件:您只有在已授权可关闭 Iptables 的情况下,才能做调整 Iptables 配置策略排查。 执行命令 iptables -nvL –line-number 查看防火墙规则: n 不对 IP 地址进行反查,加上这个参数显示速度会快很多。 v 输出详细信息,包含通过该规则的数据包数量、总字节数及相应的网络接口。 L 查看当前表的所有规则,默认查看的是 filter 表,如果要查看 NAT 表,可以加上 -t NAT 参数。 修改规则。(若您之前已设置过规则策略,执行命令 cp -a /etc/sysconfig/iptables /etc/sysconfig/iptables.bak 保存一份原有的 Iptables 文件,避免丢失已设置过策略。) 执行命令 iptables -F 清空实例上所有的规则。 执行命令 iptables -P INPUT DROP 拒绝 INPUT 方向所有的请求都。 注意:线上业务请勿直接操作,会导致业务直接中断。 执行下列命令放行端口 22: iptables -A INPUT -p tcp --dport 22 -j ACCEPTiptables -A OUTPUT -p tcp --sport 22 -j ACCEPT执行下列命令指定 IP 访问端口 22: iptables -I INPUT -s 192.168.1.1 -p tcp --dport 22 -j ACCEPT 说明: 192.168.1.1 为请求端 IP 地址。 执行命令 iptables -L 查看添加的规则是否生效。 执行命令 iptables-save > /etc/sysconfig/iptables 保存添加的规则。 执行命令 service iptables restart 或 /etc/init.d/iptables restart 重启 Iptables。 执行命令 systemctl reboot 重启实例验证配置。 重新进行 SSH 连接。 重新配置安全组公网规则 原因分析:安全组默认没有放行网站使用的端口(如 80 端口)。您需要自行放行该接口。 解决方法: 登录 ECS 控制台,找到该实例。单击实例 ID,进入详情页,再单击本实例安全组 > 配置规则 >添加安全组规则。根据网站使用的端口配置新的安全组规则,放行网站使用的端口,最后单击确定。 可参考文档添加安全组规则。 根据报错情况分析 报错情况比较复杂,此处列出比较常见的几种报错内容: 403 报错:403 报错是一个大类,403 的报错基本上是权限问题,出现 403 报错时您需要检测权限配置问题。 403.1 错误是由于“执行”访问被禁止而造成的。若试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会出现此种错误。403.2 错误是由于”读取”访问被禁止而造成的。导致此错误是由于没有可用的默认网页并且没有对目录启用目录浏览,或者要显示的 HTML 网页所驻留的目录仅标记为“可执行”或“脚本”权限。403.3 错误是由于“写入”访问被禁止而造成的。当试图将文件上载到目录或在目录中修改文件,但该目录不允许“写”访问时就会出现此种错误。403.4 错误是由于要求 SSL 而造成的。您必须在要查看的网页的地址中使用 HTTPS。403.5 错误是由于要求使用 128 位加密算法的 Web 浏览器而造成的。如果您的浏览器不支持 128 位加密算法就会出现这个错误,您可以连接微软网站进行浏览器升级。403.6 错误是由于 IP 地址被拒绝而造成的。如果服务器中有不能访问该站点的IP地址列表,并且您使用的 IP 地址在该列表中时您就会返回这条错误信息。403.7 错误是因为要求客户证书。当需要访问的资源要求浏览器拥有服务器能够识别的安全套接字层(SSL)客户证书时会返回此种错误。403.8 错误是由于禁止站点访问而造成的。若服务器中有不能访问该站点的 DNS 名称列表,而您使用的 DNS 名称在列表中时就会返回此种信息。请注意区别 403.6 与 403.8 错误。403.9 错误是由于连接的用户过多而造成的,由于 Web 服务器很忙,因通讯量过多而无法处理请求时便会返回这条错误。403.10 错误是由于无效配置而导致的错误。当您试图从目录中执行 CGI、ISAPI 或其他可执行程序,但该目录不允许执行程序时便会返回这条错误。403.11 错误是由于密码更改而导致无权查看页面。403.12 错误是由于映射器拒绝访问而造成的。若要查看的网页要求使用有效的客户证书,而您的客户证书映射没有权限访问该 Web 站点时就会返回映射器拒绝访问的错误。403.13 错误是由于需要查看的网页要求使用有效的客户证书而使用的客户证书已经被吊销,或者无法确定证书是否已吊销造成的。403.14 错误 Web 服务器被配置为不列出此目录的内容,拒绝目录列表。403.15 错误是由于客户访问许可过多而造成的。当服务器超出其客户访问许可限制时会返回此条错误。403.16 错误是由于客户证书不可信或者无效而造成的。403.17 错误是由于客户证书已经到期或者尚未生效而造成的。 404 报错:404 报错主要是页面显示问题或者页面的链接有问题,意味着链接指向的网页不存在,即原始网页的 URL 失效。当 Web 服务器接到类似请求时,会返回一个 404 状态码,告诉浏览器已请求的资源并不存在。导致这个错误的原因一般有以下几种情况: 无法在所请求的端口上访问 Web 站点。Web 服务扩展锁定策略阻止本请求。MIME 映射策略阻止本请求。网站更新改版,但某些局部板块沿用原来的模块,而原有的模块调用的文件已经被删除或转移了路径。跟踪访问的各类脚码或 CSS 文件无效但调用代码依然存在。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问 502 报错:当测试访问报错为 502 Bad Gateway,这是 Web 程序配置异常导致的。建议结合 Web 访问日志,检测一下 Web 程序配置的参数设置是否有异常。详情请参见 502 bad gateway问题的解决方法。503 报错:503 报错是一种 HTTP 状态码,与 404 同属一种网页状态出错码。两者的区别是:前者是服务器出错的一种返回状态,后者是网页程序没有相关结果后返回的一种状态。503 报错产生的原因有可能是以下几种情况: 网络管理员可能关闭应用程序池以执行维护。当请求到达时应用程序池队列已满。应用程序池标识没有使用预定义账户:网络服务。而自己配置了标识,但是配置的这个用户不属于 IIS_WPG 组。应用程序池启用了 CPU 监视,并且设置了 CPU 利用率超过一定百分比关闭应用程序池,而开发人员写的服务端页面 (.asp、.aspx) 执行效率不高,会引起 CPU 的长时间占用,最终达到设置的百分比,从而引起应用程序池关闭。应用程序池的性能选项卡的请求队列限制所填的数值太小,默认为 1000。某个目录直接删除(导致一段时间该目录的文件在被爬行时全部报 404 Not Found 错误)。网页 URL 生成规则改变、网页文件更名或移动位置、导入链接拼写错误等,导致原来的 URL 地址无法访问。该站点正在被攻击。对于最新型的攻击,其实是 DDoS 的一种派生,原理在于找数千个IP,同时向服务器的 Apache 发出请求,然后 立即断开,让 Apache 处于等待状态,致使 Apache 线程全部被填满,致使服务器死机。因此,为了保证大多数客户的利益,我们给每个空间,作出了每 19 秒 64 个 php 请求的限制。注意,是 php 请求,一般的图片请求和 html 请求不包括在内。该程序占用的 php 线程过多,有的程序没有进行好优化处理,一个点击即可产生数个,甚至数十个 php 线程。这样的话,几个点击就可以把该时段的64个 php 线程全部填满了。因此出现 503 错误。建议优化一下程序,尽量少用 require (请求)等语句。 如问题还未解决,请您记录排查结果、相关日志信息或截图,提交工单联系阿里云。

2019-12-01 23:11:56 0 浏览量 回答数 0

问题

第6篇 指针数组字符串(下)补充:报错

kun坤 2020-06-08 11:02:03 3 浏览量 回答数 1

回答

我们都知道虚拟机的内存划分了多个区域,并不是一张大饼。那么为什么要划分为多块区域呢,直接搞一块区域,所有用到内存的地方都往这块区域里扔不就行了,岂不痛快。是的,如果不进行区域划分,扔的时候确实痛快,可用的时候再去找怎么办呢,这就引入了第一个问题,分类管理,类似于衣柜,系统磁盘等等,为了方便查找,我们会进行分区分类。另外如果不进行分区,内存用尽了怎么办呢?这里就引入了内存划分的第二个原因,就是为了方便内存的回收。如果不分,回收内存需要全部内存扫描,那就慢死了,内存根据不同的使用功能分成不同的区域,那么内存回收也就可以根据每个区域的特定进行回收,比如像栈内存中的栈帧,随着方法的执行栈帧进栈,方法执行完毕就出栈了,而对于像堆内存的回收就需要使用经典的回收算法来进行回收了,所以看起来分类这么麻烦,其实是大有好处的。 提到虚拟机的内存结构,可能首先想起来的就是堆栈。对象分配到堆上,栈上用来分配对象的引用以及一些基本数据类型相关的值。但是·虚拟机的内存结构远比此要复杂的多。除了我们所认识的(还没有认识完全)的堆栈以外,还有程序计数器,本地方法栈和方法区。我们平时所说的栈内存,一般是指的栈内存中的局部变量表。 从图中可以看到有5大内存区域,按照是否被线程所共享可分为两部分,一部分是线程独占区域,包括Java栈,本地方法栈和程序计数器。还有一部分是被线程所共享的,包括方法区和堆。什么是线程共享和线程独占呢,非常好理解,我们知道每一个Java进行都会有多个线程同时运行,那么线程共享区的这片区域就是被所有线程一起使用的,不管有多少个线程,这片空间始终就这一个。而线程的独占区,是每个线程都有这么一份内存空间,每个线程的这片空间都是独有的,有多少个线程就有多少个这么个空间。上图的区域的大小并不代表实际内存区域的大小,实际运行过程中,内存区域的大小也是可以动态调整的。下面来具体说说每一个区域的主要功能。 程序计数器,我们在写代码的过程中,开发工具一般都会给我们标注行号方便查看和阅读代码。那么在程序在运行过程中也有一个类似的行号方便虚拟机的执行,就是程序计数器,在c语言中,我们知道会有一个goto语句,其实就是跳转到了指定的行,这个行号就是程序计数器。存储的就是程序下一条所执行的指令。这部分区域是线程所独享的区域,我们知道线程是一个顺序执行流,每个线程都有自己的执行顺序,如果所有线程共用一个程序计数器,那么程序执行肯定就会出乱子。为了保证每个线程的执行顺序,所以程序计数器是被单个线程所独显的。程序计数器这块内存区域是唯一一个在jvm规范中没有规定内存溢出的。 java虚拟机栈,java虚拟机栈是程序运行的动态区域,每个方法的执行都伴随着栈帧的入栈和出栈。 栈帧也叫过程活动记录,是编译器用来实现过程/函数调用的一种数据结构。栈帧中包括了局部变量表,操作数栈,方法返回地址以及额外的一些附加信息,在编译过程中,局部变量表的大小已经确定,操作数栈深度也已经确定,因此栈帧在运行的过程中需要分配多大的内存是固定的,不受运行时影响。对于没有逃逸的对象也会在栈上分配内存,对象的大小其实在运行时也是确定的,因此即使出现了栈上内存分配,也不会导致栈帧改变大小。 一个线程中,可能调用链会很长,很多方法都同时处于执行状态。对于执行引擎来讲,活动线程中,只有栈顶的栈帧是最有效的,称为当前栈帧,这个栈帧所关联的方法称为当前方法。执行引擎所运行的字节码指令仅对当前栈帧进行操作。Ft5rk58GfiJxcdcCzGeAt8fjkFPkMRdf 局部变量表:我们平时所说的栈内存一般就是指栈内存中的局部变量表。这里主要是存储变量所用。对于基本数据类型直接存储其值,对于引用数据类型则存储其地址。局部变量表的最小存储单位是Slot,每个Slot都能存放一个boolean、byte、char、short、int、float、reference或returnAddress类型的数据。 既然前面提到了数据类型,在此顺便说一下,一个Slot可以存放一个32位以内的数据类型,Java中占用32位以内的数据类型有boolean、byte、char、short、int、float、reference和returnAddress八种类型。前面六种不需要多解释,大家都认识,而后面的reference是对象的引用。虚拟机规范既没有说明它的长度,也没有明确指出这个引用应有怎样的结构,但是一般来说,虚拟机实现至少都应当能从此引用中直接或间接地查找到对象在Java堆中的起始地址索引和方法区中的对象类型数据。而returnAddress是为字节码指令jsr、jsr_w和ret服务的,它指向了一条字节码指令的地址。 对于64位的数据类型,虚拟机会以高位在前的方式为其分配两个连续的Slot空间。Java语言中明确规定的64位的数据类型只有long和double两种(reference类型则可能是32位也可能是64位)。值得一提的是,这里把long和double数据类型读写分割为两次32读写的做法类似。不过,由于局部变量表建立在线程的堆栈上,是线程私有的数据,无论读写两个连续的Slot是否是原子操作,都不会引起数据安全问题。 操作数栈是一个后入先出(Last In First Out, LIFO)栈。同局部变量表一样,操作数栈的最大深度也在编译的时候被写入到字节码文件中,关于字节码文件,后面我会具体的来描述。操作数栈的每一个元素可以是任意的Java数据类型,包括long和double。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。在方法执行的任何时候,操作数栈的深度都不会超过在max_stacks数据项中设定的最大值。 当一个方法刚刚开始执行的时候,这个方法的操作数栈是空的,在方法的执行过程中,会有各种字节码指令向操作数栈中写入和提取内容,也就是入栈出栈操作。例如,在做算术运算的时候是通过操作数栈来进行的,又或者在调用其他方法的时候是通过操作数栈来进行参数传递的。 举个例子,整数加法的字节码指令iadd在运行的时候要求操作数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会将这两个int值和并相加,然后将相加的结果入栈。 操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。再以上面的iadd指令为例,这个指令用于整型数加法,它在执行时,最接近栈顶的两个元素的数据类型必须为int型,不能出现一个long和一个float使用iadd命令相加的情况。 本地方法栈 与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。虚拟机规范中对本地方法栈中的方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。 方法区经常会被人称之为永久代,但这俩并不是一个概念。首先永久代的概念仅仅在HotSpot虚拟机中存在,不幸的是,在jdk8中,Hotspot去掉了永久代这一说法,使用了Native Memory,也就是Metaspace空间。那么方法区是干嘛的呢?我们可以这么理解,我们要运行Java代码,首先需要编译,然后才能运行。在运行的过程中,我们知道首先需要加载字节码文件。也就是说要把字节码文件加载到内存中。好了,问题就来了,字节码文件放到内存中的什么地方呢,就是方法区中。当然除了编译后的字节码之外,方法区中还会存放常量,静态变量以及及时编译器编译后的代码等数据。 堆,一般来讲堆内存是Java虚拟机中最大的一块内存区域,同方法区一样,是被所有线程所共享的区域。此区域所存在的唯一目的就存放对象的实例(对象实例并不一定全部在堆中创建)。堆内存是垃圾收集器主要光顾的区域,一般来讲根据使用的垃圾收集器的不同,堆中还会划分为一些区域,比如新生代和老年代。新生代还可以再划分为Eden,Survivor等区域。另外为了性能和安全性的角度,在堆中还会为线程划分单独的区域,称之为线程分配缓冲区。更细致的划分是为了让垃圾收集器能够更高效的工作,提高垃圾收集的效率。 如果想要了解更多的关于虚拟机的内容,可以观看录制的<深入理解Java虚拟机>这套视频教程。

zwt9000 2019-12-02 00:21:07 0 浏览量 回答数 0

回答

一、数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。 1、IO瓶颈 第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。 第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。 2、CPU瓶颈 第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。 第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。 二、分库分表 1、水平分库 概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。 结果: 每个库的结构都一样; 每个库的数据都不一样,没有交集; 所有库的并集是全量数据; 场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。 分析:库多了,io和cpu的压力自然可以成倍缓解。 2、水平分表 概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。 结果: 每个表的结构都一样; 每个表的数据都不一样,没有交集; 所有表的并集是全量数据; 场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。推荐:一次SQL查询优化原理分析 分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。 3、垂直分库 概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。 结果: 每个库的结构都不一样; 每个库的数据也不一样,没有交集; 所有库的并集是全量数据; 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。 分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。 4、垂直分表 概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。 结果: 每个表的结构都不一样; 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据; 所有表的并集是全量数据; 场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。 分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。 但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。 三、分库分表工具 sharding-sphere:jar,前身是sharding-jdbc; TDDL:jar,Taobao Distribute Data Layer; Mycat:中间件。 注:工具的利弊,请自行调研,官网和社区优先。 四、分库分表步骤 根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。 扩展:MySQL:分库分表与分区的区别和思考 五、分库分表问题 1、非partition key的查询问题 基于水平分库分表,拆分策略为常用的hash法。 端上除了partition key只有一个非partition key作为条件查询 映射法 基因法 注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。 根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。 端上除了partition key不止一个非partition key作为条件查询 映射法 冗余法 注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢? 后台除了partition key还有各种非partition key组合条件查询 NoSQL法 冗余法 2、非partition key跨库跨表分页查询问题 基于水平分库分表,拆分策略为常用的hash法。 注:用NoSQL法解决(ES等)。 3、扩容问题 基于水平分库分表,拆分策略为常用的hash法。 水平扩容库(升级从库法) 注:扩容是成倍的。 水平扩容表(双写迁移法) 第一步:(同步双写)修改应用配置和代码,加上双写,部署; 第二步:(同步双写)将老库中的老数据复制到新库中; 第三步:(同步双写)以老库为准校对新库中的老数据; 第四步:(同步双写)修改应用配置和代码,去掉双写,部署; 注:双写是通用方案。 六、分库分表总结 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。 只要能满足需求,拆分规则越简单越好。 七、分库分表示例 示例GitHub地址:https://github.com/littlecharacter4s/study-sharding 来源:cnblogs.com/littlecharacter/p/9342129.html 俩元

AA大大官 2020-03-31 12:45:48 0 浏览量 回答数 0

回答

以太坊的核心元素是以太坊虚拟机(Ethereum Virtual Machine,EVM),它是智能合约的执行环境。EVM分散储存在以太坊网络的每个节点上,智能合约代码被对外隔离,并分布在每个节点上执行,因此以太坊EVM又被称为世界电脑。合同代码不是用图灵完备的高级程序语言编写的,而是由简单的、基于堆栈的低级程序语言编写的,看起来就像JVM的字节码(Java虚拟机)。每个以太坊节点都运行EVM,这意味着对于以太坊网络的参与者,每个节点都参与验证新块是否有效以及计算是否已正确,都是运行EVM代码的独立实例。由于每个节点都参与计算,虽然不一定是最高效的模型,但它具有很高的加密安全性。 从技术上讲,EVM以状态转换作为函数的运作模式,其工作原理是将一串参数输入EVM,以获取整个以太坊网络的新区块状态和gas数量,具体过程为输入(block_state,gas,memory,transaction,message,code,stack,pc)→EVM→输出(block_state,gas)。其中block_state是以太坊网络的全局状态,包括所有账户、账户余额和长期存储;gas是运行这些计算所需的费用,由计算的类型和工作量决定;memory是执行内存;transaction代表交易;message是有关交易的元数据;code就是代码本身;stack和pc是与执行相关的堆栈和程序计数器。这一串参数被输入到EVM以生成整个以太坊网络的新block_state和账户拥有的新gas数量。 以太坊EVM的设计目标有5个:简单、高效、确定性、专用化和安全性。EVM设计简单,可以轻松证明智能合约的安全性,这也有助于保护平台本身。EVM组件尽可能紧凑,以提高空间效率。EVM具有确定性,即相同的输入状态应始终产生相同的输出状态。确定性的虚拟机必然会限制应用范围,例如以太坊的HTTP请求不可用。EVM具有专用的内置函数,例如可以轻松处理20字节地址加密的加密函数、用于自定义加密的模块化指数算法、读取区块数据、读取交易数据的函数,以及与block_state交互的函数。以太坊EVM的安全性在于每次计算都要预先消耗gas,这增加了DoS攻击的成本,使得攻击者无法发动大规模的无效合约。EVM的主要编程语言是Solidity,智能合约用Solidity写好后,通过Solidity Compiler(solc)编译并生成EVM代码。合约语言的复杂性通过Solidity Compiler进行管理,但在架构层面,Solidity仍然是一种简单的基于堆栈的语言。 智能合约是在以太坊EVM上自动执行的合约代码,一般包括合约所有人、合约对象、合约条款、合约算法、合约触发条件等内容。对于可信电子证照应用,数据共享规则被转换为智能合约并部署在区块链上之后,常规共享条款和违约处理条款就可以自动履行,且执行过程由区块链完整记录,其执行状态可被随时查看和审计,从而提供一个公平、公正、公开的合约执行环境。此外,通过智能合约还可对参与方身份进行权限检查,针对交易者身份进行访问控制。 用智能合约完成可信电子证照应用的注册、发证、查验等过程,具体包括5个主要功能模块和5个API。5个主要功能模块为公民用户App、发证机构前端、区块链平台、政府业务库和后台身份管理数据库;5个API包括注册区块链用户、发送制证信息、查验电子证照信息、查询用户公钥和查询电子证明信息,具体分析如下所示。 1. 注册区块链用户 用于新用户注册区块链信息管理账户。对于业务系统注册账号来说分为3个不同的角色:普通用户、制证机关用户、查验机构用户。 输入:账户名称(用于登录系统的ID)。 输出:账户地址(注册用户在区块链上的地址,用于用户之间传输信息)和账户公私钥(普通用户的公私钥用于用户证件信息的加解密,制证机关用户的公私钥用于对发证机构的数字签名进行验证,查验机构用户的公私钥用于对查验信息的加解密)。 2. 发送制证信息 用于制证机构用户存储新增证件信息以及发送给办证用户。以制证机构用户在区块链上给办证用户发送一笔交易为载体,把新增的证件信息保存在区块链上,并发送给办证用户。 输入:申请制证用户的区块链地址(发证机构制证后给该地址用户发送制证信息)、发证机构组织机构代码(发证机构的唯一标示)、申请制证用户的证件信息(需要用户公钥加密)。 输出:该笔交易的Hash值(交易信息地址唯一标识)、记录证件信息的区块编号(交易信息地址唯一标识)。

问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

图解九大数据结构 6月13日 【今日算法】

游客ih62co2qqq5ww 2020-06-17 13:17:00 29 浏览量 回答数 1

问题

图解!24张图彻底弄懂九大常见数据结构! 7月22日 【今日算法】

游客ih62co2qqq5ww 2020-07-27 13:19:32 6 浏览量 回答数 1

问题

技术运维问题 - MYSQL使用 -迁入RDS后为什么数据库变慢的分析

李沃晟 2019-12-01 21:43:13 986 浏览量 回答数 0

问题

DRDS 错误代码如何解决?

猫饭先生 2019-12-01 21:21:21 7993 浏览量 回答数 0

回答

您可以使用镜像创建一个可公网访问的 nginx 应用。 前提条件 创建一个 Kubernetes 集群。详情请参见创建 Kubernetes 集群。 操作步骤 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的应用 > 无状态,然后单击页面右上角的使用镜像创建。 设置应用名称、部署集群 、命名空间、副本数量、类型、注解和标签,副本数量即应用包含的 Pod 数量。然后单击下一步 进入容器配置页面。 说明 本例中选择无状态类型,即 Deployment 类型。 如果您不设置命名空间,系统会默认使用 default 命名空间。 基本配置 设置容器配置。 说明 您可为应用的Pod设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 nginx。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 镜像密钥:单击设置镜像密钥设置镜像的密钥。对于私有仓库访问时,需要设置密钥,具体可以参见使用镜像密钥 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 cores,即一个核;内存的单位为 Bytes,可以为 Mi 。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程争占资源,导致应用不可用。 Init Container:勾选该项,表示创建一个 Init Container,Init Container 包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 基本信息配置 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 设置健康检查 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 健康检查 请求类型 配置说明 HTTP请求 即向容器发送一个 HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS。 路径:访问 HTTP server 的路径。 端口:容器暴露的访问端口或端口名,端口号必须介于 1~65535。 HTTP 头:即 HTTPHeaders,HTTP 请求中自定义的请求头,HTTP 允许重复的 header。支持键值对的配置方式。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 3 秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 TCP连接 即向容器发送一个 TCP Socket,kubelet 将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于 1~65535。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 15 秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 5秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为1秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 配置生命周期。 您可以为容器的生命周期配置容器启动项、启动执行、启动后处理和停止前处理。具体参见 https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 可选: 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云存储。 本例中配置了一个云存储类型的数据卷,将该云盘挂载到容器中 /tmp 路径下。 配置数据卷 可选: 配置日志服务,您可进行采集配置和自定义 Tag 设置。 说明 请确保已部署 Kubernetes 集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的 logstore,用于存储采集到的日志。 容器内日志路径:支持 stdout 和文本日志。 stdout:stdout 表示采集容器的标准输出日志。 文本日志:表示收集容器内指定路径的日志,本例中表示收集 /var/log/nginx 下所有的文本日志,也支持通配符的方式。 您还可设置自定义 tag,设置 tag 后,会将该 tag 一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上 tag,方便进行日志统计和过滤等分析操作。 日志采集配置 完成容器配置后,单击 下一步。 进行高级设置。 设置访问设置。 您可以设置暴露后端 Pod 的方式,最后单击创建。本例中选择 ClusterIP 服务和路由(Ingress),构建一个可公网访问的 nginx 应用。 说明 针对应用的通信需求,您可灵活进行访问设置: 内部应用:对于只在集群内部工作的应用,您可根据需要创建 ClusterIP 或 NodePort 类型的服务,来进行内部通信。 外部应用:对于需要暴露到公网的应用,您可以采用两种方式进行访问设置: 创建 LoadBalancer 类型的服务:使用阿里云提供的负载均衡服务(Server Load Balancer,SLB),该服务提供公网访问能力。 创建路由(Ingress):通过路由(Ingress)提供公网访问能力,详情参见https://kubernetes.io/docs/concepts/services-networking/ingress/。 创建应用1 在服务栏单击创建,在弹出的对话框中进行配置,最后单击创建。 名称:您可自主设置,默认为 applicationname-svc。 类型:您可以从下面 3 种服务类型中进行选择。 虚拟集群 IP:即 ClusterIP,指通过集群的内部 IP 暴露服务,选择该项,服务只能够在集群内部可以访问。 节点端口:即 NodePort,通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 : ,可以从集群的外部访问一个 NodePort 服务。 负载均衡:即 LoadBalancer,是阿里云提供的负载均衡服务,可选择公网访问或内网访问。负载均衡可以路由到 NodePort 服务和 ClusterIP 服务。 端口映射:您需要添加服务端口和容器端口,若类型选择为节点端口,还需要自己设置节点端口,防止端口出现冲突。支持 TCP/UDP 协议。 注解:为该服务添加一个注解(annotation),支持负载均衡配置参数,参见通过负载均衡(Server Load Balancer)访问服务。 标签:您可为该服务添加一个标签,标识该服务。 在路由栏单击创建,在弹出的对话框中,为后端 Pod 配置路由规则,最后单击创建。更多详细的路由配置信息,请参见路由配置说明。 说明 通过镜像创建应用时,您仅能为一个服务创建路由(Ingress)。本例中使用一个虚拟主机名称作为测试域名,您需要在 hosts 中添加一条记录。在实际工作场景中,请使用备案域名。 101.37.224.146 foo.bar.com #即ingress的IP 配置路由规则 在访问设置栏中,您可看到创建完毕的服务和路由,您可单击变更和删除进行二次配置。 变更和删除路由 可选: 容器组水平伸缩。 您可勾选是否开启容器组水平伸缩,为了满足应用在不同负载下的需求,容器服务支持容器组(Pod)的弹性伸缩,即根据容器 CPU 和内存资源占用情况自动调整容器组数量。 容器组水平伸缩 说明 若要启用自动伸缩,您必须为容器设置所需资源,否则容器自动伸缩无法生效。参见容器基本配置环节。 指标:支持 CPU 和内存,需要和设置的所需资源类型相同。 触发条件:资源使用率的百分比,超过设置的Pod request值,容器开始扩容。 最大容器数量:该 Deployment 可扩容的容器数量上限。 最小容器数量:该 Deployment 可缩容的容器数量下限。 可选: 设置调度设置。 您可设置升级方式、节点亲和性、应用亲和性和应用非亲和性,详情参见https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity。 说明 亲和性调度依赖节点标签和 Pod 标签,您可使用内置的标签进行调度;也可预先为节点、Pod 配置相关的标签。 设置升级方式。 升级方式包括滚动升级(rollingupdate)和替换升级(recreate),详细请参见https://kubernetes.io/zh/docs/concepts/workloads/controllers/deployment/ 设置节点亲和性,通过 Node 节点的 Label 标签进行设置。 设置节点亲和性 节点调度支持硬约束和软约束(Required/Preferred),以及丰富的匹配表达式(In, NotIn, Exists, DoesNotExist. Gt, and Lt): 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,效果与 NodeSelector 相同。本例中 Pod 只能调度到具有对应标签的 Node 节点。您可以定义多条硬约束规则,但只需满足其中一条。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。本例中,调度会尽量不调度 Pod 到具有对应标签的 Node 节点。您还可为软约束规则设定权重,具体调度时,若存在多个符合条件的节点,权重最大的节点会被优先调度。您可定义多条软约束规则,但必须满足全部约束,才会进行调度。 设置应用亲和性调度。决定应用的 Pod 可以和哪些 Pod 部署在同一拓扑域。例如,对于相互通信的服务,可通过应用亲和性调度,将其部署到同一拓扑域(如同一个主机)中,减少它们之间的网络延迟。 应用亲和性调度 根据节点上运行的 Pod 的标签(Label)来进行调度,支持硬约束和软约束,匹配的表达式有:In, NotIn, Exists, DoesNotExist。 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution ,Pod 的亲和性调度必须要满足后续定义的约束条件。 命名空间:该策略是依据 Pod 的 Label 进行调度,所以会受到命名空间的约束。 拓扑域:即 topologyKey,指定调度时作用域,这是通过 Node 节点的标签来实现的,例如指定为kubernetes.io/hostname,那就是以 Node 节点为区分范围;如果指定为 beta.kubernetes.io/os,则以 Node 节点的操作系统类型来区分。 选择器:单击选择器右侧的加号按钮,您可添加多条硬约束规则。 查看应用列表:单击应用列表,弹出对话框,您可在此查看各命名空间下的应用,并可将应用的标签导入到亲和性配置页面。 硬约束条件:设置已有应用的标签、操作符和标签值。本例中,表示将待创建的应用调度到该主机上,该主机运行的已有应用具有 app:nginx 标签。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。Pod 的亲和性调度会尽量满足后续定义的约束条件。对于软约束规则,您可配置每条规则的权重,其他配置规则与硬约束规则相同。 说明 权重:设置一条软约束规则的权重,介于 1-100,通过算法计算满足软约束规则的节点的权重,将 Pod 调度到权重最大的节点上。 设置应用非亲和性调度,决定应用的 Pod 不与哪些 Pod 部署在同一拓扑域。应用非亲和性调度的场景包括: 将一个服务的 Pod 分散部署到不同的拓扑域(如不同主机)中,提高服务本身的稳定性。 给予 Pod 一个节点的独占访问权限来保证资源隔离,保证不会有其它 Pod 来分享节点资源。 把可能会相互影响的服务的 Pod 分散在不同的主机上。 说明 应用非亲和性调度的设置方式与亲和性调度相同,但是相同的调度规则代表的意思不同,请根据使用场景进行选择。 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象,您可以单击查看应用详情进行查看。 查看详情 默认进入新建的 nginx-deployment 的详情页面。 查看详情2 说明 您也可以通过以下操作创建路由与服务。如上图所示,在访问方式页签。 单击服务右侧的创建,也可以进行服务创建,操作步骤同 6.i.a。 您单击路由右侧的创建,进行路由的创建,操作同 6.i.b。 单击左侧导航栏的路由与负载均衡 > 路由,可以看到路由列表下出现一条规则。 路由规则 在浏览器中访问路由测试域名,您可访问 nginx 欢迎页。 访问nginx

1934890530796658 2020-03-26 11:41:33 0 浏览量 回答数 0

回答

阿里云容器服务 Kubernetes 集群支持通过界面创建 StatefultSet 类型的应用,满足您快速创建有状态应用的需求。本例中将创建一个 nginx 的有状态应用,并演示 StatefulSet 应用的特性。 前提条件 您已成功创建一个 Kubernetes 集群。参见创建Kubernetes集群。 您已成功创建一个云盘存储卷声明,参见创建持久化存储卷声明。 您已连接到 Kubernetes 集群的 Master 节点,参见通过kubectl连接Kubernetes集群。 背景信息 StatefulSet 包括如下特性: 场景 说明 Pod 一致性 包含次序(启动、停止次序)、网络一致性。此一致性与 Pod 相关,与被调度到哪个 node 节点无关。 稳定的持久化存储 通过 VolumeClaimTemplate 为每个 Pod 创建一个 PV。删除、减少副本,不会删除相关的卷。 稳定的网络标志 Pod 的 hostname 模式为:(statefulset名称)−(序号)。 稳定的次序 对于N个副本的 StatefulSet,每个 Pod 都在 [0,N)的范围内分配一个数字序号,且是唯一的。 操作步骤 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的应用 > 有状态,然后单击页面右上角的使用镜像创建。 在应用基本信息页面进行设置,然后单击下一步 进入应用配置页面。 应用名称:设置应用的名称。 部署集群:设置应用部署的集群。 命名空间:设置应用部署所处的命名空间,默认使用 default 命名空间。 副本数量:即应用包含的 Pod 数量。 类型:可选择无状态(Deployment)和有状态(StatefulSet)两种类型。 说明 本例中选择有状态类型,创建 StatefulSet 类型的应用。 标签:为该应用添加一个标签,标识该应用。 注解:为该应用添加一个注解(annotation)。 应用配置页面 设置容器配置。 说明 您可为应用的 Pod 设置多个容器。 设置容器的基本配置。 镜像名称:您可以单击选择镜像,在弹出的对话框中选择所需的镜像并单击确定,本例中为 nginx。 您还可以填写私有 registry。填写的格式为domainname/namespace/imagename:tag 镜像版本:您可以单击选择镜像版本 选择镜像的版本。若不指定,默认为 latest。 总是拉取镜像:为了提高效率,容器服务会对镜像进行缓存。部署时,如果发现镜像 Tag 与本地缓存的一致,则会直接复用而不重新拉取。所以,如果您基于上层业务便利性等因素考虑,在做代码和镜像变更时没有同步修改 Tag ,就会导致部署时还是使用本地缓存内旧版本镜像。而勾选该选项后,会忽略缓存,每次部署时重新拉取镜像,确保使用的始终是最新的镜像和代码。 镜像密钥:单击设置镜像密钥设置镜像的密钥。对于私有仓库访问时,需要设置密钥,具体可以参见使用镜像密钥。 资源限制:可指定该应用所能使用的资源上限,包括 CPU 和内存两种资源,防止占用过多资源。其中,CPU 资源的单位为 millicores,即一个核的千分之一;内存的单位为 Bytes,可以为 Gi、Mi 或 Ki。 所需资源:即为该应用预留资源额度,包括 CPU 和内存两种资源,即容器独占该资源,防止因资源不足而被其他服务或进程争夺资源,导致应用不可用。 Init Container:勾选该项,表示创建一个Init Container,Init Container 包含一些实用的工具,具体参见https://kubernetes.io/docs/concepts/workloads/pods/init-containers/。 设置容器基本信息 可选: 配置环境变量。 支持通过键值对的形式为 Pod 配置环境变量。用于给 Pod 添加环境标志或传递配置等,具体请参见 Pod variable。 可选: 配置健康检查。 支持存活检查(liveness)和就绪检查(Readiness)。存活检查用于检测何时重启容器;就绪检查确定容器是否已经就绪,且可以接受流量。关于健康检查的更多信息,请参见https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes。 请求类型 配置说明 HTTP请求 即向容器发送一个HTTPget 请求,支持的参数包括: 协议:HTTP/HTTPS。 路径:访问HTTP server 的路径。 端口:容器暴露的访问端口或端口名,端口号必须介于1~65535。 HTTP头:即HTTPHeaders,HTTP请求中自定义的请求头,HTTP允许重复的header。支持键值对的配置方式。 延迟探测时间(秒):即initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为3秒。 执行探测频率(秒):即periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 TCP连接 即向容器发送一个 TCP Socket,kubelet 将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。支持的参数包括: 端口:容器暴露的访问端口或端口名,端口号必须介于 1~65535。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为 15 秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 命令行 通过在容器中执行探针检测命令,来检测容器的健康情况。支持的参数包括: 命令行:用于检测容器健康情况的探测命令。 延迟探测时间(秒):即 initialDelaySeconds,容器启动后第一次执行探测时需要等待多少秒,默认为5秒。 执行探测频率(秒):即 periodSeconds,指执行探测的时间间隔,默认为 10 秒,最小为 1 秒。 超时时间(秒):即 timeoutSeconds,探测超时时间。默认 1 秒,最小 1 秒。 健康阈值:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,最小值是 1。对于存活检查(liveness)必须是 1。 不健康阈值:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。 可选: 配置生命周期。 您可以为容器的生命周期配置启动执行、启动后处理和停止前处理。具体参见https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/。 启动执行:为容器设置预启动命令和参数。 启动后处理:为容器设置启动后的命令。 停止前处理:为容器设置预结束命令。 配置生命周期 配置数据卷信息。 支持配置本地存储和云存储。 本地存储:支持主机目录(hostpath)、配置项(configmap)、保密字典(secret)和临时目录,将对应的挂载源挂载到容器路径中。更多信息参见 volumes。 云存储:支持云存储。 本例中配置了一个云存储类型的数据卷声明 disk-ssd,将其挂载到容器的 /tmp 路径下。 配置数据卷 可选: 配置日志服务,您可进行采集配置和自定义 Tag 设置。 说明 请确保已部署 Kubernetes 集群,并且在此集群上已安装日志插件。 您可对日志进行采集配置: 日志库:即在日志服务中生成一个对应的 logstore,用于存储采集到的日志。 容器内日志路径:支持 stdout 和文本日志。 stdout: stdout 表示采集容器的标准输出日志。 文本日志:表示收集容器内指定路径的日志,本例中表示收集/var/log/nginx 下所有的文本日志,也支持通配符的方式。 您还可设置自定义 tag,设置 tag 后,会将该 tag 一起采集到容器的日志输出中。自定义 tag 可帮助您给容器日志打上 tag,方便进行日志统计和过滤等分析操作。 配置日志采集 完成容器配置后,单击 下一步。 进行高级设置。本例中仅进行访问设置。 设置访问设置。 您可以设置暴露后端 Pod 的方式,最后单击创建。本例中选择 ClusterIP 服务和路由(Ingress),构建一个公网可访问的 nginx 应用。 说明 针对应用的通信需求,您可灵活进行访问设置: 内部应用:对于只在集群内部工作的应用,您可根据需要创建 ClusterIP 或 NodePort 类型的服务,来进行内部通信。 外部应用:对于需要暴露到公网的应用,您可以采用两种方式进行访问设置: 创建 LoadBalancer 类型的服务:使用阿里云提供的负载均衡服务(Server Load Balancer,SLB),该服务提供公网访问能力。 创建路由(Ingress):通过路由(Ingress)提供公网访问能力,详情参见https://kubernetes.io/docs/concepts/services-networking/ingress/。 访问设置 在服务栏单击创建,在弹出的对话框中进行配置,最后单击创建。 创建服务 名称:您可自主设置,默认为 applicationname-svc。 类型:您可以从下面 3 种服务类型中进行选择。 虚拟集群 IP:即 ClusterIP,指通过集群的内部 IP 暴露服务,选择该项,服务只能够在集群内部访问。 节点端口:即 NodePort,通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 : ,可以从集群的外部访问一个 NodePort 服务。 负载均衡:即 LoadBalancer,是阿里云提供的负载均衡服务,可选择公网访问或内网访问。负载均衡可以路由到 NodePort 服务和 ClusterIP 服务。 端口映射:您需要添加服务端口和容器端口,若类型选择为节点端口,还需要自己设置节点端口,防止端口出现冲突。支持 TCP/UDP 协议。 注解:为该服务添加一个注解(annotation),支持负载均衡配置参数,参见通过负载均衡(Server Load Balancer)访问服务。 标签:您可为该服务添加一个标签,标识该服务。 在路由栏单击创建,在弹出的对话框中,为后端 Pod 配置路由规则,最后单击创建。更多详细的路由配置信息,请参见路由配置说明。 说明 通过镜像创建应用时,您仅能为一个服务创建路由(Ingress)。本例中使用一个虚拟主机名称作为测试域名,您需要在 hosts 中添加一条记录。在实际工作场景中,请使用备案域名。 101.37.224.146 foo.bar.com #即ingress的IP 创建路由 在访问设置栏中,您可看到创建完毕的服务和路由,您可单击变更和删除进行二次配置。 变更或删除路由 可选: 容器组水平伸缩。 您可勾选是否开启容器组水平伸缩,为了满足应用在不同负载下的需求,容器服务支持服容器组 Pod 的弹性伸缩,即根据容器 CPU 和内存资源占用情况自动调整容器组数量。 说明 若要启用自动伸缩,您必须为容器设置所需资源,否则容器自动伸缩无法生效。参见容器基本配置环节。 指标:支持 CPU 和内存,需要和设置的所需资源类型相同。 触发条件:资源使用率的百分比,超过该使用量,容器开始扩容。 最大副本数量:该 StatefulSet 可扩容的容器数量上限。 最小副本数量:该 StatefulSet 可缩容的容器数量下限。 可选: 设置调度设置。 您可设置升级方式、节点亲和性、应用亲和性和应用非亲和性,详情参见https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity。 说明 亲和性调度依赖节点标签和 Pod 标签,您可使用内置的标签进行调度;也可预先为节点、Pod 配置相关的标签。 设置升级方式。 升级方式包括滚动升级(rollingupdate)和替换升级(recreate),详细请参见https://kubernetes.io/zh/docs/concepts/workloads/controllers/deployment/ 设置节点亲和性,通过 Node 节点的 Label 标签进行设置。 节点亲和性 节点调度支持硬约束和软约束(Required/Preferred),以及丰富的匹配表达式(In, NotIn, Exists, DoesNotExist. Gt, and Lt): 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,效果与 NodeSelector 相同。本例中 Pod 只能调度到具有对应标签的 Node 节点。您可以定义多条硬约束规则,但只需满足其中一条。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。本例中,调度会尽量不调度 Pod 到具有对应标签的 Node 节点。您还可为软约束规则设定权重,具体调度时,若存在多个符合条件的节点,权重最大的节点会被优先调度。您可定义多条软约束规则,但必须满足全部约束,才会进行调度。 设置应用亲和性调度。决定应用的 Pod 可以和哪些 Pod 部署在同一拓扑域。例如,对于相互通信的服务,可通过应用亲和性调度,将其部署到同一拓扑域(如同一个主机)中,减少它们之间的网络延迟。 应用亲和性调度 根据节点上运行的 Pod 的标签(Label)来进行调度,支持硬约束和软约束,匹配的表达式有:In, NotIn, Exists, DoesNotExist。 必须满足,即硬约束,一定要满足,对应 requiredDuringSchedulingIgnoredDuringExecution,Pod 的亲和性调度必须要满足后续定义的约束条件。 命名空间:该策略是依据 Pod 的 Label 进行调度,所以会受到命名空间的约束。 拓扑域:即 topologyKey,指定调度时作用域,这是通过 Node 节点的标签来实现的,例如指定为 kubernetes.io/hostname,那就是以 Node 节点为区分范围;如果指定为 beta.kubernetes.io/os,则以 Node 节点的操作系统类型来区分。 选择器:单击选择器右侧的加号按钮,您可添加多条硬约束规则。 查看应用列表:单击应用列表,弹出对话框,您可在此查看各命名空间下的应用,并可将应用的标签导入到亲和性配置页面。 硬约束条件:设置已有应用的标签、操作符和标签值。本例中,表示将待创建的应用调度到该主机上,该主机运行的已有应用具有 app:nginx 标签。 尽量满足,即软约束,不一定满足,对应 preferredDuringSchedulingIgnoredDuringExecution。Pod 的亲和性调度会尽量满足后续定义的约束条件。对于软约束规则,您可配置每条规则的权重,其他配置规则与硬约束规则相同。 说明 权重:设置一条软约束规则的权重,介于 1-100,通过算法计算满足软约束规则的节点的权重,将 Pod 调度到权重最大的节点上。 设置应用非亲和性调度,决定应用的 Pod 不与哪些 Pod 部署在同一拓扑域。应用非亲和性调度的场景包括: 将一个服务的 Pod 分散部署到不同的拓扑域(如不同主机)中,提高服务本身的稳定性。 给予 Pod 一个节点的独占访问权限来保证资源隔离,保证不会有其它 Pod 来分享节点资源。 把可能会相互影响的服务的 Pod 分散在不同的主机上。 说明 应用非亲和性调度的设置方式与亲和性调度相同,但是相同的调度规则代表的意思不同,请根据使用场景进行选择。 最后单击创建。 创建成功后,默认进入创建完成页面,会列出应用包含的对象,您可以单击查看应用详情进行查看。 查看详情1 默认进入有状态副本集详情页面。 查看副本详情 然后单击左上角返回列表,进入有状态副本集列表页面,查看创建的 StatefulSet 应用。 查看应用 可选: 选择所需的 nginx 应用,单击右侧伸缩,验证服务伸缩性。 在弹出的对话框中,将容器组数量设置为 3,您可发现扩容时,扩容容器组的排序依次递增;反之,进行缩容时,先按 Pod 次序从高到低进行缩容。这体现 StatefulSet 中 Pod 的次序稳定性。 验证服务伸缩 单击左侧导航栏中的应用 > 存储声明,您可发现,随着应用扩容,会随着 Pod 创建新的云存储卷;缩容后,已创建的 PV/PVC 不会删除。 存储声明 后续步骤 连接到 Master 节点,执行以下命令,验证持久化存储特性。 在云盘中创建临时文件: kubectl exec nginx-1 ls /tmp #列出该目录下的文件 lost+found kubectl exec nginx-1 touch /tmp/statefulset #增加一个临时文件statefulset kubectl exec nginx-1 ls /tmp lost+found statefulset 删除 Pod,验证数据持久性: kubectl delete pod nginx-1 pod"nginx-1" deleted 过一段时间,待Pod自动重启后,验证数据持久性,证明 StatefulSet 应用的高可用性。 kubectl exec nginx-1 ls /tmp #数据持久化存储 lost+found statefulset 想要了解更多信息,参见Kubernetes有状态服务-StatefulSet使用最佳实践。

1934890530796658 2020-03-31 15:46:45 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站