• 关于

    空间分析算法怎么用

    的搜索结果

回答

曾经因为看不懂数据结构和算法,而一度怀疑是自己太笨,实际上,很多人在第一次接触这门课时,都会有这种感觉,觉得数据结构和算法很抽象,晦涩难懂,宛如天书。正是这个原因,让很多初学者对这门课望而却步,希望以下分享能为初学者排忧解难。 我个人觉得,其实真正的原因是你没有找到好的学习方法,没有抓住学习的重点。实际上,数据结构和算法的东西并不多,常用的、基础的知识点更是屈指可数。只要掌握了正确的学习方法,学起来并没有看上去那么难,更不需要什么高智商、厚底子。 还记得大学里每次考前老师都要划重点吗?今天,我就给你划划我们这门课的重点,再告诉你一些我总结的学习小窍门。相信有了这些之后,你学起来就会有的放矢、事半功倍了。 什么是数据结构?什么是算法? 大部分数据结构和算法教材,在开篇都会给这两个概念下一个明确的定义。但是,这些定义都很抽象,对理解这两个概念并没有实质性的帮助,反倒会让你陷入死抠定义的误区。毕竟,我们现在学习,并不是为了考试,所以,概念背得再牢,不会用也就没什么用。 虽然我们说没必要深挖严格的定义,但是这并不等于不需要理解概念。下面我就从广义和狭义两个层面,来帮你理解数据结构与算法这两个概念。 从广义上讲,数据结构就是指一组数据的存储结构。算法就是操作数据的一组方法。 图书馆储藏书籍你肯定见过吧?为了方便查找,图书管理员一般会将书籍分门别类进行“存储”。按照一定规律编号,就是书籍这种“数据”的存储结构。 那我们如何来查找一本书呢?有很多种办法,你当然可以一本一本地找,也可以先根据书籍类别的编号,是人文,还是科学、计算机,来定位书架,然后再依次查找。笼统地说,这些查找方法都是算法。 从狭义上讲,是指某些著名的数据结构和算法,比如队列、栈、堆、二分查找、动态规划等。这些都是前人智慧的结晶,我们可以直接拿来用。我们要讲的这些经典数据结构和算法,都是前人从很多实际操作场景中抽象出来的,经过非常多的求证和检验,可以高效地帮助我们解决很多实际的开发问题。 那数据结构和算法有什么关系呢?为什么大部分书都把这两个东西放到一块儿来讲呢? 这是因为,数据结构和算法是相辅相成的。数据结构是为算法服务的,算法要作用在特定的数据结构之上。因此,我们无法孤立数据结构来讲算法,也无法孤立算法来讲数据结构。 比如,因为数组具有随机访问的特点,常用的二分查找算法需要用数组来存储数据。但如果我们选择链表这种数据结构,二分查找算法就无法工作了,因为链表并不支持随机访问。 数据结构是静态的,它只是组织数据的一种方式。如果不在它的基础上操作、构建算法,孤立存在的数据结构就是没用的。 现在你对数据结构与算法是不是有了比较清晰的理解了呢?有了这些储备,下面我们来看看,究竟该怎么学数据结构与算法。 看到数据结构和算法里的“算法”两个字,很多人就会联想到“数学”,觉得算法会涉及到很多深奥的数学知识。那我数学基础不是很好,学起来会不会很吃力啊? 数据结构和算法课程确实会涉及一些数学方面的推理、证明,尤其是在分析某个算法的时间、空间复杂度的时候,但是这个你完全不需要担心。 学习的重点在什么地方? 提到数据结构和算法,很多人就很头疼,因为这里面的内容实在是太多了。这里,我就帮你梳理一下,应该先学什么,后学什么。你可以对照看看,你属于哪个阶段,然后有针对地进行学习。 想要学习数据结构与算法,首先要掌握一个数据结构与算法中最重要的概念——复杂度分析。 这个概念究竟有多重要呢?可以这么说,它几乎占了数据结构和算法这门课的半壁江山,是数据结构和算法学习的精髓。 数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,因此,我们就需要一个考量效率和资源消耗的方法,这就是复杂度分析方法。所以,如果你只掌握了数据结构和算法的特点、用法,但是没有学会复杂度分析,那就相当于只知道操作口诀,而没掌握心法。只有把心法了然于胸,才能做到无招胜有招! 所以,复杂度分析这个内容,你也一定要花大力气来啃,必须要拿下,并且要搞得非常熟练。否则,后面的数据结构和算法也很难学好。 搞定复杂度分析,下面就要进入数据结构与算法的正文内容了。 为了让你对数据结构和算法能有个全面的认识,我画了一张图,里面几乎涵盖了所有数据结构和算法书籍中都会讲到的知识点。 但是,作为初学者,或者一个非算法工程师来说,你并不需要掌握图里面的所有知识点。很多高级的数据结构与算法,比如二分图、最大流等,这些在我们平常的开发中很少会用到。所以,你暂时可以不用看。我还是那句话,咱们学习要学会找重点。如果不分重点地学习,眉毛胡子一把抓,学起来肯定会比较吃力。 所以,结合我自己的学习心得,还有这些年的面试、开发经验,我总结了20个最常用的、最基础数据结构与算法,不管是应付面试还是工作需要,只要集中精力逐一攻克这20个知识点就足够了。 这里面有10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树;10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法。 掌握了这些基础的数据结构和算法,再学更加复杂的数据结构和算法,就会非常容易、非常快。 与此同时,为了帮助大家学习算法,准备了一份学习资料,获取方式:关注我的公众号“程序媛不是程序猿”,回复“算法”即可弹出领取地址。对于新手来说很适用。 在学习数据结构和算法的过程中,你也要注意,不要只是死记硬背,不要为了学习而学习,而是要学习它的“来历”“自身的特点”“适合解决的问题”以及“实际的应用场景”。对于每一种数据结构或算法,我都会从这几个方面进行详细讲解。只要你掌握了《数据结构与算法之美》每节课里讲的内容,就能在开发中灵活应用。 学习数据结构和算法的过程,是非常好的思维训练的过程,所以,千万不要被动地记忆,要多辩证地思考,多问为什么。如果你一直这么坚持做,你会发现,等你学完之后,写代码的时候就会不由自主地考虑到很多性能方面的事情,时间复杂度、空间复杂度非常高的垃圾代码出现的次数就会越来越少。你的编程内功就真正得到了修炼。 一些可以让你事半功倍的学习技巧 前面我给你划了学习的重点,作为一个过来人,现在我就给你分享一下,学习的一些技巧。掌握了这些技巧,可以让你化被动为主动,学起来更加轻松,更加有动力! 边学边练,适度刷题 “边学边练”这一招非常有用。建议你每周花1~2个小时的时间,集中把这周的三节内容涉及的数据结构和算法,全都自己写出来,用代码实现一遍。这样一定会比单纯地看或者听的效果要好很多! 有面试需求的同学,可能会问了,那我还要不要去刷题呢? 我个人的观点是可以“适度”刷题,但一定不要浪费太多时间在刷题上。我们学习的目的还是掌握,然后应用。除非你要面试Google、Facebook这样的公司,它们的算法题目非常非常难,必须大量刷题,才能在短期内提升应试正确率。如果是应对国内公司的技术面试,即便是BAT这样的公司,你只要彻底掌握这个专栏的内容,就足以应对。 多问、多思考、多互动 学习最好的方法是,找到几个人一起学习,一块儿讨论切磋,有问题及时寻求老师答疑。但是,离开大学之后,既没有同学也没有老师,这个条件就比较难具备了。 打怪升级学习法 学习的过程中,我们碰到最大的问题就是,坚持不下来。是的,很多基础课程学起来都非常枯燥。为此,我自己总结了一套“打怪升级学习法”。 游戏你肯定玩过吧?为什么很多看起来非常简单又没有乐趣的游戏,你会玩得不亦乐乎呢?这是因为,当你努力打到一定级别之后,每天看着自己的经验值、战斗力在慢慢提高,那种每天都在一点一点成长的成就感就不由自主地产生了。 知识需要沉淀,不要想试图一下子掌握所有 在学习的过程中,一定会碰到“拦路虎”。如果哪个知识点没有怎么学懂,不要着急,这是正常的。因为,想听一遍、看一遍就把所有知识掌握,这肯定是不可能的。学习知识的过程是反复迭代、不断沉淀的过程。 这些内容是我根据平时的学习和工作、面试经验积累,精心筛选出来的。只要掌握这些内容,应付日常的面试、工作,基本不会有问题。 以上内容出自近70000+程序员的算法课堂《数据结构与算法之美》,这个专栏是市面上唯一一门真正适用于工程师的专栏,专栏中列举大量实际软件开发中的场景,给你展示如何利用数据结构和算法解决真实的问题。整个专栏会涵盖100 多个算法真实项目场景案例,更难得的是它跟市面上晦涩的算法书籍不同的是,还手绘了一些清晰易懂的详解图(总共有 300 多张)。 手绘图—出自《数据结构与算法之美》 专栏已经更新完毕,72 篇文章,27 万字,这个专栏作者并非只是单纯地把某个知识点讲清楚,而是结合作者的理解、实践和经验来讲解,我相信它是一个跟所有国内、国外经典书籍都不一样的专栏,一个可以长期影响一些人的专栏。 这个专栏不会像《算法导论》那样,里面有非常复杂的数学证明和推理。作者会由浅入深,从概念到应用,一点一点给你解释清楚。你只要有高中数学水平,就完全可以学习。 当然,当然希望你最好有些编程基础,如果有项目经验就更好了。这样给你讲数据结构和算法如何提高效率、如何节省存储空间,你就会有很直观的感受。因为,对于每个概念和实现过程,作者都会从实际场景出发,不仅教你“是什么”,还会教你“为什么”,并且告诉你遇到同类型问题应该“怎么做”。 强烈推荐这个专栏给想攻克算法的同学,它改变了无数对算法恐惧的同学,我整理了一些专栏的评价给大家参考。
游客arp6khj2dsufi 2019-12-02 03:09:08 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:洗牌算法

我知道大家会各种花式排序,但是如果叫你打乱一个数组,你是否能做到胸有成竹?即便你拍脑袋想出一个算法,怎么证明你的算法就是正确的呢?乱序算法不像排序算法,结果...
游客ih62co2qqq5ww 2020-05-06 13:22:45 11 浏览量 回答数 1

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

算法和数据结构一直以来都是程序员的基本内功,可以说没有数据结构的基础建设和算法加持,也就没有这将近八十年的信息革命时代。数据结构可以看作是算法实现的容器,通过一系列特殊结构的数据集合,...
游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

问题

详解递归 6月18日【今日算法】

前言 递归,是一个非常重要的概念,也是面试中非常喜欢考的。因为它不但能考察一个程序员的算法功底,还能很好的考察对时间空间复杂度的理解和分析。 本文只讲一题,也是几乎所有算法书讲递归...
游客ih62co2qqq5ww 2020-06-20 12:04:38 2 浏览量 回答数 0

问题

【算法】五分钟算法小知识:学习数据结构和算法的框架思维

这是好久之前的一篇文章「学习数据结构和算法的框架思维」的修订版。之前那篇文章收到广泛好评,没看过也没关系,这篇文章会涵盖之前的所有内容,并且会举很多代码的实例,教你如何使用框架思维。 ...
游客ih62co2qqq5ww 2020-04-17 09:56:03 10 浏览量 回答数 1

回答

对于算法的学习,我也是从一个小白一步步走来,当然,现在仍然很菜,,,不过,鉴于我觉得还有一些人比我更菜了,我决定谈谈我算法学习过程走过的坑,以及自己总结的一些经验。 切勿盲目刷题:刷题前的知识积累 说实话,想要提高自己的算法,真的没啥捷径,我觉得最好的捷径就是脚踏实地着多动手去刷题,多刷题。 但是,我必须提醒的是,如果你是小白,也就是说,你连常见的数据结构,如链表、树以及常见的算法思想,如递归、枚举、动态规划这些都没学过,那么,我不建议你盲目疯狂着去刷题的。而是先去找本书先去学习这些必要的知识,然后再去刷题。 因为,如果这些基础都不懂的话,估计一道题做了几个小时,然后看答案都看不懂,做题没有任何思路,这是很难受的。久而久之,估计没啥动力了,我刚开始就是这样,一道题答案看一天,然而还是不大懂,什么回溯啊,暴力啊,还不知道是啥意思。 也就是说,假如你要去诸如leetcode这些网站刷题,那么,你要先具备一定的基础,这些基础包括: 1、常见数据结构:链表、树(如二叉树)。(是的,链表和二叉树是重点,图这些可以先放着) 2、常见算法思想:贪婪法、分治法、穷举法、动态规划,回溯法。(贪婪、穷举、分治是基础,动态规划有难度,可以先放着) 以上列出来的算是最基本的吧。就是说你刷题之前,要把这些过一遍再去刷题。如果你连这些最基本的都不知道的话,那么你再刷题的过程中,会很难受的,思路也会相对比较少。 总之,千万不要急,先把这些基本的过一遍,力求理解,再去刷题。 在这里,我推荐基本我大一时看过的书籍吧,感觉还是非常不错的,如果对于数据结构时零基础的话,那么我建议你可以看《数据结构与算法分析:C语言描述版》这本书,这本书自认为真的很 nice,当时我把这本书里面的全部都看了,并且 coding 了一遍,感觉整个人有了质的飞跃。 后面我时在一些学校的OJ刷题,当时看的一本书叫做《挑战程序设计大赛》,日本作家写的,我觉得这本书也很nice,里面有分初级,中级和高级三个模块,基础比较差的可以从初级开始看起。 当然,这两本书,你可以在这个Github上找到:https://github.com/iamshuaidi/CS-Book 总结下: 提高数据结构与算法没啥捷径,最好的捷径就是多刷题。但是,刷题的前提是你要先学会一些基本的数据结构与算法思想。 AC不是目的,我们要追求完美 如何刷题?如何对待一道算法题? 我觉得,在做题的时候,一定要追求完美,千万不要把一道题做出来之后,提交通过,然后就赶紧下一道。我认为这意义不大,因为一道题的解法太多了,有些解法态粗糙了,我们应该要寻找最优的方法。 算法能力的提升和做题的数量是有一定的关系,但并不是线性关系。也就是说,在做题的时候,要力求一题多解,如果自己实在想不出来其他办法了,可以去看看别人是怎么做的,千万不要觉得模仿别人的做法是件丢人的事。 我做题的时候,我一看到一道题,可能第一想法就是用很粗糙的方式做,因为很多题采用暴力法都会很容易做,就是时间复杂度很高。之后,我就会慢慢思考,看看有没其他方法来降低时间复杂度或空间复杂度。最后,我会去看一下别人的做法,当然,并不是每道题都会这样执行。 衡量一道算法题的好坏无非就是时间复杂度和空间复杂度,所以我们要力求完美,就要把这两个降到最低,令他们相辅相成。 我举道例题吧: 问题: 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法? 这道题我在以前的分章分析过,不懂的可以先看下之前写的:递归与动态规划—基础篇1 方法1::暴力递归 这道题不难,或许你会采取下面的做法: public int solve(int n){ if(n <= 2){ return n; }else{ return solve(n-1) + solve(n-2); } } 这种做法的时间复杂度很高,指数级别了。但是如果你提交之后侥幸通过了,然后你就接着下一道题了,那么你就要好好想想了。 方法二:空间换时间 力求完美,我们可以考虑用空间换时间:这道题如何你去仔细想一想,会发现有很多是重复执行了。不行你可以画个图 所以可以采取下面的方法: //用一个HashMap来保存已经计算过的状态 static Map<Integer,Integer> map = new HashMap(); public static int solve(int n){ if(n <= 2){ return n; }else{//是否计算过 if(map.containsKey(n)){ return map.get(n); }else{ int m = solve(n-1) + solve(n-2); map.put(n, m); return m; } } } 这样,可以大大缩短时间。也就是说,当一道题你做了之后,发现时间复杂度很高,那么可以考虑下,是否有更好的方法,是否可以用空间换时间。 **方法三:**斐波那契数列 实际上,我们可以把空间复杂度弄的更小,不需要HashMap来保存状态: public static int solve(int n){ if(n <= 2){ return n; } int f1 = 0; int f2 = 1; int sum = 0; for(int i = 1; i<= n; i++){ sum = f1 + f2; f1 = f2; f2 = sum; } return sum; } 我弄这道题给你们看,并不是在教你们这道题怎么做,而是有以下目的: 1、在刷题的时候,我们要力求完美。 2、我想不到这些方法啊,怎么办?那么你就可以去看别人的做法,之后,遇到类似的题,你就会更有思路,更知道往哪个方向想。 3、可以从简单暴力入手做一道题,在考虑空间与时间之间的衡量,一点点去优化。 挑战自己,跳出舒适区 什么叫舒适区?在刷题的时候,可能有一类题是你比较懂的,你每次一看就有思路,然后半个小时就撸好代码,提交代码,然后通过了,然后,哇,又多刷了一道题,心里很舒服。 但是,记住,前期你可以多刷这种题练手,提升自己的乐趣,但,我还是建议你慢慢跳出舒适区,去做一些自己不擅长的题,并且找段时间一直刷这种题。例如,我觉得我在递归方面的题还是挺强的, 但是,我对动态规划的题,很菜,每次都要想好久,每次遇到这种题都有点害怕,没什么信心。不过有段时间我觉得只刷动态规划的题,直接在 leetcode 选定专题,连续做了四五十道,刚开始很难受,后来就慢慢知道了套路了,一道题从两三个小时最后缩到半小时,简单的十几分钟就搞定。感觉自己对这类型的题也不惧怕的。 当然,对于动态规划的学习,大家也可以看我这篇广受好评的文章:为什么你学不过动态规划?告别动态规划,谈谈我的经验 所以,建议你,一定要学好跳出自己的舒适区。 一定要学会分类总结 有些人以为 leetcode 的题刷的越多,就一定能越厉害,其实不然,leetcode 虽然有 1000 多道题,但题型就那么几类,我们前期在刷的时候,我是建议按照题型分类刷题的,例如我这整理刷二叉树相关,然后刷链表相关,然后二分法,然后递归等等,每刷一种题型,都要研究他们的套路,如果你愿意去总结,那么 leetcode 的题,其实你刷几百道,有目的、挑选的刷,我觉得就差不多了。 我看过一本书,叫做《程序员代码面试指南:IT 名企算法与数据结构题目最优解》,这本书就非常不错,里面按照栈,队列,链表,二叉树,字符串等一个专题一个专题来刷的,并且每道题都给出了最优解,而且里面的题有一定的难度,感兴趣的,真心不错,如果你把这本书的题全部搞定,并且总结相关套路,那么你的算法一定有很大的提升。 推荐一些刷题网站 我一般是在leetcode和牛客网刷题,感觉挺不错,题目难度不是很大。 在牛客网那里,我主要刷剑指Offer,不过那里也有个在线刷leetcode,不过里面的题量比较少。牛客网刷题有个非常方便的地方就是有个讨论区,那里会有很多大佬分享他们的解题方法,不用我们去百度找题解。所以你做完后,实在想不出,可以很方便着去看别人是怎么做的。 至于leetcode,也是大部分题目官方都有给出答案,也是个不错的刷题网站。你们可以两个挑选一个,或者两个都刷。 当然,还有其他刷题的网站,不过,其他网站没刷过,不大清除如何。 至于leetcode,有中文版和英文版 leetcode有中文版 英文版 根据自己的兴趣选。 学习一些解题技巧 说实话,有些题在你没看别人的解法前,你好不知道有这么美妙优雅的解法,看了之后,卧槽,居然还可以这样。而我们在刷题的过程中,就要不断累积这些技巧,当你累计多了,你就会形成一种 神经反应,一下子就想到了某种方法。解题技巧很多,例如数组下标法、位图法、双指针等等,我自己也分享过一篇总结一些算法技巧的文章 再说数据结构发重要性 前面我主要是说了我平时都是怎么学习算法的。在数据结构方法,我只是列举了你们一定要学习链表和树(二叉堆),但这是最基本的,刷题之前要掌握的,对于数据结构,我列举下一些比较重要的: 1、链表(如单向链表、双向链表)。 2、树(如二叉树、平衡树、红黑树)。 3、图(如最短路径的几种算法)。 4、队列、栈、矩阵。 对于这些,自己一定要动手实现一遍。你可以看书,也可以看视频,新手可以先看视频,不过前期可以看视频,之后我建议是一定要看书。 例如对于平衡树,可能你跟着书本的代码实现之后,过阵子你就忘记,不过这不要紧,虽然你忘记了,但是如果你之前用代码实现过,理解过,那么当你再次看到的时候,会很快就记起来,很快就知道思路,而且你的抽象能力等等会在不知不觉中提升起来。之后再学习红黑树啊,什么数据结构啊,都会学的很快。 对于有哪些值得学习的算法,我之前也总结过,这里推荐给大家程序员必须掌握的核心算法有哪些?,这篇文章居然 40多万阅读量了,有点受宠若惊。 最最重要 动手去做,动手去做,动手去做。重要的话说三遍。 千万不要找了一堆资源,订好了学习计划,我要留到某某天就来去做… 千万不要这样,而是当你激情来的时候,就马上去干,千万不要留到某个放假日啊什么鬼了,很多这种想法的人,最后会啥也没做的。 也不要觉得要学习的有好多啊,不知道从哪学习起。我上面说了,可以先学习最基本的,然后刷题,刷题是一个需要长期坚持的事情,一年,两年。在刷题的过程中,可以穿插和学习其他数据结构。 总结一下吧 所以我给大家的建议就是,先学习基本的数据结构以及算法思想,不要盲目刷题,接着刷题的过程中,不能得过且过,尽量追求最优解,还有就是要跳出舒适区,逼自己成长,刷题的过程中,要学会分类总结。 当然,最重要的,就是你去动手了,不然,一切免谈! 看在熬夜写过的份上,送我个赞呗,嘻嘻。 1、老铁们,关注我的原创微信公众号「帅地玩编程」,专注于写算法 + 计算机基础知识(计算机网络+ 操作系统+数据库+Linux)。 2、给俺点个赞呗,可以让更多的人看到这篇文章,顺便激励下我,嘻嘻。 原文链接:https://blog.csdn.net/m0_37907797/article/details/104765116
剑曼红尘 2020-03-11 22:24:48 0 浏览量 回答数 0

问题

优化求最值 5月29日 【今日算法】

今天主要来聊两个问题:给一个数组,如何同时求出最大值和最小值,如何同时求出最大值和第二大值? 这两个问题看起来都特别简单,一个 for 循环,几个大小判断...
游客ih62co2qqq5ww 2020-05-29 14:02:23 6 浏览量 回答数 1

问题

【精品问答】大数据计算技术1000问

为了方便大数据开发者快速找到相关技术问题和答案,开发者社区策划了大数据计算技术1000问内容,包含Flink、Spark等流式计算(实时计算)、离线计算、Hbase等实践中遇到的技术问...
问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

回答

Java架构师,首先要是一个高级java攻城狮,熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……    Java反射技术,写框架必备的技术,但是有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是”直接内存”的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。    熟练使用各种数据结构和算法,数组、哈希、链表、排序树…,一句话要么是时间换空间要么是空间换时间,这里展开可以说一大堆,需要有一定的应用经验,用于解决各种性能或业务上的问题。    熟练使用linux操作系统,必备,没什么好说的 。    熟悉tcp协议,创建连接三次握手和断开连接四次握手的整个过程,不了解的话,无法对高并发网络应用做优化; 熟悉http协议,尤其是http头,我发现好多工作五年以上的都弄不清session和cookie的生命周期以及它们之间的关联。    系统集群、负载均衡、反向代理、动静分离,网站静态化 。    分布式存储系统nfs,fastdfs,tfs,Hadoop了解他们的优缺点,适用场景 。    分布式缓存技术memcached,redis,提高系统性能必备,一句话,把硬盘上的内容放到内存里来提速,顺便提个算法一致性hash 。    工具nginx必备技能超级好用,高性能,基本不会挂掉的服务器,功能多多,解决各种问题。    数据库的设计能力,mysql必备,最基础的数据库工具,免费好用,对它基本的参数优化,慢查询日志分析,主从复制的配置,至少要成为半个mysql dba。其他nosql数据库如mongodb。    还有队列中间件。如消息推送,可以先把消息写入数据库,推送放队列服务器上,由推送服务器去队列获取处理,这样就可以将消息放数据库和队列里后直接给用户反馈,推送过程则由推送服务器和队列服务器完成,好处异步处理、缓解服务器压力,解藕系统。   以上纯粹是常用的技术,还有很多自己慢慢去摸索吧;因为要知道的东西很多,所以要成为一名合格的架构师,必须要有强大的自学能力,没有人会手把手的教给你所有的东西。    想成为架构师不是懂了一大堆技术就可以了,这些是解决问题的基础、是工具,不懂这些怎么去提解决方案呢?这是成为架构师的必要条件。    架构师要针对业务特点、系统的性能要求提出能解决问题成本最低的设计方案才合格,人家一个几百人用户的系统,访问量不大,数据量小,你给人家上集群、上分布式存储、上高端服务器,为了架构而架构,这是最扯淡的,架构师的作用就是第一满足业务需求,第二最低的硬件网络成本和技术维护成本。    架构师还要根据业务发展阶段,提前预见发展到下一个阶段系统架构的解决方案,并且设计当前架构时将架构的升级扩展考虑进去,做到易于升级;否则等系统瓶颈来了,出问题了再去出方案,或现有架构无法扩展直接扔掉重做,或扩展麻烦问题一大堆,这会对企业造成损失。Java架构师学习路线图如:https://yq.aliyun.com/articles/225941?spm=5176.8091938.0.0.qyp0tC
zwt9000 2019-12-02 00:25:32 0 浏览量 回答数 0

问题

什么是字典树(Trie)6月5日【今日算法】

Trie 树就是传说中的字典树,常用于处理字符,例如智能补全功能、敏感词过滤都和 Trie 树有关。 正文 小秋今天去面试了,面试官问了一个与敏感词过滤算法相关的问题,然而小秋对敏...
游客ih62co2qqq5ww 2020-07-13 14:47:22 53 浏览量 回答数 1

问题

搜索引擎背后的经典数据结构和算法 6月10日 【今日算法】

前言 我们每天都在用 Google, 百度这些搜索引擎,那大家有没想过搜索引擎是如何实现的呢,看似简单的搜索其实技术细节非常复杂,说搜索引擎是 IT 皇冠上的明珠也不为过,今天我们来...
游客ih62co2qqq5ww 2020-06-15 07:32:11 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:动态规划详解

动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。 既然是要求最值,核心问题是...
游客ih62co2qqq5ww 2020-05-07 14:48:09 25 浏览量 回答数 1

问题

经典动态规划:高楼扔鸡蛋 6月2日 【今日算法】

今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋太浪...
游客ih62co2qqq5ww 2020-06-02 16:06:52 3 浏览量 回答数 1

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

问题

Python爬虫知识点梳理

学任何一门技术,都应该带着目标去学习,目标就像一座灯塔,指引你前进,很多人学着学着就学放弃了,很大部分原因是没有明确目标,所以,在你准备学爬虫...
珍宝珠 2020-03-18 10:13:52 404 浏览量 回答数 1

回答

递归4—递归的弱点 之所以没有把这段归为算法的讨论,因为这里讨论的不在是算法,而只是讨论一下滥用递归的不好的一面。 递归的用法似乎是很容易的,但是递归还是有她的致命弱点,那就是如果运用不恰当,滥用递归,程序的运行效率会非常的低,低到什么程度,低到出乎你的想像。当然,平时的小程序是看不出什么的,但是一旦在大项目里滥用递归,效率问题将引起程序的实用性的大大降低。 例子:求1到200的自然数的和。 第一种做法: #include <stdio.h> void main() { int i; int sum=0; for(i=1;i<=200;i++) { sum+=i; } printf("%d\n",sum); } 该代码中使用变量2个,计算200次。再看下个代码: #include <stdio.h> int add(int i) { if(i==1) { return i; } else { return i+add(i-1); } } void main() { int i; int sum=0; sum=add(200); printf("%d\n",sum); } 但看add()函数,每次调用要声明一个变量,每次调用要计算一次,所以应该是200个变量,200次计算,对比一下想想,如果程序要求递归次数非常多的时候,而且类似与这种情况,我们还能用递归去做吗。这个时候宁愿麻烦点去考虑其他办法,也要尝试摆脱递归的干扰。 21:21 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 程序算法5—递归3—递归的再次挖掘 递归的魅力就在于递归的代码,写出来实在是太简练了,而且能解决很多看起来似乎有规律但是又不是一下子能表达清楚的一些问题。思路清晰了,递归一写出来问题立即就解决了,给人一重感觉,递归这么好用。我们在此再更深的挖掘一下递归的用法。 之前再强调一点,也许有人会问,你前边的例子用递归似乎是更麻烦了。是,是麻烦了,因为为了方便理解,只能举一些容易理解的例子,一般等实际应用递归的时候,远远不是这种状态。 好了我们现在看一个数字的序列;有一组数的集合{1,2,4,7,11,16,22,29,37,46,56……}我故意多给几项,一般是只给前4项让你找规律的。序列给了,要求是求前50项的和。规律。有。还是没有。一看就象有,但是又看不出来,我多给了几项,应该很快看出来了,哦,原来每相邻的两项的差是个自然数排列,2-1=1,4-2=2,7-4=3,11-7=4,16-11=5…… 好了,把规律找出来了,一开始可能觉得没头绪,没问题,咱们把这个序列存放到一个数组总可以吧。那我们就声明一个数组,存放前50个数据,一个一个相加总可以了。于是有了下边的写法: #include <stdio.h> void main() { int i,a[50],sum=0; a[0]=1; for(i=1;i<50;i++) { a[i]=a[i-1]+i; } for(i=0;i<50;i++) { sum+=a[i]; } printf("%d\n",sum); } 好了,代码运行一下,结果出来了,正确不正确呢。自己测试吧,把50项改成1、2、3、4、5……项,试试前多少项是不是正确,虽然这不是正确的测试方法,但是的确是常用的测试方法。 等到这个代码已经完全理解了,完全明白了正个计算过程,我们就应该对这段代码进行改写优化了,毕竟这个代码还是不值得用一个数组的,那么我们尝试着只用变量去做一下: #include <stdio.h> void main() { int i; int number=1; int sum=0; for(i=0;i<50;i++) { number+=i; sum+=number; } printf("%d\n",sum); } 不知道我这样写是不是跨度大了点,但是我不准备详细解释了,很多东西需要你去认真分析的,所以很多东西如果不懂,自己想清楚比别人解释的效果会更好,因为别人讲只能让你理解,如果你自己去想,你就在理解的同时学会了思考。 这个代码写出来,不要继续看下去,先自己尝试着把这个题目用递归做一下看看自己能不能写出来,当然,递归并不是那么轻松就能使用的,有时候也是需要去细心设计的。如果做出来了,对比一下下边的代码,如果没有写出来,建议认真分析后边的代码,然后最好是能完全掌握,能自己随时把这行代码写出来: #include <stdio.h> int add(int n,int num,int i) { num+=i; if(i>=n-1) { return num; } else { return num+add(n,num,i+1); } } void main() { int sum; sum=add(50,1,0); /*50表示前50象项*/ printf("%d\n",sum); } 当然这个代码中的n只是一个参考变量,如果把if(i>=n-1)中的n该成50,那么就不需要这个n了,函数两个参数就可以了,这样写是为了修改方便。 20:28 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 程序算法4—递归2—递归的魅力 两天没有再写下去,因为毕竟有时候会有点心情问题,有时候觉得心情不好,一下子什么东西都想不起来了,很多时候写一些东西是需要状态的,一旦状态有了,想的东西才能顺利的写出来,虽然有些东西写出来在别人看来很垃圾,但是起码自己觉得还是相当满意的,我写这个本来就没有多少技术含量,只是想给初学程序的人一些指引,加快他们对程序的领悟。 好了,言归正传,继续上次递归的讨论,看看递归的魅力所在。 有这样一个问题,说一个猴子和一堆苹果,猴子一天吃一半,然后再吃一个,10天后剩下一个了,也就是说吃了10次,剩下1个了。问原来一共有多少苹果。 当然我们的目的不是求出苹果的数量,而是寻求一种解决问题的方法,这个问题一出来,通常对程序掌握深度不一样的朋友对这个题会有不同的认识,首先介绍一种解决方法,这种人脑袋还是比较聪明的,思路非常的明确,也有可能语言工具掌握的也不错,代码写出来非常准确,先看一下代码再做评价吧: #include <stdio.h> void main() { int day=10; int apple; int i,j; for(i=1;;i++) { apple=i; for(j=0;j<day;j++) { if(apple%2==0&&apple>0) { apple/=2; apple--; } else { break; } } if(j==day&&apple==1) { printf("%d\n",i); return; } } } 程序的大概思路很明确,简单介绍一下,这种写法就是从一个苹果开始算起,for(i=1;;i++)的作用就是改变苹果的数量,如果1个符合条件,那就试试2个,然后3个、4个一直到适合为止,里边的for循环就是把每一次取得的苹果的数目进行计算,如果每次都能顺利的被2整除(也就是说每次都能保证猴子能正好吃一半),然后再减一一直到最后,如果最后苹果剩下是一个而且天数正好是10天,那么就输出一下苹果的数目,整个程序退出,如果看不明白的没关系,这个写法非常的不适用,我们叫写出这种算法的人傻X,虽然这种人脑袋也挺聪明,能写出一些新鲜的写法,但是又脏又臭,代码既不简练又不高效。 所以说,有时候有些人以为自己学的很好了,自己所做的一切都是最好的,这种想法是不正确的,也许有些初学者没有什么经验写出来的代码却更让人容易明白点,那么也是先看看代码: #include <stdio.h> void main() { int day[11]; int i; day[0]=1; for(i=1;i<11;i++) { day[i]=(day[i-1]+1)*2; } printf("%d\n",day[10]); } 代码不长,而且也恰当的应用了题目中的规律,不是说要吃一半然后再吃一个吗。那我用数组来存放每天苹果的数量,用day[0]表示最后一天的苹果数量,那就是剩下的一个,然后就是找规律了,什么规律。就是如果猴子不多吃一个的话,那就是正好吃了一半,也就是说猴子当天吃了之后剩余的苹果的数目加1个然后再乘以2就是前一天的数目了,这样一想这个题目就简单的多了,于是这个题用数组就轻松的做出来了。 那么这个代码究竟是不是已经很好了呢,我们注意到,这里边每个数组元素只用了一次并没有被重复使用,再这种情况下我们是不是可以用一种方法代替数组呢。于是就有了更优化的写法,这个写法似乎已经是相当简练了: #include <stdio.h> void main() { int apple=1; int i; for(i=0;i<10;i++) { apple=(apple+1)*2; } printf("%d\n",apple); } 代码写到这里已经把问题完全抽象化了,所以我们就应该站在数学的角度去分析了。也许我们就应该结束了讨论,但是偏偏这个时候,又来了递归,悄悄的通过美丽的调用显示了一下她的魅力: #include <stdio.h> int apple(int i) { if(i==0) { return 1; } else { return (apple(i-1)+1)*2; } } void main() { int i; i=apple(10); printf("%d\n",i); } 原理都还是一样的,但是写出来的格式已经完全变掉了,没有了for循环。假想一个复杂的问题远比这个问题复杂,而且没有固定循环次数,那么我们再使用循环虽然也能解决问题,但是可能面临循环难以设计、控制等问题,这个时候用递归可能就会让问题变的非常的清晰。 另外说一点,一般我这里的代码,并不是从最差到最好的,基本排列是从最差到最合适的代码(当然是本人认为最合适的,也许还有更好的,本人能力所限了),然后最后给出一种比较违反常规的代码,一般是不赞成用最后一种代码的,当然有时候最后一种代码也许是最好的选择,看情况吧。 20:25 | 添加评论 | 固定链接 | 引用通告 (0) | 记录它 | 计算机与 Internet 10月15日 程序算法3—递归1—递归小显威力 现在用C语言实现一个字符串的倒序输出,当然,方法也是很多的,但是如果程序中能有相对优化的方法或者简单明了易读的方法,那对你自己或者别人都是一种幸福。 第一种写法,这类写法既浪费内存又不实用,一般是刚学程序的才这样做,程序的结构很简单,利用的是数组: #include <stdio.h> void main() { char c[2000]; int i,length=0; for(i=0;i<2000;i++) { scanf("%c",&c[i]); if(c[i]=='\n') { break; } else { length++; } } for(i=length;i>0;i--) { printf("%c",c[i-1]); } printf("\n"); } 这段代码中的数组,声明大了浪费内存空间,声明小了又怕不够,所以写这种代码的人一般写完之后会祈祷,祈祷测试的人不要输入的太多,太多就不能完全显示了。 与其这么提心吊胆,于是又有人想出了第二种方法,终于解决了一些问题,而且完全实现了程序的实际要求,于是,这种人经过一番苦想,觉得问题终于可以解决了,这种方法看起来是一种很不错的方法。 #include <stdio.h> #include <malloc.h> void main() { int i; char *c; c=(char *)malloc(1*sizeof(char)); for(i=0;;i++) { *(c+i)=getchar(); if(*(c+i)=='\n') { *(c+i)='\0'; break; } else c=(char *)realloc(c,(i+2)*sizeof(char)); } for(--i;i>=0;i--) { putchar(*(c+i)); } printf("\n"); free(c); } 怎么样。不错,准确的应用内存,几乎没有浪费什么空间,这种方法也体现了一下指针的强大功能,写这个程序虽然不敢说这个人已经掌握了指针的应用,但是起码可以说他已经会用指针了。代码写出来,看起来已经有点美感。 但是也有一些人还是比较喜欢动脑筋的,经过一番思考,终于想出了第三种比较容易写的方法,也许有写初学者可能觉得有些难度,但是事实上这个东西一点都不难,如果稍微有点程序功底之后再看这段代码,应该是相当轻松。 #include <stdio.h> void run() { char c; c=getchar(); if(c!='\n') { run(); } else { return; } putchar(c); } void main() { run(); printf("\n"); } 写出的代码让人眼前一亮,哇。原来递归功能简单而又好用,那我们为什么不好好利用呢。但是递归也不一定就是最好的选择,因为有时候虽然递归用起来很方便,但是效率却不高,以后的讨论中还会详细说明。
一键天涯 2019-12-02 01:24:01 0 浏览量 回答数 0

问题

Redis 过期策略都有哪些?内存淘汰机制都有哪些?手写下 LRU 代码实现?【Java问答】33期

面试官心理分析 如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当然的认为写进 Redis 的数据就一定会存在,后面导致系统各种 bug&#x...
剑曼红尘 2020-06-10 21:02:18 20 浏览量 回答数 1

问题

拓扑排序 7月5日 【今日算法】

前言 Topological sort 又称 Topological order,这个名字有点迷惑性,因为拓扑排序并不是一个纯粹的排序算法,它只是针对某一类图,找到一个可以执行的线性...
游客ih62co2qqq5ww 2020-07-07 09:48:17 19 浏览量 回答数 1

问题

不可不会的反转链表 6月28日 【今日算法】

反转链表这题真的是面试非常喜欢考的了,这题看起来简单,但是能用两种方法一遍 bug free 也是不容易的,面试的时候可以筛下来一大批人,无论是对 junior 还是 senior 面...
游客ih62co2qqq5ww 2020-06-28 15:55:03 2 浏览量 回答数 1

回答

硬盘读写速度现在怎么都达不到千兆, ssd读也达不到。(特殊设备除外,貌似看到新闻说有实验室的产品读写速度可以过G) 不过可以采取,写入缓冲的方式,数据先保存在内存,再写入到硬盘,不过缺点怕掉电。 读的话,采取分布式的读,可以达到很高的吞吐量。 网络传输的话,问题在于怎么保证传输稳定和不出错######这对内存的要求很高啊,而且还不能耽误其他程序对内存的使用,这个内存我觉得应该很大吧###### 引用来自“十一文”的答案 硬盘读写速度现在怎么都达不到千兆, ssd读也达不到。(特殊设备除外,貌似看到新闻说有实验室的产品读写速度可以过G) 不过可以采取,写入缓冲的方式,数据先保存在内存,再写入到硬盘,不过缺点怕掉电。 读的话,采取分布式的读,可以达到很高的吞吐量。 网络传输的话,问题在于怎么保证传输稳定和不出错 这么说来, 在顺序存取方面 , 网络传输速度相对与硬盘 io 速度还是有优势的,不知道这么理解是否成立。 因为机放内部设备间千兆网卡很常见,传输速度相当快,并且成本相对硬盘少许多。 ######看贴不跟帖,帖子要沉了。需要顶。 无论对错。发表点个人观点也好。不能让它沉。 ###### "千兆网卡很常见", 這裡 “ 千兆” 是指1000M bits, 大概也就100M Bytes。 Intel SSD 520 Sequential Read 已经可高达550M Bytes per second, 顺序写可高达275M Bytes per second.######回复 @十一文 : 现在的HBA卡4G的已经很通用了,好像12G的都出来了,一般服务器都有好几个接口的,再来个负载均很啥的,网络传输不是问题######汗 查了哈 还真是这样。擦我out了!######网络允许帮定双网卡。所以,网络传输可以更快点,相对来说,速度提升技术性难度小点。 磁盘阵列是否回更好? 光线通讯用的网卡是否会更快点。 ###### 顺便提点应用。 是这样的, 排序在信息处理方面很常见。 无论用什么算法。都是在一个相对平等的环境中。 现实中应用,比如1g内容的排序和1T内容排序难点还是数据交换上。 1g可以全部加载进内存玩。1T就要涉及到信息交换了。如果一个系统界面,把存储信息部分扩展到近乎无限空间大小。 就好比内存数据交换比磁盘数据交换要快许多。 比如1T大小数据做排序。 只要一个设备顺序读取数据,按照开头部分把数据通过网络分发给N 台机器,处理除了开头部分数据,后面的数据排序。这样就可以N多设备协同工作。效率达到 1+1 > 2 的目的。 否则如果是1台设备需要 加载数据,排序, 临时存储, 加载另外数据,处理,临时存储,加载.... 汇总分结果,获得总结果。 1台设备这么处理,做了很多重复劳动。如果网络够快 多台设备 避免了重复加载。 达到 1+1>2######回复 @十一文 : 差不多的意思。######hadoop是把数据分成分成多个部分,每部分各自处理结果,然后汇总处理。即把你的1t的数据分成n份,然后每份分发给不同机器处理。然后汇总结果。不知道适用你的场景不?######貌似这中数据分析,现在流行用hadoop。楼主可以调研哈######这么说不好理解。形象一点说一下:假设有1000个数据样本,每个样本里有1T条数据内容。 一知每个样本内数据条目重复率为0.001%.目的,找出这1000个样本内,每个样本中重复的样本。并统计所有样本中重复的次数。 这个如果算复杂运算,不如说是大数据处理。 假设 每个设备 一次能加载1G条数据。######硬盘技术感觉好多年都在原地踏步没有质的飞跃啊###### @johnzhang68 毕竟转速有影响######磁性硬盘在容量方面还是有明显的飞跃。速度方面提高得慢一些。######或许未来,存储虚拟化是条路子。  数据处理和数据交互关系密切。 以数据处理为目的,建立多系统群集方式在处理上或许会比高计算系统群集更有优势。 ######又没落了。顶起 ######没有试过,关注一下######再看了哈貌似你真的很需要hadoop
kun坤 2020-06-07 22:18:40 0 浏览量 回答数 0

问题

用位运算来解下八皇后问题 6月11日 【今日算法】

前言 位运算在生产或算法解题中并不常见,不过如果你用得好,可以达到事半功倍的效果,而且位运算用得好,也可以极大地提升性能,如果在生产或面试中能看到使用位运算来解题&#x...
游客ih62co2qqq5ww 2020-06-15 16:24:16 2 浏览量 回答数 1

问题

分库分表之后,id 主键如何处理?【Java问答】43期

面试题 分库分表之后,id 主键如何处理? 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1...
剑曼红尘 2020-06-23 11:48:33 23 浏览量 回答数 1

问题

程序员报错行为大赏-配置报错

Maven本地仓库配置报错:配置报错  GO语言配置什么的都没问题,但就是LiteIDE配置不好。。。:配置报错  Maven 配置nexus仓库 POM文件报错:配置报错  10个你可能从未用过的PHP函数:配置报错  QT...
问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

状态压缩技巧:动态规划的降维打击 7月14日 【今日算法】

我们号之前写过十几篇动态规划文章,可以说动态规划技巧对于算法效率的提升非常可观,一般来说都能把指数级和阶乘级时间复杂度的算法优化成 O(N^2),堪称算法界的二向箔,把各路魑魅魍魉统统...
游客ih62co2qqq5ww 2020-07-14 23:53:52 6 浏览量 回答数 1

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙
剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

第6篇 指针数组字符串(下)补充:报错

我们回到control.c文件里。那么我们就可以利用g_pcontrol_input进行读取工作。当然这里有个学院派的做法,就是检测当前文件的长度,毕竟如果这个长度比BUF大,我们得认为不能处理嘛。...
kun坤 2020-06-08 11:02:03 3 浏览量 回答数 1

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

回答

先说结论: 不要对接!不要对接!不要对接! 开个玩笑,以上仅代表个人观点,大家也知道这种“三体式警告”根本没有用的,我自己也研究如何对接,说不定做完后就觉得“真香”了。 为什么要对接? 首先讨论一下为什么要把 Flutter 对接到 Web 生态。 Flutter 现在是一个炙手可热的跨平台技术,能够一套代码运行在 Android、iOS、PC、IoT 以及浏览器上,被认为是下一代跨平台技术。相比于 Weex 和 React Native 可以很好地解决多平台一致性问题,原生渲染性能相近,上层没有 JS 那么厚的封装层次,整体性能会略好一些。 但是大部分兴冲冲去学 Flutter 的人疑惑的第一个问题就是:为什么 Flutter 要用 Dart?一个全新的语言意味着新的学习成本,难道 JS 不香吗?JS 不香不是还有 TypeScript 吗!事实上 Flutter 抛弃的岂止是 JS 这门语言,也抛弃了 HTML 和 CSS,设计了一套解耦得更好的 Widget 体系,Flutter 抛弃的是整个 Web,致力于打造一个新的生态,但是这个生态无法复用 Web 生态的代码和解决方案。尤其是之前所有跨平台方案 Hybrid、React Native、Weex 都是对接 Web 生态的,这让 Flutter 显得有些格格不入,也让大部分前端开发者望而却步。 下面是我整理出来的,前端开发者使用 Flutter 的各方面成本: 因为 Flutter 的开发模式和前端框架比较像(可以说就是抄的 React),所以框架的学习成本并不高,稍微高一些的是 Dart 语言的学习成本,另外还要学习如何用 Widget 组装 UI,虽然很多布局 Widget 设计得和 CSS 很像,灵活度还是差了很多。要想在真实项目中用起来,还要改造整个工具链,以“Native First”的视角做开发,开发 Flutter 和开发原生应用的链路是比较像的,和开发前端页面有较大差异。最高的还是生态成本,前端生态的积累无论是代码还是技术方案都很难复用,这是最痛的一点,生态也是 Flutter 最弱的一环。 无论是为了先进的技术理念还是出于商业私心,先不管 Flutter 为什么抛弃 Web 生态,现实问题是最大的 UI 开发者群体是前端,最丰富的生态是 Web 生态,我觉得 Web 技术也是开发 UI 最高效的方式。如果能在上层使用 Web 技术栈开发,在底层使用 Flutter 实现跨平台渲染,不是可以很好的兼顾开发效率、性能和跨平台一致性吗?还能复用 Web 技术栈大量的技术积累。 可能这些理由也不够充分,暂且先照着这个假设继续分析,最后再重新讨论到底该不该对接。 关于 Flutter 和 Web 生态的对接涉及两个方面: 从 Web 到 Flutter。就是使用 Web 技术栈来开发,然后对接到 Flutter 上实现跨平台渲染。对 Web 来说是解决性能和跨平台一致性问题,对 Flutter 来说是解决生态复用问题。从 Flutter 到 Web。就是官方已经实现的 Web support for Flutter,把已经用 Dart 开发好的 App 编译成 HTML/JS/CSS 然后运行在浏览器上,可以用于降级和外投场景。 如何实现“从 Web 到 Flutter”? 首先分析一下 Flutter 的架构图,看看可以从哪里下手。 Flutter 可以分为 Framework 和 Engine 两部分,Engine 部分比较底层也比较稳定了,最好不要动,需要改的是用 Dart 实现的 Framework。要想对接 Web 生态的话,JS 引擎肯定是要引入的,至于是否保留 Dart VM 有待讨论。图中最上面 Material 和 Cupertino 两个 UI 库前端是不需要的,前端有自己的。关键是 Widget 这部分,是替换成 HTML/CSS 的方式写 UI,还是继续保留 Widget 但是把语言换成 JS,不同方案给出的解法也不一样。 有不少方案可以实现对接,业界有挺多尝试的,我总结了下面三种方式: - TS 魔改:用 JS 引擎替换掉 Dart VM,用 JS/TS 重新实现 Flutter Framework(或者直接 dart2js 编译过来)。 - JS 对接:引入 JS 引擎同时保留 Dart VM,用前端框架对接 Flutter Framework。 - C++ 魔改:用 JS 引擎替换掉 Dart VM,用 C++ 重新实现 Flutter Framework。 TS 魔改 TS 魔改就是完全抛弃掉 Dart VM,用 TypeScript 重新实现一遍用 Dart 写的 Flutter Framework。 为啥是 TS 而不是 JS?这不是因为 TS 是个大热门嘛,而且向下兼容 JS,现在几乎所有时髦的框架都要用 TS 重写了。 这种方案的出发点是“如果能把 Flutter 的 Dart 换成 JS 就好了”,最容易想到的路就是把 Dart 翻译成 TS,或者直接用 dart2js 把代码编译成 js,但是编译出来的代码包含很多 dart:ui 之类的库的封装,生成的包也挺大的,也比较难定制需要导出的接口,不如干脆用 TS 重写一遍,工具链更熟悉一些,还可以加一些定制。 理论上讲翻译之后 Flutter 绝大部分功能都依然支持,可以复用各种 npm 包,还可以动态化,但是丧失了 AOT 能力,JS 语言的执行性能应该是不如 Dart 的。而且所有节点的布局运算都发生在 JS,底层只需要提供基础的图形能力就好了,就好像是基于 Canvas API 写了一套 UI 框架,性能未必有现存前端框架的性能高。 此外最大的问题是如何与官方 Flutter 保持一致,假如现在是从 v1.13 版本翻译过来的,以后官方升级到了 v1.15 要不要同步更新?这个过程没啥技术含量,而且需要持续投入,做起来比较恶心。 另外还需要考虑上层是用 Widget 的方式写 UI,还是用前端熟悉的 HTML+CSS。如果依然用 Widget 的话,那大部分前端组件还是用不了的,UI 还是得重写一遍。反正要重写的话,成本也没降下来,那就用 Dart 重写呗…… 直接用官方原版 Flutter 也避免每次更新都要翻译一遍 Dart 代码。所以既然选择了对接前端生态,那就要对接 CSS,不然就没有足够的价值。然而 CSS 和 Widget 的对接也是很繁琐的过程,而且存在完备性问题。 JS 对接 翻译代码的方式不够优雅,那就保留 Dart,把 JS/CSS 对接到 Widget 上面不就好了? 当然可以,这种方式是仅把 Flutter 当做了底层的渲染引擎,上层保持前端框架的写法,仅把渲染部分对接到 Flutter。现存的很多前端框架都把底层渲染能力做了抽象,可以对接到不同渲染引擎上,如 Vue/Rax 同时支持浏览器和 Weex,用同样的方式,可以再支持一个 Flutter。 这种方式对前端框架的兼容性比较好,但是链路太长了,业务代码调用前端框架接口做渲染,一顿操作之后发出了渲染指令,这个渲染指令要基于通信的方式传给 Flutter Framework,这中间涉及一次 JS 到 C++ 再到 Dart 的跨语言转换,然后再接收到渲染指令之后还要转成相应的 Widget 树,从 CSS 到 Widget 的转换依然很繁琐。而且 Widget 本身是可以带有状态的,本身就是响应式更新的,在更新时会重新生成 widget 并 diff,如果在前端更新 UI 的话,前端框架在 js 里 diff 一次 vdom,传到 Flutter 之后又 diff 一次 widget。 如果要绕过 Widget 直接对接图中的 Rendering 这一层,可以绕过 widget diff 但是得改 Flutter Framework 的渲染链路,既然要改 Flutter Framework 那为什么不直接用 TS 魔改呢,还绕过了 JS 到 Dart 的通信,又回到了第一种方案。 总结来说,这个方案的优点是:实现简单、能最大化保留前端开发体验,缺点是:渲染链路长、通信成本高、响应式逻辑冲突、CSS 转 Widget 不完备等。 C++ 魔改 想要干掉 Dart VM,就需要用其他语言重新实现用 Dart 开发的 Framework,用 JS/TS 可以,用 C++ 当然可以,最硬核的方式就是用 C++ 重新实现 Flutter 的 Framework,然后接入 JS 引擎,通过 binding 把 C++ 接口透出到 JS 环境,上层应用还是用 JS 做开发。 把 Framework 层下沉到 C++ 之后,不仅会有更好的性能,也能支持更多语言。原本 Flutter Framework 是在 Dart VM 之上的,必须依赖 Dart VM 才能运行,所以对 Dart 有强依赖;用 C++ 重新实现之后,JS 引擎是在 C++ 版 Framework 之上的,框架本身并不依赖 JS 引擎,还可以对接其他各种语言,如对接了 JVM 之后可以支持 Java 和 Kotlin,对接回 Dart VM 可以继续支持 Dart。 这个方案可以增强性能,也能保持和 Flutter 的一致性,但是改造成本和维护成本都相当高。C++ 的开发效率肯定不如 Dart,当 Flutter 快速迭代之后如何跟进是很大的问题,如果跟进不及时或者实现不一致那很可能就分化了。从 CSS 到 Widget 的转换也是不得不面对的问题。 几种方案对比 把上面几种方案画在同一张图里是这个样子的: 图中实线部分表示了跨语言的通信,太过频繁会影响性能,虚线部分表示了其他对接可能性。 从下到上,Flutter Engine 是不需要动的,这一层是跨平台的关键。Framework 则有三种语言版本,JS/TS、Dart、C++,性能是 C++ 版本最好,成本是 Dart 版本最低。然后还需要向上处理 HTML/CSS 和 Widget 的问题,可以直接对接一个前端框架,也可以直接在 C++ 层实现(不然需要透出的 binding 接口就太多了,用通信的方式也太过频繁了)。 如何实现“从 Flutter 到 Web”? 这个功能官方已经实现了,可以把使用 Dart 开发的 App 编译成 Web App 运行在浏览器上,官方文档以介绍用法和 API 为主,我这里简单分析一下内部具体的实现方案。 实现原理 结合 Flutter 的架构图来看,要实现 Web 到 Flutter 需要改造的是上层 Framework,要实现 Flutter 到 Web 需要改造的则是底层 Engine。 Framework 对 Engine 的核心依赖是 dart:ui,这是库是在 Engine 里实现的,抽象出了绘制 UI 图层的接口,底层对接 skia 的实现,向上透出 Dart 语言的接口。这样来看,对接方式就比较简单了: 使用 dart2js 把 Framework 编译成 JS 代码。基于浏览器的 API 重新实现 dart:ui,即 dart:web_ui。 把 Dart 编译成 JS 没什么问题,性能可能会有一点影响,功能都是可以完全保留的,关键是 dart:web_ui 的实现。在原生 Engine 中,dart:ui 依赖 skia 透出的 SkCanvas 实现绘制,这是一套很底层的图形接口,只定义了画线、画多边形、贴图之类的底层能力,用浏览器接口实现这一套接口还是很有挑战的。上图可以看到 Web 版 Engine 是基于 DOM 和 Canvas 实现的,底层定义了 DomCanvas 和 BitmapCanvas 两种图形接口,会把传来的 layer tree 渲染成浏览器的 Element tree,但是节点上仅包含了 position, transform, opacity 之类的样式,只用到 CSS 很小的一个子集,一些更复杂的绘制直接用 2D canvas 实现。 存在的问题 我编译了一个还算复杂的 demo 试了一下,性能很不理想,滑动不流畅,有时候图片还会闪动。生成出来的 js 代码有 1.1MB (minify 之后,未 gzip),节点层次也比较深,我评估这个页面用前端写不会超过 300KB,节点数可以少一半以上。 另外再看一下 Flutter 仓库的 issue,过滤出 platfrom-web 相关的,可以看到大量:文字编辑失效、找不到光标、ListView 在 ios 上不可滚动、checkbox/button 行为不正常、安卓滚动卡顿图片闪烁、字体失效、某些机型视频无法播放、文字选中后无法复制、无法调试…… 感觉 flutter for web 已经陷入泥潭,让人回想起前端当年处理各种浏览器兼容性的噩梦。 这些性能和兼容性问题,核心原因是浏览器未暴露足够的底层能力,以及浏览器处理手势、用户输入和方式和 Flutter 差异巨大。 实现 Flutter Engine 需要的是底层的图形接口和系统能力,虽然canvas 提供了相似的图形接口,如果全部用 canvas 实现的话很难处理可访问性、文本选择、手势、表单等问题,也会存在很多兼容性问题。所以真实方案里用的是 Canvas + DOM 混合的方式,封装层次太高了,渲染链路太长。就好像 Flutter Framework 里进行了一顿猛如虎的操作之后,节点生成好了、布局算好了、绘制属性也处理好了,就差一个画布画出来了,然后交到浏览器手里,又生成一遍 Element,再算一遍布局,在处理一遍绘制,最终才交给了底层的图形库画出来。 再比如长页面的滚动,浏览器里只要一条 CSS (overflow:scroll) 就可以让元素可滚动,手势的监听以及页面的滚动以及滚动动画都是浏览器原生实现的,不需要与 JS 交互,甚至不需要重新 layout 和 paint,只需要 compositing。如上图所示,在 Flutter 中 Animation 和 Gesture 是用 Dart 实现的,编译过来就是 JS 实现的,浏览器本身并不知道这个元素是否可滚,只是不断派发 touchmove 事件,JS 根据事件属性计算节点偏移,然后运算动画,然后把 transform 或者新的 position 作用到节点上,然后浏览器再来一遍完整的渲染流程…… 优化方案 性能和兼容性的问题还是要解决的,短期内先把 issue 解掉,长线的优化方案,官方有两种尝试: 使用 CSS Painting API 做绘制。 a, 这是还处于提案状态的新标准,可以用 JS 实现一些绘制功能,自定义 CSS 属性。 b. 目前还未实现,需要等浏览器先把 CSS Houdini 支持好。 使用 WebAssembly 版本的 Skia 做绘制 https://skia.org/user/modules/canvaskit a, 这样可以发挥 wasm 的性能优势,并且保持 skia 功能的一致。但是目前 wasm 在浏览器环境里未必有性能优势,这里不展开讨论了。 b. 已经部分实现,参考这里的配置启用功能: https://github.com/flutter/flutter/issues/41062#issuecomment-533952994 这两个方案都是想更多的利用到浏览器的底层能力,只有浏览器暴露了更多底层能力,才能更好的实现 Flutter 的 Web Engine。不过这个要等挺久的时间,我们也参与不了,现阶段想要使用 flutter for web,还是得保持现有架构,一起参与进去把 issue 解决掉,优先保障功能,其次优化性能。 一种适应性更好的架构 如果理想化一点,能不能从架构角度让 Flutter 和 Web 生态融合的更好一些呢? 回顾文章最开始的官方架构图,上面是 Framework(Dart),下面是 Engine(C++),切分在 Foundation 这一层,双方之间的交互是几何图形信息。如果还保持这个架构,把切分层次划分的更靠上一些,如下图所示,划分在 Widgets 和 Rendering 这一层,理论上讲对 Flutter 的开发者来说是无感知的,因为上层的开发语言和 Widget 接口都是不变的。 切分在这一层,Framework 和 Engine 之间的交互就不再是几何图形而是节点信息,Widget 的组合、setState 响应式更新、Widget diff 都还在 Dart 中,展开后的 RenderObject 的布局、绘制、裁剪、动画全都在 C++ 中,不仅有更好的性能,还可以与 Engine 有更好的结合。 或者说,还原本保留 Engine 的设计,把下沉的这部分逻辑上划分成 Renderer,就有了如下三层的结构: 这样划分出来的每一层都有明确的定位: Framework: 开发框架。为开发者提供可编程 API,实现响应式的开发模式,提供细粒度 Widget 供开发者自由封装和组合。Renderer: 渲染引擎。专门实现布局、绘制、动画、手势的的处理,这部分功能相对独立,是可以与开发框架解耦的,也不必与特定语言绑定。Engine: 图形引擎。实现跨平台一致的图形接口,合成输入的层并绘制到屏幕上,处理好平台力的接入和适配。 这样切分除了有性能优势以外,也使得渲染引擎摆脱了对 Dart 的依赖,能够支持多种语言,也能支持多种开发模式。对接到 Dart VM 就可以用 Dart 写代码,对接到 JS 引擎就可以用 JS 写代码,对接到 JVM 还可以写 Java,但是无论怎么写,底层的渲染能力是一样的,一套统一的布局算法,动画和手势的处理行为也是一致的。 在这样的架构下,对接 Web 生态就更容易了。Dart 和 Widget 是前端不想要的,希望能换成 JS 和 CSS,但是又想要底层的跨平台一致渲染引擎,那从 Renderer 层开始对接就好了,绕过了所有不想要的,也保留了所有想要的。 要实现 Flutter for Web 也更简单了一些。在 Engine 层做对接,一直苦于浏览器透出的底层能力不够,如果是在 Renderer 之上做对接就更容易一些,基于 JS/CSS/DOM/Canvas 的能力封装出一套 Rendering 接口,供 Widget 调用就好了,这样可以使渲染链路更短一些,但是依然要处理 Widget 和 DOM/CSS 之间的兼容性问题。 再讨论一遍:为什么要对接? 技术上已经分析完了,要想搞定 Flutter 生态和 Web 生态的对接,需要投入很大的成本,所以真正决定做之前,要先讨论清楚为什么要做对接?到底要不要做对接? 首先 Google 官方对 Flutter 的定位就是个问题。Flutter 设计之初就是不考虑 Web 生态的,甚至在刻意回避,倡导的是更贴近原生的开发方式。我之所以在开头说不要对接,原因也很简单:两种技术设计理念不同,不是朝着一个方向发展的,生态不通,技术方案不通,强行融合很可能让彼此都丧失了优势。但是业界又有很多团队在做这种尝试,说明需求是存在的,如果 Google 抵制这个方向,那就不好做了。不过现在官方已经支持了 Flutter for Web,已经向 Web 生态迈了一步,未来是否进一步与 Web 融合,也是有可能的。 另外就是跨平台技术本身的问题,浏览器发展了二三十年,已经是个很强大的跨平台产品了,几乎是 Web 的代名词了,这一点无人能敌。但是也臃肿不堪,有大量历史包袱,性能和体验不够好,和 Native 的结合度差,尤其在移动和 IoT 平台。虽然硬件性能在不断提升,但这是所有软件共享的,浏览器的性能和体验总会比 Native 差一些,差的这一些很可能就是新业务和新场景的发挥空间。观察一下近几年新诞生的业务场景,很多都是利用到了 Native 新提供的能力才火爆起来的,如 AI/AR/ 视频 / 直播 等,有因为新的 Web API 而孵化生出来的商业模式吗? 原文链接: https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650405725&idx=1&sn=0b7476f7c7c01df7fdafda578f9ceb98&chksm=83953345b4e2ba53917ac30b709c07be15bd1c2fd5ae2a8ecfbb129b3813f771621b8fac95ca&scene=27#wechat_redirect
剑曼红尘 2020-03-10 09:54:40 0 浏览量 回答数 0

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。
玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板