• 关于

    标准延迟格式常见故障

    的搜索结果

回答

概述 当网站访问很慢或无法访问时,若已经排除显著的问题,而使用ping命令检测到有明显丢包时,建议您做链路测试。在Windows环境中,推荐优先使用WinMTR工具,或者tracert命令行进行链路测试以判断问题来源。通常情况下,链路测试步骤如下。 利用链路测试工具探测网络状况和服务器状态。 根据链路测试结果分析处理。 详细信息 阿里云提醒您: 如果您对实例或数据有修改、变更等风险操作,务必注意实例的容灾、容错能力,确保数据安全。 如果您对实例(包括但不限于ECS、RDS)等进行配置与数据修改,建议提前创建快照或开启RDS日志备份等功能。 如果您在阿里云平台授权或者提交过登录账号、密码等安全信息,建议您及时修改。 WinMTR工具 mtr(My traceroute)作为一款网络测试工具,集成了tracert与ping这两个命令的图形界面。ping与tracert通常被用于检测网络状况和服务器状态,具体说明如下。 命令名称 具体说明 ping 送出封包到指定的服务器。如果服务器有回应就会传送回封包,并附带返回封包来回的时间 tracert 返回从用户的电脑到指定的服务器中间经过的所有节点(路由)以及每个节点的回应速度。 WinMTR是mtr工具在Windows环境下的图形化实现,适合Windows下做路由追踪及ping测试。WinMTR默认发送ICMP数据包进行探测,无法切换。 相比tracert命令行工具,WinMTR能避免节点波动对测试结果的影响,测试结果更正确。Windows环境下,建议优先使用WinMTR进行链路测试。下载WinMTR工具。 下载WinMTR工具后,直接解压运行。运行程序后,在 Host 字段输入目标服务器域名或IP。 1 单击 Start 开始测试。开始测试后,相应按钮变成了 Stop。 运行一段时间后,单击 Stop 停止测试。 说明:您可以多测试几分钟,测试结束后,将结果导出。 常见可选参数说明 Copy Text to clipboard:将测试结果以文本格式复制到粘贴板。 Copy HTML to clipboard:将测试结果以HTML格式复制到粘贴板。 Export TEXT:将测试结果以文本格式导出到指定文件。 Export HTML:将测试结果以HTML格式导出到指定文件。 Options:为可选参数。具体包括以下参数。 Interval(sec):每次探测的间隔(过期)时间,默认为1秒。 Ping size(bytes):ping 探测所使用的数据包大小,默认为64字节。 Max hosts in LRU list:LRU列表支持的最大主机数,默认值为128。 Resolve names:通过反查IP以域名显示相关节点。 WinMTR运行后的返回结果说明 默认配置下,WinMTR测试结果说明如下。 第一列(Hostname):到目标服务器要经过的每个节点主机IP或域名。 第二列(Nr):节点编号。 第三列(Loss%):节点丢包率。ping数据包回复失败的百分比,由此可判断哪个节点(线路)出现故障,是服务器所在机房还是国际路由干路。 第四列(Sent):已发送的数据包数量。 第五列(Recv):已成功接收的数据包数量。 第六、七、八、九列(Best 、Avg、Worst、Last):分别是回应时间的最小值、平均值、最大值和最后一个数据包的回应时间。 tracert命令行工具 tracert (Trace Route) 是Windows自带的网络诊断命令行实用程序,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。 tracert通过向目标地址发送ICMP数据包来确定到目标地址的路由。在这些数据包中,tracert使用了不同的IP生存期 (TTL) 值。由于要求沿途的路由器在转发数据包前至少必须将TTL减少1,因此TTL实际上相当于一个跃点计数器 (hop counter)。当某个数据包的TTL达到零时,相应节点就会向源计算机发送一个ICMP超时的消息。tracert第一次发送TTL为1的数据包,并在每次后续传输时将TTL增加1,直到目标地址响应或达到TTL的最大值。中间路由器发送回来的ICMP超时消息中包含了相应节点的信息。 在桌面底部单击 开始 菜单,选择 运行。 打开运行框后,在框中输入 cmd,并单击 确定。 在命令运行界面中,输入 tracert ,按回车键后,界面将显示tracert的用法说明。 2 根据具体用法,输入待跟踪的目标地址,示例如下。 C:> tracert -d 223.5.5.5 通过最多 30 个跃点跟踪到 223.5.5.5 的路由 1 * * * 请求超时。 2 9 ms 3 ms 12 ms 192.X.X.20 3 4 ms 9 ms 2 ms 111.X.X.41 4 9 ms 2 ms 1 ms 111.X.X.197 5 11 ms * * 211.X.X.57 6 3 ms 2 ms 2 ms 211.X.X.62 7 2 ms 2 ms 1 ms 42.X.X.190 8 32 ms 4 ms 3 ms 42.X.X.238 9 * * * 请求超时。 10 3 ms 2 ms 2 ms 223.5.5.5 分析链路测试结果 以如下链路测试结果示例图为基础进行阐述。 判断各区域是否存在异常,并根据各区域的情况分别处理。 区域A:客户端本地网络,即本地局域网和本地网络提供商网络。针对该区域异常,客户端本地网络相关节点问题,请对本地网络进行排查分析;本地网络提供商网络相关节点问题,请向当地运营商反馈。 区域B:运营商骨干网络。针对该区域异常,可根据异常节点IP查询归属运营商,然后直接或通过阿里云售后技术支持,向相应运营商反馈问题。 区域C:目标服务器本地网络,即目标主机归属网络提供商网络。针对该区域异常,需要向目标主机归属网络提供商反馈问题。 结合Avg(平均值)和StDev(标准偏差),判断各节点是否存在异常。 若StDev很高,则同步观察相应节点的Best和Worst,来判断相应节点是否存在异常。 若StDev不高,则通过Avg来判断相应节点是否存在异常。 注意:上述StDev高或者不高,并没有具体的时间范围标准。而需要根据同一节点其它列的延迟值大小来进行相对评估。比如,如果Avg为30ms,那么,当StDev为25ms,则认为是很高的偏差。而如果Avg为325ms,则同样的StDev为25ms,反而认为是不高的偏差。 查看节点丢包率,若“Loss%”不为零,则说明这一跳路由的网络可能存在问题。导致节点丢包的原因通常有两种。 人为限制了节点的ICMP发送速率,导致丢包。 节点确实存在异常,导致丢包。 确定当前异常节点的丢包原因。 若随后节点均没有丢包,说明当前节点丢包是由于运营商策略限制所致,可以忽略。如前文链路测试结果示例图中的第2跳路由的网络所示。 若随后节点也出现丢包,说明当前节点存在网络异常,导致丢包。如前文链路测试结果示例图中的第5跳路由的网络所示。 说明:前述两种情况可能同时发生,即相应节点既存在策略限速,又存在网络异常。对于这种情况,若当前节点及其后续节点连续出现丢包,而且各节点的丢包率不同,则通常以最后几跳路由的网络的丢包率为准。如前文链路测试结果示例图所示,在第5、6、7跳路由的网络均出现了丢包。所以,最终丢包情况,以第7跳的40%作为参考。 通过查看是否有明显的延迟,来确认节点是否存在异常。通过如下两个方面进行分析。 若某一跳路由的网络之后延迟明显陡增,则通常判断该节点存在网络异常。如前文链路测试结果示例图所示,从第5跳路由的网络之后的后续节点延迟明显陡增,则推断是第5跳路由的网络节点出现了网络异常。 注:高延迟并不一定完全意味着相应节点存在异常,延迟大也有可能是在数据回包链路中引发的,建议结合反向链路测试一并分析。 ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如前文链路测试结果示例图所示,第3跳路由的网络有100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。 操作建议 若数据包在目标地址出现了100%的丢包,建议对目标服务器的安全策略配置进行排查。 若数据包出现循环跳转,导致无法到达目标服务器,建议联系相应节点归属运营商处理。 若数据包在跳转后无法收到任何反馈,建议结合反向链路测试作进一步确认,并联系相应节点归属运营商进行处理。 阿里云中国内地机房和其他国家或地区有网络通信的专线,为降低通信时候的丢包率,推荐使用高速通道。 若主机掉包和延迟非常高,建议做WinMTR双向测试,即本地到服务器的和服务器到本地的测试。无法远程登录时,请通过管理终端进行登录。

1934890530796658 2020-03-25 23:51:46 0 浏览量 回答数 0

回答

概述 当客户端访问目标服务器出现ping丢包或ping不通时,可以通过tracert或mtr等工具进行链路测试来判断问题根源。本文介绍如何通过工具进行链路测试和分析。 详细信息 阿里云提醒您: 如果您对实例或数据有修改、变更等风险操作,务必注意实例的容灾、容错能力,确保数据安全。 如果您对实例(包括但不限于ECS、RDS)等进行配置与数据修改,建议提前创建快照或开启RDS日志备份等功能。 如果您在阿里云平台授权或者提交过登录账号、密码等安全信息,建议您及时修改。 本文分别介绍如下链路测试方法。 链路测试工具 测试结果的简要分析 常见的链路异常场景 链路测试步骤 测试完成后的解决方法 链路测试工具 操作系统类型不同,链路测试所使用的工具也有所不同。简要介绍如下。 Linux系统 此处简单介绍两个链路测试工具。 工具一:mtr命令 mtr(My traceroute)几乎是所有Linux发行版本预装的网络测试工具。其将ping和traceroute的功能合并,所以功能更强大。mtr默认发送ICMP数据包进行链路探测。您也可以通过“-u”参数来指定使用UDP数据包进行探测。相对于traceroute只会做一次链路跟踪测试,mtr会对链路上的相关节点做持续探测并给出相应的统计信息。所以,mtr能避免节点波动对测试结果的影响,所以其测试结果更正确,建议优先使用。 用法说明 mtr [-BfhvrwctglxspQomniuT46] [--help] [--version] [--report] [--report-wide] [--report-cycles=COUNT] [--curses] [--gtk] [--csv|-C] [--raw] [--xml] [--split] [--mpls] [--no-dns] [--show-ips] [--address interface] [--filename=FILE|-F] [--ipinfo=item_no|-y item_no] [--aslookup|-z] [--psize=bytes/-s bytes] [--order fields] [--report-wide|-w] [--inet] [--inet6] [--max-ttl=NUM] [--first-ttl=NUM] [--bitpattern=NUM] [--tos=NUM] [--udp] [--tcp] [--port=PORT] [--timeout=SECONDS] [--interval=SECONDS] HOSTNAME 常见可选参数说明 --report:以报告模式显示输出。 --split:将每次追踪的结果分别列出来,而非统计整个结果。 --psize:指定ping数据包的大小。 --no-dns:不对IP地址做域名反解析。 --address:主机有多个IP地址时,设置发送数据包的IP地址。 -4:只使用IPv4协议。 -6:只使用IPv6协议。 另外,也可以在mtr运行过程中,输入类似如下的字母来快速切换模式。 ?或h:显示帮助菜单。 d:切换显示模式。 n:启用或禁用DNS域名解析。 u:切换使用ICMP或UDP数据包进行探测。 命令输出示例 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Host):节点IP地址和域名。按 n 键可切换显示。 第二列(Loss%):节点丢包率。 第三列(Snt):每秒发送数据包数。默认值是10,可以通过“-c”参数指定。 第四列(Last):最近一次的探测延迟。 第五、六、七列(Avg、Best、Worst):分别是探测延迟的平均值、最小值和最大值。 第八列(StDev):标准偏差。越大说明相应节点越不稳定。 工具二:traceroute命令 traceroute也是几乎所有Linux发行版本预装的网络测试工具,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。traceroute先发送小的具有最大存活时间值(Max_TTL)的UDP探测数据包,然后侦听从网关开始的整个链路上的ICMP TIME_EXCEEDED响应。探测从TTL=1开始,TTL值逐步增加,直至接收到ICMP PORT_UNREACHABLE消息。ICMP PORT_UNREACHABLE消息用于标识目标主机已经被定位,或命令已经达到允许跟踪的最大TTL值。traceroute默认发送UDP数据包进行链路探测。可以通过“-I”参数来指定使用ICMP数据包进行探测。 用法说明 traceroute [-I] [ -m Max_ttl ] [ -n ] [ -p Port ] [ -q Nqueries ] [ -r ] [ -s SRC_Addr ] [ -t TypeOfService ] [ -f flow ] [ -v ] [ -w WaitTime ] Host [ PacketSize ] 常见可选参数说明 -d:使用Socket层级的排错功能。 -f:设置第一个检测数据包的存活数值TTL的大小。 -F:设置不要分段标识。 -g:设置来源路由网关,最多可设置8个。 -i:主机有多个网卡时,使用指定的网卡发送数据包。 -I:使用ICMP数据包替代UDP数据包进行探测。 -m:设置检测数据包的最大存活数值TTL的大小。 -n:直接使用IP地址而非主机名称(禁用DNS反查)。 -p:设置UDP传输协议的通信端口。 -r:忽略普通的Routing Table,直接将数据包发送到目标主机上。 -s:设置本地主机发送数据包的IP地址。 -t:设置检测数据包的TOS数值。 -v:详细显示指令的执行过程。 -w:设置等待远端主机回包时间。 -x:开启或关闭数据包的正确性检验。 命令输出示例 Windows系统 此处简单介绍两个链路测试工具。 工具一:WinMTR(建议优先使用) WinMTR是mtr工具在Windows环境下的图形化实现,但进行了功能简化,只支持部分mtr的参数。WinMTR默认发送ICMP数据包进行探测,无法切换。和mtr一样,相比tracert,WinMTR能避免节点波动对测试结果的影响,所以测试结果更正确。所以在WinMTR可用的情况下,建议优先使用WinMTR进行链路测试。 用法说明 WinMTR无需安装,直接解压运行即可。操作方法非常简单,说明如下。 如下图所示,运行程序后,在 Host 字段输入目标服务器域名或IP,注意不要包含空格。 单击 Start 开始测试。开始测试后,相应按钮变成了 Stop。 运行一段时间后,单击 Stop 停止测试。 其它选项说明如下。 Copy Text to clipboard:将测试结果以文本格式复制到粘贴板。 Copy HTML to clipboard:将测试结果以HTML格式复制到粘贴板。 Export TEXT:将测试结果以文本格式导出到指定文件。 Export HTML:将测试结果以HTML格式导出到指定文件。 Options:可选参数,包括的可选参数如下。 Interval(sec):每次探测的间隔(过期)时间。默认为1秒。 ping size(bytes):ping探测所使用的数据包大小,默认为64字节。 Max hosts in LRU list:LRU列表支持的最大主机数,默认值为128。 Resolve names:通过反查IP地址,以域名显示相关节点。 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Hostname):节点的IP或域名。 第二列(Nr):节点编号。 第三列(Loss%):节点丢包率。 第四列(Sent):已发送的数据包数量。 第五列(Recv):已成功接收的数据包数量。 第六、七、八、九列(Best 、Avg、Worst、Last):分别是到相应节点延迟的最小值、平均值、最大值和最后一次值。 工具二:tracert命令行工具 tracert(Trace Route)是Windows自带的网络诊断命令行程序,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。 tracert通过向目标地址发送 ICMP 数据包来确定到目标地址的路由。在这些数据包中,tracert使用了不同的IP“生存期”,即TTL值。由于要求沿途的路由器在转发数据包前必须至少将TTL减少1,因此TTL实际上相当于一个跃点计数器(hop counter)。当某个数据包的TTL达到0时,相应节点就会向源计算机发送一个ICMP超时的消息。 tracert第一次发送TTL为1的数据包,并在每次后续传输时将TTL增加1,直到目标地址响应或达到TTL的最大值。中间路由器发送回来的ICMP超时消息中包含了相应节点的信息。 用法说明 tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name 常见可选参数说明 -d:不要将地址解析为主机名(禁用DNS反解)。 -h:maximum_hops,指定搜索目标地址时的最大跃点数。 -j: host-list,指定沿主机列表的松散源路由。 -w:timeout,等待每个回复的超时时间(以毫秒为单位)。 -R:跟踪往返行程路径(仅适用于IPv6)。 -S:srcaddr,要使用的源地址(仅适用于IPv6)。 -4:强制使用IPv4。 -6:强制使用IPv6。 target_host:目标主机域名或IP地址。 命令输出示例 C:> tracert -d 223.5.5.5 通过最多 30 个跃点跟踪到 223.5.5.5 的路由 1 请求超时。 2 9 ms 3 ms 12 ms 192.168.X.X 3 4 ms 9 ms 2 ms X.X.X.X 4 9 ms 2 ms 1 ms XX.XX.XX.XX 5 11 ms 211.XX.X.XX 6 3 ms 2 ms 2 ms 2XX.XX.1XX.XX 7 2 ms 2 ms 1 ms 42.XX.2XX.1XX 8 32 ms 4 ms 3 ms 42.XX.2XX.2XX 9 请求超时。 10 3 ms 2 ms 2 ms 223.5.5.5 跟踪完成。 测试结果的简要分析 由于mtr(WinMTR)有更高的准确性,本文以其测试结果为例,参考如下要点进行分析。此处分析时以如下示例图为基础。 要点一:网络区域 正常情况下,从客户端到目标服务器的整个链路中会包含如下区域。 客户端本地网络,即本地局域网和本地网络提供商网络。如上图中的区域A。如果该区域出现异常,并且是客户端本地网络中的节点出现异常,则需要对本地网络进行相应的排查分析。如果是本地网络提供商网络出现异常,则需要向当地运营商反馈问题。 运营商骨干网络。如上图中的区域B。如果该区域出现异常,可以根据异常节点的IP查询其所属的运营商,直接向对应运营商进行反馈,或者通过阿里云技术支持,向运营商进行反馈。 目标服务器本地网络,即目标服务器所属提供商的网络。如上图中的区域C。如果该区域出现异常,需要向目标服务器所属的网络运营商反馈问题。 要点二:链路负载均衡 如上图中的区域D。如果中间链路某些部分启用了链路负载均衡,则mtr只会对首尾节点进行编号和探测统计。中间节点只会显示相应的IP或域名信息。 要点三:结合Avg(平均值)和StDev(标准偏差)综合判断 由于链路抖动或其它因素的影响,节点的Best和Worst值可能相差很大。Avg统计了自链路测试以来所有探测的平均值,所以能更好的反应出相应节点的网络质量。而StDev越高,则说明数据包在相应节点的延时值越不相同,即越离散。所以标准偏差值可用于协助判断Avg是否真实反应了相应节点的网络质量。例如,如果标准偏差很大,说明数据包的延迟是不确定的。可能某些数据包延迟很小,例如25ms,而另一些延迟却很大,例如350ms,但最终得到的平均延迟反而可能是正常的。所以,此时Avg并不能很好的反应出实际的网络质量情况。 综上,建议的分析标准如下。 如果StDev很高,则同步观察相应节点的Best和Worst,来判断相应节点是否存在异常。 如果StDev不高,则通过Avg来判断相应节点是否存在异常。 注:上述StDev高或者不高,并没有具体的时间范围标准。而需要根据同一节点其它列的延迟值大小来进行相对评估。比如,如果Avg为30ms,那么,当StDev为25ms,则认为是很高的偏差。而如果Avg为325ms,则StDev同样为25ms,反而认为是不高的偏差。 要点四:Loss%(丢包率)的判断 任一节点的Loss%(丢包率)如果不为零,则说明这一跳网络可能存在问题。导致相应节点丢包的原因通常有如下两种。 运营商基于安全或性能需求,限制了节点的ICMP发送速率,导致丢包。 节点确实存在异常,导致丢包。 结合异常节点及其后续节点的丢包情况,并参考如下内容,判定丢包原因。 如果随后节点均没有丢包,则通常表示异常节点丢包是由于运营商策略限制所致。可以忽略相关丢包。如上图中的第2跳所示。 如果随后节点也出现丢包,则通常说明异常节点确实存在网络异常,导致丢包。如上图中的第5跳所示。 另外,上述两种情况可能同时发生,即相应节点既存在策略限速,又存在网络异常。对于这种情况,如果异常节点及其后续节点连续出现丢包,而且各节点的丢包率不同,则通常以最后几跳的丢包率为准。如上图所示,在第 5、6、7跳均出现了丢包。所以,最终丢包情况,以第7跳的40%作为参考。 要点五:关于延迟 关于延迟,有如下两种场景。 场景一:延迟跳变 如果在某一跳之后延迟明显陡增,则通常判断该节点存在网络异常。如上图所示,从第5跳之后的后续节点延迟明显陡增,则推断是第5跳节点出现了网络异常。不过,高延迟并不一定完全意味着相应节点存在异常。如上图所示,第5跳之后,虽然后续节点延迟明显陡增,但测试数据最终仍然正常到达了目的主机。所以,延迟大也有可能是在数据回包链路中引发的。所以,需要结合反向链路测试一并分析。 场景二:ICMP限速导致延迟增加 ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如上图所示,第3跳有100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。 常见的链路异常场景 常见的链路异常场景及测试报告如下。 场景一:目标主机网络配置不当 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. ??? 2. ??? 3. 1XX.X.X.X 0.0% 10 521.3 90.1 2.7 521.3 211.3 4. 11X.X.X.X 0.0% 10 2.9 4.7 1.6 10.6 3.9 5. 2X.X.X.X 80.0% 10 3.0 3.0 3.0 3.0 0.0 6. 2X.XX.XX.XX 0.0% 10 1.7 7.2 1.6 34.9 13.6 7. 1XX.1XX.XX.X 0.0% 10 5.2 5.2 5.1 5.2 0.0 8. 2XX.XX.XX.XX 0.0% 10 5.3 5.2 5.1 5.3 0.1 9. 173.194.200.105 100.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在目标地址出现了100%的丢包。从数据上看是数据包没有到达,其实很有可能是目标服务器相关安全策略(比如防火墙、iptables 等)禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置。 场景二:ICMP限速 示例数据如下。 [root@mycentos6 ~]# mtr --no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.X.XX 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 60.0% 10 27.2 25.3 23.1 26.4 2.9 6. 209.85.254.247 0.0% 10 39.1 39.4 39.1 39.7 0.2 7. 64.233.174.46 0.0% 10 39.6 40.4 39.4 46.9 2.3 8. gw-in-f147.1e100.net 0.0% 10 39.6 40.5 39.5 46.7 2.2 在该示例中,在第5跳出现了明显的丢包,但后续节点均未见异常。所以推断是该节点ICMP限速所致。该场景对最终客户端到目标服务器的数据传输不会有影响,所以,分析的时候可以忽略。 场景三:环路 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第5跳之后出现了循环跳转,导致最终无法到达目标服务器。这通常是由于运营商相关节点路由配置异常所致。所以,该场景需要联系相应节点归属运营商处理。 场景四:链路中断 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第4跳之后就无法收到任何反馈。这通常是由于相应节点中断所致。建议结合反向链路测试做进一步确认。该场景需要联系相应节点归属运营商处理。 链路测试步骤 通常情况下,链路测试步骤如下图所示。 相关步骤的详情说明如下。 步骤一:获取本地网络对应的公网IP 在客户端本地网络内访问淘宝IP地址库,获取本地网络对应的公网IP地址。 步骤二:正向链路测试(ping和mtr) 从客户端向目标服务器做如下测试。 从客户端向目标服务器域名或IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据客户端操作系统的不同,使用WinMTR或mtr,设置测试目的地址为目标服务器域名或IP,然后进行链路测试,记录测试结果。 步骤三:反向链路测试(ping和mtr) 进入目标服务器系统内部做如下测试。 从目标服务器向步骤一获取的客户端IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据目标服务器操作系统的不同,使用WinMTR或mtr,设置测试目的地址为客户端的IP地址,然后进行链路测试,记录测试结果。 步骤四:测试结果分析 参阅测试结果的简要分析,对测试结果进行分析。确认异常节点后,访问如下链接或其他可以查询IP归属地的网站,获取该异常节点的归属运营商信息。如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。如果是运营商相关节点出现异常,则需要向运营商反馈问题。查询结果类似如下。 测试完成后的解决方法 当出现ping丢包或ping不通时,首先请参考云服务器ECS网络故障诊断,排查是否为网络故障。 如果确认是因系统中病毒导致使用ping命令测试ECS实例的IP地址间歇性丢包,则可参考使用ping命令测试ECS实例的IP地址间歇性丢包进行处理。 如果是因删除ECS实例的默认安全组规则导致无法ping通ECS实例,可参考删除ECS实例的默认安全组规则导致无法ping通ECS实例进行处理。 如果在Linux系统内核没有禁PING的情况下,是因系统内部防火墙策略设置导致ECS服务器PING不通。可参考Linux系统的ECS中没有禁PING却PING不通的解决方法。

1934890530796658 2020-03-25 23:17:54 0 浏览量 回答数 0

问题

立足GitHub学编程:13个不容错过的Java项目

技术小菜鸟 2019-12-01 21:48:13 2674 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅