• 关于

    统计分析系统是啥

    的搜索结果

问题

电商云计算8.23号上线啦!

电商云计算8.23号上线啦! http://ec.aliyun.com/ ,点击进去看看吧~ 相信大家还不是很了解电商云计算吧? 接下来我就大家关心的问题一一介绍吧~~~ 1.电商云计...
fanyue88888 2019-12-01 20:04:24 12334 浏览量 回答数 4

问题

如何设计一个高并发系统?【Java问答学堂】45期

面试题 如何设计一个高并发系统? 面试官心理分析 说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥࿰...
剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

问题

我们为什么需要HBase?

转载自:http://www.hbase.group/article/17 我们肯定听说过HBase,但是对于HBase的了解可能仅仅是它是Hadoop生态圈重要的一员,它是大数据技术圈一个很强的...
pandacats 2019-12-23 10:02:07 2 浏览量 回答数 1

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

转自:思否 话说当下技术圈的朋友,一起聚个会聊个天,如果不会点大数据的知识,感觉都融入不了圈子,为了以后聚会时让你有聊有料,接下来就跟随我的讲述,一起与大数据混个脸熟吧,不过在“撩”大数据之前,还是先揭秘一下研发这些年我们都经历了啥? 缘起:应用系统架构的从 0 到 1 揭秘:研发这些年我们都经历了啥? 大道至简。生活在技术圈里,大家静下来想想,无论一个应用系统多庞大、多复杂,无非也就是由一个漂亮的网站门面 + 一个丑陋的管理模块 + 一个闷头干活的定时任务三大板块组成。 我们负责的应用系统当然也不例外,起初设计的时候三大模块绑在一起(All in one),线上跑一个 Tomcat 轻松就搞定,可谓是像极了一个大泥球。 衍化至繁。由于网站模块、管理平台、定时任务三大模块绑定在一起,开发协作会比较麻烦,时不时会有代码合并冲突出现;线上应用升级时,也会导致其它模块暂时不能使用,例如如果修改了一个定时任务的配置,可能会导致网站、管理平台的服务暂时不能用。面对诸多的不便,就不得不对 All in one 的大泥球系统进行拆解。 随着产品需求的快速迭代,网站 WEB 功能逐渐增多,我们起初设计时雄心勃勃(All in one 的单体架构),以为直接按模块设计叠加实现就好了,谁成想系统越发显得臃肿(想想也是走弯路啦!)。所以不得不改变实现思路,让模块服务下沉,分布式思想若现——让原来网站 WEB 一个系统做的事,变成由子系统分担去完成。 应用架构的演变,服务模块化拆分,随之而来的就是业务日志、业务数据散落在各处。随着业务的推广,业务量逐日增多,沉淀的数据日益庞大,在业务层面、运维层面上的很多问题,逐渐开始暴露。 在业务层面上,面对监管机构的监管,整合提取散落在各地的海量数据稍显困难;海量数据散落,想做个统计分析报表也非常不易。在运维层面上,由于缺少统一的日志归档,想基于日志做快速分析也比较困难;如果想从散落在各模块的日志中,进行调用链路的分析也是相当费劲。 面对上述问题,此时一个硕大的红色问号出现在我们面前,到底该如何解决? 面对结构化的业务数据,不妨先考虑采用国内比较成熟的开源数据库中间件 Sharding-JDBC、MyCat 看是否能够解决业务问题;面对日志数据,可以考虑采用 ELK 等开源组件。如果以上方案或者能尝试的方式都无法帮我们解决,尝试搬出大数据吧。 那到底什么时候需要用大数据呢?大数据到底能帮我们解决什么问题呢?注意,前方高能预警,门外汉“撩”大数据的正确姿势即将开启。 邂逅:一起撬开大数据之门 槽点:门外汉“撩”大数据的正确姿势 与大数据的邂逅,源于两个头痛的问题。第一个问题是海量数据的存储,如何解决?第二个问题是海量数据的计算,如何解决? 面对这两个头痛的问题,不得不提及谷歌的“三驾马车”(分布式文件系统 GFS、MapReduce 和 BigTable),谷歌“三驾马车”的出现,奠定了大数据发展的基石,毫不夸张地说,没有谷歌的“三驾马车”就没有大数据,所以接下来很有必要逐一认识。 大家都知道,谷歌搜索引擎每天要抓取数以亿计的网页,那么抓取的海量数据该怎么存储? 谷歌痛则思变,重磅推出分布式文件系统 GFS。面对谷歌推出的分布式文件系统 GFS 架构,如 PPT 中示意,参与角色着实很简单,主要分为 GFS Master(主服务器)、GFS Chunkserver(块存储服务器)、GFS Client(客户端)。 不过对于首次接触这个的你,可能还是一脸懵 ,大家心莫慌,接下来容我抽象一下。 GFS Master 我们姑且认为是古代的皇上,统筹全局,运筹帷幄。主要负责掌控管理所有文件系统的元数据,包括文件和块的命名空间、从文件到块的映射、每个块所在的节点位置。说白了,就是要维护哪个文件存在哪些文件服务器上的元数据信息,并且定期通过心跳机制与每一个 GFS Chunkserver 通信,向其发送指令并收集其状态。 GFS Chunkserver 可以认为是宰相,因为宰相肚子里面能撑船,能够海纳百川。主要提供数据块的存储服务,以文件的形式存储于 Chunkserver 上。 GFS Client 可以认为是使者,对外提供一套类似传统文件系统的 API 接口,对内主要通过与皇帝通信来获取元数据,然后直接和宰相交互,来进行所有的数据操作。 为了让大家对 GFS 背后的读写流程有更多认识,献上两首歌谣。 到这里,大家应该对分布式文件系统 GFS 不再陌生,以后在饭桌上讨论该话题时,也能与朋友交涉两嗓子啦。 不过这还只是了解了海量数据怎么存储,那如何从海量数据存储中,快速计算出我们想要的结果呢? 面对海量数据的计算,谷歌再次创新,推出了 MapReduce 编程模型及实现。 MapReduce 主要是采取分而治之的思想,通俗地讲,主要是将一个大规模的问题,分成多个小规模的问题,把多个小规模问题解决,然后再合并小规模问题的结果,就能够解决大规模的问题。 也有人说 MapReduce 就像光头强的锯子和锤子,世界上的万事万物都可以先锯几下,然后再锤几下,就能轻松搞定,至于锯子怎么锯,锤子怎么锤,那就是个人的手艺了。 这么解释不免显得枯燥乏味,我们不妨换种方式,走进生活真实感受 MapReduce。 斗地主估计大家都玩过,每次开玩之前,都会统计一副牌的张数到底够不够,最快的步骤莫过于:分几份给大家一起数,最后大家把数累加,算总张数,接着就可以愉快地玩耍啦... ...这不就是分而治之的思想吗?!不得不说架构思想来源于人们的生活! 再举个不太贴切的例子来感受MapReduce 背后的运转流程,估计很多人掰过玉米,每当玉米成熟的季节,地主家就开始忙碌起来。 首先地主将一亩地的玉米分给处于空闲状态的长工来处理;专门负责掰玉米的长工领取任务,开始掰玉米操作(Map 操作),并把掰好的玉米放到在麻袋里(缓冲区),麻袋装不下时,会被装到木桶中(溢写),木桶被划分为蓝色的生玉米木桶、红色的熟玉米木桶(分区),地主通知二当家来“收”属于自己的那部分玉米,二当家收到地主的通知后,就到相应的长工那儿“拿回”属于自己的那部分玉米(Fetch 操作),二当家对收取的玉米进行处理(Reduce 操作),并把处理后的结果放入粮仓。 一个不太贴切的生活体验 + 一张画得不太对的丑图 = 苦涩难懂的技术,也不知道这样解释,你了解了多少?不过如果以后再谈大数据,知道 MapReduce 这个词的存在,那这次的分享就算成功(哈哈)。 MapReduce 解决了海量数据的计算问题,可谓是力作,但谷歌新的业务需求一直在不断出现。众所周知,谷歌要存储爬取的海量网页,由于网页会不断更新,所以要不断地针对同一个 URL 进行爬取,那么就需要能够存储一个 URL 不同时期的多个版本的网页内容。谷歌面临很多诸如此类的业务场景,面对此类头痛的需求,该怎么办? 谷歌重磅打造了一款类似以“URL + contents + time stamp”为 key,以“html 网页内容”为值的存储系统,于是就有了 BigTable 这个键值系统的存在(本文不展开详述)。 至此,两个头痛的问题就算解决了。面对海量数据存储难题,谷歌推出了分布式文件系统 GFS、结构化存储系统 BigTable;面对海量数据的计算难题,谷歌推出了 MapReduce。 不过静下来想想,GFS 也好、MapReduce 也罢,无非都是秉承了大道至简、一人掌权、其它人办事、人多力量大的设计理念。另外画龙画虎难画骨,建议闲暇之余也多些思考:为什么架构要这么设计?架构设计的目标到底是如何体现的? 基于谷歌的“三驾马车”,出现了一大堆开源的轮子,不得不说谷歌的“三驾马车”开启了大数据时代。了解了谷歌的“三驾马车”的设计理念后,再去看这些开源的轮子,应该会比较好上手。 好了,门外汉“撩”大数据就聊到这儿吧,希望通过上文的分享能够了解几个关键词:大道至简、衍化至繁、谷歌三驾马车(GFS、MapReduce、BigTable)、痛则思变、开源轮子。 白头:番外篇 扯淡:不妨换一种态度 本文至此也即将接近尾声,最后是番外篇~ 首先,借用日本剑道学习心诀“守、破、离”,希望我们一起做一个精进的人。 最后,在有限的时间内要多学习,不要停下学习的脚步,在了解和使用已经有的成熟技术之时,更要多思考,开创适合自己工作场景的解决方案。 文章来源:宜信技术学院 & 宜信支付结算团队技术分享第6期-宜信支付结算部支付研发团队高级工程师许赛赛《揭秘:“撩”大数据的正确姿势》 分享者:宜信支付结算部支付研发团队高级工程师许赛赛 原文首发于公号-野指针
茶什i 2020-01-10 15:19:51 0 浏览量 回答数 0

问题

分布式服务接口的幂等性如何设计(比如不能重复扣款)?【Java问答学堂】52期

面试题 分布式服务接口的幂等性如何设计(比如不能重复扣款)? 面试官心理分析 从这个问题开始,面试官就已经进入了实际的生产问题的面试了。 一个分布式系统中的某个接口࿰...
剑曼红尘 2020-07-08 09:15:27 3 浏览量 回答数 1

问题

如何基于 dubbo 进行服务治理、服务降级、失败重试以及超时重试?【Java问答学堂】51期

面试题 如何基于 dubbo 进行服务治理、服务降级、失败重试以及超时重试? 面试官心理分析 服务治理,这个问题如果问你,其实就是看看你有没有服务治理的思想,因为这个是做过复杂微...
剑曼红尘 2020-07-06 11:19:50 0 浏览量 回答数 0

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

回答

可以这样回答:emmm 怎么说呢。 数据库就是用来存储数据的仓库,就像我们生活中存放物品的容器一样,但是容器也有通用和专用之分,比如塑料袋就是通用容器,因为塑料袋可以装各种东西:即可以装糖果,也可以装铅笔。但我们也可以选择一种更合适的存储方式:用糖果盒来装糖果,用笔筒来装铅笔。糖果盒和笔筒就是专用容器。数据和物品一样,也可以采用通用或者专用的存储方式,各有利弊,SQL就是通用数据库,NoSQL就是专用数据库,这就是他俩的区别。 集合论与关系代数 可是为什么SQL可以做到通用呢?世界上的数据结构千千万,为啥SQL可以满足各种需求而且半个世纪都不过时? 虽然说唯一不变的就是变化,计算机行业一直在发生裂变,但是有些基本的东西是永远不变的,或者说变化很慢:当今世上最流行的编程语言JavaScript仍然遵守着60年前Lisp语言的标准,现代操作系统Windows,OSX,Linux都来自于共同祖先Unix。 数据库的发展也是一样,无论形式怎样变化,其本质都是围绕集合论与关系代数来设计的。基本理论决定一切,在软件行业只要掌握了基础数学理论,就掌握了一切变化的规律,这就是SQL永不过时的秘密。 一切都是线性表 软件学家认识到,整个计算机行业都是建立在对数据的一维利用上:无论是内存,外存还是网络,存储和传输的都是一维数据。一维数据也就是线性表,所有复杂的数据结构都建立在线性表之上,任何二维,三维的数据结构也是由线性表组成的。线性表俗称列表,从“人类本质是复读机”理论上看,世间万物都是由列表(集合)组成的。 在宇宙间,一个技术文明等级的重要标志,是它能够控制和使用的微观维度。对于基本粒子的一维使用,从我们那些长毛裸·体的祖先在山洞中生起篝火时就开始了,对化学反应的控制,就是在一维层次上操控微观粒子。当然,这种控制也是从低级到高级,从篝火到后来的蒸汽机,再到后来的发电机;现在,人类对微观粒子一维控制的水平已达到了顶峰,有了计算机和纳米材料。但这一切,都局限于对微观维度的一维控制,在宇宙间一个更高级的文明看来,篝火和计算机、纳米材料等等是没有本质区别的,同属于一个层次。 ------《三体I:地球往事》 科幻小说《三体》刘慈欣 基于这个理论(或者说世界观),集合论被拿来研究数据库了,比如我们数学课本上的集合要求集合的元素具有互异性和无序性:因为要互异,我们有了数据库的唯一性主键;因为要无序,数据库的排序就交给索引来做了。 集合论是数学本身的一个分支,数据库科学出现后,为了研究集合与集合之间的关系,衍生出了一门新的分支:关系代数。 关系代数研究的是二维线性表之间可以发生的各种操作,也就是表格语言,最基本的操作包括矩阵学中的水平分割和垂直分割:分别对应选择和投影。SQL(结构化查询语言)就是关系代数的一个实现,所以SQL数据库也叫关系数据库,关系代数和sql的对应关系如下图: 尽管SQL的语法一直饱受吐槽:凌乱而易引歧义,还不是很优雅。但由于SQL的数学基础很稳固,SQL才能够一直流行到现在。但并不是说NoSQL的基础不稳固,相反NoSQL是对具体结构做具体分析,NoSQL的数学基础往往更简单,更牢固。 表格与图表的统一 无论是表格还是各种统计图在数据上都是统一的,都是二维列表(也可以叫列表的列表),一个表格可以无损地转化成一个柱状图,折线图,雷达图,饼图。。。所以表格可以看成是一种特殊的图表。著名的前端框架ag-grid就是在这个理论上诞生的: 关系代数,SQL,NoSQL,线性表,统计图,表格,ag-grid这些研究的都是集合,都是列表,都是最本质,永恒不变的东西,所以才有那么多学者投入到这个永不过时的领域。 就这样啦~ mua! (完)
茶什i 2019-12-30 11:37:02 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失
问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

如何彻底消灭Bug?

提高缺陷响应力有助于提升软件质量,如果我们不能把Bug扼杀在摇篮里,就尽快干掉它,把它变为一个happy accident吧! 太长不读版 Why do programm...
问问小秘 2020-06-29 11:07:58 13 浏览量 回答数 2

回答

硬盘读写速度现在怎么都达不到千兆, ssd读也达不到。(特殊设备除外,貌似看到新闻说有实验室的产品读写速度可以过G) 不过可以采取,写入缓冲的方式,数据先保存在内存,再写入到硬盘,不过缺点怕掉电。 读的话,采取分布式的读,可以达到很高的吞吐量。 网络传输的话,问题在于怎么保证传输稳定和不出错######这对内存的要求很高啊,而且还不能耽误其他程序对内存的使用,这个内存我觉得应该很大吧###### 引用来自“十一文”的答案 硬盘读写速度现在怎么都达不到千兆, ssd读也达不到。(特殊设备除外,貌似看到新闻说有实验室的产品读写速度可以过G) 不过可以采取,写入缓冲的方式,数据先保存在内存,再写入到硬盘,不过缺点怕掉电。 读的话,采取分布式的读,可以达到很高的吞吐量。 网络传输的话,问题在于怎么保证传输稳定和不出错 这么说来, 在顺序存取方面 , 网络传输速度相对与硬盘 io 速度还是有优势的,不知道这么理解是否成立。 因为机放内部设备间千兆网卡很常见,传输速度相当快,并且成本相对硬盘少许多。 ######看贴不跟帖,帖子要沉了。需要顶。 无论对错。发表点个人观点也好。不能让它沉。 ###### "千兆网卡很常见", 這裡 “ 千兆” 是指1000M bits, 大概也就100M Bytes。 Intel SSD 520 Sequential Read 已经可高达550M Bytes per second, 顺序写可高达275M Bytes per second.######回复 @十一文 : 现在的HBA卡4G的已经很通用了,好像12G的都出来了,一般服务器都有好几个接口的,再来个负载均很啥的,网络传输不是问题######汗 查了哈 还真是这样。擦我out了!######网络允许帮定双网卡。所以,网络传输可以更快点,相对来说,速度提升技术性难度小点。 磁盘阵列是否回更好? 光线通讯用的网卡是否会更快点。 ###### 顺便提点应用。 是这样的, 排序在信息处理方面很常见。 无论用什么算法。都是在一个相对平等的环境中。 现实中应用,比如1g内容的排序和1T内容排序难点还是数据交换上。 1g可以全部加载进内存玩。1T就要涉及到信息交换了。如果一个系统界面,把存储信息部分扩展到近乎无限空间大小。 就好比内存数据交换比磁盘数据交换要快许多。 比如1T大小数据做排序。 只要一个设备顺序读取数据,按照开头部分把数据通过网络分发给N 台机器,处理除了开头部分数据,后面的数据排序。这样就可以N多设备协同工作。效率达到 1+1 > 2 的目的。 否则如果是1台设备需要 加载数据,排序, 临时存储, 加载另外数据,处理,临时存储,加载.... 汇总分结果,获得总结果。 1台设备这么处理,做了很多重复劳动。如果网络够快 多台设备 避免了重复加载。 达到 1+1>2######回复 @十一文 : 差不多的意思。######hadoop是把数据分成分成多个部分,每部分各自处理结果,然后汇总处理。即把你的1t的数据分成n份,然后每份分发给不同机器处理。然后汇总结果。不知道适用你的场景不?######貌似这中数据分析,现在流行用hadoop。楼主可以调研哈######这么说不好理解。形象一点说一下:假设有1000个数据样本,每个样本里有1T条数据内容。 一知每个样本内数据条目重复率为0.001%.目的,找出这1000个样本内,每个样本中重复的样本。并统计所有样本中重复的次数。 这个如果算复杂运算,不如说是大数据处理。 假设 每个设备 一次能加载1G条数据。######硬盘技术感觉好多年都在原地踏步没有质的飞跃啊###### @johnzhang68 毕竟转速有影响######磁性硬盘在容量方面还是有明显的飞跃。速度方面提高得慢一些。######或许未来,存储虚拟化是条路子。  数据处理和数据交互关系密切。 以数据处理为目的,建立多系统群集方式在处理上或许会比高计算系统群集更有优势。 ######又没落了。顶起 ######没有试过,关注一下######再看了哈貌似你真的很需要hadoop
kun坤 2020-06-07 22:18:40 0 浏览量 回答数 0

问题

软件测试工程师的6+1种技能

软件测试工程师是个神奇的职业,他是开发人员与老板之间的传话筒(三夹板),也是开发人员与老板的好帮手;他不仅需要有销售的沟通能力,也需要具备编辑人员的文档撰写...
技术小菜鸟 2019-12-01 21:19:53 2851 浏览量 回答数 1

问题

Apache Flink常见问题汇总【精品问答】

Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以...
黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

问题

搜索引擎背后的经典数据结构和算法 6月10日 【今日算法】

前言 我们每天都在用 Google, 百度这些搜索引擎,那大家有没想过搜索引擎是如何实现的呢,看似简单的搜索其实技术细节非常复杂,说搜索引擎是 IT 皇冠上的明珠也不为过,今天我们来...
游客ih62co2qqq5ww 2020-06-15 07:32:11 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)
小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)
小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。
玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/
佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

回答

转自DT财经 ,作者陷入焦虑的DT君 前两周播出的《明星大侦探—MGQ时尚风云》中,节目组设计了一个与中年危机相关的案件: 撒贝宁在这期节目中饰演一位40岁“上有老,下有狗”的杂志社时装编辑,虽然月入12w,但是每个月刨去房贷、车贷、儿子补习班费用、父母医疗保健费用以及各种家庭开支后,只能剩下1块钱。被主编无理辞退后,他由于年龄过大而迟迟找不到新工作,在家庭经济重担的支配下,对老板心生杀机…… 节目中的设定确实有些夸张,但剧本却是来源于真实生活的情绪。2019年“太南了”的一系列感叹中,充满了中年职场人的辛酸与苦涩。 微博上#35岁以上职场人去了哪儿#、#35岁定律#等话题屡屡冲上热搜,随便就能收获近亿的阅读量,知乎、朋友圈、头条……到处充斥着怎么应对35岁危机的回答和文章,“35岁危机”俨然已经成为一个大家公认的专有名词。 (图片说明:百度百科收录的“35岁危机”词条) 这让还未到35岁的小编,内心多少有些焦虑:35岁的职场人就业真有这么难吗?他们都面临着怎样的中年危机?难道除了卖保险,真的就无处可去了吗? DT财经联合智联招聘共同做了个小研究,通过招聘方与应聘者的数据,来看看35岁职场人真实的生存情况。 35岁真的很难吗? 首先,我们想知道,35岁真的面临一个更残酷的世界吗? 从人口结构的大盘面粗略判断,当代中年所面临的竞争,其实并不如他们的前辈或后辈那样激烈。 根据2010年国家第六次人口普查数据,到2019年我国34-43岁的中年人口数量为1.98亿,而44-53岁人口数量为2.42亿,24-33岁人口数量为2.27亿。 也就是说,不管是曾经的,还是未来的中年人,都比现在叫嚷着中年危机的劳动力数量旺盛不少,而他们所面临的,可并不是高速发展的黄金十年。 既然如此,为什么35岁危机的话题一直不绝于耳呢? 招聘方对岗位需求的描述,一定程度上能反映出职场的变幻风向。 从招聘需求来看,2019年第三季度所有的招聘岗位中,只有5%明确要求求职者的年龄低于35岁。 这个看起来并不高的比例,可能并不能完全说明市场的真实需求情况,毕竟从大家的日常吐槽和我们的小范围调研来看,许多公司对年龄的苛刻要求很多时候秉持着只干不说的原则,并不会明晃晃地写在岗位简介里。 但我们注意到一个变化趋势,明确要求求职者35岁以下的岗位比例,与两年前相比上涨了2个百分点,涨幅其实挺大的(60%)。这事实上表明,35岁职场人面临的境遇,确实是比两年前更难了些。 以这5%要求35岁以下的招聘职位作为研究样本,我们大致研究了下不同地方对中年职场人的友好度。 在各类企业中,要求35岁以下的职位比例最高的是国企,而民营公司在岗位要求中对35岁的求职者其实相对温和。 而从公司规模来看,规模越大的公司,要求35岁以下的职位比例就越高。10000人以上的超大公司在2017年就已超过6%;500-999人肩部大公司在两年前的比例还仅有2.1%,但两年间提高了近4个百分点至6%。 哪些行业更看重35岁的年龄线? 要求35岁以下的职位比例越来越高,其实与就业大环境和新兴行业的发展有关。 Linda在一家大数据创业公司做HR,她告诉小编:“这两年在招人的时候确实会优先选择35岁以下,甚至是30岁以下的年轻人,尤其是18年的裁员潮过后,大家其实都不好过。一般达到35岁的职场人在公司都担任比较重要的职务,而我们大数据属于新兴行业,公司的业务变化很快,在探索阶段并不需要那么多指挥官,我们更需要富有创造力、行动力强听指挥的战士。” Linda的话意味着,是否能在35岁前找到一家托付终身的企业至关重要。 可是,在35岁就找到能够让自己奋斗一生的公司,就和20岁就找到长相厮守的老伴一样不靠谱。这时候,选对行业很关键。 小编整理了2019年招聘需求中要求35岁以下职位比例最高和最低的行业。 我们发现,在众多行业中,银行、外包服务、中介服务、保险和通信行业对年龄的限制最大。也就是说,这些行业中有相对更多的岗位只需要年轻力壮的劳动力。 但也有计算机行业、检验检测、IT服务、学术科研和教育培训等行业,在招聘需求中对35岁以上的职场人相对比较宽容。 如果看一下这些行业给大家的固有印象,我们可以认为,在招聘中更看重35岁年龄线的行业,多属于大家印象中的传统行业;而在要求35岁以下职位比例最低的队伍中,新兴行业的比例会更高些。 从岗位来看,商超、保健、银行、房地产、社区等技术门槛较低的基础类岗位,在招聘中要求35岁以下的职位比例最高。 总结下来就是,工作内容更简单或对知识性技能要求更低的岗位,会更偏爱年轻人,毕竟人到中年,精力和体力都无法和年轻人相比。对于用人单位来说,与其去招一个成本更高的中年员工,不如多招几个应届大学生,年轻力壮,生产力更强。 而要求35岁以下职位比例最低的10个岗位中,IT、软件、硬件开发、IT管理、互联网产品、IT运维等互联网/技术岗位占去了大半,这都是对专业技术、创新性要求更高的行业岗位。至少从招聘需求来看,他们并不会太多强调年龄。 显然,这与我们的日常感受并不一致。 35岁话题中最常被吐槽的,恰好是这些不那么强调年龄的岗位从业者,而那些在招聘需求中有更多年龄限制的岗位,存在感并不太强。 这到底是为啥? 为什么35岁的你觉得“太南了” 我们需要明确的是,一个行业或岗位对年龄的限制少,并不意味着中年的求职者就会获得青睐。 35岁求职者的优势在于有更多经验与技能积累,而劣势在于体力和精力不够充沛,只有在更需要经验而非体力的岗位,中年职场人才会有更强的竞争力。 即使我们默认那些并没有对35岁划线的岗位都不需要干体力活,也并不意味着在这些岗位上,经验、积累和阅历就会有比较大的增值效果——如果年龄buff不能增效,用人单位自然会聘请更年轻、薪资要求更低的求职者。 所以,关键点在于,中年职场人是否进入了自己具备优势的行业。 根据智联招聘2019年第三季度的数据,互联网、房地产、教育培训、专业服务、计算机软件等行业,挤下了最多的35岁及以上求职者,而行政/后勤、销售业务、财务/审计/税务、人力资源和软件/互联网开发/系统集成等则是他们投递最多的职位。 我们计算了各个行业和岗位中简历投递数量与最终录用数量的比值,命名为竞争指数,以此来衡量应聘竞争的激烈程度。 我们发现,互联网、房地产、计算机软件、IT服务的行业竞争都格外激烈,而从职位来看,软件/互联网开发/系统集成的竞争指数更是一骑绝尘,97个人参与摸奖,只有1个人能获得offer,另外财务/审计/税务、人力资源、行政等职位的竞争指数也挺高。 这就意味着,上述岗位中,中年职场人不仅要和同龄人竞争,还要和年轻人竞争。 那么,在这些岗位中,中年职场人能获得年龄加成从而脱颖而出吗? 我们统计了各个职位要求工作经验10年以上的岗位数量,数量排名越靠前,则意味着这个职位对经验和阅历的需求度就更高,中年职场人也就相对更有优势。 从结果来看,要求工作经验10年以上岗位数量最多的职位主要可以分为两类,一类是管理向的,包括占比最多的高级管理,以及销售管理、生产管理、项目管理、质量管理等各类管理岗;一类是专业向的,包括土木建筑、财务审计、医院医疗、机械设计等等。 前面提到的竞争激烈的财务/审计/税务、人力资源和房地产相关职位,对工作经验的需求度都排在前列,中年职场人在这些赛道上握着更多本钱。 但相信你也注意到了,挤满了35岁以上求职者的互联网/IT/技术相关职位中,对于工作经验的需求度并没有那么高。虽然这是个典型的高薪赛道,但年龄并不会给中年求职者带来加成效果,如果薪资要求还比较高,实在很难竞争得过除了经验、什么都有的年轻人。 我们总结上述分析,被35岁危机困扰的核心问题可能在于,“理想”的薪资和岗位期望与“现实”竞争力存在分歧,而互联网、IT服务、计算机软件等行业的分歧更为严重。 38岁的陈斌曾经在一家互联网公司做新媒体运营,现在和朋友经营一家外贸公司,他也认同有些中年求职者理想与现实不匹配的问题:“见识过各行各业形形色色的中年求职者,他们对薪资的要求都很高,但被问到有什么核心竞争力的时候,又讲不出个所以然,对自己的未来也没有什么明确的规划。” 同样经历过35岁的他,认为并不存在什么35岁危机,没有能力每个年龄段其实都有危机:“足球运动员到了30岁一般都要大幅降薪,我觉得35岁的普通职场人应该要接受这个事实。你不接受,社会的毒打会让你清醒的。勿骄勿躁,努力提升自己,同时做好期望管理,少听媒体瞎bb。” 这话说得挺残酷,但从“35岁危机”中脱困的最好办法,确实是找到问题根本那个“理想”与“现实”的差距,实实在在地缩短它。 当然,对于已经有了家庭羁绊、要努力维持生活品质的中年人,这又是另外一个要不断感叹“太南了”的过程。 写到这里,我们突然想用《黄金时代》里的一段话作为结尾: “那一天我二十一岁,在我一生的黄金时代。我有好多奢望。我想爱,想吃,还想在一瞬间变成天上半明半暗的云。后来我才知道,生活就是个缓慢受锤的过程,人一天天老下去,奢望也一天天消失,最后变得像挨了锤的牛一样。可是我过二十一岁生日时没有预见到这一点。我觉得自己会永远生猛下去,什么也锤不了我。” (应受访者要求,Linda、陈斌为化名)
茶什i 2020-01-15 11:55:56 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT