• 关于

    处理器性能未响应

    的搜索结果

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

某政务网站性能优化

猫饭先生 2019-12-01 21:25:38 1412 浏览量 回答数 0

回答

在线程中使用 System.Windows.Forms.Timer 是不能触发 Tick 事件的,为什么?如何在线程中使用定时器呢?就看本文介绍。 一. System.Windows.Forms.Timer System.Windows.Forms.Timer 要求要有UI 消息泵, 所以通常只在主线程上使用. System.Windows.Forms.Timer 用于以用户定义的事件间隔触发事件。 Windows 计时器是为单线程环境设计的,其中,UI 线程用于执行处理。 它要求用户代码有一个可用的 UI 消息泵,而且总是在同一个线程中操作,或者将调用封送到另一个线程. 且看MSDN的用法解释: 实现在用户定义的时间间隔引发事件的计时器。此计时器最宜用于 Windows 窗体应用程序中,并且必须在窗口中使用。 二. System.Timers.Timer System.Timers.Timer 组件是基于服务器的计时器,它使您能够指定在应用程序中引发 Elapsed 事件的周期性间隔。 然后可以操控此事件以提供定期处理。例如,假设您有一台关键性服务器,必须每周 7 天、每天 24 小时都保持运行。 可以创建一个使用 Timer 的服务,以定期检查服务器并确保系统开启并在运行。如果系统不响应,则该服务可以尝试重新启动服务器或通知管理员。 基于服务器的 Timer 是为在多线程环境中用于辅助线程而设计的。 服务器计时器可以在线程间移动来处理引发的 Elapsed 事件,这样就可以比 Windows 计时器更精确地按时引发事件。 有关基于服务器的计时器的更多信息,请参见“基于服务器的计时器介绍”。 在 Visual Studio 和 .NET Framework 中有三种计时器控件:基于服务器的计时器(可以在“工具箱”的“组件”选项卡上看到)、基于 Windows 的标准计时器(可以在“工具箱”的“Windows 窗体”选项卡上看到)和线程计时器(只能以编程方式使用)。 基于 Windows 的计时器从 Visual Basic 1.0 版起就存在于该产品中,并且基本上未做改动。该计时器针对在 Windows 窗体应用程序中使用而进行了优化。 基于服务器的计时器是传统的计时器为了在服务器环境上运行而优化后的更新版本。 线程计时器是一种简单的、轻量级计时器,它使用回调方法而不是使用事件,并由线程池线程提供支持。 在 Win32 体系结构中有两种类型的线程:UI 线程和辅助线程。UI 线程绝大多数时间处于空闲状态,等待消息循环中的消息到来。 一旦接收到消息,它们就进行处理并等待下一个消息到来。另外,辅助线程用来执行后台处理而且不使用消息循环。 Windows 计时器和基于服务器的计时器在运行时都使用 Interval 属性。线程计时器的时间间隔在 Timer 构造函数中设置。 计时器的设计目的各不相同,它们的线程处理明确地指出了这一点: 1.Windows 计时器是为单线程环境设计的,其中,UI 线程用于执行处理。Windows 计时器的精度限定为 55 毫秒。 这些传统计时器要求用户代码有一个可用的 UI 消息泵,而且总是在同一个线程中操作,或者将调用封送到另一个线程。对于 COM 组件来说,这样会降低性能。 2.基于服务器的计时器是为在多线程环境下与辅助线程一起使用而设计的。由于它们使用不同的体系结构,因此基于服务器的计时器可能比 Windows 计时器精确得多。 服务器计时器可以在线程之间移动来处理引发的事件。 3.对消息不在线程上发送的方案中,线程计时器是非常有用的。例如,基于 Windows 的计时器依赖于操作系统计时器的支持,如果不在线程上发送消息,与计时器相关的事件将不会发生。 在这种情况下,线程计时器就非常有用。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:17:14 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1

问题

支付宝的性能测试

云效平台 2019-12-01 21:47:13 5472 浏览量 回答数 1

回答

根据Google Developer,Chromium项目里,渲染线程分为main thread和compositor thread。如果CSS动画只是改变transforms和opacity,这时整个CSS动画得以在compositor thread完成(而JS动画则会在main thread执行,然后触发compositor进行下一步操作)在JS执行一些昂贵的任务时,main thread繁忙,CSS动画由于使用了compositor thread可以保持流畅,可参考adobe的博客。在主线程中,维护了一棵Layer树(LayerTreeHost),管理了TiledLayer,在compositor thread,维护了同样一颗LayerTreeHostImpl,管理了LayerImpl,这两棵树的内容是拷贝关系。因此可以彼此不干扰,当Javascript在main thread操作LayerTreeHost的同时,compositor thread可以用LayerTreeHostImpl做渲染。当Javascript繁忙导致主线程卡住时,合成到屏幕的过程也是流畅的。为了实现防假死,鼠标键盘消息会被首先分发到compositor thread,然后再到main thread。这样,当main thread繁忙时,compositor thread还是能够响应一部分消息,例如,鼠标滚动时,加入main thread繁忙,compositor thread也会处理滚动消息,滚动已经被提交的页面部分(未被提交的部分将被刷白)。CSS动画比JS流畅的前提:在Chromium基础上的浏览器中JS在执行一些昂贵的任务同时CSS动画不触发layout或paint在CSS动画或JS动画触发了paint或layout时,需要main thread进行Layer树的重计算,这时CSS动画或JS动画都会阻塞后续操作。参考CSS Triggers,只有如下属性的修改才符合“仅触发Composite,不触发layout或paint”:backface-visibilityopacityperspectiveperspective-origintransfrom所以只有用上了3D加速或修改opacity时,才有机会用得上CSS动画的这一优势。因此,在大部分应用场景下,效率角度更值得关注的还是下列问题。是否导致layoutrepaint的面积是否是有高消耗的属性(css shadow等)是否启用硬件加速那么Chromium以外的其他浏览器呢?CSSTrick里比较了一次效率。Animated properties JS-based Animation更快 CSS-based Animation更快top, left, width, height Windows Surface RT, iPhone 5s (iOS7), iPad 3 (iOS 6), iPad 3 (iOS7), Samsung Galaxy Tab 2, Chrome, Firefox, Safari, Opera, Kindle Fire HD, IE11 (none)translate, scale Windows Surface RT, iPhone 5s (iOS7), iPad 3 (iOS7), Samsung Galaxy Tab 2, Firefox, Opera, IE11 iPad 3 (iOS6), Safari, Chrome可以看到,Chromium以外的其他浏览器没有这方面的CSS动画效率的优化。尽管MSDN提到“它可提供更好的呈现性能”,但测试并没有支持这一点。现今CSS动画和JS动画主要的不同点是功能涵盖面,JS比CSS3大定义动画过程的@keyframes不支持递归定义,如果有多种类似的动画过程,需要调节多个参数来生成的话,将会有很大的冗余(比如jQuery Mobile的动画方案),而JS则天然可以以一套函数实现多个不同的动画过程时间尺度上,@keyframes的动画粒度粗,而JS的动画粒度控制可以很细CSS3动画里被支持的时间函数非常少,不够灵活以现有的接口,CSS3动画无法做到支持两个以上的状态转化实现/重构难度不一,CSS3比JS更简单,性能调优方向固定对于帧速表现不好的低版本浏览器,CSS3可以做到自然降级,而JS则需要撰写额外代码CSS动画有天然事件支持(TransitionEnd、AnimationEnd,但是它们都需要针对浏览器加前缀),JS则需要自己写事件CSS3有兼容性问题,而JS大多时候没有兼容性问题

a123456678 2019-12-02 02:22:21 0 浏览量 回答数 0

回答

先说结论: 不要对接!不要对接!不要对接! 开个玩笑,以上仅代表个人观点,大家也知道这种“三体式警告”根本没有用的,我自己也研究如何对接,说不定做完后就觉得“真香”了。 为什么要对接? 首先讨论一下为什么要把 Flutter 对接到 Web 生态。 Flutter 现在是一个炙手可热的跨平台技术,能够一套代码运行在 Android、iOS、PC、IoT 以及浏览器上,被认为是下一代跨平台技术。相比于 Weex 和 React Native 可以很好地解决多平台一致性问题,原生渲染性能相近,上层没有 JS 那么厚的封装层次,整体性能会略好一些。 但是大部分兴冲冲去学 Flutter 的人疑惑的第一个问题就是:为什么 Flutter 要用 Dart?一个全新的语言意味着新的学习成本,难道 JS 不香吗?JS 不香不是还有 TypeScript 吗!事实上 Flutter 抛弃的岂止是 JS 这门语言,也抛弃了 HTML 和 CSS,设计了一套解耦得更好的 Widget 体系,Flutter 抛弃的是整个 Web,致力于打造一个新的生态,但是这个生态无法复用 Web 生态的代码和解决方案。尤其是之前所有跨平台方案 Hybrid、React Native、Weex 都是对接 Web 生态的,这让 Flutter 显得有些格格不入,也让大部分前端开发者望而却步。 下面是我整理出来的,前端开发者使用 Flutter 的各方面成本: 因为 Flutter 的开发模式和前端框架比较像(可以说就是抄的 React),所以框架的学习成本并不高,稍微高一些的是 Dart 语言的学习成本,另外还要学习如何用 Widget 组装 UI,虽然很多布局 Widget 设计得和 CSS 很像,灵活度还是差了很多。要想在真实项目中用起来,还要改造整个工具链,以“Native First”的视角做开发,开发 Flutter 和开发原生应用的链路是比较像的,和开发前端页面有较大差异。最高的还是生态成本,前端生态的积累无论是代码还是技术方案都很难复用,这是最痛的一点,生态也是 Flutter 最弱的一环。 无论是为了先进的技术理念还是出于商业私心,先不管 Flutter 为什么抛弃 Web 生态,现实问题是最大的 UI 开发者群体是前端,最丰富的生态是 Web 生态,我觉得 Web 技术也是开发 UI 最高效的方式。如果能在上层使用 Web 技术栈开发,在底层使用 Flutter 实现跨平台渲染,不是可以很好的兼顾开发效率、性能和跨平台一致性吗?还能复用 Web 技术栈大量的技术积累。 可能这些理由也不够充分,暂且先照着这个假设继续分析,最后再重新讨论到底该不该对接。 关于 Flutter 和 Web 生态的对接涉及两个方面: 从 Web 到 Flutter。就是使用 Web 技术栈来开发,然后对接到 Flutter 上实现跨平台渲染。对 Web 来说是解决性能和跨平台一致性问题,对 Flutter 来说是解决生态复用问题。从 Flutter 到 Web。就是官方已经实现的 Web support for Flutter,把已经用 Dart 开发好的 App 编译成 HTML/JS/CSS 然后运行在浏览器上,可以用于降级和外投场景。 如何实现“从 Web 到 Flutter”? 首先分析一下 Flutter 的架构图,看看可以从哪里下手。 Flutter 可以分为 Framework 和 Engine 两部分,Engine 部分比较底层也比较稳定了,最好不要动,需要改的是用 Dart 实现的 Framework。要想对接 Web 生态的话,JS 引擎肯定是要引入的,至于是否保留 Dart VM 有待讨论。图中最上面 Material 和 Cupertino 两个 UI 库前端是不需要的,前端有自己的。关键是 Widget 这部分,是替换成 HTML/CSS 的方式写 UI,还是继续保留 Widget 但是把语言换成 JS,不同方案给出的解法也不一样。 有不少方案可以实现对接,业界有挺多尝试的,我总结了下面三种方式: - TS 魔改:用 JS 引擎替换掉 Dart VM,用 JS/TS 重新实现 Flutter Framework(或者直接 dart2js 编译过来)。 - JS 对接:引入 JS 引擎同时保留 Dart VM,用前端框架对接 Flutter Framework。 - C++ 魔改:用 JS 引擎替换掉 Dart VM,用 C++ 重新实现 Flutter Framework。 TS 魔改 TS 魔改就是完全抛弃掉 Dart VM,用 TypeScript 重新实现一遍用 Dart 写的 Flutter Framework。 为啥是 TS 而不是 JS?这不是因为 TS 是个大热门嘛,而且向下兼容 JS,现在几乎所有时髦的框架都要用 TS 重写了。 这种方案的出发点是“如果能把 Flutter 的 Dart 换成 JS 就好了”,最容易想到的路就是把 Dart 翻译成 TS,或者直接用 dart2js 把代码编译成 js,但是编译出来的代码包含很多 dart:ui 之类的库的封装,生成的包也挺大的,也比较难定制需要导出的接口,不如干脆用 TS 重写一遍,工具链更熟悉一些,还可以加一些定制。 理论上讲翻译之后 Flutter 绝大部分功能都依然支持,可以复用各种 npm 包,还可以动态化,但是丧失了 AOT 能力,JS 语言的执行性能应该是不如 Dart 的。而且所有节点的布局运算都发生在 JS,底层只需要提供基础的图形能力就好了,就好像是基于 Canvas API 写了一套 UI 框架,性能未必有现存前端框架的性能高。 此外最大的问题是如何与官方 Flutter 保持一致,假如现在是从 v1.13 版本翻译过来的,以后官方升级到了 v1.15 要不要同步更新?这个过程没啥技术含量,而且需要持续投入,做起来比较恶心。 另外还需要考虑上层是用 Widget 的方式写 UI,还是用前端熟悉的 HTML+CSS。如果依然用 Widget 的话,那大部分前端组件还是用不了的,UI 还是得重写一遍。反正要重写的话,成本也没降下来,那就用 Dart 重写呗…… 直接用官方原版 Flutter 也避免每次更新都要翻译一遍 Dart 代码。所以既然选择了对接前端生态,那就要对接 CSS,不然就没有足够的价值。然而 CSS 和 Widget 的对接也是很繁琐的过程,而且存在完备性问题。 JS 对接 翻译代码的方式不够优雅,那就保留 Dart,把 JS/CSS 对接到 Widget 上面不就好了? 当然可以,这种方式是仅把 Flutter 当做了底层的渲染引擎,上层保持前端框架的写法,仅把渲染部分对接到 Flutter。现存的很多前端框架都把底层渲染能力做了抽象,可以对接到不同渲染引擎上,如 Vue/Rax 同时支持浏览器和 Weex,用同样的方式,可以再支持一个 Flutter。 这种方式对前端框架的兼容性比较好,但是链路太长了,业务代码调用前端框架接口做渲染,一顿操作之后发出了渲染指令,这个渲染指令要基于通信的方式传给 Flutter Framework,这中间涉及一次 JS 到 C++ 再到 Dart 的跨语言转换,然后再接收到渲染指令之后还要转成相应的 Widget 树,从 CSS 到 Widget 的转换依然很繁琐。而且 Widget 本身是可以带有状态的,本身就是响应式更新的,在更新时会重新生成 widget 并 diff,如果在前端更新 UI 的话,前端框架在 js 里 diff 一次 vdom,传到 Flutter 之后又 diff 一次 widget。 如果要绕过 Widget 直接对接图中的 Rendering 这一层,可以绕过 widget diff 但是得改 Flutter Framework 的渲染链路,既然要改 Flutter Framework 那为什么不直接用 TS 魔改呢,还绕过了 JS 到 Dart 的通信,又回到了第一种方案。 总结来说,这个方案的优点是:实现简单、能最大化保留前端开发体验,缺点是:渲染链路长、通信成本高、响应式逻辑冲突、CSS 转 Widget 不完备等。 C++ 魔改 想要干掉 Dart VM,就需要用其他语言重新实现用 Dart 开发的 Framework,用 JS/TS 可以,用 C++ 当然可以,最硬核的方式就是用 C++ 重新实现 Flutter 的 Framework,然后接入 JS 引擎,通过 binding 把 C++ 接口透出到 JS 环境,上层应用还是用 JS 做开发。 把 Framework 层下沉到 C++ 之后,不仅会有更好的性能,也能支持更多语言。原本 Flutter Framework 是在 Dart VM 之上的,必须依赖 Dart VM 才能运行,所以对 Dart 有强依赖;用 C++ 重新实现之后,JS 引擎是在 C++ 版 Framework 之上的,框架本身并不依赖 JS 引擎,还可以对接其他各种语言,如对接了 JVM 之后可以支持 Java 和 Kotlin,对接回 Dart VM 可以继续支持 Dart。 这个方案可以增强性能,也能保持和 Flutter 的一致性,但是改造成本和维护成本都相当高。C++ 的开发效率肯定不如 Dart,当 Flutter 快速迭代之后如何跟进是很大的问题,如果跟进不及时或者实现不一致那很可能就分化了。从 CSS 到 Widget 的转换也是不得不面对的问题。 几种方案对比 把上面几种方案画在同一张图里是这个样子的: 图中实线部分表示了跨语言的通信,太过频繁会影响性能,虚线部分表示了其他对接可能性。 从下到上,Flutter Engine 是不需要动的,这一层是跨平台的关键。Framework 则有三种语言版本,JS/TS、Dart、C++,性能是 C++ 版本最好,成本是 Dart 版本最低。然后还需要向上处理 HTML/CSS 和 Widget 的问题,可以直接对接一个前端框架,也可以直接在 C++ 层实现(不然需要透出的 binding 接口就太多了,用通信的方式也太过频繁了)。 如何实现“从 Flutter 到 Web”? 这个功能官方已经实现了,可以把使用 Dart 开发的 App 编译成 Web App 运行在浏览器上,官方文档以介绍用法和 API 为主,我这里简单分析一下内部具体的实现方案。 实现原理 结合 Flutter 的架构图来看,要实现 Web 到 Flutter 需要改造的是上层 Framework,要实现 Flutter 到 Web 需要改造的则是底层 Engine。 Framework 对 Engine 的核心依赖是 dart:ui,这是库是在 Engine 里实现的,抽象出了绘制 UI 图层的接口,底层对接 skia 的实现,向上透出 Dart 语言的接口。这样来看,对接方式就比较简单了: 使用 dart2js 把 Framework 编译成 JS 代码。基于浏览器的 API 重新实现 dart:ui,即 dart:web_ui。 把 Dart 编译成 JS 没什么问题,性能可能会有一点影响,功能都是可以完全保留的,关键是 dart:web_ui 的实现。在原生 Engine 中,dart:ui 依赖 skia 透出的 SkCanvas 实现绘制,这是一套很底层的图形接口,只定义了画线、画多边形、贴图之类的底层能力,用浏览器接口实现这一套接口还是很有挑战的。上图可以看到 Web 版 Engine 是基于 DOM 和 Canvas 实现的,底层定义了 DomCanvas 和 BitmapCanvas 两种图形接口,会把传来的 layer tree 渲染成浏览器的 Element tree,但是节点上仅包含了 position, transform, opacity 之类的样式,只用到 CSS 很小的一个子集,一些更复杂的绘制直接用 2D canvas 实现。 存在的问题 我编译了一个还算复杂的 demo 试了一下,性能很不理想,滑动不流畅,有时候图片还会闪动。生成出来的 js 代码有 1.1MB (minify 之后,未 gzip),节点层次也比较深,我评估这个页面用前端写不会超过 300KB,节点数可以少一半以上。 另外再看一下 Flutter 仓库的 issue,过滤出 platfrom-web 相关的,可以看到大量:文字编辑失效、找不到光标、ListView 在 ios 上不可滚动、checkbox/button 行为不正常、安卓滚动卡顿图片闪烁、字体失效、某些机型视频无法播放、文字选中后无法复制、无法调试…… 感觉 flutter for web 已经陷入泥潭,让人回想起前端当年处理各种浏览器兼容性的噩梦。 这些性能和兼容性问题,核心原因是浏览器未暴露足够的底层能力,以及浏览器处理手势、用户输入和方式和 Flutter 差异巨大。 实现 Flutter Engine 需要的是底层的图形接口和系统能力,虽然canvas 提供了相似的图形接口,如果全部用 canvas 实现的话很难处理可访问性、文本选择、手势、表单等问题,也会存在很多兼容性问题。所以真实方案里用的是 Canvas + DOM 混合的方式,封装层次太高了,渲染链路太长。就好像 Flutter Framework 里进行了一顿猛如虎的操作之后,节点生成好了、布局算好了、绘制属性也处理好了,就差一个画布画出来了,然后交到浏览器手里,又生成一遍 Element,再算一遍布局,在处理一遍绘制,最终才交给了底层的图形库画出来。 再比如长页面的滚动,浏览器里只要一条 CSS (overflow:scroll) 就可以让元素可滚动,手势的监听以及页面的滚动以及滚动动画都是浏览器原生实现的,不需要与 JS 交互,甚至不需要重新 layout 和 paint,只需要 compositing。如上图所示,在 Flutter 中 Animation 和 Gesture 是用 Dart 实现的,编译过来就是 JS 实现的,浏览器本身并不知道这个元素是否可滚,只是不断派发 touchmove 事件,JS 根据事件属性计算节点偏移,然后运算动画,然后把 transform 或者新的 position 作用到节点上,然后浏览器再来一遍完整的渲染流程…… 优化方案 性能和兼容性的问题还是要解决的,短期内先把 issue 解掉,长线的优化方案,官方有两种尝试: 使用 CSS Painting API 做绘制。 a, 这是还处于提案状态的新标准,可以用 JS 实现一些绘制功能,自定义 CSS 属性。 b. 目前还未实现,需要等浏览器先把 CSS Houdini 支持好。 使用 WebAssembly 版本的 Skia 做绘制 https://skia.org/user/modules/canvaskit a, 这样可以发挥 wasm 的性能优势,并且保持 skia 功能的一致。但是目前 wasm 在浏览器环境里未必有性能优势,这里不展开讨论了。 b. 已经部分实现,参考这里的配置启用功能: https://github.com/flutter/flutter/issues/41062#issuecomment-533952994 这两个方案都是想更多的利用到浏览器的底层能力,只有浏览器暴露了更多底层能力,才能更好的实现 Flutter 的 Web Engine。不过这个要等挺久的时间,我们也参与不了,现阶段想要使用 flutter for web,还是得保持现有架构,一起参与进去把 issue 解决掉,优先保障功能,其次优化性能。 一种适应性更好的架构 如果理想化一点,能不能从架构角度让 Flutter 和 Web 生态融合的更好一些呢? 回顾文章最开始的官方架构图,上面是 Framework(Dart),下面是 Engine(C++),切分在 Foundation 这一层,双方之间的交互是几何图形信息。如果还保持这个架构,把切分层次划分的更靠上一些,如下图所示,划分在 Widgets 和 Rendering 这一层,理论上讲对 Flutter 的开发者来说是无感知的,因为上层的开发语言和 Widget 接口都是不变的。 切分在这一层,Framework 和 Engine 之间的交互就不再是几何图形而是节点信息,Widget 的组合、setState 响应式更新、Widget diff 都还在 Dart 中,展开后的 RenderObject 的布局、绘制、裁剪、动画全都在 C++ 中,不仅有更好的性能,还可以与 Engine 有更好的结合。 或者说,还原本保留 Engine 的设计,把下沉的这部分逻辑上划分成 Renderer,就有了如下三层的结构: 这样划分出来的每一层都有明确的定位: Framework: 开发框架。为开发者提供可编程 API,实现响应式的开发模式,提供细粒度 Widget 供开发者自由封装和组合。Renderer: 渲染引擎。专门实现布局、绘制、动画、手势的的处理,这部分功能相对独立,是可以与开发框架解耦的,也不必与特定语言绑定。Engine: 图形引擎。实现跨平台一致的图形接口,合成输入的层并绘制到屏幕上,处理好平台力的接入和适配。 这样切分除了有性能优势以外,也使得渲染引擎摆脱了对 Dart 的依赖,能够支持多种语言,也能支持多种开发模式。对接到 Dart VM 就可以用 Dart 写代码,对接到 JS 引擎就可以用 JS 写代码,对接到 JVM 还可以写 Java,但是无论怎么写,底层的渲染能力是一样的,一套统一的布局算法,动画和手势的处理行为也是一致的。 在这样的架构下,对接 Web 生态就更容易了。Dart 和 Widget 是前端不想要的,希望能换成 JS 和 CSS,但是又想要底层的跨平台一致渲染引擎,那从 Renderer 层开始对接就好了,绕过了所有不想要的,也保留了所有想要的。 要实现 Flutter for Web 也更简单了一些。在 Engine 层做对接,一直苦于浏览器透出的底层能力不够,如果是在 Renderer 之上做对接就更容易一些,基于 JS/CSS/DOM/Canvas 的能力封装出一套 Rendering 接口,供 Widget 调用就好了,这样可以使渲染链路更短一些,但是依然要处理 Widget 和 DOM/CSS 之间的兼容性问题。 再讨论一遍:为什么要对接? 技术上已经分析完了,要想搞定 Flutter 生态和 Web 生态的对接,需要投入很大的成本,所以真正决定做之前,要先讨论清楚为什么要做对接?到底要不要做对接? 首先 Google 官方对 Flutter 的定位就是个问题。Flutter 设计之初就是不考虑 Web 生态的,甚至在刻意回避,倡导的是更贴近原生的开发方式。我之所以在开头说不要对接,原因也很简单:两种技术设计理念不同,不是朝着一个方向发展的,生态不通,技术方案不通,强行融合很可能让彼此都丧失了优势。但是业界又有很多团队在做这种尝试,说明需求是存在的,如果 Google 抵制这个方向,那就不好做了。不过现在官方已经支持了 Flutter for Web,已经向 Web 生态迈了一步,未来是否进一步与 Web 融合,也是有可能的。 另外就是跨平台技术本身的问题,浏览器发展了二三十年,已经是个很强大的跨平台产品了,几乎是 Web 的代名词了,这一点无人能敌。但是也臃肿不堪,有大量历史包袱,性能和体验不够好,和 Native 的结合度差,尤其在移动和 IoT 平台。虽然硬件性能在不断提升,但这是所有软件共享的,浏览器的性能和体验总会比 Native 差一些,差的这一些很可能就是新业务和新场景的发挥空间。观察一下近几年新诞生的业务场景,很多都是利用到了 Native 新提供的能力才火爆起来的,如 AI/AR/ 视频 / 直播 等,有因为新的 Web API 而孵化生出来的商业模式吗? 原文链接: https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650405725&idx=1&sn=0b7476f7c7c01df7fdafda578f9ceb98&chksm=83953345b4e2ba53917ac30b709c07be15bd1c2fd5ae2a8ecfbb129b3813f771621b8fac95ca&scene=27#wechat_redirect

剑曼红尘 2020-03-10 09:54:40 0 浏览量 回答数 0

回答

错误代码651意思为您的调制解调器(或其它连接设备)报告了一个错误。既未找到指定的端口。解决办法:1、远程访问记事簿文件和当前的“网络和拨号连接”配置可能不一致如果更改了通讯设备(例如:串行口或调制解调器),请确保重新配置“网络和拨号连接”。如果错误仍然存在,请删除并重新创建“网络和拨号连接”。2、win7 错误代码651,路由能上,拨号上不了试一下:打开 windowssystem32logfileswmi,双击打开wmi再打开里面的RtBackup 会提示你需要管理员权限 继续 重启,即可修复。3、不行的话把wmi里的后缀为etl的文件删除包括RtBackup里的 重启4、如果上面的都不管用的话那尝试一下,禁用本地连接-关机-检查猫的所有插头拔下重插-拔下猫的电源插头-等待2分钟 之后插上插头-开机。5、最后一招先从别的能上网的系统的机子里复制下面这个文件 c:windowssystem32driversraspppoe.sys 来替换你电脑里的这个文件。宽带连接错误691(由于域上的用户名或密码无效而拒绝访问)/错误635(未知错误)的处理流程如下:(1)用户名密码填写错误(2)如果用户帐号密码填写无误,则进入下一步继续处理;建议重建拨号软件(如果不懂装拨号软件,可参考户重新):?如果重装拨号软件后正常,原因为“拨号软件丢失”;?如果重装拨号软件后故障依旧,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误691错误691真正意义上来讲:1:域上名出现错误,(用户名或密码输入错误)。2:服务器无反映,(机房用户端口错误,或帐号未被激活)。3:电话或宽带到期欠费造成。出现错误691的原因1.电信限制了你帐户使用数目,比如你这个帐户可以4个人用,现在4个人在用,你拨号就是错误6912.你在用完后没断开,至少服务器那边还是没断开,以为你还在用,和上面情况类似,所以错误691建议:每次关机的时候在宽带连接上右键,点断开出现错误691后不要一直死缠烂打拨号,等待个几分钟再试试,如果一直出现这种情况,拨打客服电话10010联通(10000电信/10050铁通),告诉工作人员你的电脑错误691上不了,然后她问“请问你的宽带编号多少”,告诉她你帐户,然后她有时问你开户的是谁,回答开户的是谁,然后过个几分钟她就会找人帮你搞定宽带连接错误691的解决办法之一解决ADSL莫名其妙的错误691问题工厂的办公室里有无线路由器,而家里新装了宽带,还没有买路由器,所以只跟哥共用一个ADSL帐号上网,一根网线在两台手提之间插来拔去的。但是让人郁闷的是,插在哥的手提上,都能连接上网络,可是插到我这台手提上总是提示错误691:用户名/密码错误。但是可以确定的是,我绝对没有把用户名或者密码输错,让我在拔号器与机子设置了好久也不行!!!郁闷......打10010询问,电信小姐坚持是我输错了,不是他们的问题。后来上网搜了一些相关的文章终于把问题解决了——原来电信把我的ADSL帐号和哥哥的提提网卡绑定了。解决方法如下:1、在大哥的手提机上运行(在“运行”中输入“cmd”可以调出命令行)中输入ipconfig/all命令,查看网络配置信息,找出本地连接里面的PhysicalAddress,记录下来。2、再进入我的本本中,进入设备管理器,在网络适配器里找到网卡,在网卡名称上用右键选择属性,进入“高级”选项卡,在左面的框中选中看到NetwotkAddress一项,选中右边的“值“,填入刚刚记录下来的MAC地址(不区分大小写,不要加“-”符号)即可。也许以后大家也会碰到,谨当学习!!!宽带连接错误623(找不到电话薄项目)步骤一:是否有防火墙或3721上网助手等软件,如有则建议退出(1)防火墙及3721上网助手后测试:如果故障解决,“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤二:指导用户检查网卡状态并拔插网线:(1)如果故障解决,故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:在条件具备情况下(有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议删除及,再重新后:(1)如果故障解决,为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:以上处理均无效或无法做简单的配合操作时,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告宽带连接错误678(远程计算机没响应):步骤一:检查MODEM信号灯是否正常,不正常重新启动modem。如果正常见步骤二。步骤二:询问用户是否有防火墙或3721上网助手等软件,如有则建议用户退出(1)防火墙及3721上网助手后测试:如果故障解决,故障原因为“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:指导用户检查网卡状态并拔插网线:(1)如果故障解决,则填写:故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:在条件具备情况下(用户有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议用户删除拨号软件及,再重新安装网卡驱动后安装拨号软件:(1)如果故障解决,则填写:故障现象为“拨号连接超时”,故障原因为“PC硬件问题”;(2)如果故障依旧存在,则进入步骤七继续处理;步骤五:判断MODEM后面电话线是否可用,分离器连接是否正确:(1)MODEM后连电话不能使用,而计费号的其他电话可以使用的,建议更换电话线,故障原因为“用户室内线故障”;(2)如果用户家计费号的所有电话都不可以使用的,则请拨打客服电话10010联通(10000电信/1005铁通)进行障碍申告。步骤六:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误645产生原因为拨号软件文件受损造成(常见于XP系统),处理流程如下:步骤一:在条件具备情况下(用户有拨号软件),建议重新装拨号软件:如果故障解决,故障原因为“用户软件问题”;如果故障依旧,则建议用户找电脑公司维修电脑系统,故障原因为“用户软件问题”;。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误720现象常见于XP系统,一般将系统重新启动,可拨多次,百分之九十都可以解决,处理流程如下:步骤一:建议将系统重新启动后再重新拨号上网:(1)如果故障解决,故障原因无(2)如果故障依旧,则建议用户还原系统或找电脑公司将系统格式化重装,重装后及时关闭系统自己更新功能。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误721(远程计算机没有响应)此现象多为USB接口Modem故障代码,可依据以下步骤进行处理:步骤一:判断MODEM信号灯是否同步,信号灯同步参照步骤二,信号灯不同步参照步骤三、四、五。步骤二:信号灯同步,则为用户协议选错(OA或OE),如若不行可电话10010联通(10000电信/10050铁通)进行申告步骤三:信号灯不同步,判断MODEM后面电话线是否可用,如果不能使用,而计费号的其他电话可以使用的,可建议用户自已换电话线,如果用户家计费号的所有电话都不可以使用的,如若不行可电话向客服电话10010联通(10000电信/10050铁通)进行申告。步骤四:检查分离器是否接反。宽带连接错误718现象,极少数为用户端问题:步骤一:建议首先重启计算机后拨号测试:(1)如果故障解决,故障原因无。(2)如果故障依旧或没法进行简单配合,可电话向客服电话10010联通(10000电信/10050铁通)进行障碍申告。字串5宽带连接错误734(PPP链接控制协议被终止)/错误735(请求的地址被服务器拒绝步骤一:建议重新启动电脑。步骤二:拨号软件出错,建议重装拨号软件,常见于XP系统的自带拨号。步骤三:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误769错误769:无法连接到指定目标。问题:这是指你电脑的网络设备有问题解决方法:打开“我的电脑”→“控制面版”→“网络连接”,查看本地连接的是否处在“禁用”状态,是的话只需双击本地连接,看到状态变为“已启用”即可。若是连本地连接都没有的话,那你的网卡100%有问题了——不是没装好就是坏了。请您联系您的电脑供应商,或者自己解决。也想每天收到这样的文章,免费关注微信号:FBI机密档案FBIsecrets长按英文复制。出现错误769的错误,大多数是网卡被禁用,启用即可!造成的原因一般为:用户的误操作或一些防火墙软件、计算机病毒引起的,很普遍。如果没有找到本地连接,一般是网卡的驱动程序丢了或计算机没有检测到网卡,可以重新安装即可错误原因:网卡被禁用解决方法:请您点击电脑右键,选择属性,再选择设备管理,再看网卡驱动程序情况,如果是个“x”说明网卡被禁用,点击右键激活网卡就可以解决。宽带连接错误769产生原因及解决方案宽带连接错误769产生原因通常,如果存在下列情况之一,您将收到错误769的信息:1.网络电缆已断开。2.调制解调器已禁用。3.调制解调器驱动程序已损坏。4.计算机上正在运行间谍软件,它妨碍了连接。5.Winsock需要得到修复。6.第三方防火墙软件阻止了连接。解决方案:要查找问题的原因,请按照下列步骤操作。步骤1:确保网络电缆已连接确保网络电缆分别连接到计算机和调制解调器。如果您的计算机连接到集线器或路由器,请确保将集线器或路由器连接到调制解调器的电缆已连接。步骤2:确保网络适配器已启用1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.右键单击“本地连接”图标。单击“启用”(如果该选项可用)。步骤3:重置调制解调器1.将从计算机到调制解调器的电缆断开连接。2.关闭调制解调器。如果调制解调器没有电源开关,请切断调制解调器的电源。3.等待两分钟。4.打开调制解调器,然后连接从计算机到调制解调器的电缆。步骤4:使用设备管理器,先卸载、然后重新安装调制解调器和驱动程序在按照这些步骤操作之前,您可能必须从硬件制造商那里下载网络适配器的最新驱动程序。1.单击“开始”,单击“运行”,键入sysdm.cpl,然后单击“确定”。2.单击“硬件”选项卡,单击“设备管理器”,然后找到“网络适配器”。3.展开“网络适配器”,然后右键单击网络适配器的图标。4.单击“卸载”,然后单击“确定”。在提示您删除与此设备相关联的文件的对话框中,单击“是”。5.重新启动计算机。或者,单击“操作”,然后单击“扫描检测硬件改动”。6.如果Windows找到设备但是没有识别它,您必须为网络适配器安装最新的驱动程序。步骤5:创建新的DSL或电缆连接1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.单击“网络任务”下的“创建一个新的连接”。当向导启动后,单击“下一步”。3.单击“连接到Internet”,然后单击“下一步”。4.单击“手动设置我的连接”,然后单击“下一步”。5.选择“用要求用户名和密码的宽带连接来连接”,然后单击“下一步”。6.执行其余的步骤。使用Internet服务提供商(ISP)提供的连接信息完成该向导。注意:您可能必须使用您的ISP提供的软件才能创建新的连接。步骤6:修复Winsock和TCP/IP1.单击“开始”,单击“运行”,键入netshwinsockreset,然后按Enter键。2.当命令提示符窗口闪烁时,请重新启动计算机。步骤7:临时卸载第三方防火墙某些第三方防火墙软件(如ZoneAlarm和NortonPersonal防火墙)在运行WindowsXPSP2的计算机上可能导致Internet连接问题。您可能必须临时卸载这些程序以测试计算机。要进行测试,仅禁用这些程序是不够的。请确保您有CD或安装文件以便可以稍后重新安装这些程序。如果问题是由这些程序导致的,则您可能必须与该程序的供应商联系,以获得关于设置该程序的帮助。注意:在删除第三方防火墙程序之前,您可能要验证启用了WindowsXP防火墙。百度百科上的一些:1、 错误代码718、619、691:属于帐号密码问题。A、用户输入帐号、密码时输错,让用户重新输入。B、 帐号到期,可去“IP综合系统”中查询帐号是否到期。C、帐号卡在网上:一般是用户下网时不断开网络连接或异常吊线所导致,可以让用户将猫和电脑的电源关闭10分钟以上再进行连接,一般可以解决。D、帐号被偷:与互联网项目部进行联系解决。2、 错误代码676:属于机房设备问题,可让用户连续多拨几次即可登陆。3、错误代码720:属于modem驱动设置不正确,主要为vpi、vci参数值设置不正确或者需要重新启动电脑。4、错误769: 此类错误原因是本地连接被用户禁用或者停用,主要出现在以太网猫的用户中,属于用户下网时错误断开网卡连接,造成网卡禁用,在“本地连接”中网卡启用即可。5、错误678:一般MODEM指示灯不正常,猫上的link灯闪烁(少数猫的link灯的英文标识为showtime),参照link不上的故障处理或让用户检查自身防火墙。如果MODEM指示灯正常,那故障的原因是电脑不能与MODEM建立连接,解决方法是将MODEM重启,如果还不行,最好重装系统,这种问题一般会长期出现。6、在Windows Vista Home Basic下经常会出现错误815.是网络端口问题.是由于网络供应商的网络断口连接性能.以及连接字段值不正确引起的.和系统一般无关再补个678:错误678,是宽带adsl拨号上网用户常常遇到的故障提示,简单地说就是网络不通了。宽带adsl拨号上网使用pppoe协议连接,通过电话线传输数据,使用adsl专用modem实现数据的调制解调,错误提示678的含义是,远程计算机无响应,意思是从计算机发出指令到网卡向外发送数据,包括电话线的传输,局端(电信局机房端)端子板的端口处理到返回数据到计算机的过程中数据传输出问题都会提示。解决方法1、首先确认adsl modem拨号正常,因为网卡自动获取的IP没有清除,所以再次拨号的时候网卡无法获取新的IP地址会提示678,操作方法是:关闭adsl modem,进入控制面板的网络连接右击本地连接选择禁用,5秒钟后右击本地连接选择启用,然后打开adsl modem拨号即可;2、如果第一步无效,则在关闭adsl modem的情况下,仍然禁用本地连接(网卡),重启计算机,然后启用本地连接(网卡),再打开adsl modem即可解决;3、如果上述步骤都无法解决,查看网卡灯是否亮,如果网卡灯不亮,参看派单知识库:“网卡灯不亮或经常不亮”的解决方案4、如果网卡灯正常1,2步无法解决则带领用户卸载网卡驱动,重装网卡驱动,如果用户xp系统按照:知识编号:9973,如何在WINXP下设置ADSL拨号连接 方法带领用户创建拨号连接,如果98系统建议用户安装Raspppoe软件或者EHERNET300软件连接即可。5、如果上述操作无效联系电信部门确认端口。6.adsl modem故障是主要原因。7.如果多台电脑使用路由器上网,可尝试将路由器拆除后连接Internt。若能顺利上网,则说明路由器故障,应排除路由器故障或更换新的路由器。8.如果是ADSL包年用户,在使用过程中如果出现这种情况,有可能是电话欠费,请咨询客户服务中心。有部分地区中国电信或中国联通用户,在电话欠费的情况下,电话可以打通,但是却无法上网,这时也有可能是电话欠费,因为现在部分地区的电信部门在用户电话欠费情况下,不是停止电话的使用,而是停止网络的使用。9.部分品牌Modem供电不足也容易造成错误67810.如果以上方法都不能解决您的问题,可以尝试一下adsl modem的reset按两三下再上试试。11.adsl modem设备损坏也会造成错误678,虽然从表面上看起来adsl modem运转正常,但是就是连接失败,笔者就曾遇到此类问题,最终换了一个新的adsl modem

独步清客 2019-12-02 00:44:12 0 浏览量 回答数 0

回答

错误代码651意思为您的调制解调器(或其它连接设备)报告了一个错误。既未找到指定的端口。解决办法:1、远程访问记事簿文件和当前的“网络和拨号连接”配置可能不一致如果更改了通讯设备(例如:串行口或调制解调器),请确保重新配置“网络和拨号连接”。如果错误仍然存在,请删除并重新创建“网络和拨号连接”。2、win7 错误代码651,路由能上,拨号上不了试一下:打开 windowssystem32logfileswmi,双击打开wmi再打开里面的RtBackup 会提示你需要管理员权限 继续 重启,即可修复。3、不行的话把wmi里的后缀为etl的文件删除包括RtBackup里的 重启4、如果上面的都不管用的话那尝试一下,禁用本地连接-关机-检查猫的所有插头拔下重插-拔下猫的电源插头-等待2分钟 之后插上插头-开机。5、最后一招先从别的能上网的系统的机子里复制下面这个文件 c:windowssystem32driversraspppoe.sys 来替换你电脑里的这个文件。宽带连接错误691(由于域上的用户名或密码无效而拒绝访问)/错误635(未知错误)的处理流程如下:(1)用户名密码填写错误(2)如果用户帐号密码填写无误,则进入下一步继续处理;建议重建拨号软件(如果不懂装拨号软件,可参考户重新):?如果重装拨号软件后正常,原因为“拨号软件丢失”;?如果重装拨号软件后故障依旧,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误691错误691真正意义上来讲:1:域上名出现错误,(用户名或密码输入错误)。2:服务器无反映,(机房用户端口错误,或帐号未被激活)。3:电话或宽带到期欠费造成。出现错误691的原因1.电信限制了你帐户使用数目,比如你这个帐户可以4个人用,现在4个人在用,你拨号就是错误6912.你在用完后没断开,至少服务器那边还是没断开,以为你还在用,和上面情况类似,所以错误691建议:每次关机的时候在宽带连接上右键,点断开出现错误691后不要一直死缠烂打拨号,等待个几分钟再试试,如果一直出现这种情况,拨打客服电话10010联通(10000电信/10050铁通),告诉工作人员你的电脑错误691上不了,然后她问“请问你的宽带编号多少”,告诉她你帐户,然后她有时问你开户的是谁,回答开户的是谁,然后过个几分钟她就会找人帮你搞定宽带连接错误691的解决办法之一解决ADSL莫名其妙的错误691问题工厂的办公室里有无线路由器,而家里新装了宽带,还没有买路由器,所以只跟哥共用一个ADSL帐号上网,一根网线在两台手提之间插来拔去的。但是让人郁闷的是,插在哥的手提上,都能连接上网络,可是插到我这台手提上总是提示错误691:用户名/密码错误。但是可以确定的是,我绝对没有把用户名或者密码输错,让我在拔号器与机子设置了好久也不行!!!郁闷......打10010询问,电信小姐坚持是我输错了,不是他们的问题。后来上网搜了一些相关的文章终于把问题解决了——原来电信把我的ADSL帐号和哥哥的提提网卡绑定了。解决方法如下:1、在大哥的手提机上运行(在“运行”中输入“cmd”可以调出命令行)中输入ipconfig/all命令,查看网络配置信息,找出本地连接里面的PhysicalAddress,记录下来。2、再进入我的本本中,进入设备管理器,在网络适配器里找到网卡,在网卡名称上用右键选择属性,进入“高级”选项卡,在左面的框中选中看到NetwotkAddress一项,选中右边的“值“,填入刚刚记录下来的MAC地址(不区分大小写,不要加“-”符号)即可。也许以后大家也会碰到,谨当学习!!!宽带连接错误623(找不到电话薄项目)步骤一:是否有防火墙或3721上网助手等软件,如有则建议退出(1)防火墙及3721上网助手后测试:如果故障解决,“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤二:指导用户检查网卡状态并拔插网线:(1)如果故障解决,故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:在条件具备情况下(有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议删除及,再重新后:(1)如果故障解决,为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:以上处理均无效或无法做简单的配合操作时,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告宽带连接错误678(远程计算机没响应):步骤一:检查MODEM信号灯是否正常,不正常重新启动modem。如果正常见步骤二。步骤二:询问用户是否有防火墙或3721上网助手等软件,如有则建议用户退出(1)防火墙及3721上网助手后测试:如果故障解决,故障原因为“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:指导用户检查网卡状态并拔插网线:(1)如果故障解决,则填写:故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:在条件具备情况下(用户有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议用户删除拨号软件及,再重新安装网卡驱动后安装拨号软件:(1)如果故障解决,则填写:故障现象为“拨号连接超时”,故障原因为“PC硬件问题”;(2)如果故障依旧存在,则进入步骤七继续处理;步骤五:判断MODEM后面电话线是否可用,分离器连接是否正确:(1)MODEM后连电话不能使用,而计费号的其他电话可以使用的,建议更换电话线,故障原因为“用户室内线故障”;(2)如果用户家计费号的所有电话都不可以使用的,则请拨打客服电话10010联通(10000电信/1005铁通)进行障碍申告。步骤六:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误645产生原因为拨号软件文件受损造成(常见于XP系统),处理流程如下:步骤一:在条件具备情况下(用户有拨号软件),建议重新装拨号软件:如果故障解决,故障原因为“用户软件问题”;如果故障依旧,则建议用户找电脑公司维修电脑系统,故障原因为“用户软件问题”;。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误720现象常见于XP系统,一般将系统重新启动,可拨多次,百分之九十都可以解决,处理流程如下:步骤一:建议将系统重新启动后再重新拨号上网:(1)如果故障解决,故障原因无(2)如果故障依旧,则建议用户还原系统或找电脑公司将系统格式化重装,重装后及时关闭系统自己更新功能。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误721(远程计算机没有响应)此现象多为USB接口Modem故障代码,可依据以下步骤进行处理:步骤一:判断MODEM信号灯是否同步,信号灯同步参照步骤二,信号灯不同步参照步骤三、四、五。步骤二:信号灯同步,则为用户协议选错(OA或OE),如若不行可电话10010联通(10000电信/10050铁通)进行申告步骤三:信号灯不同步,判断MODEM后面电话线是否可用,如果不能使用,而计费号的其他电话可以使用的,可建议用户自已换电话线,如果用户家计费号的所有电话都不可以使用的,如若不行可电话向客服电话10010联通(10000电信/10050铁通)进行申告。步骤四:检查分离器是否接反。宽带连接错误718现象,极少数为用户端问题:步骤一:建议首先重启计算机后拨号测试:(1)如果故障解决,故障原因无。(2)如果故障依旧或没法进行简单配合,可电话向客服电话10010联通(10000电信/10050铁通)进行障碍申告。字串5宽带连接错误734(PPP链接控制协议被终止)/错误735(请求的地址被服务器拒绝步骤一:建议重新启动电脑。步骤二:拨号软件出错,建议重装拨号软件,常见于XP系统的自带拨号。步骤三:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误769错误769:无法连接到指定目标。问题:这是指你电脑的网络设备有问题解决方法:打开“我的电脑”→“控制面版”→“网络连接”,查看本地连接的是否处在“禁用”状态,是的话只需双击本地连接,看到状态变为“已启用”即可。若是连本地连接都没有的话,那你的网卡100%有问题了——不是没装好就是坏了。请您联系您的电脑供应商,或者自己解决。也想每天收到这样的文章,免费关注微信号:FBI机密档案FBIsecrets长按英文复制。出现错误769的错误,大多数是网卡被禁用,启用即可!造成的原因一般为:用户的误操作或一些防火墙软件、计算机病毒引起的,很普遍。如果没有找到本地连接,一般是网卡的驱动程序丢了或计算机没有检测到网卡,可以重新安装即可错误原因:网卡被禁用解决方法:请您点击电脑右键,选择属性,再选择设备管理,再看网卡驱动程序情况,如果是个“x”说明网卡被禁用,点击右键激活网卡就可以解决。宽带连接错误769产生原因及解决方案宽带连接错误769产生原因通常,如果存在下列情况之一,您将收到错误769的信息:1.网络电缆已断开。2.调制解调器已禁用。3.调制解调器驱动程序已损坏。4.计算机上正在运行间谍软件,它妨碍了连接。5.Winsock需要得到修复。6.第三方防火墙软件阻止了连接。解决方案:要查找问题的原因,请按照下列步骤操作。步骤1:确保网络电缆已连接确保网络电缆分别连接到计算机和调制解调器。如果您的计算机连接到集线器或路由器,请确保将集线器或路由器连接到调制解调器的电缆已连接。步骤2:确保网络适配器已启用1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.右键单击“本地连接”图标。单击“启用”(如果该选项可用)。步骤3:重置调制解调器1.将从计算机到调制解调器的电缆断开连接。2.关闭调制解调器。如果调制解调器没有电源开关,请切断调制解调器的电源。3.等待两分钟。4.打开调制解调器,然后连接从计算机到调制解调器的电缆。步骤4:使用设备管理器,先卸载、然后重新安装调制解调器和驱动程序在按照这些步骤操作之前,您可能必须从硬件制造商那里下载网络适配器的最新驱动程序。1.单击“开始”,单击“运行”,键入sysdm.cpl,然后单击“确定”。2.单击“硬件”选项卡,单击“设备管理器”,然后找到“网络适配器”。3.展开“网络适配器”,然后右键单击网络适配器的图标。4.单击“卸载”,然后单击“确定”。在提示您删除与此设备相关联的文件的对话框中,单击“是”。5.重新启动计算机。或者,单击“操作”,然后单击“扫描检测硬件改动”。6.如果Windows找到设备但是没有识别它,您必须为网络适配器安装最新的驱动程序。步骤5:创建新的DSL或电缆连接1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.单击“网络任务”下的“创建一个新的连接”。当向导启动后,单击“下一步”。3.单击“连接到Internet”,然后单击“下一步”。4.单击“手动设置我的连接”,然后单击“下一步”。5.选择“用要求用户名和密码的宽带连接来连接”,然后单击“下一步”。6.执行其余的步骤。使用Internet服务提供商(ISP)提供的连接信息完成该向导。注意:您可能必须使用您的ISP提供的软件才能创建新的连接。步骤6:修复Winsock和TCP/IP1.单击“开始”,单击“运行”,键入netshwinsockreset,然后按Enter键。2.当命令提示符窗口闪烁时,请重新启动计算机。步骤7:临时卸载第三方防火墙某些第三方防火墙软件(如ZoneAlarm和NortonPersonal防火墙)在运行WindowsXPSP2的计算机上可能导致Internet连接问题。您可能必须临时卸载这些程序以测试计算机。要进行测试,仅禁用这些程序是不够的。请确保您有CD或安装文件以便可以稍后重新安装这些程序。如果问题是由这些程序导致的,则您可能必须与该程序的供应商联系,以获得关于设置该程序的帮助。注意:在删除第三方防火墙程序之前,您可能要验证启用了WindowsXP防火墙。百度百科上的一些:1、 错误代码718、619、691:属于帐号密码问题。A、用户输入帐号、密码时输错,让用户重新输入。B、 帐号到期,可去“IP综合系统”中查询帐号是否到期。C、帐号卡在网上:一般是用户下网时不断开网络连接或异常吊线所导致,可以让用户将猫和电脑的电源关闭10分钟以上再进行连接,一般可以解决。D、帐号被偷:与互联网项目部进行联系解决。2、 错误代码676:属于机房设备问题,可让用户连续多拨几次即可登陆。3、错误代码720:属于modem驱动设置不正确,主要为vpi、vci参数值设置不正确或者需要重新启动电脑。4、错误769: 此类错误原因是本地连接被用户禁用或者停用,主要出现在以太网猫的用户中,属于用户下网时错误断开网卡连接,造成网卡禁用,在“本地连接”中网卡启用即可。5、错误678:一般MODEM指示灯不正常,猫上的link灯闪烁(少数猫的link灯的英文标识为showtime),参照link不上的故障处理或让用户检查自身防火墙。如果MODEM指示灯正常,那故障的原因是电脑不能与MODEM建立连接,解决方法是将MODEM重启,如果还不行,最好重装系统,这种问题一般会长期出现。6、在Windows Vista Home Basic下经常会出现错误815.是网络端口问题.是由于网络供应商的网络断口连接性能.以及连接字段值不正确引起的.和系统一般无关再补个678:错误678,是宽带adsl拨号上网用户常常遇到的故障提示,简单地说就是网络不通了。宽带adsl拨号上网使用pppoe协议连接,通过电话线传输数据,使用adsl专用modem实现数据的调制解调,错误提示678的含义是,远程计算机无响应,意思是从计算机发出指令到网卡向外发送数据,包括电话线的传输,局端(电信局机房端)端子板的端口处理到返回数据到计算机的过程中数据传输出问题都会提示。解决方法1、首先确认adsl modem拨号正常,因为网卡自动获取的IP没有清除,所以再次拨号的时候网卡无法获取新的IP地址会提示678,操作方法是:关闭adsl modem,进入控制面板的网络连接右击本地连接选择禁用,5秒钟后右击本地连接选择启用,然后打开adsl modem拨号即可;2、如果第一步无效,则在关闭adsl modem的情况下,仍然禁用本地连接(网卡),重启计算机,然后启用本地连接(网卡),再打开adsl modem即可解决;3、如果上述步骤都无法解决,查看网卡灯是否亮,如果网卡灯不亮,参看派单知识库:“网卡灯不亮或经常不亮”的解决方案4、如果网卡灯正常1,2步无法解决则带领用户卸载网卡驱动,重装网卡驱动,如果用户xp系统按照:知识编号:9973,如何在WINXP下设置ADSL拨号连接 方法带领用户创建拨号连接,如果98系统建议用户安装Raspppoe软件或者EHERNET300软件连接即可。5、如果上述操作无效联系电信部门确认端口。6.adsl modem故障是主要原因。7.如果多台电脑使用路由器上网,可尝试将路由器拆除后连接Internt。若能顺利上网,则说明路由器故障,应排除路由器故障或更换新的路由器。8.如果是ADSL包年用户,在使用过程中如果出现这种情况,有可能是电话欠费,请咨询客户服务中心。有部分地区中国电信或中国联通用户,在电话欠费的情况下,电话可以打通,但是却无法上网,这时也有可能是电话欠费,因为现在部分地区的电信部门在用户电话欠费情况下,不是停止电话的使用,而是停止网络的使用。9.部分品牌Modem供电不足也容易造成错误67810.如果以上方法都不能解决您的问题,可以尝试一下adsl modem的reset按两三下再上试试。11.adsl modem设备损坏也会造成错误678,虽然从表面上看起来adsl modem运转正常,但是就是连接失败,笔者就曾遇到此类问题,最终换了一个新的adsl modem

独步清客 2019-12-02 00:44:12 0 浏览量 回答数 0

回答

错误代码651意思为您的调制解调器(或其它连接设备)报告了一个错误。既未找到指定的端口。解决办法:1、远程访问记事簿文件和当前的“网络和拨号连接”配置可能不一致如果更改了通讯设备(例如:串行口或调制解调器),请确保重新配置“网络和拨号连接”。如果错误仍然存在,请删除并重新创建“网络和拨号连接”。2、win7 错误代码651,路由能上,拨号上不了试一下:打开 windowssystem32logfileswmi,双击打开wmi再打开里面的RtBackup 会提示你需要管理员权限 继续 重启,即可修复。3、不行的话把wmi里的后缀为etl的文件删除包括RtBackup里的 重启4、如果上面的都不管用的话那尝试一下,禁用本地连接-关机-检查猫的所有插头拔下重插-拔下猫的电源插头-等待2分钟 之后插上插头-开机。5、最后一招先从别的能上网的系统的机子里复制下面这个文件 c:windowssystem32driversraspppoe.sys 来替换你电脑里的这个文件。宽带连接错误691(由于域上的用户名或密码无效而拒绝访问)/错误635(未知错误)的处理流程如下:(1)用户名密码填写错误(2)如果用户帐号密码填写无误,则进入下一步继续处理;建议重建拨号软件(如果不懂装拨号软件,可参考户重新):?如果重装拨号软件后正常,原因为“拨号软件丢失”;?如果重装拨号软件后故障依旧,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误691错误691真正意义上来讲:1:域上名出现错误,(用户名或密码输入错误)。2:服务器无反映,(机房用户端口错误,或帐号未被激活)。3:电话或宽带到期欠费造成。出现错误691的原因1.电信限制了你帐户使用数目,比如你这个帐户可以4个人用,现在4个人在用,你拨号就是错误6912.你在用完后没断开,至少服务器那边还是没断开,以为你还在用,和上面情况类似,所以错误691建议:每次关机的时候在宽带连接上右键,点断开出现错误691后不要一直死缠烂打拨号,等待个几分钟再试试,如果一直出现这种情况,拨打客服电话10010联通(10000电信/10050铁通),告诉工作人员你的电脑错误691上不了,然后她问“请问你的宽带编号多少”,告诉她你帐户,然后她有时问你开户的是谁,回答开户的是谁,然后过个几分钟她就会找人帮你搞定宽带连接错误691的解决办法之一解决ADSL莫名其妙的错误691问题工厂的办公室里有无线路由器,而家里新装了宽带,还没有买路由器,所以只跟哥共用一个ADSL帐号上网,一根网线在两台手提之间插来拔去的。但是让人郁闷的是,插在哥的手提上,都能连接上网络,可是插到我这台手提上总是提示错误691:用户名/密码错误。但是可以确定的是,我绝对没有把用户名或者密码输错,让我在拔号器与机子设置了好久也不行!!!郁闷......打10010询问,电信小姐坚持是我输错了,不是他们的问题。后来上网搜了一些相关的文章终于把问题解决了——原来电信把我的ADSL帐号和哥哥的提提网卡绑定了。解决方法如下:1、在大哥的手提机上运行(在“运行”中输入“cmd”可以调出命令行)中输入ipconfig/all命令,查看网络配置信息,找出本地连接里面的PhysicalAddress,记录下来。2、再进入我的本本中,进入设备管理器,在网络适配器里找到网卡,在网卡名称上用右键选择属性,进入“高级”选项卡,在左面的框中选中看到NetwotkAddress一项,选中右边的“值“,填入刚刚记录下来的MAC地址(不区分大小写,不要加“-”符号)即可。也许以后大家也会碰到,谨当学习!!!宽带连接错误623(找不到电话薄项目)步骤一:是否有防火墙或3721上网助手等软件,如有则建议退出(1)防火墙及3721上网助手后测试:如果故障解决,“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤二:指导用户检查网卡状态并拔插网线:(1)如果故障解决,故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:在条件具备情况下(有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议删除及,再重新后:(1)如果故障解决,为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:以上处理均无效或无法做简单的配合操作时,请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告宽带连接错误678(远程计算机没响应):步骤一:检查MODEM信号灯是否正常,不正常重新启动modem。如果正常见步骤二。步骤二:询问用户是否有防火墙或3721上网助手等软件,如有则建议用户退出(1)防火墙及3721上网助手后测试:如果故障解决,故障原因为“用户软件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤三:指导用户检查网卡状态并拔插网线:(1)如果故障解决,则填写:故障原因为“pc硬件问题”;(2)如果故障依旧存在,则进入下一步继续处理;步骤四:在条件具备情况下(用户有拨号软件、安装光盘(Win98要备有网卡驱动盘)建议用户删除拨号软件及,再重新安装网卡驱动后安装拨号软件:(1)如果故障解决,则填写:故障现象为“拨号连接超时”,故障原因为“PC硬件问题”;(2)如果故障依旧存在,则进入步骤七继续处理;步骤五:判断MODEM后面电话线是否可用,分离器连接是否正确:(1)MODEM后连电话不能使用,而计费号的其他电话可以使用的,建议更换电话线,故障原因为“用户室内线故障”;(2)如果用户家计费号的所有电话都不可以使用的,则请拨打客服电话10010联通(10000电信/1005铁通)进行障碍申告。步骤六:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误645产生原因为拨号软件文件受损造成(常见于XP系统),处理流程如下:步骤一:在条件具备情况下(用户有拨号软件),建议重新装拨号软件:如果故障解决,故障原因为“用户软件问题”;如果故障依旧,则建议用户找电脑公司维修电脑系统,故障原因为“用户软件问题”;。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误720现象常见于XP系统,一般将系统重新启动,可拨多次,百分之九十都可以解决,处理流程如下:步骤一:建议将系统重新启动后再重新拨号上网:(1)如果故障解决,故障原因无(2)如果故障依旧,则建议用户还原系统或找电脑公司将系统格式化重装,重装后及时关闭系统自己更新功能。步骤二:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误721(远程计算机没有响应)此现象多为USB接口Modem故障代码,可依据以下步骤进行处理:步骤一:判断MODEM信号灯是否同步,信号灯同步参照步骤二,信号灯不同步参照步骤三、四、五。步骤二:信号灯同步,则为用户协议选错(OA或OE),如若不行可电话10010联通(10000电信/10050铁通)进行申告步骤三:信号灯不同步,判断MODEM后面电话线是否可用,如果不能使用,而计费号的其他电话可以使用的,可建议用户自已换电话线,如果用户家计费号的所有电话都不可以使用的,如若不行可电话向客服电话10010联通(10000电信/10050铁通)进行申告。步骤四:检查分离器是否接反。宽带连接错误718现象,极少数为用户端问题:步骤一:建议首先重启计算机后拨号测试:(1)如果故障解决,故障原因无。(2)如果故障依旧或没法进行简单配合,可电话向客服电话10010联通(10000电信/10050铁通)进行障碍申告。字串5宽带连接错误734(PPP链接控制协议被终止)/错误735(请求的地址被服务器拒绝步骤一:建议重新启动电脑。步骤二:拨号软件出错,建议重装拨号软件,常见于XP系统的自带拨号。步骤三:以上处理均无效或用户无法做简单的配合操作,则请拨打客服电话10010联通(10000电信/10050铁通)进行障碍申告。宽带连接错误769错误769:无法连接到指定目标。问题:这是指你电脑的网络设备有问题解决方法:打开“我的电脑”→“控制面版”→“网络连接”,查看本地连接的是否处在“禁用”状态,是的话只需双击本地连接,看到状态变为“已启用”即可。若是连本地连接都没有的话,那你的网卡100%有问题了——不是没装好就是坏了。请您联系您的电脑供应商,或者自己解决。也想每天收到这样的文章,免费关注微信号:FBI机密档案FBIsecrets长按英文复制。出现错误769的错误,大多数是网卡被禁用,启用即可!造成的原因一般为:用户的误操作或一些防火墙软件、计算机病毒引起的,很普遍。如果没有找到本地连接,一般是网卡的驱动程序丢了或计算机没有检测到网卡,可以重新安装即可错误原因:网卡被禁用解决方法:请您点击电脑右键,选择属性,再选择设备管理,再看网卡驱动程序情况,如果是个“x”说明网卡被禁用,点击右键激活网卡就可以解决。宽带连接错误769产生原因及解决方案宽带连接错误769产生原因通常,如果存在下列情况之一,您将收到错误769的信息:1.网络电缆已断开。2.调制解调器已禁用。3.调制解调器驱动程序已损坏。4.计算机上正在运行间谍软件,它妨碍了连接。5.Winsock需要得到修复。6.第三方防火墙软件阻止了连接。解决方案:要查找问题的原因,请按照下列步骤操作。步骤1:确保网络电缆已连接确保网络电缆分别连接到计算机和调制解调器。如果您的计算机连接到集线器或路由器,请确保将集线器或路由器连接到调制解调器的电缆已连接。步骤2:确保网络适配器已启用1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.右键单击“本地连接”图标。单击“启用”(如果该选项可用)。步骤3:重置调制解调器1.将从计算机到调制解调器的电缆断开连接。2.关闭调制解调器。如果调制解调器没有电源开关,请切断调制解调器的电源。3.等待两分钟。4.打开调制解调器,然后连接从计算机到调制解调器的电缆。步骤4:使用设备管理器,先卸载、然后重新安装调制解调器和驱动程序在按照这些步骤操作之前,您可能必须从硬件制造商那里下载网络适配器的最新驱动程序。1.单击“开始”,单击“运行”,键入sysdm.cpl,然后单击“确定”。2.单击“硬件”选项卡,单击“设备管理器”,然后找到“网络适配器”。3.展开“网络适配器”,然后右键单击网络适配器的图标。4.单击“卸载”,然后单击“确定”。在提示您删除与此设备相关联的文件的对话框中,单击“是”。5.重新启动计算机。或者,单击“操作”,然后单击“扫描检测硬件改动”。6.如果Windows找到设备但是没有识别它,您必须为网络适配器安装最新的驱动程序。步骤5:创建新的DSL或电缆连接1.单击“开始”,单击“运行”,键入ncpa.cpl,然后单击“确定”。2.单击“网络任务”下的“创建一个新的连接”。当向导启动后,单击“下一步”。3.单击“连接到Internet”,然后单击“下一步”。4.单击“手动设置我的连接”,然后单击“下一步”。5.选择“用要求用户名和密码的宽带连接来连接”,然后单击“下一步”。6.执行其余的步骤。使用Internet服务提供商(ISP)提供的连接信息完成该向导。注意:您可能必须使用您的ISP提供的软件才能创建新的连接。步骤6:修复Winsock和TCP/IP1.单击“开始”,单击“运行”,键入netshwinsockreset,然后按Enter键。2.当命令提示符窗口闪烁时,请重新启动计算机。步骤7:临时卸载第三方防火墙某些第三方防火墙软件(如ZoneAlarm和NortonPersonal防火墙)在运行WindowsXPSP2的计算机上可能导致Internet连接问题。您可能必须临时卸载这些程序以测试计算机。要进行测试,仅禁用这些程序是不够的。请确保您有CD或安装文件以便可以稍后重新安装这些程序。如果问题是由这些程序导致的,则您可能必须与该程序的供应商联系,以获得关于设置该程序的帮助。注意:在删除第三方防火墙程序之前,您可能要验证启用了WindowsXP防火墙。百度百科上的一些:1、 错误代码718、619、691:属于帐号密码问题。A、用户输入帐号、密码时输错,让用户重新输入。B、 帐号到期,可去“IP综合系统”中查询帐号是否到期。C、帐号卡在网上:一般是用户下网时不断开网络连接或异常吊线所导致,可以让用户将猫和电脑的电源关闭10分钟以上再进行连接,一般可以解决。D、帐号被偷:与互联网项目部进行联系解决。2、 错误代码676:属于机房设备问题,可让用户连续多拨几次即可登陆。3、错误代码720:属于modem驱动设置不正确,主要为vpi、vci参数值设置不正确或者需要重新启动电脑。4、错误769: 此类错误原因是本地连接被用户禁用或者停用,主要出现在以太网猫的用户中,属于用户下网时错误断开网卡连接,造成网卡禁用,在“本地连接”中网卡启用即可。5、错误678:一般MODEM指示灯不正常,猫上的link灯闪烁(少数猫的link灯的英文标识为showtime),参照link不上的故障处理或让用户检查自身防火墙。如果MODEM指示灯正常,那故障的原因是电脑不能与MODEM建立连接,解决方法是将MODEM重启,如果还不行,最好重装系统,这种问题一般会长期出现。6、在Windows Vista Home Basic下经常会出现错误815.是网络端口问题.是由于网络供应商的网络断口连接性能.以及连接字段值不正确引起的.和系统一般无关再补个678:错误678,是宽带adsl拨号上网用户常常遇到的故障提示,简单地说就是网络不通了。宽带adsl拨号上网使用pppoe协议连接,通过电话线传输数据,使用adsl专用modem实现数据的调制解调,错误提示678的含义是,远程计算机无响应,意思是从计算机发出指令到网卡向外发送数据,包括电话线的传输,局端(电信局机房端)端子板的端口处理到返回数据到计算机的过程中数据传输出问题都会提示。解决方法1、首先确认adsl modem拨号正常,因为网卡自动获取的IP没有清除,所以再次拨号的时候网卡无法获取新的IP地址会提示678,操作方法是:关闭adsl modem,进入控制面板的网络连接右击本地连接选择禁用,5秒钟后右击本地连接选择启用,然后打开adsl modem拨号即可;2、如果第一步无效,则在关闭adsl modem的情况下,仍然禁用本地连接(网卡),重启计算机,然后启用本地连接(网卡),再打开adsl modem即可解决;3、如果上述步骤都无法解决,查看网卡灯是否亮,如果网卡灯不亮,参看派单知识库:“网卡灯不亮或经常不亮”的解决方案4、如果网卡灯正常1,2步无法解决则带领用户卸载网卡驱动,重装网卡驱动,如果用户xp系统按照:知识编号:9973,如何在WINXP下设置ADSL拨号连接 方法带领用户创建拨号连接,如果98系统建议用户安装Raspppoe软件或者EHERNET300软件连接即可。5、如果上述操作无效联系电信部门确认端口。6.adsl modem故障是主要原因。7.如果多台电脑使用路由器上网,可尝试将路由器拆除后连接Internt。若能顺利上网,则说明路由器故障,应排除路由器故障或更换新的路由器。8.如果是ADSL包年用户,在使用过程中如果出现这种情况,有可能是电话欠费,请咨询客户服务中心。有部分地区中国电信或中国联通用户,在电话欠费的情况下,电话可以打通,但是却无法上网,这时也有可能是电话欠费,因为现在部分地区的电信部门在用户电话欠费情况下,不是停止电话的使用,而是停止网络的使用。9.部分品牌Modem供电不足也容易造成错误67810.如果以上方法都不能解决您的问题,可以尝试一下adsl modem的reset按两三下再上试试。11.adsl modem设备损坏也会造成错误678,虽然从表面上看起来adsl modem运转正常,但是就是连接失败,笔者就曾遇到此类问题,最终换了一个新的adsl modem

独步清客 2019-12-02 00:44:11 0 浏览量 回答数 0

回答

1.阻塞与同步2.BIO与NIO对比3.NIO简介4.缓冲区Buffer5.通道Channel6.反应堆7.选择器8.NIO源码分析9.AIO1.阻塞与同步1)阻塞(Block)和非租塞(NonBlock):阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候阻塞:往往需要等待缞冲区中的数据准备好过后才处理其他的事情,否則一直等待在那里。非阻塞:当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回2)同步(Synchronization)和异步(Async)的方式:同步和异步都是基于应用程序私操作系统处理IO事件所采用的方式,比如同步:是应用程序要直接参与IO读写的操作。异步:所有的IO读写交给搡作系统去处理,应用程序只需要等待通知。同步方式在处理IO事件的时候,必须阻塞在某个方法上靣等待我们的IO事件完成(阻塞IO事件或者通过轮询IO事件的方式).对于异步来说,所有的IO读写都交给了搡作系统。这个时候,我们可以去做其他的事情,并不拓要去完成真正的IO搡作,当搡作完成IO后.会给我们的应用程序一个通知同步:阻塞到IO事件,阻塞到read成则write。这个时候我们就完全不能做自己的事情,让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大,参考:https://blog.csdn.net/CharJay_Lin/article/details/812598802.BIO与NIO对比block IO与Non-block IO1)区别IO模型 IO NIO方式 从硬盘到内存 从内存到硬盘通信 面向流(乡村公路) 面向缓存(高速公路,多路复用技术)处理 阻塞IO(多线程) 非阻塞IO(反应堆Reactor)触发 无 选择器(轮询机制)2)面向流与面向缓冲Java NIO和IO之间第一个最大的区别是,IO是面向流的.NIO是面向缓冲区的。Java IO面向流意味着毎次从流中读一个成多个字节,直至读取所有字节,它们没有被缓存在任何地方,此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的教据,需要先将它缓存到一个缓冲区。Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,霱要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数裾。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。3)阻塞与非阻塞Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。4)选择器(Selector)Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择"通道:这些通里已经有可以处理的褕入,或者选择已准备写入的通道。这选怿机制,使得一个单独的线程很容易来管理多个通道。5)NIO和BIO读取文件BIO读取文件:链接BIO从一个阻塞的流中一行一行的读取数据image | left | 469x426NIO读取文件:链接通道是数据的载体,buffer是存储数据的地方,线程每次从buffer检查数据通知给通道image | left | 559x3946)处理数据的线程数NIO:一个线程管理多个连接BIO:一个线程管理一个连接3.NIO简介在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。参考:链接image2.png | center | 851x3834.缓冲区Buffer缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:image3.png | center | 650x3681)其中的四个属性的含义分别如下:容量(Capacity):缓冲区能够容纳的数据元素的最大数量。这一个容量在缓冲区创建时被设定,并且永远不能改变。上界(Limit):缓冲区的第一个不能被读或写的元素。或者说,缓冲区中现存元素的计数。位置(Position):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。标记(Mark):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。2)Buffer的常见方法如下所示:flip(): 写模式转换成读模式rewind():将 position 重置为 0 ,一般用于重复读。clear() :compact(): 将未读取的数据拷贝到 buffer 的头部位。mark(): reset():mark 可以标记一个位置, reset 可以重置到该位置。Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、 IntBuffer 、 LongBuffer 、 ShortBuffer 。3)基本操作Buffer基础操作: 链接缓冲区分片,缓冲区分配,直接缓存区,缓存区映射,缓存区只读:链接4)缓冲区存取数据流程存数据时position会++,当停止数据读取的时候调用flip(),此时limit=position,position=0读取数据时position++,一直读取到limitclear() 清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。5.通道Channel通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。image4.png | center | 368x191在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:image5.png | center | 650x5171)使用NIO读取数据在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel读取到Buffer中 例子:链接 2)使用NIO写入数据使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel写入到Buffer中 例子:链接 6.反应堆1)阻塞IO模型在老的IO包中,serverSocket和socket都是阻塞式的,因此一旦有大规模的并发行为,而每一个访问都会开启一个新线程。这时会有大规模的线程上下文切换操作(因为都在等待,所以资源全都被已有的线程吃掉了),这时无论是等待的线程还是正在处理的线程,响应率都会下降,并且会影响新的线程。image6.png | center | 739x3362)NIOJava NIO是在jdk1.4开始使用的,它既可以说成“新IO”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:1.由一个专门的线程来处理所有的IO事件,并负责分发。2.事件驱动机制:事件到的时候触发,而不是同步的去监视事件。3.线程通讯:线程之间通过wait,notify等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。image7.png | center | 689x251注:每个线程的处理流程大概都是读取数据,解码,计算处理,编码,发送响应。7.选择器传统的 server / client 模式会基于 TPR ( Thread per Request ) .服务器会为每个客户端请求建立一个线程.由该线程单独负贵处理一个客户请求。这种模式带未的一个问题就是线程数是的剧增.大量的线程会增大服务器的开销,大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池线程的最大数量,这又带来了新的问题,如果线程池中有 200 个线程,而有 200 个用户都在进行大文件下载,会导致第 201 个用户的请求无法及时处理,即便第 201 个用户只想请求一个几 KB 大小的页面。传统的 Sorvor / Client 模式如下围所示:image8.png | center | 597x286NIO 中非阻塞IO采用了基于Reactor模式的工作方式,IO调用不会被阻塞,相反是注册感兴趣的特点IO事件,如可读数据到达,新的套接字等等,在发生持定率件时,系统再通知我们。 NlO中实现非阻塞IO的核心设计Selector,Selector就是注册各种IO事件的地方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件。image9.png | center | 462x408当有读或者写等任何注册的事件发生时,可以从Selector中获得相应的SelectionKey,同时从SelectionKey中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。使用NIO中非阻塞IO编写服务器处理程序,有三个步骤1.向Selector对象注册感兴趣的事件2.从Selector中获取感兴趣的事件3.根据不同事件进行相应的处理8.NIO源码分析Selector是NIO的核心epool模型1)SelectorSelector的open()方法:链接2)ServerSocketChannelServerSocketChannel.open() 链接9.AIOAsynchronous IO异步非阻塞IOBIO ServerSocketNIO ServerSocketChannelAIO AsynchronousServerSocketChannel

wangccsy 2019-12-02 01:46:51 0 浏览量 回答数 0

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

问题

优客服开源客服系统通信功能介绍 1.1   优客服功能? 400 报错

爱吃鱼的程序员 2020-06-03 16:49:27 2 浏览量 回答数 1

回答

更换服务器~100个是单服务器最大的负荷了你用的是镶嵌式的,要选择服务器机组的那种~刀片式服务器~然后oracl数据库支持分开安装。同步处理~ 你肯定买的是架式服务器~######装ORACLE服务器是刀片式的,6核至强 24G的内存 应该不是服务器瓶颈######oracl装在独立的一台服务器上的话,只支持小形企业和地、市级企业运行 你说的情况,可以理解你的数据量非常庞大,,有可能是省、国家级的数据量了~~ 让你单位给你单独开个服务器房间,更换服务器机柜然后购买刀片式服务器做服务器阵列机组~######数据量倒不会太大,一天1G不到,问题是很多存储过程的逻辑很复杂,一条线程调用存储过程,要等待很久才会返回,直接导致工作线程速度很慢,数据进入速度太快,工作异常状态频繁出现。######必须要实时的存入数据库吗?不能先缓存到服务器,然后让服务器慢慢去处理吗?或者直接将数据记入日志,然后sqlload?######回复 @xinzaibing : 我想到一个蛋疼的方式:数据写文件,文件内容定期入库,程序定期读取数据库计算的结果缓存到内存中。不知道你具体需求,瞎琢磨一个。######回复 @asdfsx : 公司领导一致认为内存不可靠,断电、程序异常什么的...存在内存的数据就没了...真是蛋疼啊######回复 @xinzaibing : 如果数据量不大的话,还有一个方案就是都保存在内存里,然后定时把内存里的结果同步到数据库里。数据库的逻辑挪到程序里..........这个方案比较累啊。另外就是缓存可以加个优先级高低的判断。######目前要求是必须要实时入库,采取写日志文件的方法也可以。 这些数据有一个特点,在某一个时刻会有一个突然出现的峰值,然后又慢慢变少,但是这个时间是不固定的,由于只实用了一条双缓冲队列,所有需要紧急处理的数据和非紧急处理的数据都在队列里,而如果遇到非紧急数据,处理了很长的时间,就直接导致后面的紧急数据失效了...或者导致嵌入式程序判断服务端未收到数据,进而采取重发,导致一条队列里有非常多重复的数据。######我可能会使用数据写入日志文件,然后定时将日志入库的办法操作######大概意思可能是多线程对数据库表的操作导致数据表锁定,性能损失在内耗上了。。那数据表采用行级锁呢?(这样会增大系统开销)我是菜鸟,求教  ######回复 @xinzaibing : 这个应该是属于最初的设计问题,hohoho######回复 @asdfsx : 目前我也在往这方面考虑,如果数据分类处理。那就得大改结构了...唉######回复 @xinzaibing : 建议根据上传的不同数据进行不同的处理,不要一股脑的都放在缓存中,如果是心跳的话,应该立即响应,如果是要处理的数据的话,才需要进行缓存等待处理######ORACLE默认就是行级锁的应该.. 主要是数据的写入速度远远小于数据上传的速度,导致了缓存溢出,紧急数据不能得到及时处理,大量数据出现超时失效,无法对嵌入式的采集器程序作出及时的心跳相应和其他回复(因为都在队列中,无法处理,无心跳的话嵌入式采集器会误认为服务器断线)。最终导致单台服务器接入数据的嵌入式设备的数量太少,不满足需求。######去年刚毕业,由于公司小,一个人搞后台,压力太大啊...大家指指招呗~ @中山野鬼######今天到图书馆看了一本书《让Orcale跑的更快点》,上面说可以从如下几个方面优化: 数据库方面:建适当的索引,固定长度;查询条件比较尽量简化;不同的表放在不同的磁盘里…… 服务层:增大缓存,(有没有数据库连接池不知道你能用上不) 软件层:对Java使用PaperStatement 囫囵吞枣就记得这么多了。。。哭~~######非常感谢...我去看看这本书 :)######我不清楚你的数据采集的内容是什么。不过看的出,对实时性要求高。换我,基本上就一个思路。 1、做个前段服务器,什么事情都不干,只进行数据的压缩。然后所有数据库和计算操作,放到后端。 至于并发,你这种 1W=100台服务器的方式治标不治本。######@中山野鬼 是说对数据进行预处理,提取有效内容?还是就是zip?######回复 @asdfsx : 不一样的。而是数据压缩。采样数据中间,信息密度不会太大的。######老鬼的思路有点像我说的那个数据写日志文件,或者内存缓存定时入库...........都被否定了啊######@xinzaibing 还有一个建议,上传的数据加一个验证,如果上传的数据已经插入缓存,就不要再次插入了。无脑插入插到崩也不是什么好主意啊######回复 @asdfsx : 要回复的,要处理成功后才回复,存库失败或者某些异常导致服务端崩溃重启,就不进行回复,客户端会持续地进行重发,重发到一定次数后,存本地,等恢复正常后发送存本地的数据

kun坤 2020-06-09 11:56:38 0 浏览量 回答数 0

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

问题

怎样实现数据存储的管理维护

elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

回答

一、内存溢出类型 1、java.lang.OutOfMemoryError: PermGen space JVM管理两种类型的内存,堆和非堆。堆是给开发人员用的上面说的就是,是在JVM启动时创建;非堆是留给JVM自己用的,用来存放类的信息的。它和堆不同,运行期内GC不会释放空间。如果web app用了大量的第三方jar或者应用有太多的class文件而恰好MaxPermSize设置较小,超出了也会导致这块内存的占用过多造成溢出,或者tomcat热部署时侯不会清理前面加载的环境,只会将context更改为新部署的,非堆存的内容就会越来越多。 PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader时就会被放到PermGen space中,它和存放类实例(Instance)的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的应用中有很CLASS的话,就很可能出现PermGen space错误,这种错误常见在web服务器对JSP进行pre compile的时候。如果你的WEB APP下都用了大量的第三方jar, 其大小超过了jvm默认的大小(4M)那么就会产生此错误信息了。 一个最佳的配置例子:(经过本人验证,自从用此配置之后,再未出现过tomcat死掉的情况) set JAVA_OPTS=-Xms800m -Xmx800m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m 2、java.lang.OutOfMemoryError: Java heap space 第一种情况是个补充,主要存在问题就是出现在这个情况中。其默认空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。如果内存剩余不到40%,JVM就会增大堆到Xmx设置的值,内存剩余超过70%,JVM就会减小堆到Xms设置的值。所以服务器的Xmx和Xms设置一般应该设置相同避免每次GC后都要调整虚拟机堆的大小。假设物理内存无限大,那么JVM内存的最大值跟操作系统有关,一般32位机是1.5g到3g之间,而64位的就不会有限制了。 注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。 垃圾回收GC的角色 JVM调用GC的频度还是很高的,主要两种情况下进行垃圾回收: 当应用程序线程空闲;另一个是java内存堆不足时,会不断调用GC,若连续回收都解决不了内存堆不足的问题时,就会报out of memory错误。因为这个异常根据系统运行环境决定,所以无法预期它何时出现。 根据GC的机制,程序的运行会引起系统运行环境的变化,增加GC的触发机会。 为了避免这些问题,程序的设计和编写就应避免垃圾对象的内存占用和GC的开销。显示调用System.GC()只能建议JVM需要在内存中对垃圾对象进行回收,但不是必须马上回收, 一个是并不能解决内存资源耗空的局面,另外也会增加GC的消耗。 二、JVM内存区域组成 简单的说java中的堆和栈 java把内存分两种:一种是栈内存,另一种是堆内存 1。在函数中定义的基本类型变量和对象的引用变量都在函数的栈内存中分配; 2。堆内存用来存放由new创建的对象和数组 在函数(代码块)中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量所分配的内存空间;在堆中分配的内存由java虚拟机的自动垃圾回收器来管理 堆的优势是可以动态分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的。缺点就是要在运行时动态分配内存,存取速度较慢; 栈的优势是存取速度比堆要快,缺点是存在栈中的数据大小与生存期必须是确定的无灵活性。 java堆分为三个区:New、Old和Permanent GC有两个线程: 新创建的对象被分配到New区,当该区被填满时会被GC辅助线程移到Old区,当Old区也填满了会触发GC主线程遍历堆内存里的所有对象。Old区的大小等于Xmx减去-Xmn java栈存放 栈调整:参数有+UseDefaultStackSize -Xss256K,表示每个线程可申请256k的栈空间 每个线程都有他自己的Stack 三、JVM如何设置虚拟内存 提示:在JVM中如果98%的时间是用于GC且可用的Heap size 不足2%的时候将抛出此异常信息。 提示:Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。 提示:JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4。 默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。因此服务器一般设置-Xms、-Xmx相等以避免在每次GC 后调整堆的大小。 提示:假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。 简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制, 这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制了 提示:注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。 提示:设置NewSize、MaxNewSize相等,"new"的大小最好不要大于"old"的一半,原因是old区如果不够大会频繁的触发"主" GC ,大大降低了性能 JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64; 由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。 解决方法:手动设置Heap size 修改TOMCAT_HOME/bin/catalina.bat 在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行: JAVA_OPTS="-server -Xms800m -Xmx800m -XX:MaxNewSize=256m" 四、性能检查工具使用 定位内存泄漏: JProfiler工具主要用于检查和跟踪系统(限于Java开发的)的性能。JProfiler可以通过时时的监控系统的内存使用情况,随时监视垃圾回收,线程运行状况等手段,从而很好的监视JVM运行情况及其性能。 1. 应用服务器内存长期不合理占用,内存经常处于高位占用,很难回收到低位; 2. 应用服务器极为不稳定,几乎每两天重新启动一次,有时甚至每天重新启动一次; 3. 应用服务器经常做Full GC(Garbage Collection),而且时间很长,大约需要30-40秒,应用服务器在做Full GC的时候是不响应客户的交易请求的,非常影响系统性能。 因为开发环境和产品环境会有不同,导致该问题发生有时会在产品环境中发生,通常可以使用工具跟踪系统的内存使用情况,在有些个别情况下或许某个时刻确实是使用了大量内存导致out of memory,这时应继续跟踪看接下来是否会有下降, 如果一直居高不下这肯定就因为程序的原因导致内存泄漏。 五、不健壮代码的特征及解决办法 1、尽早释放无用对象的引用。好的办法是使用临时变量的时候,让引用变量在退出活动域后,自动设置为null,暗示垃圾收集器来收集该对象,防止发生内存泄露。 对于仍然有指针指向的实例,jvm就不会回收该资源,因为垃圾回收会将值为null的对象作为垃圾,提高GC回收机制效率; 2、我们的程序里不可避免大量使用字符串处理,避免使用String,应大量使用StringBuffer,每一个String对象都得独立占用内存一块区域; String str = "aaa"; String str2 = "bbb"; String str3 = str + str2;//假如执行此次之后str ,str2以后再不被调用,那它就会被放在内存中等待Java的gc去回收,程序内过多的出现这样的情况就会报上面的那个错误,建议在使用字符串时能使用StringBuffer就不要用String,这样可以省不少开销; 3、尽量少用静态变量,因为静态变量是全局的,GC不会回收的; 4、避免集中创建对象尤其是大对象,JVM会突然需要大量内存,这时必然会触发GC优化系统内存环境;显示的声明数组空间,而且申请数量还极大。 这是一个案例想定供大家警戒 使用jspsmartUpload作文件上传,运行过程中经常出现java.outofMemoryError的错误, 检查之后发现问题:组件里的代码 m_totalBytes = m_request.getContentLength(); m_binArray = new byte[m_totalBytes]; 问题原因是totalBytes这个变量得到的数极大,导致该数组分配了很多内存空间,而且该数组不能及时释放。解决办法只能换一种更合适的办法,至少是不会引发outofMemoryError的方式解决。 5、尽量运用对象池技术以提高系统性能;生命周期长的对象拥有生命周期短的对象时容易引发内存泄漏,例如大集合对象拥有大数据量的业务对象的时候,可以考虑分块进行处理,然后解决一块释放一块的策略。 6、不要在经常调用的方法中创建对象,尤其是忌讳在循环中创建对象。可以适当的使用hashtable,vector 创建一组对象容器,然后从容器中去取那些对象,而不用每次new之后又丢弃 7、一般都是发生在开启大型文件或跟数据库一次拿了太多的数据,造成 Out Of Memory Error 的状况,这时就大概要计算一下数据量的最大值是多少,并且设定所需最小及最大的内存空间值。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:21 0 浏览量 回答数 0

回答

1.启停止MongoDB 执行mongod,启MongoDB服务器mongod选项命令执行 mongod --help 主要选项: --dbpath 指定数据目录默认值C:\data\db每mongod进程都需要独立数据目录要3mongod 实例必须3独立数据目录mongod启数据库目录创建mongod.lock文件 文件用于防止其mongod纯净使用该数据目录 --port 指定服务器监听端口号默认端口27017.要运行mongod进程则要给每指定同端口号 --logpath 指定志输路径文件夹读写权限系统文件存创建已文件覆盖掉 清除所原志记录想要保留原志需使用--logappend选项 --config 指定配置文件加载命令行未指定各种选项 2.配置文件启 MongoDB支持文件获取配置信息.需要配置非或者要自化MongoDB启用. 指定配置文件用-f或--config选项. : mongod --config refactorConfig.txt refactorConfig.txt内容: #start MongoDB port = 10000 dbpath = "f:\mongo\db" logpath = "f:\mongo\log\MongoDB.txt" rest = true 配置文件命令行功能 mongod --dbpath "f:\mongo\db" --logpath "f:\mongo\log\MongoDB.txt" --rest --port 10000 配置文件特点: a.#行注释 b.指定选项语种"选项=值"形式.选项区写. c.命令行--rest关选项,值要设true 3.停止MongoDB 使用shutdown命令{"shutdown":1},命令要admin数据库使用.shell提供辅助函数: use admin db.shutdownServer() 4. 监控 使用管理接口,默认情况,启mongod启基本http服务器,该服务默认端口28017.浏览器输入 localhost:28017.些链接需要mongod启,用--rest选项启rest支持 才能进.启rest支持, mongod启使用--nohttpinterface关闭管理接口. 5.serverStatus 要获取运行MongoDB服务器统计信息,基本工具serverStatus命令 db.runCommand({"serverStatus":1}) serverStatus返键解释: "globalLock"值表示全局写入锁占用服务器少间(单位微秒) "mem"包含服务器内存映射少数据,服务器进程虚拟内存驻内存占用情况(单位MB) "indexCounters"表示B树磁盘检索("misses")内存检索("hits")数.比值始升,要考虑加内存. "backgroundFlushing"表示台做少fsync及用少间 "opcounters"文档包含每种主要操作数 "asserts"统计断言数 6.mongostat serverStatus虽强,服务器监控说容易.MongoDB提供mongostat mongostat输些serverStatus提供重要信息,每秒输新行,比前看静态数据实性要. 输列,别 inserts/s commands/s vsize %locked,与serverStatus数据相应. 使用第三插件进行数据库监控. 7.安全认证 认证基础知识 每MongoDB实例数据库都用户,启安全性检查,数据库认证用户才能执行读或写操作. 认证文,MongoDB普通数据作admin数据库处理.admin数据库用户称超级用户(管理员). 认证,管理员读写所数据库,执行特定管理命令,listDatabasesshutdown. 启安全检查前,至少要管理员帐号,shell连接没启安全检查服务器 面添加管理员refactor_root,test数据库添加两普通账号,其读权限.shell创建读用户要 addUser第三参数设true.调用addUser必须响应数据库写权限.所数据库调用addUser, 没启安全检查. 重启数据库,重启加入 --auth 命令行选项,启安全检查 第连接,能test数据库执行任何操作,作读用户认证,能查找,能插入数据.能读写用户认证,能查找插入 数据,能使用show dbs 列举所数据库.超级用户认证,所欲. 8.认证工作原理 数据库用户帐号文档形式存储system.users集合.文档结构 { "_id" : ObjectId("5006a037dff37e149322fd83"), "user" : "refactor_read_write", "readOnly" : false, "pwd" : "5a84584ac51d3f702461fce4c46b0d6b"//根据用户名密码散列 } 知道用户信息何存储及存储位置,进行管理工作. 删除帐户: > db.system.users.remove({"user":"refactor_read"}) > db.auth("refactor_read","refactor") 0 用户认证,服务器认证连接绑定跟踪认证,说驱程序或工具使用连接池或故障切换 另节点,所认证用户必须每新连接重新认证. MongoDB传输协议加密,需加密,用ssh隧道或者类似技术做客户端服务器间加密. 建议MongoDB服务器放防火墙或放应用服务器能访问网络.MongoDB必须能外面访问, 建议使用--bindip选项,指定mongod绑定本ip址.:能本机应用服务器访问,使用 mongod --bindip localhost 默认情况MongoDB启简单http服务器,便于查看运行,锁,复制等面信息,要想公些信息,用 --nohttpinterface关闭管理接口. 用--noscripting完全禁止服务端javascript执行 9.备份修复 MongoDB所数据都存放 数据目录 ,默认目录C:\data\db\.启MongoDB候用--dbpath指定数据目录. 论数据目录哪,都存放着MongoDB所数据.要想备份MongoDB,要简单复制数据目录所文件即. 除非服务器做完整fsync,允许写入,否则运行MongoDB创建数据目录副本并安全,备份能已经 破损,需要修复. 运行MongoDB创建数据目录副本并安全,所先服务器关,再复制数据目录.关闭数据库要停止业务. 10.mongodumpmongorestore mongodump种能运行备份.mongodump运行MongoDB做查询,所查文档写入磁盘. mongodump般客户端,所供运行MongoDB使用,即便处理其请求或执行写入没问题. mongodump使用普通查询机制,所产备份定服务器数据实快照.服务器备份程处理写入,非明显. mongodump备份查询其客户端性能产影响. mongodump --help 获帮助 mongorestore备份恢复数据工具. mongorestore获取mongodump 输结,并备份数据插入运行MongoDB实例. :数据库test备份backup目录 mongodump -d test -o backup 使用mongorestore 恢复testNew 数据库 mongorestore -d testNew --drop backup/test/ -d指定要恢复数据库.--drop指恢复前删除集合(若存),否则数据与现集合数据合并,能覆盖些文档. 使用mongorestore --help获帮助信息 11.fsync锁 虽使用mongodumpmongorestore能停机备份,却失获取实数据视图能力.MongoDBfsync命令 能MongoDB运行复制数据目录损坏数据. fsync命令强制服务器所缓冲区写入磁盘.选择锁住址数据库进步写入,知道释放锁止.写入锁让 fsync备份发挥作用关键. shell,强制执行fsync并获写入锁: db.runCommand({"fsync":1,"lock":1}) ,数据目录数据致,且数据实快照.锁,安全数据目录副本作备份.要数据库运行 快照功能文件系统,比LVM,EBS,用,拍数据库目录快照快. 备份,解锁: db.$cmd.sys.unlock.findOne() db.currentOp() 运行db.currentOp()确保已经解锁(初请求解锁花点间) fsync命令,能非灵备份,用停掉服务器,用牺牲备份实性能.要付代价些写入操作 暂阻塞.唯耽误读写能保证实快照备份式通服务器备份. 12.属备份 虽面备份式灵,都没服务器备份.复制式运行MongoDB,前面提备份技术仅能用 主服务器,用服务器.服务器数据几乎与主服务器同步.太乎属服务器性能或者能能读写, 于能随意选择面3种备份式:关停,转存或恢复工具或fsync命令.服务器备份MongoDB推荐备份式. 13.修复 MongoDB存储式能保证磁盘数据能用,能损毁.MongoDB内置修复功能试着恢复损坏数据文件. 未停止MongoDB应该修复数据库.修复数据库式简单 mongod --repair 启服务器. 修复数据库实际程简单:所文档导马导入,忽略效文档.完,重建索引.数据量,花间, 所数据都要验证,所索引都要重建(MongoDB 1.8 版本引入志系统,使修复间打打缩短). 修复能比修复前少些文档,损坏文档删除. 修复数据库能起压缩数据作用.闲置控件(删除体积较集合,或删除量文档腾空间)修复重新利用. 修复运行服务器数据库,要shell用repairDatabases. use test db.repairDatabase() 答案来源网络,供参考,希望对您有帮助 2.

问问小秘 2019-12-02 03:05:11 0 浏览量 回答数 0

回答

1.启停止MongoDB 执行mongod,启MongoDB服务器mongod选项命令执行 mongod --help 主要选项: --dbpath 指定数据目录默认值C:\data\db每mongod进程都需要独立数据目录要3mongod 实例必须3独立数据目录mongod启数据库目录创建mongod.lock文件 文件用于防止其mongod纯净使用该数据目录 --port 指定服务器监听端口号默认端口27017.要运行mongod进程则要给每指定同端口号 --logpath 指定志输路径文件夹读写权限系统文件存创建已文件覆盖掉 清除所原志记录想要保留原志需使用--logappend选项 --config 指定配置文件加载命令行未指定各种选项 2.配置文件启 MongoDB支持文件获取配置信息.需要配置非或者要自化MongoDB启用. 指定配置文件用-f或--config选项. : mongod --config refactorConfig.txt refactorConfig.txt内容: #start MongoDB port = 10000 dbpath = "f:\mongo\db" logpath = "f:\mongo\log\MongoDB.txt" rest = true 配置文件命令行功能 mongod --dbpath "f:\mongo\db" --logpath "f:\mongo\log\MongoDB.txt" --rest --port 10000 配置文件特点: a.#行注释 b.指定选项语种"选项=值"形式.选项区写. c.命令行--rest关选项,值要设true 3.停止MongoDB 使用shutdown命令{"shutdown":1},命令要admin数据库使用.shell提供辅助函数: use admin db.shutdownServer() 4. 监控 使用管理接口,默认情况,启mongod启基本http服务器,该服务默认端口28017.浏览器输入 localhost:28017.些链接需要mongod启,用--rest选项启rest支持 才能进.启rest支持, mongod启使用--nohttpinterface关闭管理接口. 5.serverStatus 要获取运行MongoDB服务器统计信息,基本工具serverStatus命令 db.runCommand({"serverStatus":1}) serverStatus返键解释: "globalLock"值表示全局写入锁占用服务器少间(单位微秒) "mem"包含服务器内存映射少数据,服务器进程虚拟内存驻内存占用情况(单位MB) "indexCounters"表示B树磁盘检索("misses")内存检索("hits")数.比值始升,要考虑加内存. "backgroundFlushing"表示台做少fsync及用少间 "opcounters"文档包含每种主要操作数 "asserts"统计断言数 6.mongostat serverStatus虽强,服务器监控说容易.MongoDB提供mongostat mongostat输些serverStatus提供重要信息,每秒输新行,比前看静态数据实性要. 输列,别 inserts/s commands/s vsize %locked,与serverStatus数据相应. 使用第三插件进行数据库监控. 7.安全认证 认证基础知识 每MongoDB实例数据库都用户,启安全性检查,数据库认证用户才能执行读或写操作. 认证文,MongoDB普通数据作admin数据库处理.admin数据库用户称超级用户(管理员). 认证,管理员读写所数据库,执行特定管理命令,listDatabasesshutdown. 启安全检查前,至少要管理员帐号,shell连接没启安全检查服务器 面添加管理员refactor_root,test数据库添加两普通账号,其读权限.shell创建读用户要 addUser第三参数设true.调用addUser必须响应数据库写权限.所数据库调用addUser, 没启安全检查. 重启数据库,重启加入 --auth 命令行选项,启安全检查 第连接,能test数据库执行任何操作,作读用户认证,能查找,能插入数据.能读写用户认证,能查找插入 数据,能使用show dbs 列举所数据库.超级用户认证,所欲. 8.认证工作原理 数据库用户帐号文档形式存储system.users集合.文档结构 { "_id" : ObjectId("5006a037dff37e149322fd83"), "user" : "refactor_read_write", "readOnly" : false, "pwd" : "5a84584ac51d3f702461fce4c46b0d6b"//根据用户名密码散列 } 知道用户信息何存储及存储位置,进行管理工作. 删除帐户: > db.system.users.remove({"user":"refactor_read"}) > db.auth("refactor_read","refactor") 0 用户认证,服务器认证连接绑定跟踪认证,说驱程序或工具使用连接池或故障切换 另节点,所认证用户必须每新连接重新认证. MongoDB传输协议加密,需加密,用ssh隧道或者类似技术做客户端服务器间加密. 建议MongoDB服务器放防火墙或放应用服务器能访问网络.MongoDB必须能外面访问, 建议使用--bindip选项,指定mongod绑定本ip址.:能本机应用服务器访问,使用 mongod --bindip localhost 默认情况MongoDB启简单http服务器,便于查看运行,锁,复制等面信息,要想公些信息,用 --nohttpinterface关闭管理接口. 用--noscripting完全禁止服务端javascript执行 9.备份修复 MongoDB所数据都存放 数据目录 ,默认目录C:\data\db\.启MongoDB候用--dbpath指定数据目录. 论数据目录哪,都存放着MongoDB所数据.要想备份MongoDB,要简单复制数据目录所文件即. 除非服务器做完整fsync,允许写入,否则运行MongoDB创建数据目录副本并安全,备份能已经 破损,需要修复. 运行MongoDB创建数据目录副本并安全,所先服务器关,再复制数据目录.关闭数据库要停止业务. 10.mongodumpmongorestore mongodump种能运行备份.mongodump运行MongoDB做查询,所查文档写入磁盘. mongodump般客户端,所供运行MongoDB使用,即便处理其请求或执行写入没问题. mongodump使用普通查询机制,所产备份定服务器数据实快照.服务器备份程处理写入,非明显. mongodump备份查询其客户端性能产影响. mongodump --help 获帮助 mongorestore备份恢复数据工具. mongorestore获取mongodump 输结,并备份数据插入运行MongoDB实例. :数据库test备份backup目录 mongodump -d test -o backup 使用mongorestore 恢复testNew 数据库 mongorestore -d testNew --drop backup/test/ -d指定要恢复数据库.--drop指恢复前删除集合(若存),否则数据与现集合数据合并,能覆盖些文档. 使用mongorestore --help获帮助信息 11.fsync锁 虽使用mongodumpmongorestore能停机备份,却失获取实数据视图能力.MongoDBfsync命令 能MongoDB运行复制数据目录损坏数据. fsync命令强制服务器所缓冲区写入磁盘.选择锁住址数据库进步写入,知道释放锁止.写入锁让 fsync备份发挥作用关键. shell,强制执行fsync并获写入锁: db.runCommand({"fsync":1,"lock":1}) ,数据目录数据致,且数据实快照.锁,安全数据目录副本作备份.要数据库运行 快照功能文件系统,比LVM,EBS,用,拍数据库目录快照快. 备份,解锁: db.$cmd.sys.unlock.findOne() db.currentOp() 运行db.currentOp()确保已经解锁(初请求解锁花点间) fsync命令,能非灵备份,用停掉服务器,用牺牲备份实性能.要付代价些写入操作 暂阻塞.唯耽误读写能保证实快照备份式通服务器备份. 12.属备份 虽面备份式灵,都没服务器备份.复制式运行MongoDB,前面提备份技术仅能用 主服务器,用服务器.服务器数据几乎与主服务器同步.太乎属服务器性能或者能能读写, 于能随意选择面3种备份式:关停,转存或恢复工具或fsync命令.服务器备份MongoDB推荐备份式. 13.修复 MongoDB存储式能保证磁盘数据能用,能损毁.MongoDB内置修复功能试着恢复损坏数据文件. 未停止MongoDB应该修复数据库.修复数据库式简单 mongod --repair 启服务器. 修复数据库实际程简单:所文档导马导入,忽略效文档.完,重建索引.数据量,花间, 所数据都要验证,所索引都要重建(MongoDB 1.8 版本引入志系统,使修复间打打缩短). 修复能比修复前少些文档,损坏文档删除. 修复数据库能起压缩数据作用.闲置控件(删除体积较集合,或删除量文档腾空间)修复重新利用. 修复运行服务器数据库,要shell用repairDatabases. use test db.repairDatabase() “答案来源于网络,供您参考” 希望以上信息可以帮到您! 2.

牧明 2019-12-02 02:17:29 0 浏览量 回答数 0

问题

Accordion:HBase一种内存压缩算法

pandacats 2019-12-18 16:06:15 1 浏览量 回答数 0

回答

新地址 24题 Starters可以理解为启动器,它包含了一系列可以集成到应用里面的依赖包,你可以一站式集成 Spring 及其他技术,而不需要到处找示例代码和依赖包。如你想使用 Spring JPA 访问数据库,只要加入 spring-boot-starter-data-jpa 启动器依赖就能使用了。Starters包含了许多项目中需要用到的依赖,它们能快速持续的运行,都是一系列得到支持的管理传递性依赖。 23题 Spring Boot 的核心配置文件是application(.yml 或者 .properties) 和 bootstrap(.yml 或者 .properties) 配置文件。boostrap 由父 ApplicationContext 加载,比 applicaton 优先加载,boostrap 里面的属性不能被覆盖。application 配置文件主要用于 Spring Boot 项目的自动化配置。bootstrap 配置文件的应用场景:使用 Spring Cloud Config 配置中心时,这时需要在 bootstrap 配置文件中添加连接到配置中心的配置属性来加载外部配置中心的配置信息;一些固定的不能被覆盖的属性;一些加密/解密的场景。 22题 优点:快速构建项目;对主流开发框架的无配置集成;starters自动依赖与版本控制;大量的自动配置,简化开发,也可修改默认值;无需配置XML,无代码生成,开箱即用;项目可独立运行,无须外部依赖Servlet容器;提供运行时的应用监控;与云计算的天然集成。缺点:集成度较高,使用过程中不太容易了解底层。 21题 Spring Boot的初衷就是为了简化spring的配置,使得开发中集成新功能时更快,简化或减少相关的配置文件。Spring Boot其实是一个整合很多可插拔的组件(框架),内嵌了使用工具(比如内嵌了Tomcat、Jetty等),方便开发人员快速搭建和开发的一个框架。 20题 当程序创建对象、数组等引用类型实体时,系统会在堆内存中为之分配一块内存区,对象就保存在内存区中,不需要显式的去释放一个对象的内存,而是由虚拟机自行执行。在JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,标记那些没有被任何引用的对象,并将它们添加到要回收的集合中,进行回收。 19题 HashMap线程不安全,HashTable线程安全。HashMap允许有一个key为null,多个value为null;而HashTable不允许key和vale为null。继承类不一样,HashMap继承的是AbstractMap,HashTable继承的是Dictionary。初始容量不一样。使用的hashcode不一样。内部遍历方式的实现不一样。 18题 作用:内容可见性和禁止指令重排。内存可见性:某线程对 volatile 变量的修改,对其他线程都是可见的,即获取 volatile 变量的值都是最新的;禁止指令重排:重排序在单线程下一定能保证结果的正确性,但是在多线程环境下,可能发生重排序影响结果,若用volatile修饰共享变量,在编译时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。使用:当一个线程需要立刻读取到另外一个线程修改的变量值的时候,我们就可以使用volatile。区别:volatile是变量修饰符,而synchronized则作用于一段代码或者方法;volatile只是在线程内存和main memory(主内存)间同步某个变量的值,而synchronized通过锁定和解锁某个监视器同步所有变量的值。显然synchronized要比volatile消耗更多资源;synchronized 关键字可以保证变量原子性和可见性,volatile 不能保证原子性。 17题 非公平主要表现在获取锁的行为上,并非是按照申请锁的时间前后给等待线程分配锁的 ,每当锁被释放后 ,任何一个线程都有机会竞争到锁,这样做的目的是为了提高执行性能 ,缺点是可能会产生线程饥饿现象 。 16题 如果线程遇到了 IO 阻塞,无能为力,因为IO是操作系统实现的,Java代码并没有办法直接接触到操作系统。如果线程因为调用 wait()、sleep()、或者 join()方法而导致的阻塞,可以中断线程,并且通过抛出 InterruptedException 来唤醒它。 15题 原子操作就是无法被别的线程打断的操作。要么不执行,要么就执行成功。在Java中可以通过锁和循环CAS的方式来实现原子操作。从JDK 1.5开始提供了java.util.concurrent.atomic包,这个包中的原子操作类提供了一种用法简单、性能高效、线程安全地更新一个变量的方式。 14题 wait()是Object类的方法,所以每一个对象能使用wait()方法。sleep()是Thread类中的静态方法。sleep不会释放锁,但会让出cpu,sleep会在指定的休眠时间后自动唤醒。wait则会释放锁,让出系统资源,并且加入wait set中,wait不会自动唤醒,而需要notify()或者notifyAll()唤醒。sleep和wait都可以被中断,使用sleep需要捕获异常。wait与notify、notifyAll只能在同步代码块中使用,而sleep可以在任何地方使用。 13题 Synchronized 是由 JVM 实现的一种实现互斥同步的一种方式,查看编译后的字节码,会发现被 Synchronized 修饰过的程序块,在编译前后被编译器生成了monitorenter 和 monitorexit 两个字节码指令。在虚拟机执行到 monitorenter 指令时,首先要尝试获取对象的锁:如果这个对象没有锁定,或者当前线程已经拥有了这个对象的锁,把锁的计数器+1;当执行 monitorexit 指令时将锁计数器-1;当计数器为0时,锁就被释放了。如果获取对象失败了,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。Java 中 Synchronize 通过在对象头设置标记,达到了获取锁和释放锁的目的。 12题 Mybatis 通过动态代理,为需要拦截的接口生成代理对象以实现接口方法拦截功能,每当执行这 4 种接口对象的方法时,就会进入拦截方法,具体就是InvocationHandler 的 invoke()方法,只会拦截那些你指定需要拦截的方法。 实现方法:1.编写Intercepror接口的实现类;2.设置插件的签名,告诉mybatis拦截哪个对象的哪个方法;3.最后将插件注册到全局配置文件中。 11题 Mybatis可以映射枚举类,不单可以映射枚举类,Mybatis可以映射任何对象到表的一列上。映射方式为自定义一个TypeHandler,实现TypeHandler的setParameter()和getResult()接口方法。TypeHandler 有两个作用,一是完成从 javaType至jdbcType 的转换,二是完成jdbcType至javaType的转换,体现为 setParameter()和getResult()两个方法,分别代表设置sql问号占位符参数和获取列查询结果。 10题 Mybatis使用RowBounds对象进行分页,也可以直接编写sql实现分页,也可以使用Mybatis的分页插件。分页插件的原理:使用Mybatis提供的插件接口,实现自定义插件,在插件的拦截方法内拦截待执行的sql,然后重写sql,根据dialect方言,添加对应的物理分页语句和物理分页参数。举例:select * from student,拦截 sql 后重写为:select t.* from(select * from student)t limit 0,10。 9题 resultType和resultMap都是表示数据库表与pojo之间的映射规则的。类的名字和数据库相同时,可以直接设置resultType 参数为Pojo类。若不同或者有关联查询,需要设置resultMap将结果名字和Pojo名字进行转换。在项目中我们定义的resultMap多了property和column属性,实际也就是分别配置Pojo类的属性和对应的表字段之间的映射关系,多了这个映射关系以后,方便维护。 8题 之所以说Mybatis半自动化,是因为SQL语句需要用户自定义,SQL的解析、执行等工作由Mybatis执行。区别:Hibernate属于全自动 ORM 映射工具,使用Hibernate查询关联对象或者关联集合对象时,可以根据对象关系模型直接获取,所以它是全自动的。而 Mybatis 在查询关联对象或关联集合对象时,需要手动编写 sql 来完成,所以它是半自动ORM映射工具。 7题 MyBatis 的缓存分为一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,默认就有,在操作数据库时需要构造 sqlSession对象,在对象中有一个(内存区域)数据结构(HashMap)用于存储缓存数据,不同的sqlSession之间的缓存数据区域(HashMap)是互相不影响的。二级缓存是mapper级别的缓存,默认是不打开的,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession去操作数据库得到数据会存在二级缓存区域,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession的。 6题 RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。用于方法上是为了细化映射,即根据特定的HTTP请求方法(GET、POST 方法等)、HTTP请求中是否携带特定参数等条件,将请求映射到匹配的方法上。 5题 1、前置通知(before advice):在目标方法调用之前执行; 2、后置通知(after returning advice):在目标方法调用之后执行,一旦目标方法产生异常不会执行; 3、最终通知(after(finally) advice):在目标调用方法之后执行,无论目标方法是否产生异常,都会执行; 4、异常通知(after throwing advice):在目标方法产生异常时执行; 5、环绕通知(around advice):在目标方法执行之前和执行之后都会执行,可以写一些非核心的业务逻辑,一般用来替代前置通知和后置通知。 4题 1、通过构造器或工厂方法创建Bean实例;2、为Bean的属性设置值和对其他Bean的引用;3、将Bean实例传递给Bean后置处理器的postProcessBeforeInitialization方法;4、调用Bean的初始方法(init-method);5、将bean实例传递给bean后置处理器的postProcessAfterInitialization方法;6、bean可以使用了;7、当容器关闭时,调用Bean的销毁方法(destroy-method) 3题 在TransactionDefinition接口中定义了五个表示隔离级别的常量: ISOLATION_DEFAULT:使用后端数据库默认的隔离级别,Mysql默认采用的REPEATABLE_READ隔离级别;Oracle默认采用的READ_COMMITTED隔离级别。 ISOLATION_READ_UNCOMMITTED:最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。 ISOLATION_READ_COMMITTED:允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生 ISOLATION_REPEATABLE_READ:对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。 ISOLATION_SERIALIZABLE:最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。但是这将严重影响程序的性能。通常情况下也不会用到该级别。 2 题 自动装配提供五种不同的模式供Spring容器用来自动装配beans之间的依赖注入: 1.默认的方式是不进行自动装配,通过手工设置ref 属性来进行装配bean。 2.byName:通过参数名自动装配,之后容器试图匹配、装配和该bean的属性具有相同名字的bean。 3.byType:按照参数的数据类型进行自动装配,之后容器试图匹配和装配和该bean的属性类型一样的bean。如果存在多个相同类型的bean对象,会出错。 4.constructor:使用构造方法完成对象注入,其实也是根据构造方法的参数类型进行对象查找,相当于采用byType的方式。 5.autodetect:如果找到默认的构造函数,则通过 constructor的方式自动装配,否则使用 byType的方式自动装配。在Spring3.0以后的版本此模式已被废弃,已经不再合法了。 1 题 循环依赖只会存在在单例实例中,多例循环依赖直接报错。Spring先用构造器实例化Bean对象,然后将实例化结束的对象放到一个Map中,并且Spring提供获取这个未设置属性的实例化对象的引用方法。当Spring实例化了A类、B类后,紧接着会去设置对象的属性,此时发现A类依赖B类,就会去Map中取出已经存在的单例B类对象,以此类推。因为所持有的都是引用,所以A类一改变B类也会跟着改变。从而解决循环依赖问题。

游客ih62co2qqq5ww 2020-03-03 18:05:36 0 浏览量 回答数 0

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。

景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

问题

服务器存在安全

3aweb 2019-12-01 19:06:08 71 浏览量 回答数 1

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

Java SDK是什么?

nicenelly 2019-12-01 21:28:02 1867 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

回答

概述 当客户端访问目标服务器出现ping丢包或ping不通时,可以通过tracert或mtr等工具进行链路测试来判断问题根源。本文介绍如何通过工具进行链路测试和分析。 详细信息 阿里云提醒您: 如果您对实例或数据有修改、变更等风险操作,务必注意实例的容灾、容错能力,确保数据安全。 如果您对实例(包括但不限于ECS、RDS)等进行配置与数据修改,建议提前创建快照或开启RDS日志备份等功能。 如果您在阿里云平台授权或者提交过登录账号、密码等安全信息,建议您及时修改。 本文分别介绍如下链路测试方法。 链路测试工具 测试结果的简要分析 常见的链路异常场景 链路测试步骤 测试完成后的解决方法 链路测试工具 操作系统类型不同,链路测试所使用的工具也有所不同。简要介绍如下。 Linux系统 此处简单介绍两个链路测试工具。 工具一:mtr命令 mtr(My traceroute)几乎是所有Linux发行版本预装的网络测试工具。其将ping和traceroute的功能合并,所以功能更强大。mtr默认发送ICMP数据包进行链路探测。您也可以通过“-u”参数来指定使用UDP数据包进行探测。相对于traceroute只会做一次链路跟踪测试,mtr会对链路上的相关节点做持续探测并给出相应的统计信息。所以,mtr能避免节点波动对测试结果的影响,所以其测试结果更正确,建议优先使用。 用法说明 mtr [-BfhvrwctglxspQomniuT46] [--help] [--version] [--report] [--report-wide] [--report-cycles=COUNT] [--curses] [--gtk] [--csv|-C] [--raw] [--xml] [--split] [--mpls] [--no-dns] [--show-ips] [--address interface] [--filename=FILE|-F] [--ipinfo=item_no|-y item_no] [--aslookup|-z] [--psize=bytes/-s bytes] [--order fields] [--report-wide|-w] [--inet] [--inet6] [--max-ttl=NUM] [--first-ttl=NUM] [--bitpattern=NUM] [--tos=NUM] [--udp] [--tcp] [--port=PORT] [--timeout=SECONDS] [--interval=SECONDS] HOSTNAME 常见可选参数说明 --report:以报告模式显示输出。 --split:将每次追踪的结果分别列出来,而非统计整个结果。 --psize:指定ping数据包的大小。 --no-dns:不对IP地址做域名反解析。 --address:主机有多个IP地址时,设置发送数据包的IP地址。 -4:只使用IPv4协议。 -6:只使用IPv6协议。 另外,也可以在mtr运行过程中,输入类似如下的字母来快速切换模式。 ?或h:显示帮助菜单。 d:切换显示模式。 n:启用或禁用DNS域名解析。 u:切换使用ICMP或UDP数据包进行探测。 命令输出示例 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Host):节点IP地址和域名。按 n 键可切换显示。 第二列(Loss%):节点丢包率。 第三列(Snt):每秒发送数据包数。默认值是10,可以通过“-c”参数指定。 第四列(Last):最近一次的探测延迟。 第五、六、七列(Avg、Best、Worst):分别是探测延迟的平均值、最小值和最大值。 第八列(StDev):标准偏差。越大说明相应节点越不稳定。 工具二:traceroute命令 traceroute也是几乎所有Linux发行版本预装的网络测试工具,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。traceroute先发送小的具有最大存活时间值(Max_TTL)的UDP探测数据包,然后侦听从网关开始的整个链路上的ICMP TIME_EXCEEDED响应。探测从TTL=1开始,TTL值逐步增加,直至接收到ICMP PORT_UNREACHABLE消息。ICMP PORT_UNREACHABLE消息用于标识目标主机已经被定位,或命令已经达到允许跟踪的最大TTL值。traceroute默认发送UDP数据包进行链路探测。可以通过“-I”参数来指定使用ICMP数据包进行探测。 用法说明 traceroute [-I] [ -m Max_ttl ] [ -n ] [ -p Port ] [ -q Nqueries ] [ -r ] [ -s SRC_Addr ] [ -t TypeOfService ] [ -f flow ] [ -v ] [ -w WaitTime ] Host [ PacketSize ] 常见可选参数说明 -d:使用Socket层级的排错功能。 -f:设置第一个检测数据包的存活数值TTL的大小。 -F:设置不要分段标识。 -g:设置来源路由网关,最多可设置8个。 -i:主机有多个网卡时,使用指定的网卡发送数据包。 -I:使用ICMP数据包替代UDP数据包进行探测。 -m:设置检测数据包的最大存活数值TTL的大小。 -n:直接使用IP地址而非主机名称(禁用DNS反查)。 -p:设置UDP传输协议的通信端口。 -r:忽略普通的Routing Table,直接将数据包发送到目标主机上。 -s:设置本地主机发送数据包的IP地址。 -t:设置检测数据包的TOS数值。 -v:详细显示指令的执行过程。 -w:设置等待远端主机回包时间。 -x:开启或关闭数据包的正确性检验。 命令输出示例 Windows系统 此处简单介绍两个链路测试工具。 工具一:WinMTR(建议优先使用) WinMTR是mtr工具在Windows环境下的图形化实现,但进行了功能简化,只支持部分mtr的参数。WinMTR默认发送ICMP数据包进行探测,无法切换。和mtr一样,相比tracert,WinMTR能避免节点波动对测试结果的影响,所以测试结果更正确。所以在WinMTR可用的情况下,建议优先使用WinMTR进行链路测试。 用法说明 WinMTR无需安装,直接解压运行即可。操作方法非常简单,说明如下。 如下图所示,运行程序后,在 Host 字段输入目标服务器域名或IP,注意不要包含空格。 单击 Start 开始测试。开始测试后,相应按钮变成了 Stop。 运行一段时间后,单击 Stop 停止测试。 其它选项说明如下。 Copy Text to clipboard:将测试结果以文本格式复制到粘贴板。 Copy HTML to clipboard:将测试结果以HTML格式复制到粘贴板。 Export TEXT:将测试结果以文本格式导出到指定文件。 Export HTML:将测试结果以HTML格式导出到指定文件。 Options:可选参数,包括的可选参数如下。 Interval(sec):每次探测的间隔(过期)时间。默认为1秒。 ping size(bytes):ping探测所使用的数据包大小,默认为64字节。 Max hosts in LRU list:LRU列表支持的最大主机数,默认值为128。 Resolve names:通过反查IP地址,以域名显示相关节点。 返回结果说明 默认配置下,返回结果中各数据列的说明如下。 第一列(Hostname):节点的IP或域名。 第二列(Nr):节点编号。 第三列(Loss%):节点丢包率。 第四列(Sent):已发送的数据包数量。 第五列(Recv):已成功接收的数据包数量。 第六、七、八、九列(Best 、Avg、Worst、Last):分别是到相应节点延迟的最小值、平均值、最大值和最后一次值。 工具二:tracert命令行工具 tracert(Trace Route)是Windows自带的网络诊断命令行程序,用于跟踪Internet协议(IP)数据包传送到目标地址时经过的路径。 tracert通过向目标地址发送 ICMP 数据包来确定到目标地址的路由。在这些数据包中,tracert使用了不同的IP“生存期”,即TTL值。由于要求沿途的路由器在转发数据包前必须至少将TTL减少1,因此TTL实际上相当于一个跃点计数器(hop counter)。当某个数据包的TTL达到0时,相应节点就会向源计算机发送一个ICMP超时的消息。 tracert第一次发送TTL为1的数据包,并在每次后续传输时将TTL增加1,直到目标地址响应或达到TTL的最大值。中间路由器发送回来的ICMP超时消息中包含了相应节点的信息。 用法说明 tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name 常见可选参数说明 -d:不要将地址解析为主机名(禁用DNS反解)。 -h:maximum_hops,指定搜索目标地址时的最大跃点数。 -j: host-list,指定沿主机列表的松散源路由。 -w:timeout,等待每个回复的超时时间(以毫秒为单位)。 -R:跟踪往返行程路径(仅适用于IPv6)。 -S:srcaddr,要使用的源地址(仅适用于IPv6)。 -4:强制使用IPv4。 -6:强制使用IPv6。 target_host:目标主机域名或IP地址。 命令输出示例 C:> tracert -d 223.5.5.5 通过最多 30 个跃点跟踪到 223.5.5.5 的路由 1 请求超时。 2 9 ms 3 ms 12 ms 192.168.X.X 3 4 ms 9 ms 2 ms X.X.X.X 4 9 ms 2 ms 1 ms XX.XX.XX.XX 5 11 ms 211.XX.X.XX 6 3 ms 2 ms 2 ms 2XX.XX.1XX.XX 7 2 ms 2 ms 1 ms 42.XX.2XX.1XX 8 32 ms 4 ms 3 ms 42.XX.2XX.2XX 9 请求超时。 10 3 ms 2 ms 2 ms 223.5.5.5 跟踪完成。 测试结果的简要分析 由于mtr(WinMTR)有更高的准确性,本文以其测试结果为例,参考如下要点进行分析。此处分析时以如下示例图为基础。 要点一:网络区域 正常情况下,从客户端到目标服务器的整个链路中会包含如下区域。 客户端本地网络,即本地局域网和本地网络提供商网络。如上图中的区域A。如果该区域出现异常,并且是客户端本地网络中的节点出现异常,则需要对本地网络进行相应的排查分析。如果是本地网络提供商网络出现异常,则需要向当地运营商反馈问题。 运营商骨干网络。如上图中的区域B。如果该区域出现异常,可以根据异常节点的IP查询其所属的运营商,直接向对应运营商进行反馈,或者通过阿里云技术支持,向运营商进行反馈。 目标服务器本地网络,即目标服务器所属提供商的网络。如上图中的区域C。如果该区域出现异常,需要向目标服务器所属的网络运营商反馈问题。 要点二:链路负载均衡 如上图中的区域D。如果中间链路某些部分启用了链路负载均衡,则mtr只会对首尾节点进行编号和探测统计。中间节点只会显示相应的IP或域名信息。 要点三:结合Avg(平均值)和StDev(标准偏差)综合判断 由于链路抖动或其它因素的影响,节点的Best和Worst值可能相差很大。Avg统计了自链路测试以来所有探测的平均值,所以能更好的反应出相应节点的网络质量。而StDev越高,则说明数据包在相应节点的延时值越不相同,即越离散。所以标准偏差值可用于协助判断Avg是否真实反应了相应节点的网络质量。例如,如果标准偏差很大,说明数据包的延迟是不确定的。可能某些数据包延迟很小,例如25ms,而另一些延迟却很大,例如350ms,但最终得到的平均延迟反而可能是正常的。所以,此时Avg并不能很好的反应出实际的网络质量情况。 综上,建议的分析标准如下。 如果StDev很高,则同步观察相应节点的Best和Worst,来判断相应节点是否存在异常。 如果StDev不高,则通过Avg来判断相应节点是否存在异常。 注:上述StDev高或者不高,并没有具体的时间范围标准。而需要根据同一节点其它列的延迟值大小来进行相对评估。比如,如果Avg为30ms,那么,当StDev为25ms,则认为是很高的偏差。而如果Avg为325ms,则StDev同样为25ms,反而认为是不高的偏差。 要点四:Loss%(丢包率)的判断 任一节点的Loss%(丢包率)如果不为零,则说明这一跳网络可能存在问题。导致相应节点丢包的原因通常有如下两种。 运营商基于安全或性能需求,限制了节点的ICMP发送速率,导致丢包。 节点确实存在异常,导致丢包。 结合异常节点及其后续节点的丢包情况,并参考如下内容,判定丢包原因。 如果随后节点均没有丢包,则通常表示异常节点丢包是由于运营商策略限制所致。可以忽略相关丢包。如上图中的第2跳所示。 如果随后节点也出现丢包,则通常说明异常节点确实存在网络异常,导致丢包。如上图中的第5跳所示。 另外,上述两种情况可能同时发生,即相应节点既存在策略限速,又存在网络异常。对于这种情况,如果异常节点及其后续节点连续出现丢包,而且各节点的丢包率不同,则通常以最后几跳的丢包率为准。如上图所示,在第 5、6、7跳均出现了丢包。所以,最终丢包情况,以第7跳的40%作为参考。 要点五:关于延迟 关于延迟,有如下两种场景。 场景一:延迟跳变 如果在某一跳之后延迟明显陡增,则通常判断该节点存在网络异常。如上图所示,从第5跳之后的后续节点延迟明显陡增,则推断是第5跳节点出现了网络异常。不过,高延迟并不一定完全意味着相应节点存在异常。如上图所示,第5跳之后,虽然后续节点延迟明显陡增,但测试数据最终仍然正常到达了目的主机。所以,延迟大也有可能是在数据回包链路中引发的。所以,需要结合反向链路测试一并分析。 场景二:ICMP限速导致延迟增加 ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如上图所示,第3跳有100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。 常见的链路异常场景 常见的链路异常场景及测试报告如下。 场景一:目标主机网络配置不当 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. ??? 2. ??? 3. 1XX.X.X.X 0.0% 10 521.3 90.1 2.7 521.3 211.3 4. 11X.X.X.X 0.0% 10 2.9 4.7 1.6 10.6 3.9 5. 2X.X.X.X 80.0% 10 3.0 3.0 3.0 3.0 0.0 6. 2X.XX.XX.XX 0.0% 10 1.7 7.2 1.6 34.9 13.6 7. 1XX.1XX.XX.X 0.0% 10 5.2 5.2 5.1 5.2 0.0 8. 2XX.XX.XX.XX 0.0% 10 5.3 5.2 5.1 5.3 0.1 9. 173.194.200.105 100.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在目标地址出现了100%的丢包。从数据上看是数据包没有到达,其实很有可能是目标服务器相关安全策略(比如防火墙、iptables 等)禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置。 场景二:ICMP限速 示例数据如下。 [root@mycentos6 ~]# mtr --no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.X.XX 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 60.0% 10 27.2 25.3 23.1 26.4 2.9 6. 209.85.254.247 0.0% 10 39.1 39.4 39.1 39.7 0.2 7. 64.233.174.46 0.0% 10 39.6 40.4 39.4 46.9 2.3 8. gw-in-f147.1e100.net 0.0% 10 39.6 40.5 39.5 46.7 2.2 在该示例中,在第5跳出现了明显的丢包,但后续节点均未见异常。所以推断是该节点ICMP限速所致。该场景对最终客户端到目标服务器的数据传输不会有影响,所以,分析的时候可以忽略。 场景三:环路 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. 72.14.233.56 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. 72.14.233.57 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第5跳之后出现了循环跳转,导致最终无法到达目标服务器。这通常是由于运营商相关节点路由配置异常所致。所以,该场景需要联系相应节点归属运营商处理。 场景四:链路中断 示例数据如下。 [root@mycentos6 ~]# mtr —no-dns www.google.com My traceroute [v0.75] mycentos6.6 (0.0.0.0) Wed Jun 15 19:06:29 2016 Keys: Help Display mode Packets Pings Host Loss% Snt Last Avg Best Wrst StDev 1. 63.247.7X.X 0.0% 10 0.3 0.6 0.3 1.2 0.3 2. 63.247.6X.X 0.0% 10 0.4 1.0 0.4 6.1 1.8 3. 209.51.130.213 0.0% 10 0.8 2.7 0.8 19.0 5.7 4. aix.pr1.atl.google.com 0.0% 10 6.7 6.8 6.7 6.9 0.1 5. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 6. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 7. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 8. ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 9 ??? 0.0% 10 0.0 0.0 0.0 0.0 0.0 在该示例中,数据包在第4跳之后就无法收到任何反馈。这通常是由于相应节点中断所致。建议结合反向链路测试做进一步确认。该场景需要联系相应节点归属运营商处理。 链路测试步骤 通常情况下,链路测试步骤如下图所示。 相关步骤的详情说明如下。 步骤一:获取本地网络对应的公网IP 在客户端本地网络内访问淘宝IP地址库,获取本地网络对应的公网IP地址。 步骤二:正向链路测试(ping和mtr) 从客户端向目标服务器做如下测试。 从客户端向目标服务器域名或IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据客户端操作系统的不同,使用WinMTR或mtr,设置测试目的地址为目标服务器域名或IP,然后进行链路测试,记录测试结果。 步骤三:反向链路测试(ping和mtr) 进入目标服务器系统内部做如下测试。 从目标服务器向步骤一获取的客户端IP做持续的ping测试,建议至少ping 100个数据包,记录测试结果。 根据目标服务器操作系统的不同,使用WinMTR或mtr,设置测试目的地址为客户端的IP地址,然后进行链路测试,记录测试结果。 步骤四:测试结果分析 参阅测试结果的简要分析,对测试结果进行分析。确认异常节点后,访问如下链接或其他可以查询IP归属地的网站,获取该异常节点的归属运营商信息。如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。如果是运营商相关节点出现异常,则需要向运营商反馈问题。查询结果类似如下。 测试完成后的解决方法 当出现ping丢包或ping不通时,首先请参考云服务器ECS网络故障诊断,排查是否为网络故障。 如果确认是因系统中病毒导致使用ping命令测试ECS实例的IP地址间歇性丢包,则可参考使用ping命令测试ECS实例的IP地址间歇性丢包进行处理。 如果是因删除ECS实例的默认安全组规则导致无法ping通ECS实例,可参考删除ECS实例的默认安全组规则导致无法ping通ECS实例进行处理。 如果在Linux系统内核没有禁PING的情况下,是因系统内部防火墙策略设置导致ECS服务器PING不通。可参考Linux系统的ECS中没有禁PING却PING不通的解决方法。

1934890530796658 2020-03-25 23:17:54 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站