• 关于

    独立同分布变量什么意思

    的搜索结果

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。
kun坤 2020-06-10 09:29:21 0 浏览量 回答数 0

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。
kun坤 2020-06-09 22:08:58 0 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p
kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)
问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板