• 关于

    K类函数工作原理

    的搜索结果

回答

K-Means聚类 首先,我们在一个简单的二维数据集上实现并应用k-means,以了解它如何工作。k-means是一种迭代的、无监督的聚类算法,它将类似的实例组合成集群。该算法通过猜测每个集群的初始centroid,反复向最近的集群分配实例,并重新计算该集群的centroid。首先我们要实现一个函数,它为数据中的每个实例找到最接近的centroid。 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from scipy.io import loadmat %matplotlib inline def find_closest_centroids(X, centroids): m = X.shape[0] k = centroids.shape[0] idx = np.zeros(m) for i in range(m): min_dist = 1000000 for j in range(k): dist = np.sum((X[i,:] - centroids[j,:]) ** 2) if dist < min_dist: min_dist = dist idx[i] = j return idx 测试函数确保它像预期的那样工作,我们使用练习中的测试案例。 data = loadmat('data/ex7data2.mat') X = data['X'] initial_centroids = initial_centroids = np.array([[3, 3], [6, 2], [8, 5]]) idx = find_closest_centroids(X, initial_centroids) idx[0:3] array([0., 2., 1.]) 输出与文本中的预期值相匹配(我们的数组是zero-indexed而不是one-indexed,所以值比练习中的值要低1)。接下来,我们需要一个函数来计算集群的centroid。centroid是当前分配给集群的所有例子的平均值。 def compute_centroids(X, idx, k): m, n = X.shape centroids = np.zeros((k, n)) for i in range(k): indices = np.where(idx == i) centroids[i,:] = (np.sum(X[indices,:], axis=1) / len(indices[0])).ravel() return centroids compute_centroids(X, idx, 3) array([[ 2.42830111, 3.15792418], [ 5.81350331, 2.63365645], [ 7.11938687, 3.6166844 ]]) 此输出也与该练习的预期值相匹配。目前为止一切都很顺利。下一部分涉及到实际运行算法的迭代次数和可视化结果。我们在练习中实现了这一步骤,它没有那么复杂,我将从头开始构建它。为了运行这个算法,我们只需要在分配到最近集群的示例和重新计算集群的centroids之间进行交替操作。 def run_k_means(X, initial_centroids, max_iters): m, n = X.shape k = initial_centroids.shape[0] idx = np.zeros(m) centroids = initial_centroids for i in range(max_iters): idx = find_closest_centroids(X, centroids) centroids = compute_centroids(X, idx, k) return idx, centroids idx, centroids = run_k_means(X, initial_centroids, 10) 我们现在可以使用颜色编码表示集群成员。 cluster1 = X[np.where(idx == 0)[0],:] cluster2 = X[np.where(idx == 1)[0],:] cluster3 = X[np.where(idx == 2)[0],:] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(cluster1[:,0], cluster1[:,1], s=30, color='r', label='Cluster 1') ax.scatter(cluster2[:,0], cluster2[:,1], s=30, color='g', label='Cluster 2') ax.scatter(cluster3[:,0], cluster3[:,1], s=30, color='b', label='Cluster 3') ax.legend() 我们跳过了初始化centroid的过程。这可能会影响算法的收敛性。 接下来创建一个可以选择随机例子的函数,并将这些例子作为初始的centroid。 def init_centroids(X, k): m, n = X.shape centroids = np.zeros((k, n)) idx = np.random.randint(0, m, k) for i in range(k): centroids[i,:] = X[idx[i],:] return centroids init_centroids(X, 3) array([[ 1.15354031, 4.67866717], [ 6.27376271, 2.24256036], [ 2.20960296, 4.91469264]]) 我们的下一任务是应用K-means实现图像压缩。我们可以使用集群来查找图像中最具有代表性的少量的颜色,并使用集群分配将原来的24位颜色映射到一个低维度的颜色空间。这是我们要压缩的图像。 原始像素数据已经预加载了,把它输入进来。 image_data= loadmat('data/bird_small.mat') image_data {'A': array([[[219, 180, 103], [230, 185, 116], [226, 186, 110], ..., [ 14, 15, 13], [ 13, 15, 12], [ 12, 14, 12]], ..., [[ 15, 19, 19], [ 20, 20, 18], [ 18, 19, 17], ..., [ 65, 43, 39], [ 58, 37, 38], [ 52, 39, 34]]], dtype=uint8), '__globals__': [], '__header__': 'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Tue Jun 5 04:06:24 2012', '__version__': '1.0'} 我们可以快速查看数据的形状,以验证它是否像我们预期的图像。 A= image_data['A'] A.shape (128L,128L,3L) 现在我们需要对数据进行预处理,并将它输入到k-means算法中。 # normalize value ranges A = A / 255. # reshape the array X = np.reshape(A, (A.shape[0] * A.shape[1], A.shape[2])) # randomly initialize the centroids initial_centroids = init_centroids(X, 16) # run the algorithm idx, centroids = run_k_means(X, initial_centroids, 10) # get the closest centroids one last time idx = find_closest_centroids(X, centroids) # map each pixel to the centroid value X_recovered = centroids[idx.astype(int),:] # reshape to the original dimensions X_recovered = np.reshape(X_recovered, (A.shape[0], A.shape[1], A.shape[2])) plt.imshow(X_recovered) 我们在压缩中创建了一些artifact,尽管将原始图像映射到仅16种颜色,但图像的主要特征仍然存在。 这是关于k-means的部分,接下来我们来看关于主成分分析的部分。 主成分分析 PCA是一个可以在数据集中找到“主成分”或者最大方差方向的线性变换。它可以用于其他事物的维度减少。在这个练习中,我们需要实现PCA,并将其应用于一个简单的二维数据集,观察它是如何工作的。从加载和可视化数据集开始。 data = loadmat('data/ex7data1.mat') X = data['X'] fig, ax = plt.subplots(figsize=(12,8)) ax.scatter(X[:, 0], X[:, 1]) PCA的算法相当简单。在保证数据正规化后,输出只是原始数据协方差矩阵的单值分解。由于numpy已经有内置函数来计算矩阵协方差和SVD,我们将利用这些函数而不是从头开始。 def pca(X): # normalize the features X = (X - X.mean()) / X.std() # compute the covariance matrix X = np.matrix(X) cov = (X.T * X) / X.shape[0] # perform SVD U, S, V = np.linalg.svd(cov) return U, S, V U, S, V = pca(X) U, S, V (matrix([[-0.79241747, -0.60997914], [-0.60997914, 0.79241747]]), array([ 1.43584536, 0.56415464]), matrix([[-0.79241747, -0.60997914], [-0.60997914, 0.79241747]])) 现在我们已经有了主成分(矩阵U),我们可以利用它把原始数据投入到一个更低维度的空间,对于这个任务,我们将实现一个函数,它计算投影并只选择顶部K成分,有效地减少了维度的数量。 def project_data(X, U, k): U_reduced = U[:,:k] return np.dot(X, U_reduced) Z = project_data(X, U, 1) Z matrix([[-4.74689738], [-7.15889408], [-4.79563345], [-4.45754509], [-4.80263579], ..., [-6.44590096], [-2.69118076], [-4.61386195], [-5.88236227], [-7.76732508]]) 我们也可以通过改变采取的步骤来恢复原始数据。 def recover_data(Z, U, k): U_reduced = U[:,:k] return np.dot(Z, U_reduced.T) X_recovered = recover_data(Z, U, 1) X_recovered matrix([[ 3.76152442, 2.89550838], [ 5.67283275, 4.36677606], [ 3.80014373, 2.92523637], [ 3.53223661, 2.71900952], [ 3.80569251, 2.92950765], ..., [ 5.10784454, 3.93186513], [ 2.13253865, 1.64156413], [ 3.65610482, 2.81435955], [ 4.66128664, 3.58811828], [ 6.1549641 , 4.73790627]]) 如果我们尝试去可视化恢复的数据,会很容易的发现算法的工作原理。 fig, ax= plt.subplots(figsize=(12,8)) ax.scatter(X_recovered[:,0], X_recovered[:,1]) 注意这些点如何被压缩成一条虚线。虚线本质上是第一个主成分。当我们将数据减少到一个维度时,我们切断的第二个主成分可以被认为是与这条虚线的正交变化。由于我们失去了这些信息,我们的重建只能将这些点与第一个主成分相关联。 我们这次练习的最后一项任务是将PCA应用于脸部图像。通过使用相同降维技术,我们可以使用比原始图像少得多的数据来捕捉图像的“本质”。 faces= loadmat('data/ex7faces.mat') X= faces['X'] X.shape (5000L,1024L) 该练习代码包含一个函数,它将在网格中的数据集中渲染前100个脸部图像。你可以在练习文本中找到它们,不需要重新生成。 face= np.reshape(X[3,:], (32,32)) plt.imshow(face) 只有32 x 32灰度图像。下一步我们要在脸部图像数据集上运行PCA,并取得前100个主成分。 U, S, V= pca(X) Z= project_data(X, U,100) 现在尝试恢复原来的结构并重新渲染它。 X_recovered= recover_data(Z, U,100) face= np.reshape(X_recovered[3,:], (32,32)) plt.imshow(face) 结果并没有像预期的维度数量减少10倍,可能是因为我们丢失了一些细节部分。
珍宝珠 2019-12-02 03:22:40 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 21:57:48 456417 浏览量 回答数 22

回答

密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施 了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提 高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二. 加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高; AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。 Rijndael被选中成为将来的AES。 Rijndael是在 1999 年下半年,由研究员 Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准 (AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16 字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相 同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据 AES与3DES的比较 算法名称 算法类型 密钥长度 速度 解密时间(建设机器每秒尝试255个密钥) 资源消耗 AES 对称block密码 128、192、256位 高 1490000亿年 低 3DES 对称feistel密码 112位或168位 低 46亿年 中 非对称算法 常见的非对称加密算法如下: RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准); ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。 ECC 在1976年,由于对称加密算法已经不能满足需要,Diffie 和Hellman发表了一篇叫《密码学新动向》的文章,介绍了公匙加密的概念,由Rivet、Shamir、Adelman提出了RSA算法。 随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,为了保障数据的安全,RSA的密钥需要不断增 加,但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,因此需要一种新的算法来 代替RSA。 1985年N.Koblitz和Miller提出将椭圆曲线用于密码算法,根据是有限域上的椭圆曲线上的点群中的离散对数问题ECDLP。ECDLP是比因子分解问题更难的问题,它是指数级的难度。 算法原理——椭圆曲线上的难题 椭圆曲线上离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。 将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,将椭圆曲线中的乘法运算与离散对数中的模幂运算相对应,我们就可以建立基于椭圆曲线的对应的密码体制。 例如,对应Diffie-Hellman公钥系统,我们可以通过如下方式在椭圆曲线上予以实现:在E上选取生成元P,要 求由P产生的群元素足够多,通信双方A和B分别选取a和b,a和b 予以保密,但将aP和bP公开,A和B间通信用的密钥为abP,这是第三者无法得知 的。 对应ELGamal密码系统可以采用如下的方式在椭圆曲线上予以实现: 将明文m嵌入到E上Pm点,选一点B∈E,每一用户都选一整数a,0<a<N,N为阶数已知,a保密,aB公开。欲向A 送m,可送去下面一对数偶:[kB,Pm+k(aAB)],k是随机产生的整数。A可以从kB求得k(aAB)。通过:Pm+k(aAB)- k(aAB)=Pm恢复Pm。同样对应DSA,考虑如下等式: K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数] 不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。 这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。 ECC与RSA的比较 ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面: Ø 抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。 Ø 计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。 Ø 存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。 Ø 带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。 ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。 下面两张表示是RSA和ECC的安全性和速度的比较: 攻破时间 (MIPS年) RSA/DSA (密钥长度) ECC 密钥长度 RSA/ECC 密钥长度比 104 512 106 5:1 108 768 132 6:1 1011 1024 160 7:1 1020 2048 210 10:1 1078 21000 600 35:1 RSA和ECC安全模长得比较 功能 Security Builder 1.2 BSAFE 3.0 163位ECC(ms) 1,023位RSA(ms) 密钥对生成 3.8 4,708.3 签名 2.1(ECNRA) 228.4 3.0(ECDSA) 认证 9.9(ECNRA) 12.7 10.7(ECDSA) Diffie—Hellman密钥交换 7.3 1,654.0 RSA和ECC速度比较 散列算法 散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结 果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有 相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。 单向散列函数一般用于产生消息摘要,密钥加密等,常见的有: Ø MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法。 Ø SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值; SHA-1 在1993年,安全散列算法(SHA)由美国国家标准和技术协会(NIST)提出,并作为联邦信息处理标准(FIPS PUB 180)公布;1995年又发布了一个修订版FIPS PUB 180-1,通常称之为SHA-1。SHA-1是基于MD4算法的,并且它的设计在很大程度上是模仿MD4的。现在已成为公认的最安全的散列算法之一,并 被广泛使用。 算法原理 SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。 单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码 的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或 信息摘要的输出。 该算法输入报文的最大长度不超过264位,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。 通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的 明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表 示明文未被改动,如果不一致表示明文已被篡改。 MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。MAC的产生参见下图。 输入信息 密码 散列函数 信息认证代码 SHA-1与MD5的比较 因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同: Ø 对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。 Ø 对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。 Ø 速度:在相同的硬件上,SHA-1的运行速度比MD5慢。 对称与非对称算法比较 以上综述了两种加密方法的原理,总体来说主要有下面几个方面的不同: Ø 在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是n一个是n2)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名。 Ø 在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了AES虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性。 Ø 从速度上来看:AES的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的100倍,如果用硬件来实现的话这个比值将扩大到1000倍。 三. 加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢。 我们应该根据自己的使用特点来确定,由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。 对称加密算法不能实现签名,因此签名只能非对称算法。 由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。 在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。 如果在选定了加密算法后,那采用多少位的密钥呢。一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。 四. 密码学在现代的应用 随着密码学商业应用的普及,公钥密码学受到前所未有的重视。除传统的密码应用系统外,PKI系统以公钥密码技术为主,提供加密、签名、认证、密钥管理、分配等功能。 保密通信:保密通信是密码学产生的动因。使用公私钥密码体制进行保密通信时,信息接收者只有知道对应的密钥才可以解密该信息。 数字签名:数字签名技术可以代替传统的手写签名,而且从安全的角度考虑,数字签名具有很好的防伪造功能。在政府机关、军事领域、商业领域有广泛的应用环境。 秘密共享:秘密共享技术是指将一个秘密信息利用密码技术分拆成n个称为共享因子的信息,分发给n个成员,只有 k(k≤n)个合法成员的共享因子才可以恢复该秘密信息,其中任何一个或m(m≤k)个成员合作都不知道该秘密信息。利用秘密共享技术可以控制任何需要多 个人共同控制的秘密信息、命令等。 认证功能:在公开的信道上进行敏感信息的传输,采用签名技术实现对消息的真实性、完整性进行验证,通过验证公钥证书实现对通信主体的身份验证。 密钥管理:密钥是保密系统中更为脆弱而重要的环节,公钥密码体制是解决密钥管理工作的有力工具;利用公钥密码体制进行密钥协商和产生,保密通信双方不需要事先共享秘密信息;利用公钥密码体制进行密钥分发、保护、密钥托管、密钥恢复等。 基于公钥密码体制可以实现以上通用功能以外,还可以设计实现以下的系统:安全电子商务系统、电子现金系统、电子选举系统、电子招投标系统、电子彩票系统等。 公钥密码体制的产生是密码学由传统的政府、军事等应用领域走向商用、民用的基础,同时互联网、电子商务的发展为密码学的发展开辟了更为广阔的前景。 五. 加密算法的未来 随着计算方法的改进,计算机运行速度的加快,网络的发展,越来越多的算法被破解。 在2004年国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做的破译MD5、HAVAL-128、MD4和RIPEMD算法的报告,令在场的国际顶尖密码学专家都为之震惊,意味着这些算法将从应用中淘汰。随后,SHA-1也被宣告被破解。 历史上有三次对DES有影响的攻击实验。1997年,利用当时各国 7万台计算机,历时96天破解了DES的密钥。1998年,电子边境基金会 (EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥。1999年,EFF用22小时15分完成了破解工作。因此。曾经有过卓越贡献的 DES也不能满足我们日益增长的需求了。 最近,一组研究人员成功的把一个512位的整数分解因子,宣告了RSA的破解。 我们说数据的安全是相对的,可以说在一定时期一定条件下是安全的,随着硬件和网络的发展,或者是另一个王小云的出现,目前的常用加密算法都有可能在 短时间内被破解,那时我们不得不使用更长的密钥或更加先进的算法,才能保证数据的安全,因此加密算法依然需要不断发展和完善,提供更高的加密安全强度和运 算速度。 纵观这两种算法一个从DES到3DES再到AES,一个从RSA到ECC。其发展角度无不是从密钥的简单性,成本的低廉性,管理的简易性,算法的复 杂性,保密的安全性以及计算的快速性这几个方面去考虑。因此,未来算法的发展也必定是从这几个角度出发的,而且在实际操作中往往把这两种算法结合起来,也 需将来一种集两种算法优点于一身的新型算法将会出现,到那个时候,电子商务的实现必将更加的快捷和安全。
liujae 2019-12-02 01:26:38 0 浏览量 回答数 0

回答

本文主要介绍Java中的自动拆箱与自动装箱的有关知识。 基本数据类型 基本类型,或者叫做内置类型,是Java中不同于类(Class)的特殊类型。它们是我们编程中使用最频繁的类型。 Java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化。 Java基本类型共有八种,基本类型可以分为三类: 字符类型char 布尔类型boolean 数值类型byte、short、int、long、float、double。 数值类型又可以分为整数类型byte、short、int、long和浮点数类型float、double。 Java中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。 实际上,Java中还存在另外一种基本类型void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。 基本数据类型有什么好处 我们都知道在Java语言中,new一个对象是存储在堆里的,我们通过栈中的引用来使用这些对象;所以,对象本身来说是比较消耗资源的。 对于经常用到的类型,如int等,如果我们每次使用这种变量的时候都需要new一个Java对象的话,就会比较笨重。所以,和C++一样,Java提供了基本数据类型,这种数据的变量不需要使用new创建,他们不会在堆上创建,而是直接在栈内存中存储,因此会更加高效。 整型的取值范围 Java中的整型主要包含byte、short、int和long这四种,表示的数字范围也是从小到大的,之所以表示范围不同主要和他们存储数据时所占的字节数有关。 先来个简答的科普,1字节=8位(bit)。java中的整型属于有符号数。 先来看计算中8bit可以表示的数字: 最小值:10000000 (-128)(-2^7) 最大值:01111111(127)(2^7-1) 整型的这几个类型中, byte:byte用1个字节来存储,范围为-128(-2^7)到127(2^7-1),在变量初始化的时候,byte类型的默认值为0。 short:short用2个字节存储,范围为-32,768 (-2^15)到32,767 (2^15-1),在变量初始化的时候,short类型的默认值为0,一般情况下,因为Java本身转型的原因,可以直接写为0。 int:int用4个字节存储,范围为-2,147,483,648 (-2^31)到2,147,483,647 (2^31-1),在变量初始化的时候,int类型的默认值为0。 long:long用8个字节存储,范围为-9,223,372,036,854,775,808 (-2^63)到9,223,372,036, 854,775,807 (2^63-1),在变量初始化的时候,long类型的默认值为0L或0l,也可直接写为0。 超出范围怎么办 上面说过了,整型中,每个类型都有一定的表示范围,但是,在程序中有些计算会导致超出表示范围,即溢出。如以下代码: int i = Integer.MAX_VALUE; int j = Integer.MAX_VALUE; int k = i + j; System.out.println("i (" + i + ") + j (" + j + ") = k (" + k + ")"); 输出结果:i (2147483647) + j (2147483647) = k (-2) **这就是发生了溢出,溢出的时候并不会抛异常,也没有任何提示。**所以,在程序中,使用同类型的数据进行运算的时候,一定要注意数据溢出的问题。 包装类型 Java语言是一个面向对象的语言,但是Java中的基本数据类型却是不面向对象的,这在实际使用时存在很多的不便,为了解决这个不足,在设计类时为每个基本数据类型设计了一个对应的类进行代表,这样八个和基本数据类型对应的类统称为包装类(Wrapper Class)。 包装类均位于java.lang包,包装类和基本数据类型的对应关系如下表所示 基本数据类型包装类byteBytebooleanBooleanshortShortcharCharacterintIntegerlongLongfloatFloatdoubleDouble 在这八个类名中,除了Integer和Character类以后,其它六个类的类名和基本数据类型一致,只是类名的第一个字母大写即可。 为什么需要包装类 很多人会有疑问,既然Java中为了提高效率,提供了八种基本数据类型,为什么还要提供包装类呢? 这个问题,其实前面已经有了答案,因为Java是一种面向对象语言,很多地方都需要使用对象而不是基本数据类型。比如,在集合类中,我们是无法将int 、double等类型放进去的。因为集合的容器要求元素是Object类型。 为了让基本类型也具有对象的特征,就出现了包装类型,它相当于将基本类型“包装起来”,使得它具有了对象的性质,并且为其添加了属性和方法,丰富了基本类型的操作。 拆箱与装箱 那么,有了基本数据类型和包装类,肯定有些时候要在他们之间进行转换。比如把一个基本数据类型的int转换成一个包装类型的Integer对象。 我们认为包装类是对基本类型的包装,所以,把基本数据类型转换成包装类的过程就是打包装,英文对应于boxing,中文翻译为装箱。 反之,把包装类转换成基本数据类型的过程就是拆包装,英文对应于unboxing,中文翻译为拆箱。 在Java SE5之前,要进行装箱,可以通过以下代码: Integer i = new Integer(10); 自动拆箱与自动装箱 在Java SE5中,为了减少开发人员的工作,Java提供了自动拆箱与自动装箱功能。 自动装箱: 就是将基本数据类型自动转换成对应的包装类。 自动拆箱:就是将包装类自动转换成对应的基本数据类型。 Integer i =10; //自动装箱 int b= i; //自动拆箱 Integer i=10 可以替代 Integer i = new Integer(10);,这就是因为Java帮我们提供了自动装箱的功能,不需要开发者手动去new一个Integer对象。 自动装箱与自动拆箱的实现原理 既然Java提供了自动拆装箱的能力,那么,我们就来看一下,到底是什么原理,Java是如何实现的自动拆装箱功能。 我们有以下自动拆装箱的代码: public static void main(String[]args){ Integer integer=1; //装箱 int i=integer; //拆箱 } 对以上代码进行反编译后可以得到以下代码: public static void main(String[]args){ Integer integer=Integer.valueOf(1); int i=integer.intValue(); } 从上面反编译后的代码可以看出,int的自动装箱都是通过Integer.valueOf()方法来实现的,Integer的自动拆箱都是通过integer.intValue来实现的。如果读者感兴趣,可以试着将八种类型都反编译一遍 ,你会发现以下规律: 自动装箱都是通过包装类的valueOf()方法来实现的.自动拆箱都是通过包装类对象的xxxValue()来实现的。 哪些地方会自动拆装箱 我们了解过原理之后,在来看一下,什么情况下,Java会帮我们进行自动拆装箱。前面提到的变量的初始化和赋值的场景就不介绍了,那是最简单的也最容易理解的。 我们主要来看一下,那些可能被忽略的场景。 场景一、将基本数据类型放入集合类 我们知道,Java中的集合类只能接收对象类型,那么以下代码为什么会不报错呢? List<Integer> li = new ArrayList<>(); for (int i = 1; i < 50; i ++){ li.add(i); } 将上面代码进行反编译,可以得到以下代码: List<Integer> li = new ArrayList<>(); for (int i = 1; i < 50; i += 2){ li.add(Integer.valueOf(i)); } 以上,我们可以得出结论,当我们把基本数据类型放入集合类中的时候,会进行自动装箱。 场景二、包装类型和基本类型的大小比较 有没有人想过,当我们对Integer对象与基本类型进行大小比较的时候,实际上比较的是什么内容呢?看以下代码: Integer a=1; System.out.println(a==1?"等于":"不等于"); Boolean bool=false; System.out.println(bool?"真":"假"); 对以上代码进行反编译,得到以下代码: Integer a=1; System.out.println(a.intValue()==1?"等于":"不等于"); Boolean bool=false; System.out.println(bool.booleanValue?"真":"假"); 可以看到,包装类与基本数据类型进行比较运算,是先将包装类进行拆箱成基本数据类型,然后进行比较的。 场景三、包装类型的运算 有没有人想过,当我们对Integer对象进行四则运算的时候,是如何进行的呢?看以下代码: Integer i = 10; Integer j = 20; System.out.println(i+j); 反编译后代码如下: Integer i = Integer.valueOf(10); Integer j = Integer.valueOf(20); System.out.println(i.intValue() + j.intValue()); 我们发现,两个包装类型之间的运算,会被自动拆箱成基本类型进行。 场景四、三目运算符的使用 这是很多人不知道的一个场景,作者也是一次线上的血淋淋的Bug发生后才了解到的一种案例。看一个简单的三目运算符的代码: boolean flag = true; Integer i = 0; int j = 1; int k = flag ? i : j; 很多人不知道,其实在int k = flag ? i : j;这一行,会发生自动拆箱。反编译后代码如下: boolean flag = true; Integer i = Integer.valueOf(0); int j = 1; int k = flag ? i.intValue() : j; System.out.println(k); 这其实是三目运算符的语法规范。当第二,第三位操作数分别为基本类型和对象时,其中的对象就会拆箱为基本类型进行操作。 因为例子中,flag ? i : j;片段中,第二段的i是一个包装类型的对象,而第三段的j是一个基本类型,所以会对包装类进行自动拆箱。如果这个时候i的值为null,那么就会发生NPE。(自动拆箱导致空指针异常) 场景五、函数参数与返回值 这个比较容易理解,直接上代码了: //自动拆箱 public int getNum1(Integer num) { return num; } //自动装箱 public Integer getNum2(int num) { return num; } 自动拆装箱与缓存 Java SE的自动拆装箱还提供了一个和缓存有关的功能,我们先来看以下代码,猜测一下输出结果: public static void main(String... strings) { Integer integer1 = 3; Integer integer2 = 3; if (integer1 == integer2) System.out.println("integer1 == integer2"); else System.out.println("integer1 != integer2"); Integer integer3 = 300; Integer integer4 = 300; if (integer3 == integer4) System.out.println("integer3 == integer4"); else System.out.println("integer3 != integer4"); } 我们普遍认为上面的两个判断的结果都是false。虽然比较的值是相等的,但是由于比较的是对象,而对象的引用不一样,所以会认为两个if判断都是false的。在Java中,==比较的是对象应用,而equals比较的是值。所以,在这个例子中,不同的对象有不同的引用,所以在进行比较的时候都将返回false。奇怪的是,这里两个类似的if条件判断返回不同的布尔值。 上面这段代码真正的输出结果: integer1 == integer2 integer3 != integer4 原因就和Integer中的缓存机制有关。在Java 5中,在Integer的操作上引入了一个新功能来节省内存和提高性能。整型对象通过使用相同的对象引用实现了缓存和重用。 适用于整数值区间-128 至 +127。 只适用于自动装箱。使用构造函数创建对象不适用。 具体的代码实现可以阅读Java中整型的缓存机制一文,这里不再阐述。 我们只需要知道,当需要进行自动装箱时,如果数字在-128至127之间时,会直接使用缓存中的对象,而不是重新创建一个对象。 其中的javadoc详细的说明了缓存支持-128到127之间的自动装箱过程。最大值127可以通过-XX:AutoBoxCacheMax=size修改。 实际上这个功能在Java 5中引入的时候,范围是固定的-128 至 +127。后来在Java 6中,可以通过java.lang.Integer.IntegerCache.high设置最大值。 这使我们可以根据应用程序的实际情况灵活地调整来提高性能。到底是什么原因选择这个-128到127范围呢?因为这个范围的数字是最被广泛使用的。 在程序中,第一次使用Integer的时候也需要一定的额外时间来初始化这个缓存。 在Boxing Conversion部分的Java语言规范(JLS)规定如下: 如果一个变量p的值是: -128至127之间的整数(§3.10.1) true 和 false的布尔值 (§3.10.3) ‘\u0000’至 ‘\u007f’之间的字符(§3.10.4) 范围内的时,将p包装成a和b两个对象时,可以直接使用a==b判断a和b的值是否相等。 自动拆装箱带来的问题 当然,自动拆装箱是一个很好的功能,大大节省了开发人员的精力,不再需要关心到底什么时候需要拆装箱。但是,他也会引入一些问题。 包装对象的数值比较,不能简单的使用==,虽然-128到127之间的数字可以,但是这个范围之外还是需要使用equals比较。 前面提到,有些场景会进行自动拆装箱,同时也说过,由于自动拆箱,如果包装类对象为null,那么自动拆箱时就有可能抛出NPE。 如果一个for循环中有大量拆装箱操作,会浪费很多资源。 参考资料 Java的自动拆装箱
montos 2020-06-01 21:24:01 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
小哇 2019-12-02 01:21:12 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。
琴瑟 2019-12-02 01:21:11 0 浏览量 回答数 0

问题

【精品问答】110+数据挖掘面试题集合

数据挖掘工程师面试宝典双手呈上,快来收藏吧! 1.异常值是指什么?请列举1种识别连续型变量异常值的方法? 2.什么是聚类分析? 3.聚类算法有哪几种?选择一种详细描述其计算原理和步骤。 4.根据要求写出SQL ...
珍宝珠 2019-12-01 21:56:45 2713 浏览量 回答数 3

问题

【精品问答】Python二级考试题库

1.关于数据的存储结构,以下选项描述正确的是( D ) A: 数据所占的存储空间量 B: 存储在外存中的数据 C: 数据在计算机中的顺序存储方式 D: 数据的逻辑结构在计算机中的表示 2.关于线性...
珍宝珠 2019-12-01 22:03:38 7177 浏览量 回答数 3

问题

【精品问答】python技术1000问(2)

为了方便python开发者快速找到相关技术问题和答案,开发者社区策划了python技术1000问内容,包含最基础的如何学python、实践中遇到的技术问题、python面试等维度内容。 我们会以每天至少50条的...
问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。
剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

回答

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。 对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。 第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。 第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。 现在,让我们开始吧: 一、简单排序算法 由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境 下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么 问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。 1.冒泡法: 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include <iostream.h> void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i<Count;i++) { for(int j=Count-1;j>=i;j--) { if(pData[j]<pData[j-1]) { iTemp = pData[j-1]; pData[j-1] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; BubbleSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情况) 第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次) 第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:6次 其他: 第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次) 第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换, 显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。 现在注意,我们给出O方法的定义: 若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的。。。) 现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。 2.交换法: 交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。 #include <iostream.h> void ExchangeSort(int* pData,int Count) { int iTemp; for(int i=0;i<Count-1;i++) { for(int j=i+1;j<Count;j++) { if(pData[j]<pData[i]) { iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; ExchangeSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情况) 第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次) 第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:6次 其他: 第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次) 第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次) 第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。 3.选择法: 现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。 #include <iostream.h> void SelectSort(int* pData,int Count) { int iTemp; int iPos; for(int i=0;i<Count-1;i++) { iTemp = pData[i]; iPos = i; for(int j=i+1;j<Count;j++) { if(pData[j]<iTemp) { iTemp = pData[j]; iPos = j; } } pData[iPos] = pData[i]; pData[i] = iTemp; } } void main() { int data[] = {10,9,8,7,6,5,4}; SelectSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情况) 第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次) 第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次) 第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次) 循环次数:6次 交换次数:2次 其他: 第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次) 第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次) 第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次) 循环次数:6次 交换次数:3次 遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。 4.插入法: 插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张 #include <iostream.h> void InsertSort(int* pData,int Count) { int iTemp; int iPos; for(int i=1;i<Count;i++) { iTemp = pData[i]; iPos = i-1; while((iPos>=0) && (iTemp<pData[iPos])) { pData[iPos+1] = pData[iPos]; iPos--; } pData[iPos+1] = iTemp; } } void main() { int data[] = {10,9,8,7,6,5,4}; InsertSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情况) 第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次) 第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次) 第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次) 循环次数:6次 交换次数:3次 其他: 第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次) 第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次) 第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次) 循环次数:4次 交换次数:2次 上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是, 因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单 排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似 选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。 最终,我个人认为,在简单排序算法中,选择法是最好的。 二、高级排序算法: 高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。 它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后 把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。 1.快速排序: #include <iostream.h> void run(int* pData,int left,int right) { int i,j; int middle,iTemp; i = left; j = right; middle = pData[(left+right)/2]; //求中间值 do{ while((pData[i]<middle) && (i<right))//从左扫描大于中值的数 i++; while((pData[j]>middle) && (j>left))//从右扫描大于中值的数 j--; if(i<=j)//找到了一对值 { //交换 iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; i++; j--; } }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次) //当左边部分有值(left<j),递归左半边 if(left<j) run(pData,left,j); //当右边部分有值(right>i),递归右半边 if(right>i) run(pData,i,right); } void QuickSort(int* pData,int Count) { run(pData,0,Count-1); } void main() { int data[] = {10,9,8,7,6,5,4}; QuickSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况 1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。 2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。 第一层递归,循环n次,第二层循环2*(n/2)...... 所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n 所以算法复杂度为O(log2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变 成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大。。呵呵,你完全 不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。 三、其他排序 1.双向冒泡: 通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。 #include <iostream.h> void Bubble2Sort(int* pData,int Count) { int iTemp; int left = 1; int right =Count -1; int t; do { //正向的部分 for(int i=right;i>=left;i--) { if(pData[i]<pData[i-1]) { iTemp = pData[i]; pData[i] = pData[i-1]; pData[i-1] = iTemp; t = i; } } left = t+1; //反向的部分 for(i=left;i<right+1;i++) { if(pData[i]<pData[i-1]) { iTemp = pData[i]; pData[i] = pData[i-1]; pData[i-1] = iTemp; t = i; } } right = t-1; }while(left<=right); } void main() { int data[] = {10,9,8,7,6,5,4}; Bubble2Sort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 2.SHELL排序 这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序 以次类推。 #include <iostream.h> void ShellSort(int* pData,int Count) { int step[4]; step[0] = 9; step[1] = 5; step[2] = 3; step[3] = 1; int iTemp; int k,s,w; for(int i=0;i<4;i++) { k = step[i]; s = -k; for(int j=k;j<Count;j++) { iTemp = pData[j]; w = j-k;//求上step个元素的下标 if(s ==0) { s = -k; s++; pData[s] = iTemp; } while((iTemp<pData[w]) && (w>=0) && (w<=Count)) { pData[w+k] = pData[w]; w = w-k; } pData[w+k] = iTemp; } } } void main() { int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1}; ShellSort(data,12); for (int i=0;i<12;i++) cout<<data[i]<<" "; cout<<"\n"; } 呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0 步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因 避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并 “超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。 四、基于模板的通用排序: 这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。 MyData.h文件 /////////////////////////////////////////////////////// class CMyData { public: CMyData(int Index,char* strData); CMyData(); virtual ~CMyData(); int m_iIndex; int GetDataSize(){ return m_iDataSize; }; const char* GetData(){ return m_strDatamember; }; //这里重载了操作符: CMyData& operator =(CMyData &SrcData); bool operator <(CMyData& data ); bool operator >(CMyData& data ); private: char* m_strDatamember; int m_iDataSize; }; //////////////////////////////////////////////////////// MyData.cpp文件 //////////////////////////////////////////////////////// CMyData::CMyData(): m_iIndex(0), m_iDataSize(0), m_strDatamember(NULL) { } CMyData::~CMyData() { if(m_strDatamember != NULL) delete[] m_strDatamember; m_strDatamember = NULL; } CMyData::CMyData(int Index,char* strData): m_iIndex(Index), m_iDataSize(0), m_strDatamember(NULL) { m_iDataSize = strlen(strData); m_strDatamember = new char[m_iDataSize+1]; strcpy(m_strDatamember,strData); } CMyData& CMyData::operator =(CMyData &SrcData) { m_iIndex = SrcData.m_iIndex; m_iDataSize = SrcData.GetDataSize(); m_strDatamember = new char[m_iDataSize+1]; strcpy(m_strDatamember,SrcData.GetData()); return *this; } bool CMyData::operator <(CMyData& data ) { return m_iIndex<data.m_iIndex; } bool CMyData::operator >(CMyData& data ) { return m_iIndex>data.m_iIndex; } /////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////// //主程序部分 #include <iostream.h> #include "MyData.h" template <class T> void run(T* pData,int left,int right) { int i,j; T middle,iTemp; i = left; j = right; //下面的比较都调用我们重载的操作符函数 middle = pData[(left+right)/2]; //求中间值 do{ while((pData[i]<middle) && (i<right))//从左扫描大于中值的数 i++; while((pData[j]>middle) && (j>left))//从右扫描大于中值的数 j--; if(i<=j)//找到了一对值 { //交换 iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; i++; j--; } }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次) //当左边部分有值(left<j),递归左半边 if(left<j) run(pData,left,j); //当右边部分有值(right>i),递归右半边 if(right>i) run(pData,i,right); } template <class T> void QuickSort(T* pData,int Count) { run(pData,0,Count-1); } void main() { CMyData data[] = { CMyData(8,"xulion"), CMyData(7,"sanzoo"), CMyData(6,"wangjun"), CMyData(5,"VCKBASE"), CMyData(4,"jacky2000"), CMyData(3,"cwally"), CMyData(2,"VCUSER"), CMyData(1,"isdong") }; QuickSort(data,8); for (int i=0;i<8;i++) cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n"; cout<<"\n"; }
沉默术士 2019-12-02 01:19:06 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

十大经典排序算法最强总结(内含代码实现)

1、算法分类 十种常见排序算法可以分为两大类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 非比较类排...
游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

2013年,Docker.Inc 开源了一款应用容器引擎 Docker。开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到相同内核的任何 Linux 机器上部署运行。这种集装箱式的应用开发和部署方...
kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

问题

算法工程师必知必会10大基础算法! 6月23日 【今日算法】

算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。 事实上࿰...
游客ih62co2qqq5ww 2020-06-23 13:36:00 6 浏览量 回答数 1

问题

网站技术职位之我见:报错

文章出处:http://blog.helosa.org/2010/07/16/website-job.html 搭建一个网站,需要很多职能的人加在一起,如策划、美工、技术等。小时候,这...
kun坤 2020-06-09 13:55:57 0 浏览量 回答数 1

回答

什么是机器学习? 如果人类能够训练机器从过去的数据中学习呢?嗯,这被称为机器学习,但它不仅仅是学习,它还涉及理解和推理,所以今天我们将学习机器学习的基础知识。 插一段《Python3入门机器学习经典算法与应用》这门课程中的解释: 人类是怎么学习的?通过给大脑输入一定的资料,经过学习总结得到知识和经验,有当类似的任务时可以根据已有的经验做出决定或行动。 机器学习(Machine Learning)的过程与人类学习的过程是很相似的。机器学习算法本质上就是获得一个 f(x) 函数表示的模型,如果输入一个样本 x 给 f(x) 得到的结果是一个类别,解决的就是一个分类问题,如果得到的是一个具体的数值那么解决的就是回归问题。 机器学习与人类学习的整体机制是一致的,有一点区别是人类的大脑只需要非常少的一些资料就可以归纳总结出适用性非常强的知识或者经验,例如我们只要见过几只猫或几只狗就能正确的分辨出猫和狗,但对于机器来说我们需要大量的学习资料,但机器能做到的是智能化不需要人类参与。 简单的示例 保罗听新歌,他根据歌曲的节奏、强度和声音的性别来决定喜欢还是不喜欢。 为了简单起见,我们只使用速度和强度。所以在这里,速度是在 x 轴上,从缓慢到快速,而强度是在 y 轴上,从轻到重。我们看到保罗喜欢快节奏和高亢的歌曲,而他不喜欢慢节奏和轻柔的歌曲。 现在我们知道了保罗的选择,让我们看看保罗听一首新歌,让我们给它命名这首歌 A,歌曲 A 速度快,强度飙升,所以它就在这里的某个地方。看看数据,你能猜出球在哪里会喜欢这首歌? ![7.jpg](https://ucc.alicdn.com/pic/d eveloper-ecology/a61a1dd9937f4aa4bba873397609969b.jpg) 对,保罗喜欢这首歌。 通过回顾保罗过去的选择,我们能够很容易地对未知的歌曲进行分类。假设现在保罗听了一首新歌,让我们把它贴上 B 的标签,B 这首歌就在这里的某个地方,节奏中等,强度中等,既不放松也不快速, 既不轻缓也不飞扬。 现在你能猜出保罗喜欢还是不喜欢它吗?不能猜出保罗会喜欢或不喜欢它,其他选择还不清楚。没错,我们可以很容易地对歌曲 A 进行分类,但是当选择变得复杂时,就像歌曲B 一样。机器学习可以帮你解决这个问题。 让我们看看如何。在歌曲 B 的同一个例子中,如果我们在歌曲 B 周围画一个圆圈,我们会看到有四个绿色圆点表示喜欢,而一个红色圆点不喜欢。 如果我们选择占大多数比例的绿色圆点,我们可以说保罗肯定会喜欢这首歌,这就是一个基本的机器学习算法,它被称为 K 近邻算法, 这只是众多机器学习算法之一中的一个小例子。 但是当选择变得复杂时会发生什么?就像歌曲 B 的例子一样,当机器学习进入时,它会学习数据,建立预测模型,当新的数据点进来时,它可以很容易地预测它。数据越多,模型越好,精度越高。 机器学习的分类 机器学习的方式有很多,它可以是监督学习、无监督学习或强化学习。 监督学习 让我们首先快速了解监督学习。假设你的朋友给你 100 万个三种不同货币的硬币,比如说一个是 1 欧元,一个是 1 欧尔,每个硬币有不同的重量,例如,一枚 1 卢比的硬币重 3 克, 一欧元重 7 克,一欧尔重 4 克,你的模型将预测硬币的货币。在这里,体重成为硬币的特征,而货币成为标签,当你将这些数据输入机器学习模型时,它会学习哪个特征与哪个结果相关联。 例如,它将了解到,如果一枚硬币是三克,它将是一枚卢比硬币。根据新硬币的重量,你的模型将预测货币。因此,监督学习使用标签数据来训练模型。在这里,机器知道对象的特征以及与这些特征相关的标签。 无监督学习 在这一点上,让我们看看与无监督学习的区别。假设你有不同球员的板球数据集。当您将此数据集送给机器时,机器会识别玩家性能的模式,因此它会在 x 轴上使用各自的 Achatz 对这些数据进行处理,同时在 y 轴上运行 在查看数据时,你会清楚地看到有两个集群,一个集群是得分高,分较少的球员,而另一个集群是得分较少但得分较多的球员,所以在这里我们将这两个集群解释为击球手和投球手。 需要注意的重要一点是,这里没有击球手、投球手的标签,因此 使用无标签数据的学习是无监督学习。因此,我们了解了数据被标记的监督学习和数据未标记的无监督学习。 强化学习 然后是强化学习,这是一种基于奖励的学习,或者我们可以说它的工作原理是反馈。 在这里,假设你向系统提供了一只狗的图像,并要求它识别它。系统将它识别为一只猫,所以你给机器一个负面反馈,说它是狗的形象,机器会从反馈中学习。最后,如果它遇到任何其他狗的图像,它将能够正确分类,那就是强化学习。 让我们看一个流程图,输入给机器学习模型,然后根据应用的算法给出输出。如果是正确的,我们将输出作为最终结果,否则我们会向火车模型提供反馈,并要求它预测,直到它学 机器学习的应用 你有时不知道在当今时代,机器学习是如何成为可能的,那是因为今天我们有大量可用的数据,每个人都在线,要么进行交易,要么上网,每分钟都会产生大量数据,数据是分析的关键。 此外,计算机的内存处理能力也在很大程度上增加,这有助于他们毫不拖延地处理手头如此大量的数据。 是的,计算机现在拥有强大的计算能力,所以有很多机器学习的应用。 仅举几例,机器学习用于医疗保健,在医疗保健中,医生可以预测诊断,情绪分析。 科技巨头在社交媒体上所做的推荐是另一个有趣的应用。金融部门的机器学习欺诈检测,并预测电子商务部门的客户流失。 小测验 我希望你已经理解了监督和无监督学习,所以让我们做一个快速测验,确定给定的场景是使用监督还是非监督学习。 场景 1:  Facebook 从一张标签照片相册中识别出你的朋友场景 2: Netflix 根据某人过去的电影选择推荐新电影场景 3: 分析可疑交易的银行数据并标记欺诈交易 场景 1: Facebook 在一张标签照片相册中的照片中识别你的朋友解释: 这是监督学习。在这里,Facebook 正在使用标记的照片来识别这个人。因此,标记的照片成为图片的标签,我们知道当机器从标记的数据中学习时,它是监督学习。 场景 2: 根据某人过去的音乐选择推荐新歌解释: 这是监督学习。该模型是在预先存在的标签 (歌曲流派) 上训练分类器。这是 Netflix,Pandora 和 Spotify 一直在做的事情,他们收集您已经喜欢的歌曲/电影,根据您的喜好评估功能,然后根据类似功能推荐新电影/歌曲。 场景 3: 分析可疑交易的银行数据并标记欺诈交易解释: 这是无监督学习。在这种情况下,可疑交易没有定义,因此没有 “欺诈” 和 “非欺诈” 的标签。该模型试图通过查看异常交易来识别异常值,并将其标记为 “欺诈”。
剑曼红尘 2020-04-15 19:05:53 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT